1
|
da Silva PG, Gonçalves J, Rodriguéz E, García-Encina PA, Nascimento MSJ, Sousa SIV, Mesquita JR. SARS-CoV-2 RNA Presence in Outdoor Air of Public Spaces in Valladolid During Winter, 2021. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 17:4. [PMID: 39614965 PMCID: PMC11608306 DOI: 10.1007/s12560-024-09615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/04/2024] [Indexed: 01/23/2025]
Abstract
As SARS-CoV-2 continues to evolve and herd immunity establishes, an increasing number of asymptomatic infections have been reported, increasing the risk of airborne spread of the virus. Most of the studies regarding SARS-CoV-2 RNA presence in air refer to indoor environments, with few studies having reported SARS-CoV-2 RNA in outdoor air. The aim of this study was to assess the presence of SARS-CoV-2 RNA at two different settings, crowded outdoor versus empty outdoor environments in Valladolid, Spain, during winter 2021. Using a Coriolis® air sampler, samples were taken from nine different locations within the city center. RNA extraction and a one-step RT-qPCR were carried out. Six out of the 20 air samples were found to be positive, and they were all obtained from crowded outdoor environments. These results highlight that although in less quantity, SARS-CoV-2 RNA is still present in outdoor air, especially at moments of relaxed mitigation efforts and depending on the number of people present.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa E Translacional Em Saúde Populacional (ITR), Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - José Gonçalves
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network Associate Laboratory, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Elisa Rodriguéz
- Institute of Sustainable Processes, Valladolid University, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Valladolid University, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain
| | | | - Sofia I V Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João R Mesquita
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal.
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal.
- Laboratório Para a Investigação Integrativa E Translacional Em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
2
|
Santoro B, Larese Filon F, Milotti E. An Easy-to-Use Tool to Predict SARS-CoV-2 Risk of Infection in Closed Settings: Validation with the Use of an Individual-Based Monte Carlo Simulation. Microorganisms 2024; 12:2401. [PMID: 39770604 PMCID: PMC11678045 DOI: 10.3390/microorganisms12122401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
The dynamics of the SARS-CoV-2 pandemic showed that closed environments, such as hospitals and schools, are more likely to host infection clusters due to environmental variables like humidity, ventilation, and overcrowding. This study aimed to validate our local transmission model by reproducing the data on SARS-CoV-2 diffusion in a hospital ward. We implemented our model in a Monte Carlo procedure that simulates the contacts between patients and healthcare workers in Trieste's geriatric ward and calculates the number of infected individuals. We found the median number of infected workers to be 38.98 (IQR = 7.75), while all patients were infected in most of the simulation runs. More infections occurred in rooms with lower volumes. Higher ventilation and mask-wearing contribute to reduced infections; in particular, we obtained a median value of 35.06 (IQR = 9.21) for the simulation in which we doubled room ventilation and 26.12 (IQR = 10.33) in the simulation run in which workers wore surgical masks. We managed to reproduce the data on infections in the ward; using a sensitivity analysis, we identified the parameters that had the greatest impact on the probability of transmission and the size of the outbreak.
Collapse
Affiliation(s)
- Benedetta Santoro
- Physics Department, University of Trieste, 34127 Trieste, Italy; (B.S.); (E.M.)
| | | | - Edoardo Milotti
- Physics Department, University of Trieste, 34127 Trieste, Italy; (B.S.); (E.M.)
- I. N. F. N.—Sezione di Trieste, 34149 Trieste, Italy
| |
Collapse
|
3
|
Lappan R, Thakar J, Molares Moncayo L, Besser A, Bradley JA, Goordial J, Trembath-Reichert E, Greening C. The atmosphere: a transport medium or an active microbial ecosystem? THE ISME JOURNAL 2024; 18:wrae092. [PMID: 38804464 PMCID: PMC11214262 DOI: 10.1093/ismejo/wrae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The atmosphere may be Earth's largest microbial ecosystem. It is connected to all of Earth's surface ecosystems and plays an important role in microbial dispersal on local to global scales. Despite this grand scale, surprisingly little is understood about the atmosphere itself as a habitat. A key question remains unresolved: does the atmosphere simply transport microorganisms from one location to another, or does it harbour adapted, resident, and active microbial communities that overcome the physiological stressors and selection pressures the atmosphere poses to life? Advances in extreme microbiology and astrobiology continue to push our understanding of the limits of life towards ever greater extremes of temperature, pressure, salinity, irradiance, pH, and water availability. Earth's atmosphere stands as a challenging, but potentially surmountable, extreme environment to harbour living, active, resident microorganisms. Here, we confront the current understanding of the atmosphere as a microbial habitat, highlighting key advances and limitations. We pose major ecological and mechanistic questions about microbial life in the atmosphere that remain unresolved and frame the problems and technical pitfalls that have largely hindered recent developments in this space, providing evidence-based insights to drive future research in this field. New innovations supported by rigorous technical standards are needed to enable progress in understanding atmospheric microorganisms and their influence on global processes of weather, climate, nutrient cycling, biodiversity, and microbial connectivity, especially in the context of rapid global change.
Collapse
Affiliation(s)
- Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria 3800, Australia
- Securing Antarctica’s Environmental Future, Monash University, Clayton, Victoria 3800, Australia
| | - Jordan Thakar
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Laura Molares Moncayo
- School of Geography, Queen Mary University of London, London E1 4NS, United Kingdom
- Natural History Museum, London SW7 5BD, United Kingdom
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille 13009, France
| | - Alexi Besser
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, United States
| | - James A Bradley
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille 13009, France
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Jacqueline Goordial
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | | | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Securing Antarctica’s Environmental Future, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Rashidian M, Malek MR, Sadeghi-Niaraki A, Choi SM. Epidemic exposure risk assessment in digital contact tracing: A fuzzy logic approach. Digit Health 2024; 10:20552076241261929. [PMID: 39055785 PMCID: PMC11271102 DOI: 10.1177/20552076241261929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
Background Bluetooth low energy (BLE)-based contact-tracing applications were widely used during the COVID-19 pandemic. However, the use of only the received signal strength feature for proximity calculations may not be adaptable to different virus variants or scalable for other potential epidemic diseases. Objective This study presents a novel framework in regard to evaluating and classifying personal exposure risk that considers both contact features, which include distance and length of contact, and environment features, which include crowd size and the number of recently infected cases in the environment. The framework utilizes a fuzzy expert system that is adaptable to different virus variants. Methods The proposed method was tested on two viruses with different close contact features, which used four membership functions and 256 fuzzy rule sets. Results The proposed framework classified personal exposure risks into four classes, which include low, medium, high, and too high risk. The empirical results showed that the fuzzy logic-based approach reduced the number of false positive cases and demonstrated better accuracy and precision than the current BLE-only approaches. Conclusions The proposed framework provides a more practical and adaptable method in regard to assessing exposure risks in real-world scenarios. It has the potential to be scalable and adaptable to different virus variants and other potential epidemic diseases by considering both contact and environment features. These findings may be useful in order to develop more effective digital contact-tracing applications and policies.
Collapse
Affiliation(s)
- Mohsen Rashidian
- Ubiquitous and Mobile GIS Research Lab., Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran Iran
| | - Mohammad Reza Malek
- Ubiquitous and Mobile GIS Research Lab., Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran Iran
| | - Abolghasem Sadeghi-Niaraki
- Department of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Republic of Korea
| | - Soo-Mi Choi
- Department of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Natraj S, Bhide M, Yap N, Liu M, Seth A, Berman J, Glorioso C. COVID-19 activity risk calculator as a gamified public health intervention tool. Sci Rep 2023; 13:13056. [PMID: 37567913 PMCID: PMC10421890 DOI: 10.1038/s41598-023-40338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/09/2023] [Indexed: 08/13/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic, caused by the virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted over 200 countries leading to hospitalizations and deaths of millions of people. Public health interventions, such as risk estimators, can reduce the spread of pandemics and epidemics through influencing behavior, which impacts risk of exposure and infection. Current publicly available COVID-19 risk estimation tools have had variable effectiveness during the pandemic due to their dependency on rapidly evolving factors such as community transmission levels and variants. There has also been confusion surrounding certain personal protective strategies such as risk reduction by mask-wearing and vaccination. In order to create a simple easy-to-use tool for estimating different individual risks associated with carrying out daily-life activity, we developed COVID-19 Activity Risk Calculator (CovARC). CovARC is a gamified public health intervention as users can "play with" how different risks associated with COVID-19 can change depending on several different factors when carrying out routine daily activities. Empowering the public to make informed, data-driven decisions about safely engaging in activities may help to reduce COVID-19 levels in the community. In this study, we demonstrate a streamlined, scalable and accurate COVID-19 risk calculation system. Our study also demonstrates the quantitative impact of vaccination and mask-wearing during periods of high case counts. Validation of this impact could inform and support policy decisions regarding case thresholds for mask mandates, and other public health interventions.
Collapse
Affiliation(s)
- Shreyasvi Natraj
- Department of Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Malhar Bhide
- Academics for the Future of Science Inc., Cambridge, MA, USA
| | - Nathan Yap
- Academics for the Future of Science Inc., Cambridge, MA, USA
| | - Meng Liu
- Department of Industrial and Manufacturing Engineering, Penn State University, State College, PA, USA
| | - Agrima Seth
- School of Information, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Berman
- Department of Basic Science, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, USA
| | - Christin Glorioso
- Department of Anatomy, University of California, San Francisco, CA, USA.
- Academics for the Future of Science Inc., Cambridge, MA, USA.
| |
Collapse
|
6
|
Wang J, Huang Y, Dong Y, Wu B. Assessment of the impact of reopening strategies on the spatial transmission risk of COVID-19 based on a data-driven transmission model. Sci Rep 2023; 13:11146. [PMID: 37429885 DOI: 10.1038/s41598-023-37297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
COVID-19 has dramatically changed people's mobility geste patterns and affected the operations of different functional spots. In the environment of the successful reopening of countries around the world since 2022, it's pivotal to understand whether the reopening of different types of locales poses a threat of wide epidemic transmission. In this paper, by establishing an epidemiological model based on mobile network data, combining the data handed by the Safegraph website, and taking into account the crowd inflow characteristics and the changes of susceptible and latent populations, the trends of the number of crowd visits and the number of epidemic infections at different functional points of interest after the perpetration of continuing strategies were simulated. The model was also validated with daily new cases in ten metropolitan areas in the United States from March to May 2020, and the results showed that the model fitted the evolutionary trend of realistic data more accurately. Further, the points of interest were classified into risk levels, and the corresponding reopening minimum standard prevention and control measures were proposed to be implemented according to different risk levels. The results showed that restaurants and gyms became high-risk points of interest after the perpetration of the continuing strategy, especially the general dine-in restaurants were at higher risk levels. Religious exertion centers were the points of interest with the loftiest average infection rates after the perpetration of the continuing strategy. Points of interest such as convenience stores, large shopping malls, and pharmacies were at a lower risk for outbreak impact after the continuing strategy was enforced. Based on this, continuing forestallment and control strategies for different functional points of interest are proposed to provide decision support for the development of precise forestallment and control measures for different spots.
Collapse
Affiliation(s)
- Jing Wang
- School of Economics and Management, Fuzhou University, Fuzhou, 350116, China.
- Emergency Management Research Center, Fuzhou University, Fuzhou, 350116, China.
| | - YuHui Huang
- School of Economics and Management, Fuzhou University, Fuzhou, 350116, China
| | - Ying Dong
- School of Economics and Management, Fuzhou University, Fuzhou, 350116, China
| | - BingYing Wu
- School of Economics and Management, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
7
|
Colston JM, Hinson P, Nguyen NLH, Chen YT, Badr HS, Kerr GH, Gardner LM, Martin DN, Quispe AM, Schiaffino F, Kosek MN, Zaitchik BF. Effects of hydrometeorological and other factors on SARS-CoV-2 reproduction number in three contiguous countries of tropical Andean South America: a spatiotemporally disaggregated time series analysis. IJID REGIONS 2023; 6:29-41. [PMID: 36437857 PMCID: PMC9675637 DOI: 10.1016/j.ijregi.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/09/2023]
Abstract
Background The COVID-19 pandemic has caused societal disruption globally, and South America has been hit harder than other lower-income regions. This study modeled the effects of six weather variables on district-level SARS-CoV-2 reproduction numbers (Rt ) in three contiguous countries of tropical Andean South America (Colombia, Ecuador, and Peru), adjusting for environmental, policy, healthcare infrastructural and other factors. Methods Daily time-series data on SARS-CoV-2 infections were sourced from the health authorities of the three countries at the smallest available administrative level. Rt values were calculated and merged by date and unit ID with variables from a unified COVID-19 dataset and other publicly available sources for May-December, 2020. Generalized additive models were fitted. Findings Relative humidity and solar radiation were inversely associated with SARS-CoV-2 Rt . Days with radiation above 1000 kJ/m2 saw a 1.3% reduction in Rt , and those with humidity above 50% recorded a 0.9% reduction in Rt . Transmission was highest in densely populated districts, and lowest in districts with poor healthcare access and on days with lowest population mobility. Wind speed, temperature, region, aggregate government policy response, and population age structure had little impact. The fully adjusted model explained 4.3% of Rt variance. Interpretation Dry atmospheric conditions of low humidity increase district-level SARS-CoV-2 reproduction numbers, while higher levels of solar radiation decrease district-level SARS-CoV-2 reproduction numbers - effects that are comparable in magnitude to population factors like lockdown compliance. Weather monitoring could be incorporated into disease surveillance and early warning systems in conjunction with more established risk indicators and surveillance measures. Funding NASA's Group on Earth Observations Work Programme (16-GEO16-0047).
Collapse
Affiliation(s)
- Josh M. Colston
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Patrick Hinson
- College of Arts and Sciences, University of Virginia, VA, USA
| | | | - Yen Ting Chen
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Hamada S. Badr
- Department of Earth and Planetary Sciences, Johns Hopkins Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Gaige H. Kerr
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Lauren M. Gardner
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David N. Martin
- Claude Moore Health Sciences Library, University of Virginia School of Medicine, VA, USA
| | | | - Francesca Schiaffino
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases and International Health and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Benjamin F. Zaitchik
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
8
|
Silva PGD, Nascimento MSJ, Sousa SIV, Mesquita JR. SARS-CoV-2 in outdoor air following the third wave lockdown release, Portugal, 2021. J Med Microbiol 2023; 72. [PMID: 36763082 DOI: 10.1099/jmm.0.001659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Aiming to contribute with more data on the presence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in outdoor environments, we performed air sampling in outdoor terraces from restaurants in three major cities of Portugal in April 2021, following the third wave lockdown release in the country. Air samples (n=19) were collected in 19 restaurant terraces during lunch time. Each air sample was collected using a Coriolis Compact air sampler, followed by RNA extraction and real-time quantitative PCR for the detection of viral RNA. Viral viability was also assessed through RNAse pre-treatment of samples. Only one of the 19 air samples was positive for SARS-CoV-2 RNA, with 7337 gene copies m-3 for the genomic region N2, with no viable virus in this sample. The low number of positive samples found in this study is not surprising, as sampling took place in outdoor settings where air circulation is optimal, and aerosols are rapidly dispersed by the air currents. These results are consistent with previous reports stating that transmission of SARS-CoV-2 in outdoor spaces is low, although current evidence shows an association of exposures in settings where drinking and eating is possible on-site with an increased risk in acquiring SARS-CoV-2 infection. Moreover, the minimal infectious dose for SARS-CoV-2 still needs to be determined so that the real risk of infection in different environments can be accurately established.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | | | - Sofia I V Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João R Mesquita
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
9
|
Sheraz M, Mir KA, Anus A, Le VCT, Kim S, Nguyen VQ, Lee WR. SARS-CoV-2 airborne transmission: a review of risk factors and possible preventative measures using air purifiers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2191-2216. [PMID: 36278886 DOI: 10.1039/d2em00333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting worldwide death toll have prompted worries regarding its transmission mechanisms. Direct, indirect, and droplet modes are the basic mechanisms of transmission. SARS-CoV-2 spreads by respiratory droplets (size range >10 μm size ranges), aerosols (5 μm), airborne, and particulate matter. The rapid transmission of SARS-CoV-2 is due to the involvement of tiny indoor air particulate matter (PM2.5), which functions as a vector. SARS-CoV-2 is more contagious in the indoor environment where particulate matter floats for a longer period and greater distances. Extended residence time in the environment raises the risk of SARS-CoV-2 entering the lower respiratory tract, which may cause serious infection and possibly death. To decrease viral transmission in the indoor environment, it is essential to catch and kill the SARS-CoV-2 virus and maintain virus-free air, which will significantly reduce viral exposure concerns. Therefore, effective air filters with anti-viral, anti-bacterial, and anti-air-pollutant characteristics are gaining popularity recently. It is essential to develop cost-effective materials based on nanoparticles and metal-organic frameworks in order to lower the risk of airborne transmission in developing countries. A diverse range of materials play an important role in the manufacturing of effective air filters. We have summarized in this review article the basic concepts of the transmission routes of SARS-CoV-2 virus and precautionary measures using air purifiers with efficient materials-based air filters for the indoor environment. The performance of air-filter materials, challenges and alternative approaches, and future perspectives are also presented. We believe that air purifiers fabricated with highly efficient materials can control various air pollutants and prevent upcoming pandemics.
Collapse
Affiliation(s)
- Mahshab Sheraz
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Kaleem Anwar Mir
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Global Change Impact Studies Centre, Ministry of Climate Change, Government of Pakistan, Islamabad, 44000, Pakistan
| | - Ali Anus
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Van Cam Thi Le
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Seungdo Kim
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- Environment Strategy Development Institute, Hallym University, Chuncheon-si 24252, South Korea
| | - Van Quyet Nguyen
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Woo Ram Lee
- Department of Chemistry, School of Future Convergence, Hallym University, Engineering Building# 1348, 1 Hallymdaehak-gil, Chuncheon-si 24252, Gangwon-do, South Korea.
| |
Collapse
|
10
|
Baccolini V, Siena LM, Renzi E, Migliara G, Colaprico C, Romano A, Massimi A, Marzuillo C, De Vito C, Casini L, Antonelli G, Turriziani O, Angeloni A, D'Alba F, Villari P, Polimeni A, Collaborating Group Maria Di LellaFedericaDi VirgilioSofiaDoniaPierluigiRapitiEmilianoMaria RodioDonatellaTaddeoGeltrude. Prevalence of SARS-CoV-2 infection and associated risk factors: A testing program and nested case-control study conducted at Sapienza University of Rome between March and June 2021. Front Public Health 2022; 10:1010130. [PMID: 36339150 PMCID: PMC9627192 DOI: 10.3389/fpubh.2022.1010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 01/27/2023] Open
Abstract
Background To safely resume in-person activities during the COVID-19 pandemic, Sapienza University of Rome implemented rigorous infection prevention and control measures, a successful communication campaign and a free SARS-CoV-2 testing program. In this study, we describe the University's experience in carrying out such a program in the context of the COVID-19 response and identify risk factors for infection. Methods Having identified resources, space, supplies and staff, from March to June 2021 Sapienza offered to all its enrollees a molecular test service (8.30 AM to 4 PM, Monday to Thursday). A test-negative case-control study was conducted within the program. Participants underwent structured interviews that investigated activity-related exposures in the 2 weeks before testing. Multivariable conditional logistic regression analyses were performed. Adjusted odds ratios (aORs) and 95% confidence intervals (95% CIs) were calculated. Results A total of 8,959 tests were administered, of which 56 were positive. The detection trend followed regional tendencies. Among 40 cases and 80 controls, multivariable analysis showed that a known exposure to a COVID-19 case increased the likelihood of infection (aOR: 8.39, 95% CI: 2.38-29.54), while having a job decreased it (aOR: 0.23, 95% CI: 0.06-0.88). Of factors that almost reached statistical significance, participation in activities in the university tended to reduce the risk (aOR: 0.32, 95% CI: 0.09-1.06), while attendance at private gatherings showed an increasing risk trend (aOR: 3.48, 95% CI: 0.95-12.79). Age, gender, activities in the community, visiting bars or restaurants, and use of public transportation were not relevant risk factors. When those students regularly attending the university campus were excluded from the analysis, the results were comparable, except that attending activities in the community came close to having a statistically significant effect (aOR: 8.13, 95% CI: 0.91-72.84). Conclusions The testing program helped create a safe university environment. Furthermore, promoting preventive behavior and implementing rigorous measures in public places, as was the case in the university setting, contributed to limit the virus transmission.
Collapse
Affiliation(s)
- Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Leonardo Maria Siena
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Erika Renzi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy,*Correspondence: Erika Renzi
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Corrado Colaprico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alessandra Romano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Azzurra Massimi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Carolina Marzuillo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Leandro Casini
- Special Office for Prevention, Protection and High Vigilance, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Science, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
11
|
Jumlongkul A. Water-based air purifier with ventilation fan system: a novel approach for cleaning indoor/outdoor transitional air during the pandemic. SN APPLIED SCIENCES 2022; 4:257. [PMID: 36091920 PMCID: PMC9443626 DOI: 10.1007/s42452-022-05142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract This article presents the design and fabrication of an air purifier that uses a water-based technique to clean indoor/outdoor transitional air to provide a low-tech air purifier against the annual smog crisis and the ongoing COVID-19 pandemic. The air purifier was designed and built. All tests were conducted in a closed room as well as a semi-outdoor area. Particle sizes of PM0.3, 0.5, 1.0, 3.0, 5.0, and 10 μm (particle/m3) were measured at an air inlet, air outlet, 2 m from an air inlet, and 4 m from an air outlet after 0, 5, 10, 15, and 20 min of air treatment, respectively, as well as CO2 levels and relative humidity (RH). The average airflow rate was also measured. When compare to 0 min, all parameters, except semi-outdoor PM0.3 and CO2 levels, tend to decrease in both indoor and semi-outdoor conditions. When measure by total airflow specification of a dual ventilation fan, the average airflow rate at an air outlet is reduced by 20 times. Article Highlights Design and fabrication of a water-based air purifier. A low-tech air purifier helping to protect against the annual smog crisis and the ongoing COVID-19 pandemic. The novel water-based air purifier effectively traps air particles ranging in size from 0.5 to 10 µm.
Collapse
|
12
|
Sheridan C, Klompmaker J, Cummins S, James P, Fecht D, Roscoe C. Associations of air pollution with COVID-19 positivity, hospitalisations, and mortality: Observational evidence from UK Biobank. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119686. [PMID: 35779662 PMCID: PMC9243647 DOI: 10.1016/j.envpol.2022.119686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 05/26/2023]
Abstract
Individual-level studies with adjustment for important COVID-19 risk factors suggest positive associations of long-term air pollution exposure (particulate matter and nitrogen dioxide) with COVID-19 infection, hospitalisations and mortality. The evidence, however, remains limited and mechanisms unclear. We aimed to investigate these associations within UK Biobank, and to examine the role of underlying chronic disease as a potential mechanism. UK Biobank COVID-19 positive laboratory test results were ascertained via Public Health England and general practitioner record linkage, COVID-19 hospitalisations via Hospital Episode Statistics, and COVID-19 mortality via Office for National Statistics mortality records from March-December 2020. We used annual average outdoor air pollution modelled at 2010 residential addresses of UK Biobank participants who resided in England (n = 424,721). We obtained important COVID-19 risk factors from baseline UK Biobank questionnaire responses (2006-2010) and general practitioner record linkage. We used logistic regression models to assess associations of air pollution with COVID-19 outcomes, adjusted for relevant confounders, and conducted sensitivity analyses. We found positive associations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) with COVID-19 positive test result after adjustment for confounders and COVID-19 risk factors, with odds ratios of 1.05 (95% confidence intervals (CI) = 1.02, 1.08), and 1.05 (95% CI = 1.01, 1.08), respectively. PM 2.5 and NO 2 were positively associated with COVID-19 hospitalisations and deaths in minimally adjusted models, but not in fully adjusted models. No associations for PM10 were found. In analyses with additional adjustment for pre-existing chronic disease, effect estimates were not substantially attenuated, indicating that underlying chronic disease may not fully explain associations. We found some evidence that long-term exposure to PM2.5 and NO2 was associated with a COVID-19 positive test result in UK Biobank, though not with COVID-19 hospitalisations or deaths.
Collapse
Affiliation(s)
- Charlotte Sheridan
- London School of Hygiene & Tropical Medicine, Keppel St., London, WC1E 7HT, United Kingdom.
| | - Jochem Klompmaker
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, United States.
| | - Steven Cummins
- Population Health Innovation Lab, Department of Public Health, Environments and Society, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, Keppel St., London, United Kingdom.
| | - Peter James
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, United States; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401 East, Boston, MA, 02215, United States.
| | - Daniela Fecht
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Medicine, St Mary's Campus, Imperial College London, London, W2 1PG, United Kingdom.
| | - Charlotte Roscoe
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, United States; MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Medicine, St Mary's Campus, Imperial College London, London, W2 1PG, United Kingdom; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
13
|
Urban Aerobiome and Effects on Human Health: A Systematic Review and Missing Evidence. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urban air pollutants are a major public health concern and include biological matters which composes about 25% of the atmospheric aerosol particles. Airborne microorganisms were traditionally characterized by culture-based methods recognizing just 1.5–15.3% of the total bacterial diversity that was evaluable by genome signature in the air environment (aerobiome). Despite the large number of exposed people, urban aerobiomes are still weakly described even if recently advanced literature has been published. This paper aims to systematically review the state of knowledge on the urban aerobiome and human health effects. A total of 24 papers that used next generation sequencing (NGS) techniques for characterization and comprised a seasonal analysis have been included. A core of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroides and various factors that influenced the community structure were detected. Heterogenic methods and results were reported, for both sampling and aerobiome diversity analysis, highlighting the necessity of in-depth and homogenized assessment thus reducing the risk of bias. The aerobiome can include threats for human health, such as pathogens and resistome spreading; however, its diversity seems to be protective for human health and reduced by high levels of air pollution. Evidence of the urban aerobiome effects on human health need to be filled up quickly for urban public health purposes.
Collapse
|
14
|
Degradation of gaseous volatile organic compounds (VOCs) by a novel UV-ozone technology. Sci Rep 2022; 12:11112. [PMID: 35773444 PMCID: PMC9247106 DOI: 10.1038/s41598-022-14191-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, a UV-assisted ozonation (UV/O3) process for the degradation of VOCs emissions with a final scrubbing phase was implemented to evaluate the removal efficiency of toluene and to prevent the release of polluting intermediates of the single-step process. Inlet toluene concentration and applied voltage were varied in order to investigate several operating conditions. The results highlighted that at higher inlet concentration the abatement of toluene was lower, while increase in ozone concentration led to an increase of the degradation efficiencies. The additional water scrubbing step enhanced the abatement of UV/O3 up to 98.5%, due to the solubilisation of ozone and by-products in the process water and, thus, the further oxidation of the contaminants within this phase. A maximum Elimination Capacity (ECmax) of 22.6 g m−3 h−1 was achieved with the UV/O3 + Scrubbing. The combined system boosted higher performance and stability compared to the stand-alone (UV/O3) process along with a more economical and environmental sustainability.
Collapse
|
15
|
Günther I, Harttgen K, Seiler J, Utzinger J. An index of access to essential infrastructure to identify where physical distancing is impossible. Nat Commun 2022; 13:3355. [PMID: 35701421 PMCID: PMC9198068 DOI: 10.1038/s41467-022-30812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
To identify areas at highest risk of infectious disease transmission in Africa, we develop a physical distancing index (PDI) based on the share of households without access to private toilets, water, space, transportation, and communication technology and weight it with population density. Our results highlight that in addition to improving health systems, countries across Africa, especially in the western part of Africa, need to address the lack of essential domestic infrastructure. Missing infrastructure prevents societies from limiting the spread of communicable diseases by undermining the effectiveness of governmental regulations on physical distancing. We also provide high-resolution risk maps that show which regions are most limited in protecting themselves. We find considerable spatial heterogeneity of the PDI within countries and show that it is highly correlated with detected COVID-19 cases. Governments could pay specific attention to these areas to target limited resources more precisely to prevent disease transmission. Lack of private infrastructure remains a major challenge potentially hampering a societies’ ability to contain the transmission of communicable diseases. Areas at high risk in Africa are identified based on access to essential basic infrastructure.
Collapse
Affiliation(s)
- Isabel Günther
- Development Economics Group, ETH Zürich, Zürich, Switzerland.,NADEL - Center for Development and Cooperation, ETH Zürich, Zürich, Switzerland
| | - Kenneth Harttgen
- Development Economics Group, ETH Zürich, Zürich, Switzerland. .,NADEL - Center for Development and Cooperation, ETH Zürich, Zürich, Switzerland.
| | - Johannes Seiler
- NADEL - Center for Development and Cooperation, ETH Zürich, Zürich, Switzerland.,Department of Statistics, University of Innsbruck, Innsbruck, Austria
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Numerical Investigation on the Droplet Dispersion inside a Bus and the Infection Risk Prediction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
COVID-19 can be easily transmitted to passengers by inhaling exhaled droplets from the infected person in a bus. Therefore, studying droplet dispersion would provide further insight into the mechanism of virus transmission and predict the risk of infection among passengers on a bus. In this research, a bus equipped with air-conditioning was employed as the research object. To determine the dispersion path, concentration distribution, and escape time of the droplets, computational fluid dynamic (CFD) was applied to simulate the flow field and the droplets’ dispersion. The effect of the air supply rate, the location of vents, and the location of infected persons on the dispersion were discussed. Based on the distribution of droplets in the cabin calculated by CFD, a superposition method was used to determine the number of virus particles inhaled by every individual passenger over a four-hour journey. Then, infection risk was assessed by the Wells-Riley equation for all the passengers in the cabin after the whole journey. The results show that the distribution of droplets in the cabin is greatly influenced by the location of the infected person, and the airflow pattern is highly associated with the air supply rate and the location of vents. The infection risk of passengers located at the droplet dispersion path and the distance from the infected persons less than 2.2 m is over 10%. The increase in the air supply rate could speed up the spread of the droplets but at the same time, it could reduce the infection risk.
Collapse
|
17
|
Braun-Trocchio R, Renteria J, Warfield E, Harrison K, Williams A. The Effects of Face Coverings on Perceived Exertion and Attention Allocation during a Stepping Task. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6892. [PMID: 35682473 PMCID: PMC9180205 DOI: 10.3390/ijerph19116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic has impacted the entire world from lockdowns to various recommended restrictions including social distancing and wearing face coverings. In a safe environment, cardiovascular exercise is important for both physical health and mental health. The current study examined the effects of face coverings on rating of perceived exertion and attention allocation during an exertive stepping task. Participants completed a stepping task with a weighted vest at 20% of their bodyweight until volitional fatigue with a face covering (n = 23) or without a face covering (n = 31). Results revealed a non-significant difference (p = 0.25) in the duration of the stepping task (in seconds) between the no face covering (M = 455.81, SD = 289.77) and face covering (M = 547.83, SD = 285.93) conditions. Results indicated increases in perceived exertion (p < 0.001) and heart rate (p < 0.001) as time progressed across the four time points (i.e., 30 s, 1/3 time to exhaustion, 2/3 time to exhaustion, and exhaustion) in both conditions. No significant differences were found between the conditions for RPE (p = 0.09) and heart rate (p = 0.50). Participants wearing a face covering were more internally focused across the duration of the stepping task (p = 0.05). This study has relevance for applied practitioners implementing physical activity interventions that require face coverings.
Collapse
Affiliation(s)
- Robyn Braun-Trocchio
- Department of Kinesiology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Jessica Renteria
- Department of Kinesiology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Elizabeth Warfield
- Department of Kinesiology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Kaitlyn Harrison
- Department of Kinesiology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Ashlynn Williams
- Department of Kinesiology, Texas Christian University, Fort Worth, TX 76129, USA
| |
Collapse
|
18
|
Tao Y, Zhang X, Qiu G, Spillmann M, Ji Z, Wang J. SARS-CoV-2 and other airborne respiratory viruses in outdoor aerosols in three Swiss cities before and during the first wave of the COVID-19 pandemic. ENVIRONMENT INTERNATIONAL 2022; 164:107266. [PMID: 35512527 PMCID: PMC9060371 DOI: 10.1016/j.envint.2022.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 05/02/2023]
Abstract
Caused by the SARS-CoV-2 virus, Coronavirus disease 2019 (COVID-19) has been affecting the world since the end of 2019. While virus-laden particles have been commonly detected and studied in the aerosol samples from indoor healthcare settings, studies are scarce on air surveillance of the virus in outdoor non-healthcare environments, including the correlations between SARS-CoV-2 and other respiratory viruses, between viruses and environmental factors, and between viruses and human behavior changes due to the public health measures against COVID-19. Therefore, in this study, we collected airborne particulate matter (PM) samples from November 2019 to April 2020 in Bern, Lugano, and Zurich. Among 14 detected viruses, influenza A, HCoV-NL63, HCoV-HKU1, and HCoV-229E were abundant in air. SARS-CoV-2 and enterovirus were moderately common, while the remaining viruses occurred only in low concentrations. SARS-CoV-2 was detected in PM10 (PM below 10 µm) samples of Bern and Zurich, and PM2.5 (PM below 2.5 µm) samples of Bern which exhibited a concentration positively correlated with the local COVID-19 case number. The concentration was also correlated with the concentration of enterovirus which raised the concern of coinfection. The estimated COVID-19 infection risks of an hour exposure at these two sites were generally low but still cannot be neglected. Our study demonstrated the potential functionality of outdoor air surveillance of airborne respiratory viruses, especially at transportation hubs and traffic arteries.
Collapse
Affiliation(s)
- Yile Tao
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Martin Spillmann
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Zheng Ji
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.
| |
Collapse
|
19
|
Robinson PG, Murray A, Close G, Glover D, Du Plessis WJ. Returning persons with SARS-CoV-2 to the field of play in professional golf: a risk assessment and risk reduction approach. BMJ Open Sport Exerc Med 2022; 8:e001347. [PMID: 35539286 PMCID: PMC9066089 DOI: 10.1136/bmjsem-2022-001347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives This pilot study aimed to see whether a risk assessment and risk reduction approach was a practical and feasible approach, as compared with standard isolation for fully vaccinated, asymptomatic persons positive for SARS-CoV-2. Methods This prospective cohort study included all players and caddies participating in two large professional golf events from 7 to 20 February 2022 in South Africa. Fully vaccinated persons testing positive who were asymptomatic were subject to risk assessment and risk reduction measures to protect the integrity of the event. Asymptomatic individuals who could socially distance in outdoor areas were allowed to participate. Close contacts were subject to daily rapid antigen tests and asked to prioritise outdoor space. Results The protocols put in place for the events were practical, feasible, and well accepted by event participants and staff during the study period. There was a total of 378 player-week episodes and 378 caddie-week episodes during the study period. Three persons tested positive while registered at events during the study period (0.4% of person episodes). The positive tests were returned from two players and one caddie, all of which were asymptomatic at the time of testing. There was one high-risk contact who consistently returned negative antigen tests. There was no evidence of transmission. Conclusions The approach was practical and feasible. A risk assessment and risk reduction approach allowed fully vaccinated asymptomatic persons with SARS-CoV-2 to participate in golf, an outdoor sport where social distancing is possible, compared with standard isolation.
Collapse
Affiliation(s)
- Patrick Gordon Robinson
- Royal Infirmary of Edinburgh, Edinburgh Orthopaedics, Edinburgh, UK
- European Tour Performance Institute, Virginia Water, UK
| | - Andrew Murray
- European Tour Performance Institute, Virginia Water, UK
- Physical Activity for Health Research Centre, University of Edinburgh, Edinburgh, UK
| | - Graeme Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Danny Glover
- European Tour Performance Institute, Virginia Water, UK
| | - Wimpie J Du Plessis
- Medical and Scientific Department, The Sunshine Tour, Somerset West, South Africa
| |
Collapse
|
20
|
Heese H, Marquis A, Diercke M, Markus I, Böhm S, Metz J, Katz K, Wildner M, Liebl B. Results of the enhanced COVID-19 surveillance during UEFA EURO 2020 in Germany. Epidemiol Infect 2022; 150:1-18. [PMID: 35236530 PMCID: PMC8924559 DOI: 10.1017/s0950268822000449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 11/06/2022] Open
Abstract
In general, mass gatherings might pose a risk to the public health (PH). The UEFA EURO 2020 tournament (EURO 2020) was one of the first mass gathering events since the start of the coronavirus disease 2019 (COVID-19) pandemic in Germany. To allow early detection and response to any EURO 2020-associated impact on the COVID-19-related epidemiological situation, we initiated enhanced surveillance activities using the routine surveillance system in collaboration with the regional PH authority of Bavaria. Several preventive measures regarding the attendance of football matches and public viewing were implemented according to state regulations. We describe the results from the enhanced surveillance during the EURO 2020. In total, five cases who had attended a football match in the stadium of Munich, nine cases, who attended a football match in a stadium outside of Germany, and 123 cases in association with public viewing events were identified by enhanced surveillance. Concluding, the EURO 2020 seems to not have had a major impact on the COVID-19 pandemic development in Germany. Health measures for stadium visitors and the restriction of large public viewing events may have potentially contributed to the low case numbers detected, emphasising the need of appropriate PH surveillance and regulations to limit the potential risk to PH during mass gathering events.
Collapse
Affiliation(s)
- Helena Heese
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Adine Marquis
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Michaela Diercke
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Inessa Markus
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Stefanie Böhm
- Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| | - Jasmin Metz
- Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| | - Katharina Katz
- Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| | - Manfred Wildner
- Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| | - Bernhard Liebl
- Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| |
Collapse
|
21
|
Ishmatov A. "SARS-CoV-2 is transmitted by particulate air pollution": Misinterpretations of statistical data, skewed citation practices, and misuse of specific terminology spreading the misconception. ENVIRONMENTAL RESEARCH 2022; 204:112116. [PMID: 34562486 PMCID: PMC8489301 DOI: 10.1016/j.envres.2021.112116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 05/03/2023]
Abstract
In epidemiology, there are still outdated myths associated with the spread of respiratory infections. Recently, we have witnessed the origination of a new misconception, to the effect that SARS-CoV-2 is transmitted in the open air by way of particulate air pollution (atmospheric particulate matter (PM)). There is no evidence to support the idea behind this misconception. Nevertheless, more and more people are involved in animated debate and the number of studies concerning atmospheric PM as a carrier of SARS-CoV-2 is growing rapidly. In this work, the origin of the misconception was investigated, and the published papers which have contributed to the spread of this myth were analyzed. The results show that the following factors lie behind the origin and spread of the misconception: a) The specific terminology is not always clearly defined or consistently used by scientists. In particular, the terms 'particulate matter', 'atmospheric aerosol particles', 'air pollutants', and 'atmospheric aerosols' need to be clarified, and besides they are often equated to 'infectious aerosols', 'virus-bearing aerosols', 'bio-aerosols', 'virus-laden particles', 'respiratory aerosol/droplets', and 'droplet nuclei'. b) Authors misinterpret statistical data and information from other sources. Interpretation of the correlation between PM levels and the increasing incidence and severity of COVID-19 infection, is often changed from "PM may reflect the indirect action of certain atmospheric conditions that maintain infectious nuclei suspended for prolonged periods, parameters that also act on atmospheric pollutants" to "PM could cause an increase in infectious droplets/aerosols containing SARS-CoV-2." This is a dramatic change to the meaning. Moreover, it is often not taken into account that PM may reflect activities in areas with high population density and this population density at the same time contributes to the spread COVID-19. c) Skewed citation practices. Many authors cite a hypothetical conclusion from an original study, then other authors cite the papers of these authors as primary sources. This practice leads to the effect that there are many witnesses to a 'phenomenon' that did not ever occur. Thus, the terminology used in interdisciplinary communications should be more nuanced and defined precisely. Authors should be more careful when citing unconfirmed data (and hypotheses) as well as in interpreting statistical data so as to avoid confusion and spreading false information. This is especially important now in the era of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Alexander Ishmatov
- Research Institute of Experimental and Clinical Medicine, Timakova St., Bild. 2., Novosibirsk, 630117, Russian Federation; Kazan Federal University, Kremlyovskaya St. 18, Kazan, 420008, Russian Federation; Togliatti State University, Belorusskaya St. 14, Togliatti, 445020, Russian Federation.
| |
Collapse
|
22
|
Abstract
In this review, we highlight the risk to livestock and humans from infections with henipaviruses, which belong to the virus family Paramyxoviridae. We provide a comprehensive overview of documented outbreaks of Nipah and Hendra virus infections affecting livestock and humans and assess the burden on the economy and health systems. In an increasingly globalized and interconnected world, attention must be paid to emerging viruses and infectious diseases, as transmission routes can be rapid and worldwide.
Collapse
Affiliation(s)
- Susann Kummer
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- * E-mail:
| | - Denise-Carina Kranz
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
23
|
Jalali Milani S, Nabi Bidhendi G. A Review on the Potential of Common Disinfection Processes for the Removal of Virus from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:9. [PMID: 35013682 PMCID: PMC8733756 DOI: 10.1007/s41742-021-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
Due to the prevalence of the COVID-19 outbreak, as well as findings of SARS-CoV-2 RNA in wastewater and the possibility of viral transmission through wastewater, disinfection is required. As a consequence, based on prior investigations, this work initially employed the viral concentration detection technique, followed by the RT-qPCR assay, as the foundation for identifying the SARS-CoV-2 virus in wastewater. After that, the ability and efficacy of chlorine, ozone, and UV disinfection to inactivate the SARS-CoV-2 virus from wastewater were examined. Chlorine disinfection is the most extensively used disinfection technology due to its multiple advantages. With a chlorine dioxide disinfectant dose of 40 mg/L, the SARS-CoV virus is inactivated after 30 min of contact time. On the other hand, ozone is a powerful oxidizer and an effective microbicide that is employed as a disinfectant due to its positive characteristics. After 30 min of exposure to 1000 ppmv ozone, corona pseudoviruses are reduced by 99%. Another common method of disinfection is using ultraviolet radiation, which is usually 253.7 nm suitable for ultraviolet disinfection. At a dose of 1048 mJ/cm2, UVC radiation completely inactivates the SARS-CoV-2 virus. Finally, to evaluate disinfection performance and optimize disinfection strategies to prevent the spread of SARS-CoV-2, this study attempted to investigate the ability to remove and compare the effectiveness of each disinfectant to inactive the SARS-CoV-2 virus from wastewater, summarize studies, and provide future solutions due to the limited availability of integrated resources in this field and the spread of the SARS-CoV-2 virus worldwide.
Collapse
Affiliation(s)
- Sevda Jalali Milani
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
24
|
Marquès M, Domingo JL. Positive association between outdoor air pollution and the incidence and severity of COVID-19. A review of the recent scientific evidences. ENVIRONMENTAL RESEARCH 2022; 203:111930. [PMID: 34425111 PMCID: PMC8378989 DOI: 10.1016/j.envres.2021.111930] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
In June 2020, we published a review focused on assessing the influence of various air pollutants on the transmission of SARS-CoV-2, and the severity of COVID-19 in patients infected by the coronavirus. The results of most of those reviewed studies suggested that chronic exposure to certain air pollutants might lead to more severe and lethal forms of COVID-19, as well as delays/complications in the recovery of the patients. Since then, a notable number of studies on this topic have been published, including also various reviews. Given the importance of this issue, we have updated the information published since our previous review. Taking together the previous results and those of most investigations now reviewed, we have concluded that there is a significant association between chronic exposure to various outdoor air pollutants: PM2.5, PM10, O3, NO2, SO2 and CO, and the incidence/risk of COVID-19 cases, as well as the severity/mortality of the disease. Unfortunately, studies on the potential influence of other important air pollutants such as VOCs, dioxins and furans, or metals, are not available in the scientific literature. In relation to the influence of outdoor air pollutants on the transmission of SARS-CoV-2, although the scientific evidence is much more limited, some studies point to PM2.5 and PM10 as potential airborne transmitters of the virus. Anyhow, it is clear that environmental air pollution plays an important negative role in COVID-19, increasing its incidence and mortality.
Collapse
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, Universitat Rovira i Virgili, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, Universitat Rovira i Virgili, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
25
|
Full-Scale Odor Abatement Technologies in Wastewater Treatment Plants (WWTPs): A Review. WATER 2021. [DOI: 10.3390/w13243503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The release of air pollutants from the operation of wastewater treatment plants (WWTPs) is often a cause of odor annoyance for the people living in the surrounding area. Odors have been indeed recently classified as atmospheric pollutants and are the main cause of complaints to local authorities. In this context, the implementation of effective treatment solutions is of key importance for urban water cycle management. This work presents a critical review of the state of the art of odor treatment technologies (OTTs) applied in full-scale WWTPs to address this issue. An overview of these technologies is given by discussing their strengths and weaknesses. A sensitivity analysis is presented, by considering land requirements, operational parameters and efficiencies, based on data of full-scale applications. The investment and operating costs have been reviewed with reference to the different OTTs. Biofilters and biotrickling filters represent the two most applied technologies for odor abatement at full-scale plants, due to lower costs and high removal efficiencies. An analysis of the odors emitted by the different wastewater treatment units is reported, with the aim of identifying the principal odor sources. Innovative and sustainable technologies are also presented and discussed, evaluating their potential for full-scale applicability.
Collapse
|
26
|
Wang Q, Liu L. On the Critical Role of Human Feces and Public Toilets in the Transmission of COVID-19: Evidence from China. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103350. [PMID: 34540563 PMCID: PMC8433098 DOI: 10.1016/j.scs.2021.103350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
The surprising spread speed of the COVID-19 pandemic creates an urgent need for investigating the transmission chain or transmission pattern of COVID-19 beyond the traditional respiratory channels. This study therefore examines whether human feces and public toilets play a critical role in the transmission of COVID-19. First, it develops a theoretical model that simulates the transmission chain of COVID-19 through public restrooms. Second, it uses stabilized epidemic data from China to empirically examine this theory, conducting an empirical estimation using a two-stage least squares (2SLS) model with appropriate instrumental variables (IVs). This study confirms that the wastewater directly promotes the transmission of COVID-19 within a city. However, the role of garbage in this transmission chain is more indirect in the sense that garbage has a complex relationship with public toilets, and it promotes the transmission of COVID-19 within a city through interaction with public toilets and, hence, human feces. These findings have very strong policy implications in the sense that if we can somehow use the ratio of public toilets as a policy instrument, then we can find a way to minimize the total number of infections in a region. As shown in this study, pushing the ratio of public toilets (against open defecation) to the local population in a city to its optimal level would help to reduce the total infection in a region.
Collapse
Affiliation(s)
- Qiuyun Wang
- School of Economics, Southwestern University of Finance and Economics, P.R China
| | - Lu Liu
- School of Economics, Southwestern University of Finance and Economics, P.R China
| |
Collapse
|
27
|
Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312567. [PMID: 34886291 PMCID: PMC8656877 DOI: 10.3390/ijerph182312567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Mobility restrictions during the COVID-19 pandemic ostensibly prevented the public from transmitting the disease in public places, but they also hampered outdoor recreation, despite the importance of blue-green spaces (e.g., parks and natural areas) for physical and mental health. We assess whether restrictions on human movement, particularly in blue-green spaces, affected the transmission of COVID-19. Our assessment uses a spatially resolved dataset of COVID-19 case numbers for 848 administrative units across 153 countries during the first year of the pandemic (February 2020 to February 2021). We measure mobility in blue-green spaces with planetary-scale aggregate and anonymized mobility flows derived from mobile phone tracking data. We then use machine learning forecast models and linear mixed-effects models to explore predictors of COVID-19 growth rates. After controlling for a number of environmental factors, we find no evidence that increased visits to blue-green space increase COVID-19 transmission. By contrast, increases in the total mobility and relaxation of other non-pharmaceutical interventions such as containment and closure policies predict greater transmission. Ultraviolet radiation stands out as the strongest environmental mitigant of COVID-19 spread, while temperature, humidity, wind speed, and ambient air pollution have little to no effect. Taken together, our analyses produce little evidence to support public health policies that restrict citizens from outdoor mobility in blue-green spaces, which corroborates experimental studies showing low risk of outdoor COVID-19 transmission. However, we acknowledge and discuss some of the challenges of big data approaches to ecological regression analyses such as this, and outline promising directions and opportunities for future research.
Collapse
|
28
|
Curtis L. PM 2.5, NO 2, wildfires, and other environmental exposures are linked to higher Covid 19 incidence, severity, and death rates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54429-54447. [PMID: 34410599 PMCID: PMC8374108 DOI: 10.1007/s11356-021-15556-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/17/2021] [Indexed: 05/09/2023]
Abstract
Numerous studies have linked outdoor levels of PM2.5, PM10, NO2, O3, SO2, and other air pollutants to significantly higher rates of Covid 19 morbidity and mortality, although the rate in which specific concentrations of pollutants increase Covid 19 morbidity and mortality varies widely by specific country and study. As little as a 1-μg/m3 increase in outdoor PM2.5 is estimated to increase rates of Covid 19 by as much as 0.22 to 8%. Two California studies have strongly linked heavy wildfire burning periods with significantly higher outdoor levels of PM2.5 and CO as well as significantly higher rates of Covid 19 cases and deaths. Active smoking has also been strongly linked significantly increased risk of Covid 19 severity and death. Other exposures possibly related to greater risk of Covid 19 morbidity and mortality include incense, pesticides, heavy metals, dust/sand, toxic waste sites, and volcanic emissions. The exact mechanisms in which air pollutants increase Covid 19 infections are not fully understood, but are probably related to pollutant-related oxidation and inflammation of the lungs and other tissues and to the pollutant-driven alternation of the angiotensin-converting enzyme 2 in respiratory and other cells.
Collapse
Affiliation(s)
- Luke Curtis
- East Carolina University, Greenville, NC, 5371 Knollwood Parkway Court #F, Hazelwood, MO, 63042, USA.
| |
Collapse
|
29
|
Wamai RG, Hirsch JL, Van Damme W, Alnwick D, Bailey RC, Hodgins S, Alam U, Anyona M. What Could Explain the Lower COVID-19 Burden in Africa despite Considerable Circulation of the SARS-CoV-2 Virus? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8638. [PMID: 34444386 PMCID: PMC8391172 DOI: 10.3390/ijerph18168638] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/12/2023]
Abstract
The differential spread and impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing Coronavirus Disease 2019 (COVID-19), across regions is a major focus for researchers and policy makers. Africa has attracted tremendous attention, due to predictions of catastrophic impacts that have not yet materialized. Early in the pandemic, the seemingly low African case count was largely attributed to low testing and case reporting. However, there is reason to consider that many African countries attenuated the spread and impacts early on. Factors explaining low spread include early government community-wide actions, population distribution, social contacts, and ecology of human habitation. While recent data from seroprevalence studies posit more extensive circulation of the virus, continuing low COVID-19 burden may be explained by the demographic pyramid, prevalence of pre-existing conditions, trained immunity, genetics, and broader sociocultural dynamics. Though all these prongs contribute to the observed profile of COVID-19 in Africa, some provide stronger evidence than others. This review is important to expand what is known about the differential impacts of pandemics, enhancing scientific understanding and gearing appropriate public health responses. Furthermore, it highlights potential lessons to draw from Africa for global health on assumptions regarding deadly viral pandemics, given its long experience with infectious diseases.
Collapse
Affiliation(s)
- Richard G. Wamai
- Department of Cultures, Societies, and Global Studies, Northeastern University, 201 Renaissance Park, 360 Huntington Ave., Boston, MA 02115, USA;
| | - Jason L. Hirsch
- Department of Cultures, Societies, and Global Studies, Northeastern University, 201 Renaissance Park, 360 Huntington Ave., Boston, MA 02115, USA;
| | - Wim Van Damme
- Department of Public Health, Institute of Tropical Medicine, B-2000 Antwerp, Belgium;
| | - David Alnwick
- DUNDEX (Deployable U.N.-Experienced Development Experts), FX68 Belturbet, Ireland;
| | - Robert C. Bailey
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Stephen Hodgins
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Uzma Alam
- Researcher Africa Institute for Health Policy Foundation, Nairobi 020, Kenya;
| | - Mamka Anyona
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA;
| |
Collapse
|
30
|
Buonerba A, Corpuz MVA, Ballesteros F, Choo KH, Hasan SW, Korshin GV, Belgiorno V, Barceló D, Naddeo V. Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125580. [PMID: 33735767 PMCID: PMC7932854 DOI: 10.1016/j.jhazmat.2021.125580] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 05/03/2023]
Abstract
Considerable attention has been recently given to possible transmission of SARS-CoV-2 via water media. This review addresses this issue and examines the fate of coronaviruses (CoVs) in water systems, with particular attention to the recently available information on the novel SARS-CoV-2. The methods for the determination of viable virus particles and quantification of CoVs and, in particular, of SARS-CoV-2 in water and wastewater are discussed with particular regard to the methods of concentration and to the emerging methods of detection. The analysis of the environmental stability of CoVs, with particular regard of SARS-CoV-2, and the efficacy of the disinfection methods are extensively reviewed as well. This information provides a broad view of the state-of-the-art for researchers involved in the investigation of CoVs in aquatic systems, and poses the basis for further analyses and discussions on the risk associated to the presence of SARS-CoV-2 in water media. The examined data indicates that detection of the virus in wastewater and natural water bodies provides a potentially powerful tool for quantitative microbiological risk assessment (QMRA) and for wastewater-based epidemiology (WBE) for the evaluation of the level of circulation of the virus in a population. Assays of the viable virions in water media provide information on the integrity, capability of replication (in suitable host species) and on the potential infectivity. Challenges and critical issues relevant to the detection of coronaviruses in different water matrixes with both direct and surrogate methods as well as in the implementation of epidemiological tools are presented and critically discussed.
Collapse
Affiliation(s)
- Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per la Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Damià Barceló
- Catalan Institute for Water Research (ICR-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy.
| |
Collapse
|
31
|
Jin T, Xu Y, Dai C, Zhou X, Xu Q, Wu Z. Cold atmospheric plasma: A non-negligible strategy for viral RNA inactivation to prevent SARS-CoV-2 environmental transmission. AIP ADVANCES 2021; 11:085019. [PMID: 34413992 PMCID: PMC8371919 DOI: 10.1063/5.0060530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/02/2021] [Indexed: 05/13/2023]
Abstract
Cold atmospheric plasma (CAP), regarded as a powerful physics technology, displays antimicrobial, antitumor, and even antiviral properties, but the underlying mechanism is rarely studied. In this study, four CAP exposure doses (30, 60, 120, and 240 s) were applied to inactivate a severe acute respiratory syndrome coronavirus 2 like pseudovirus on a stainless steel disk, which comprised spike protein on its membrane and can express a green fluorescent protein. In order to unravel the potential effects of CAP irradiation on pseudovirus, infection assay, optical emission spectra analysis, transmission electron microscopy (TEM), sodium dodecyl sulfate polyacrylamide gel electrophoresis, ELISA, and qPCR experiments were carried out. As a result, our study indicated that CAP irradiation can significantly decrease the infectivity of pseudovirus in a dose dependent manner through destroying the cell membrane and further damaging viral RNA, with the molecular weight and conformation of spike receptor binding domain protein unchanged.
Collapse
Affiliation(s)
- Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yong Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Hefei, China
| | | | - Qinghua Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Zhengwei Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
32
|
The Effect of Surgical Mask Use in Anaerobic Running Performance. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COVID-19 restrictions stipulate the mandatory use of surgical masks during outdoor and indoor physical activities. The impact of this on athletic performance and especially on anaerobic physical activities is poorly known. The aim of the present research was to analyze the effect of surgical mask use on the anaerobic running performance of athletes. Modifications in running time, blood lactate, blood glucose, blood oxygen saturation, subjective perceived stress, rating of perceived exertion, and heart rate variability were measured in 50 m and 400 m maximal running tests with and without the use of surgical masks in 72 athletes. The use of a surgical mask increased blood lactate concentration, sympathetic autonomic modulation, perceived exertion, perceived stress, and decreased blood oxygen saturation in 50 and 400 m running tests. Thus, the higher levels of blood lactate and lower blood oxygen saturation require adaptation of the athlete’s rest and recovery periods to the acute workload. The higher level of sympathetic activation makes the acute and chronic control of autonomic modulation essential for an efficient training periodization. Finally, the use of acid buffers such as bicarbonate or sodium citrate would be a recommended ergogenic strategy.
Collapse
|
33
|
Zhu C, Maharajan K, Liu K, Zhang Y. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. ENVIRONMENTAL RESEARCH 2021; 198:111281. [PMID: 33961825 PMCID: PMC8096764 DOI: 10.1016/j.envres.2021.111281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Due to intense industrialization and urbanization, air pollution has become a serious global concern as a hazard to human health. Epidemiological studies found that exposure to atmospheric particulate matter (PM) causes severe health problems in human and significant damage to the physiological systems. In recent days, PM exposure could be related as a carrier for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus transmission and Coronavirus disease 2019 (COVID-19) infection. Hence, it is important to understand the adverse effects of PM in human health. This review aims to provide insights on the detrimental effects of PM in various human health problems including respiratory, circulatory, nervous, and immune system along with their possible toxicity mechanisms. Overall, this review highlights the potential relationship of PM with several life-limiting human diseases and their significance for better management strategies.
Collapse
Affiliation(s)
- Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|