1
|
Jangid H, Kumar G. Ecotoxicity of fungal-synthesized silver nanoparticles: mechanisms, impacts, and sustainable mitigation strategies. 3 Biotech 2025; 15:101. [PMID: 40160431 PMCID: PMC11953517 DOI: 10.1007/s13205-025-04266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
The review investigates the ecotoxicological implications of fungal-synthesized silver nanoparticles (AgNPs), focusing on their behavior, transformations, and impacts across aquatic and terrestrial ecosystems. Advanced techniques, such as Single-Particle ICP-MS and Nanoparticle Tracking Analysis, reveal the persistence and biotransformation of AgNPs, including silver ion (Ag⁺) release and reactive oxygen species (ROS) generation. The review highlights species-specific bio-accumulation pathways in algae, soil microbes, invertebrates, and vertebrates, along with the limited biomagnification potential within trophic levels. Long-term exposure to AgNPs leads to reduced soil fertility, altered microbial communities, and inhibited plant growth, raising significant ecological concerns. Sustainable mitigation strategies, including bioremediation and advanced filtration systems, are proposed to reduce the environmental risks of AgNPs. This comprehensive analysis provides a framework for future ecological studies and regulatory measures, balancing the technological benefits of fungal-synthesized AgNPs with their environmental safety.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411 India
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411 India
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
2
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2025; 38:55-88. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
3
|
Aayush K, Singh GP, Chiu I, Joshi M, Sharma K, Gautam S, Chavan P, Jha N, Singh AK, Babaei A, Sharma S, Yang T. Development and characterization of sodium alginate and β-cyclodextrin nanoemulsions encapsulating betel leaf (Piper betle L.) extract for enhanced antimicrobial efficacy against foodborne pathogen. Food Chem 2025; 463:141227. [PMID: 39316900 DOI: 10.1016/j.foodchem.2024.141227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
This study aims to investigate the physical stability, droplet size, zeta potential, and antimicrobial properties of nanoemulsions formulated with betel leaf extract using β-cyclodextrin (CD) and sodium alginate (SA) biopolymers. Nanoemulsions with β-cyclodextrin exhibit superior stability at lower temperatures, with limited droplet size, and strong electrostatic repulsion. Morphological images demonstrate the successful encapsulation of betel leaf extract within both biopolymers, highlighting their potential for antimicrobial applications. Both CD and SA nanoemulsions display inhibitory effects on bacterial strains (E. coli, P. aeruginosa, L. monocytogenes, S. aureus, and B. cereus) and fungal growth (A. brasiliensis, R. stolonifer, F. oxysporum, and C. albicans). SA nanoemulsions show higher antimicrobial activity due to H+ ion release, particularly against A. brasiliensis and C. albicans. These findings underscore the potential of betel leaf extract nanoemulsions, especially those with SA, for various antimicrobial applications for sustainable food packaging, highlighting their significance in addressing microbial challenges.
Collapse
Affiliation(s)
- Krishna Aayush
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Gurvendra Pal Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Manisha Joshi
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Kanika Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Sunakshi Gautam
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Nidhi Jha
- Department of Chemistry, Chandradhari Mithila Science College, Darbhanga, Bihar 846001, India
| | - Abhishek Kumar Singh
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Azadeh Babaei
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India.
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
4
|
Vanlalveni C, Ralte V, Zohmingliana H, Das S, Anal JMH, Lallianrawna S, Rokhum SL. A review of microbes mediated biosynthesis of silver nanoparticles and their enhanced antimicrobial activities. Heliyon 2024; 10:e32333. [PMID: 38947433 PMCID: PMC11214502 DOI: 10.1016/j.heliyon.2024.e32333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
In recent decades, biosynthesis of metal and (or) metal oxide nanoparticles using microbes is accepted as one of the most sustainable, cost-effective, robust, and green processes as it does not encompass the usage of largely hazardous chemicals. Accordingly, numerous simple, inexpensive, and environmentally friendly approaches for the biosynthesis of silver nanoparticles (AgNPs) were reported using microbes avoiding conventional (chemical) methods. This comprehensive review detailed an advance made in recent years in the microbes-mediated biosynthesis of AgNPs and evaluation of their antimicrobial activities covering the literature from 2015-till date. It also aimed at elaborating the possible effect of the different phytochemicals, their concentrations, extraction temperature, extraction solvent, pH, reaction time, reaction temperature, and concentration of precursor on the shape, size, and stability of the synthesized AgNPs. In addition, while trying to understand the antimicrobial activities against targeted pathogenic microbes the probable mechanism of the interaction of produced AgNPs with the cell wall of targeted microbes that led to the cell's reputed and death have also been detailed. Lastly, this review detailed the shape and size-dependent antimicrobial activities of the microbes-mediated AgNPs and their enhanced antimicrobial activities by synergetic interaction with known commercially available antibiotic drugs.
Collapse
Affiliation(s)
- Chhangte Vanlalveni
- Department of Botany, Mizoram University, Tanhril, Aizawl, Mizoram 796001, India
| | - Vanlalhruaii Ralte
- Department of Botany, Pachhunga University College, Aizawl, 796001, Mizoram, India
| | - Hlawncheu Zohmingliana
- Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, India
| | - Shikhasmita Das
- Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, India
| | - Jasha Momo H. Anal
- Natural Products and Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Samuel Lallianrawna
- Department of Chemistry, Govt. Zirtiri Residential Science College, Aizawl, 796001, Mizoram, India
| | | |
Collapse
|
5
|
Masadeh MM, Al-Tal Z, Khanfar MS, Alzoubi KH, Sabi SH, Masadeh MM. Synergistic Effect of Silver Nanoparticles with Antibiotics for Eradication of Pathogenic Biofilms. Curr Pharm Biotechnol 2024; 25:1884-1903. [PMID: 38231054 DOI: 10.2174/0113892010279217240102100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles (AgNP) could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms. METHODS AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes. RESULTS The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations (MBEC) ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases. CONCLUSION The present findings encourage the development of alternative therapies with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Zeinab Al-Tal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biological Sciences, Faculty of Science, The Hashemite University, Zarqa 13110, Jordan
| | - Majd M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
6
|
Younis MA. Clinical translation of silver nanoparticles into the market. SILVER NANOPARTICLES FOR DRUG DELIVERY 2024:395-432. [DOI: 10.1016/b978-0-443-15343-3.00007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Nushiba Naser PT, Thoppil JE. Biochemical Screening, Fabrication of Green Nanoparticles and Its Antimicrobial, and Antioxidant Studies of Endophytic Fungus Phlebia Species. Indian J Microbiol 2023; 63:447-460. [PMID: 38031598 PMCID: PMC10682321 DOI: 10.1007/s12088-023-01094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/13/2023] [Indexed: 12/01/2023] Open
Abstract
Endophytes are organism dwelling totally dynamic and novel biotopes this makes them able to produce novel biochemicals that may become assets to the future. This study aims at understanding the biochemical components of the endophytic fungus Phlebia sp. synthesis of gold and silver nanoparticles from it, and the antimicrobial as well as antioxidant ability of these green synthesised nanoparticles. Aqueous fungal extract was subjected for HRLCMS analysis which revealed 34 biochemicals within the extract. Silver and gold nanoparticles were also produced from the fungal extract. UV-vis analysis revealed a peak at 450 nm for silver nanoparticle and 550 nm for gold nanoparticles. FESEM analysis confirmed the presence of these nanoparticles with its spherical shape. Both of these nanoparticles were able to produce a conspicuous zone of inhibition in the antimicrobial tests against Escherichia coli, Salmonella paratyphi. For both of the organisms under study, a concentration-dependent expansion of the zone of inhibition was discovered in the nanoparticles. However, with silver nanoparticles, a relatively high zone of inhibition and vulnerability of the organism was discovered. Four in vitro free radical scavenging assays, including the DPPH, Hydroxyl, Superoxide, and Nitric oxide radical scavenging assays, were used for antioxidant analysis. The results of every test demonstrated that green synthesised silver nanoparticles had higher activity than gold nanoparticles. All of the tests showed that silver nanoparticles were more active than gold nanoparticles with the maximum value of 86.254 ± 0.296% being discovered at the greatest concentration of superoxide radical scavenging assay.
Collapse
Affiliation(s)
| | - John E. Thoppil
- Department of Botany, University of Calicut, Thenhipalam, Kerala India
| |
Collapse
|
8
|
Nikolova MP, Joshi PB, Chavali MS. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023; 15:1650. [PMID: 37376098 PMCID: PMC10301310 DOI: 10.3390/pharmaceutics15061650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Payal B. Joshi
- Shefali Research Laboratories, 203/454, Sai Section, Ambernath (East), Mumbai 421501, Maharashtra, India;
| | - Murthy S. Chavali
- Office of the Dean (Research), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune 411038, Maharashtra, India;
| |
Collapse
|
9
|
Tripathi S, Mahra S, J V, Tiwari K, Rana S, Tripathi DK, Sharma S, Sahi S. Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101604. [PMID: 37242021 DOI: 10.3390/nano13101604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Victoria J
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivendra Sahi
- Department of Biology, St. Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Barabadi H, Mobaraki K, Ashouri F, Noqani H, Jounaki K, Mostafavi E. Nanobiotechnological approaches in antinociceptive therapy: Animal-based evidence for analgesic nanotherapeutics of bioengineered silver and gold nanomaterials. Adv Colloid Interface Sci 2023; 316:102917. [PMID: 37150042 DOI: 10.1016/j.cis.2023.102917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Pain management is a major challenge in healthcare systems worldwide. Owing to undesirable side effects of current analgesic medications, there is an exceeding need to develop the effective alternative therapeutics. Nowadays, the application of nanomaterials is being highly considered, as their exceptional properties arising from the nanoscale dimensions are undeniable. With the increasing use of metal NPs, more biocompatible and costly methods of synthesis have been developed in which different biological rescores including microorganisms, plants and algae are employed. Nanobiotechnology-based synthesis of nanosized particles is an ecological approach offering safe production of nanoparticles (NPs) by biological resources eliminating the toxicity attributed to the conventional routes. This review provides an assessment of biosynthesized silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) as antinociceptive agents in recent studies. Living animal models (mice and rats) have been used for analyzing the effect of biogenic NPs on decreasing the nociceptive pain utilizing different methods such as acetic acid-induced writhing test, hot plate test, and formalin test. Potent analgesic activity exhibited by green fabricated AgNPs and AuNPs represents the bright future of nanotechnology in the management of pain and other social and medicinal issues followed by this unpleasant sensation. Moreover, there NPs showed a protective effects on liver, kidney, and body weight in animal models that make them attractive for clinical studies. However, further research is required to fully address the harmless antinociceptive effect of NPs for clinical usage.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kiana Mobaraki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesam Noqani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
11
|
Narware J, Singh SP, Manzar N, Kashyap AS. Biogenic synthesis, characterization, and evaluation of synthesized nanoparticles against the pathogenic fungus Alternaria solani. Front Microbiol 2023; 14:1159251. [PMID: 37138620 PMCID: PMC10149959 DOI: 10.3389/fmicb.2023.1159251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
In the present study, Trichoderma harzianum culture filtrate (CF) was used as a reducing and capping agent to synthesize silver nanoparticles (Ag NPs) in a quick, simple, cost-effective, and eco-friendly manner. The effects of different ratios (silver nitrate (AgNO3): CF), pH, and incubation time on the synthesis of Ag NPs were also examined. Ultraviolet-visible (UV-Vis) spectra of the synthesized Ag NPs showed a distinct surface plasmon resonance (SPR) peak at 420 nm. Spherical and monodisperse NPs were observed using scanning electron microscopy (SEM). Elemental silver (Ag) was identified in the Ag area peak indicated by energy dispersive x-ray (EDX) spectroscopy. The crystallinity of Ag NPs was confirmed by x-ray diffraction (XRD), and Fourier transform infrared (FTIR) was used to examine the functional groups present in the CF. Dynamic light scattering (DLS) revealed an average size (43.68 nm), which was reported to be stable for 4 months. Atomic force microscopy (AFM) was used to confirm surface morphology. We also investigated the in vitro antifungal efficacy of biosynthesized Ag NPs against Alternaria solani, which demonstrated a significant inhibitory effect on mycelial growth and spore germination. Additionally, microscopic investigation revealed that Ag NP-treated mycelia exhibited defects and collapsed. Apart from this investigation, Ag NPs were also tested in an epiphytic environment against A. solani. Ag NPs were found to be capable of managing early blight disease based on field trial findings. The maximum percentage of early blight disease inhibition by NPs was observed at 40 parts per million (ppm) (60.27%), followed by 20 ppm (58.68%), whereas in the case of the fungicide mancozeb (1,000 ppm), the inhibition was recorded at 61.54%.
Collapse
Affiliation(s)
- Jeetu Narware
- Department of Mycology and Plant Pathology, Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Satyendra P. Singh
- Department of Mycology and Plant Pathology, Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nazia Manzar
- Molecular Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - Abhijeet Shankar Kashyap
- Molecular Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| |
Collapse
|
12
|
Yadav SA, Suvathika G, Alghuthaymi MA, Abd-Elsalam KA. Fungal-derived nanoparticles for the control of plant pathogens and pests. FUNGAL CELL FACTORIES FOR SUSTAINABLE NANOMATERIALS PRODUCTIONS AND AGRICULTURAL APPLICATIONS 2023:755-784. [DOI: 10.1016/b978-0-323-99922-9.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Abd-Elsalam KA. Fungal nanotechnology for improving farm productivity and sustainability: A note from the editor. FUNGAL CELL FACTORIES FOR SUSTAINABLE NANOMATERIALS PRODUCTIONS AND AGRICULTURAL APPLICATIONS 2023:1-19. [DOI: 10.1016/b978-0-323-99922-9.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Mycosynthesis of Metal-Containing Nanoparticles-Synthesis by Ascomycetes and Basidiomycetes and Their Application. Int J Mol Sci 2022; 24:ijms24010304. [PMID: 36613746 PMCID: PMC9820721 DOI: 10.3390/ijms24010304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Fungi contain species with a plethora of ways of adapting to life in nature. Consequently, they produce large amounts of diverse biomolecules that can be generated on a large scale and in an affordable manner. This makes fungi an attractive alternative for many biotechnological processes. Ascomycetes and basidiomycetes are the most commonly used fungi for synthesis of metal-containing nanoparticles (NPs). The advantages of NPs created by fungi include the use of non-toxic fungus-produced biochemicals, energy efficiency, ambient temperature, pressure conditions, and the ability to control and tune the crystallinity, shape, and size of the NPs. Furthermore, the presence of biomolecules might serve a dual function as agents in NP formation and also capping that can tailor the (bio)activity of subsequent NPs. This review summarizes and reviews the synthesis of different metal, metal oxide, metal sulfide, and other metal-based NPs mediated by reactive media derived from various species. The phyla ascomycetes and basidiomycetes are presented separately. Moreover, the practical application of NP mycosynthesis, particularly in the fields of biomedicine, catalysis, biosensing, mosquito control, and precision agriculture as nanofertilizers and nanopesticides, has been studied so far. Finally, an outlook is provided, and future recommendations are proposed with an emphasis on the areas where mycosynthesized NPs have greater potential than NPs synthesized using physicochemical approaches. A deeper investigation of the mechanisms of NP formation in fungi-based media is needed, as is a focus on the transfer of NP mycosynthesis from the laboratory to large-scale production and application.
Collapse
|
15
|
Gupta P, Rai N, Verma A, Saikia D, Singh SP, Kumar R, Singh SK, Kumar D, Gautam V. Green-Based Approach to Synthesize Silver Nanoparticles Using the Fungal Endophyte Penicillium oxalicum and Their Antimicrobial, Antioxidant, and In Vitro Anticancer Potential. ACS OMEGA 2022; 7:46653-46673. [PMID: 36570288 PMCID: PMC9774420 DOI: 10.1021/acsomega.2c05605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
A green-based approach for the synthesis of silver nanoparticles has gained tremendous attention in biomedical applications. Fungal endophytes have been recognized as a remarkable biological source for the synthesis of potential nanodrugs. The present study focuses on the fabrication of silver nanoparticles using the fungal endophyte Penicillium oxalicum (POAgNPs) associated with the leaf of the Amoora rohituka plant. Sharp UV-visible spectra at 420 nm appeared due to the surface plasmon resonance of POAgNPs and the reduction of silver salt. FT-IR analysis revealed the presence of functional groups of bioactive compounds of P. oxalicum responsible for the reduction of silver salt and validated the synthesis of POAgNPs. A high degree of crystallinity was revealed through XRD analysis, and microscopy-based characterizations such as AFM, TEM, and FESEM showed uniformly distributed, and spherically shaped nanoparticles. Furthermore, POAgNPs showed a potential inhibitory effect against bacterial and fungal strains of pathogenic nature. POAgNPs also exhibited potential antioxidant activity against the synthetically generated free radicals such as DPPH, superoxide, hydroxyl, and nitric oxide with EC50 values of 9.034 ± 0.449, 56.378 ± 1.137, 34.094 ± 1.944, and 61.219 ± 0.69 μg/mL, respectively. Moreover, POAgNPs exhibited cytotoxic potential against the breast cancer cell lines, MDA-MB-231 and MCF-7 with IC50 values of 20.080 ± 0.761 and 40.038 ± 1.022 μg/mL, respectively. POAgNPs showed anticancer potential through inhibition of wound closure and by altering the nuclear morphology of MDA-MB-231 and MCF-7 cells. Further anticancer activity revealed that POAgNPs induced apoptosis in MDA-MB-231 and MCF-7 cells by differential expression of genes related to apoptosis, tumor suppression, and cell cycle arrest and increased the level of Caspase-3. The novel study showed that P. oxalicum-mediated silver nanoparticles exhibit potential biological activity, which can be exploited as nanodrugs in clinical applications.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dimple Saikia
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Dharwad, Dharwad 580011, India
| | - Surya Pratap Singh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Dharwad, Dharwad 580011, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Deepak Kumar
- Department
of Botany, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
16
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Biogenic Nanoparticles Obtained by the Fungi-Mediated Synthesis: A Review. Biomimetics (Basel) 2022; 8:biomimetics8010001. [PMID: 36648787 PMCID: PMC9844505 DOI: 10.3390/biomimetics8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungi are very promising biological objects for the green synthesis of nanoparticles. Biogenic synthesis of nanoparticles using different mycological cultures and substances obtained from them is a promising, easy and environmentally friendly method. By varying the synthesis conditions, the same culture can be used to produce nanoparticles with different sizes, shapes, stability in colloids and, therefore, different biological activity. Fungi are capable of producing a wide range of biologically active compounds and have a powerful enzymatic system that allows them to form nanoparticles of various chemical elements. This review attempts to summarize and provide a comparative analysis of the currently accumulated data, including, among others, our research group's works, on the variety of the characteristics of the nanoparticles produced by various fungal species, their mycelium, fruiting bodies, extracts and purified fungal metabolites.
Collapse
Affiliation(s)
| | - Elena P. Vetchinkina
- Correspondence: ; Tel.: +7-8452-970-444 or +7-8452-970-383; Fax: +7-8452-970-383
| | | |
Collapse
|
17
|
Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Jawahar MJ, Neshaanthini JP, Saravanan R. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. CHEMOSPHERE 2022; 307:135713. [PMID: 35843436 DOI: 10.1016/j.chemosphere.2022.135713] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Freshwater has been incessantly polluted by various activities such as rapid industrialization, fast growth of population and agricultural activities. Water pollution is considered as one the major threatens to human health and aquatic bodies which causes various severe harmful diseases including gastrointestinal disorders, asthma, cancer, etc. The polluted wastewater could be treated by different conventional and advanced methodologies. Amongst them, adsorption is the most utilized low cost, efficient technique to treat and remove the harmful pollutants from the wastewater. The efficiency of adsorption mainly depends on the surface properties such as functional group availability and surface area of the adsorbents used. Since various waste-based carbon derivatives are utilized as adsorbents for harmful pollutants removal; nanomaterials are employed as effective adsorbents in recent times due to its excellent surface properties. This review presents an overview of the different types of nanomaterials such as nano-particles, nanotubes, nano-sheets, nano-rods, nano-spheres, quantum dots, etc. which have been synthesized by different chemical and green synthesis methodologies using plants, microorganisms, biomolecules and carbon derivatives, metals and metal oxides and polymers. By concentrating on potential research difficulties, this study offers a new viewpoint on fundamental field of nanotechnology for wastewater treatment applications. This review paper critically reviewed the synthesis of nanomaterials more importantly green synthesis and their applications in wastewater treatment to remove the harmful pollutants such as heavy metals, dyes, pesticides, polycyclic aromatic hydrocarbons, etc.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, 603110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - Marie Jyotsna Jawahar
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - J P Neshaanthini
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
18
|
Githala CK, Raj S, Dhaka A, Mali SC, Trivedi R. Phyto-fabrication of silver nanoparticles and their catalytic dye degradation and antifungal efficacy. Front Chem 2022; 10:994721. [PMID: 36226117 PMCID: PMC9548708 DOI: 10.3389/fchem.2022.994721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) and their potent application against dye degradation and phytopathogens are attracting many scientists to nanotechnology. An attempt was made to synthesize silver nanoparticles using Plantago ovata leaf extract and test their effectiveness in removing organic dyes and antifungal activity. In the present study, stable AgNPs were synthesized from 0.1 mM AgNO3 and authenticated by observing the color change from yellow to red-brown, which was confirmed with wavelength UV-Vis spectrophotometer detection. The crystalline nature of the particles was characterized by x-ray diffraction (XRD) patterns. Furthermore, the AgNPs were characterized by high-resolution transmission electron microscope and scanning electron microscope investigations. Atomic force microscopy (AFM) and Raman spectra were also used to confirm the size and structure of the synthesized AgNPs. The elemental analysis and functional groups responsible for the reduction of AgNPs were analyzed by electron dispersive spectroscopy and fourier transform infra-red spectroscopy Fourier transforms infrared, respectively. A new biological approach was taken by breaking down organic dyes such as methylene blue and congo red. The AgNPs effectively inhibit the fungal growth of Alternaria alternata. This could be a significant achievement in the fight against many dynamic pathogens and reduce dye contamination from waste water.
Collapse
Affiliation(s)
| | - Shani Raj
- *Correspondence: Shani Raj, ; Rohini Trivedi,
| | | | | | | |
Collapse
|
19
|
Das D, Bhattacharyya S, Bhattacharyya M, Mandal P. Green chemistry inspired formation of bioactive stable colloidal nanosilver and its wide-spectrum functionalised properties for sustainable industrial escalation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
20
|
Skanda S, Bharadwaj PSJ, Datta Darshan VM, Sivaramakrishnan V, Vijayakumar BS. Proficient mycogenic synthesis of silver nanoparticles by soil derived fungus Aspergillus melleus SSS-10 with cytotoxic and antibacterial potency. J Microbiol Methods 2022; 199:106517. [PMID: 35697186 DOI: 10.1016/j.mimet.2022.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The present study aimed at evaluating the extracellular synthesis of silver nanoparticles by soil fungus Aspergillus melleus SSS-10 for antibacterial and cytotoxic activity. In this study, the formation of silver nanoparticles (AgNPs) was estimated by the colour change in cell free extract from pale yellow to golden yellow after 24 h of the reaction. UV-Vis study showed the absorbance maxima at 410 nm. Tauc plot analysis revealed the band gap energy as 2.34 eV. Dynamic Light Scattering (DLS) data revealed polydisperse anisotropic silver nanoparticles with average hydrodynamic diameter of 92.006 nm. Zeta potential of - 19.6 mV provided evidence of stable silver nanoparticles. X-ray diffraction (XRD) analysis revealed four prominent Bragg peaks corresponding to (111), (200), (220) and (311) planes characteristic of silver (Ag) in FCC structural configuration. Average crystallite size was found to be 87.3 nm from Scherrer equation. Scanning Electron Microscope (SEM) analysis revealed irregular morphology of silver nanoparticles. EDS analysis displayed characteristic energy peaks of silver from 2.72 keV to 3.52 keV confirming the presence of silver nanoparticles. Biosynthesized AgNPs exhibited strong cytotoxic potential on MG-63 cells. AgNPs also showed antibacterial activity against both Staphylococcus aureus and Escherichia coli. In conclusion, this study provides a platform to explore the utility of fungal mediated silver nanoparticles synthesized for various pharmaceutical and cosmeceutical applications.
Collapse
Affiliation(s)
- S Skanda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - P S J Bharadwaj
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - V M Datta Darshan
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - Venketesh Sivaramakrishnan
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - B S Vijayakumar
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| |
Collapse
|
21
|
Alavi M. Bacteria and fungi as major bio-sources to fabricate silver nanoparticles with antibacterial activities. Expert Rev Anti Infect Ther 2022; 20:897-906. [DOI: 10.1080/14787210.2022.2045194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Department of Biology, Razi University, Kermanshah, Iran
| |
Collapse
|
22
|
Majeed M, Hakeem KR, Rehman RU. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks. CHEMOSPHERE 2022; 288:132527. [PMID: 34637861 DOI: 10.1016/j.chemosphere.2021.132527] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The phytocomponent conjugated silver nanoparticles (AgNPs) have been extensively explored for various therapeutic applications such as antimicrobial, antioxidant, anticancer, anti-inflammatory, antidiabetic and anticoagulant effects. The bio-conjugation of Ag-based nanomaterial with plant extracts reduces their toxicity to biological systems and enhances their therapeutic effectiveness. The diversity of phytochemicals or capping agents provided by the plant extracts and the small size and large surface area of AgNPs permits maximum adsorption of these capping agents onto their surfaces that further promote the therapeutic performance of phytoconjugated AgNPs in various biomedical applications. The mechanistic action involved in antimicrobial and anticancer functions of AgNPs is mainly dependent on the induction of reactive oxygen species (ROS) resulting in cellular apoptosis and necrosis. This review summarizes the recent studies of various plant extract assisted synthesis of AgNPs, potential biomedical applications with the possible mechanism of action and major shortcomings affecting their therapeutic efficacy.
Collapse
Affiliation(s)
- Mahak Majeed
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India.
| |
Collapse
|
23
|
Sharma A, Sagar A, Rana J, Rani R. Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. MICRO AND NANO SYSTEMS LETTERS 2022. [DOI: 10.1186/s40486-022-00144-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractThe present study is focused on the synthesis of silver nanoparticles (AgNPs) utilizing endophytic fungus Talaromyces purpureogenus, isolated from Taxus baccata Linn. Extracellular extract of Talaromyces purpureogenus has shown occurrence of secondary metabolites viz. terpenoids and phenols. Gas chromatography-mass spectroscopy analysis showed the presence of 16 compounds. Techniques like Ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, field emission gun scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction were employed to characterize the synthesized AgNPs. UV–Vis spectroscopy showed sharp peaks at 380–470 nm which indicates the presence of metallic silver. FTIR analysis showed the presence of various functional groups like phenols, hydroxyl groups, and primary amines. In DLS, Z-average size and PdI of synthesized AgNPs were 240.2 r.nm and 0.720 respectively, with zeta potential − 19.6 mV. In FEG-SEM and HRTEM the spherical AgNPs showed diameter in the range of 30–60 nm. In EDS analysis the weight percent of Ag is 67.26% and atomic percent is 43.13%. From XRD analysis the size of AgNPs was found to be 49.3 nm with face-centered cubic crystalline nature of fungal synthesized AgNPs. These nanoparticles have shown significant antibacterial activity against tested strains viz. Listeria monocytogenes (13 ± 0.29 mm), Escherichia coli (17 ± 0.14 mm), Shigella dysenteriae (18 ± 0.21 mm) and Salmonella typhi (14 ± 0.13 mm). These synthesized AgNPs have shown effective free radical scavenging activity against 2,2′-diphenyl-1-picrylhydrazyl. The present study showed that the endophytic fungus Talaromyces purpureogenus can be used as a prominent source to synthesize AgNPs by using biological, ecofriendly, and in a non-toxic way accompanied by antibacterial and antioxidant properties which further can reduce the harvesting pressure faced by Taxus baccata.
Graphical Abstract
Collapse
|
24
|
Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, Karim M, Che Abdullah CA, Ahmad SA. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:427. [PMID: 35057145 PMCID: PMC8779869 DOI: 10.3390/ma15020427] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.
Collapse
Affiliation(s)
- Ashwini Naganthran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Gayathiri Verasoundarapandian
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Farah Eryssa Khalid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, Shibaura Institute of Technology, College of Systems Engineering and Science, 307 Fukasaku, Saitama 337-8570, Japan;
| | - Norazah Mohammad Nawawi
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia;
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Timur Tambahan, Bestari Jaya 45600, Selangor, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
25
|
Behera A, Pradhan SP, Ahmed FK, Abd-Elsalam KA. Enzymatic synthesis of silver nanoparticles: Mechanisms and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:699-756. [DOI: 10.1016/b978-0-12-824508-8.00030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
26
|
Cellulose nanofibers aerogels functionalized with AgO: Preparation, characterization and antibacterial activity. Int J Biol Macromol 2022; 194:58-65. [PMID: 34863833 DOI: 10.1016/j.ijbiomac.2021.11.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022]
Abstract
In the experiment, a chemical oxidation method was used to prepare nano-divalent silver oxide powder with a particle size of about 10 nm. Compared with silver nanoparticles and monovalent silver compounds, nano‑silver oxide has better antibacterial properties. The cellulose antibacterial aerogel was prepared by combining it with cellulose nanofibrils and using freeze-thaw cycles and freeze-drying methods. The microscopic morphology, mechanical properties, in vitro release of silver ions, antibacterial properties and biodegradability of composite aerogels were studied. The porosity of the cellulose antibacterial aerogel can reach 94%, the swelling rate was greater than 1000%, and the pore size was between 13 and 15 nm, which showed a larger storage space and attachment site for the aerogel. The diameter of the inhibition zone of the aerogel against Escherichia coli and Staphylococcus aureus was 23 mm and 20 mm respectively, and the aerogels still exhibited significant antibacterial activities with more than 99.5% reductions in Escherichia coli and Staphylococcus aureus, which shows highly effective antibacterial properties. This research proposes an economical and novel preparation method of antibacterial cellulose aerogel, making it a candidate material with high efficiency, broad-spectrum antibacterial and more suitable for life needs.
Collapse
|
27
|
Roy A, Elzaki A, Tirth V, Kajoak S, Osman H, Algahtani A, Islam S, Faizo NL, Khandaker MU, Islam MN, Emran TB, Bilal M. Biological Synthesis of Nanocatalysts and Their Applications. Catalysts 2021; 11:1494. [DOI: 10.3390/catal11121494] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the past few decades, the synthesis and potential applications of nanocatalysts have received great attention from the scientific community. Many well-established methods are extensively utilized for the synthesis of nanocatalysts. However, most conventional physical and chemical methods have some drawbacks, such as the toxicity of precursor materials, the requirement of high-temperature environments, and the high cost of synthesis, which ultimately hinder their fruitful applications in various fields. Bioinspired synthesis is eco-friendly, cost-effective, and requires a low energy/temperature ambient. Various microorganisms such as bacteria, fungi, and algae are used as nano-factories and can provide a novel method for the synthesis of different types of nanocatalysts. The synthesized nanocatalysts can be further utilized in various applications such as the removal of heavy metals, treatment of industrial effluents, fabrication of materials with unique properties, biomedical, and biosensors. This review focuses on the biogenic synthesis of nanocatalysts from various green sources that have been adopted in the past two decades, and their potential applications in different areas. This review is expected to provide a valuable guideline for the biogenic synthesis of nanocatalysts and their concomitant applications in various fields.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - Amin Elzaki
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Makkah, Saudi Arabia
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Samih Kajoak
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Makkah, Saudi Arabia
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Makkah, Saudi Arabia
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Asir, Saudi Arabia
| | - Nahla L. Faizo
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Makkah, Saudi Arabia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Muhammad Bilal
- Huaiyin Institute of Technology, School of Life Science and Food Engineering, Huai’an 223003, China
| |
Collapse
|
28
|
Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, Pasupuleti VR. Multifaceted phytogenic silver nanoparticles by an insectivorous plant Drosera spatulata Labill var. bakoensis and its potential therapeutic applications. Sci Rep 2021; 11:21969. [PMID: 34753977 PMCID: PMC8578548 DOI: 10.1038/s41598-021-01281-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022] Open
Abstract
The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (− 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
Collapse
Affiliation(s)
- Susmila Aparna Gaddam
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | | | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavathi Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh, India
| | | | - Sai Gopal Dvr
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.,DST-PURSE Centre, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia. .,Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Jl Riau Ujung No. 73, Pekanbaru, 28292, Riau, Indonesia. .,Centre for Excellence in Biomaterials Engineering (CoEBE), AIMST University, 08100, Bedong, Kedah, Malaysia.
| |
Collapse
|
29
|
Gola D, Tyagi PK, Arya A, Gupta D, Raghav J, Kaushik A, Agarwal M, Chauhan N, Srivastava SK. Antimicrobial and dye degradation application of fungi-assisted silver nanoparticles and utilization of fungal retentate biomass for dye removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2727-2739. [PMID: 34415655 DOI: 10.1002/wer.1629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The present study utilized Aspergillus spp. for the synthesis of silver nanoparticles (AgNPs); the developed AgNPs were categorized using analytical techniques, that is, ultraviolet-visible (UV-vis) spectrophotometer, Zeta-potential, dynamic light scattering (DLS), and transmission electron microscopy (TEM). A sharp peak of 463 nm highlighted the synthesis of AgNPs; further Zeta-potential of -16 mV indicates stability of synthesized AgNPs. The TEM micrograph showed spherical and hexagonal shapes of synthesized AgNPs of 6-25 nm. The photocatalytic activity of fungal-mediated AgNPs was evaluated for degradation of reactive yellow dye in the concentration range of 20-100 mg L-1 . The results showed efficient degradation of dye using AgNPs in short span of time. For antibacterial activity, synthesized AgNPs, antibiotic, and AgNPs + antibiotic were tested. As per results, the zone of inhibition (ZOI) of AgNPs showed the values of 13 and 10 mm for Escherichia coli and Staphylococcus aureus, respectively. Further, the ZOI of penicillin highlighted the values of 18 and 17 mm for E. coli and S. aureus, respectively. When AgNPs and penicillin were used in combination, a clear synergistic effect was observed; the ZOI showed 0.49- and 0.36-fold increase in area against E. coli and S. aureus, respectively, in comparison with penicillin or AgNPs alone. Further, the leftover biomass (retentate biomass) was used to decolorize the reactive yellow dye at different initial concentration ranging from 20 to 100 mg L-1 . It was observed that 1 g L-1 retentate biomass (BR ) can effectively remove 82%-100% dye at 20 and 100 mg L-1 initial dye concentration. Results also indicated that with increase in initial reactive dye concentration from 20 to 100 mg L-1 , the decolorization capacity of retentate biomass (BR ) (at 0.2 g L-1 ) decreased from 79.2% to 32.3%. However, the use of AgNPs synthesized leftover fungal biomass can be a good option for up taking the additional dyes/contaminants, and also as leftover biomass can be utilized effectively, it can prove to be an excellent approach for environment safety. As the literature studies did not mentioned the further use of retentate biomass, the present study provides an excellent approach for further research on this aspect. PRACTITIONER POINTS: Synthesis of AgNPs from Aspergillus spp. and characterized with the help of a U.V-vis spectrophotometer, a zeta potential, DLS and TEM. The developed AgNPs were used for antibacterial and dye degradation activity. The left over (retentate) fungal biomass was used further for additional dye degradation activity.
Collapse
Affiliation(s)
- Deepak Gola
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Arvind Arya
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Dhriti Gupta
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Jyoti Raghav
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Ankush Kaushik
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Meenu Agarwal
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Nitin Chauhan
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi, India
| | - Sunil Kumar Srivastava
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi, India
| |
Collapse
|
30
|
Cao H, Qin H, Li Y, Jandt KD. The Action-Networks of Nanosilver: Bridging the Gap between Material and Biology. Adv Healthc Mater 2021; 10:e2100619. [PMID: 34309242 PMCID: PMC11468843 DOI: 10.1002/adhm.202100619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Indexed: 01/06/2023]
Abstract
The emergence of nanosilver (silver in nanoscale shapes and their assemblies) benefits the landscape of modern healthcare; however, this brings about concerns over its safety issues associated with an ultrasmall size and high mobility. By reviewing previous reporting details about the synthesis and characterization of nanosilver and its biological responses, a gap between materials synthesis and their biomedical uses is characterized by the insufficient understanding of the interacting and interplaying nanoscale actions of silver. To improve reporting quality and advance clinical translations, it is suggested that researchers have a comprehensive recognition of the "Indications for use" before designing innovative nanosilver-based materials and an "Action-network" concept addressing the acting range and strength of those nanoscale actions is implemented. Although this discussion is specific to nanosilver, the idea of "Indications for use" centered design and synthesis is generally applicable to other biomedical nanomaterials.
Collapse
Affiliation(s)
- Huiliang Cao
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yongsheng Li
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Klaus D. Jandt
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJena07743Germany
- Jena School for Microbial Communication (JSMC)Neugasse 23Jena07743Germany
| |
Collapse
|
31
|
Synthesis, Characterization, and Optimization of Green Silver Nanoparticles Using Neopestalotiopsis clavispora and Evaluation of Its Antibacterial, Antibiofilm, and Genotoxic Effects. EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Silver nanoparticles (AgNPs) have been used in a variety of biomedical applications in the last two decades, including antimicrobial, anti-inflammatory, and anticancer treatments. The present study highlights the extracellular synthesis of silver nanoparticles AgNPs using Neopestalotiopsis clavispora MH244410.1 and its antibacterial, antibiofilm, and genotoxic properties. Locally isolated N. clavispora MH244410.1 was identified by Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Optimization of synthesized AgNPs was performed by using various parameters (pH (2, 4, 7, 9 and 12), temperature (25, 35 and 45 °C), and substrate concentration (0.05, 0.1, 0.15, 0.2 and 0.25 mM)). After 72 hours of incubation in dark conditions, the best condition for the biosynthesis of AgNPs was determined as 0.25 mM metal concentration at pH 12 and 35 °C. Fungal synthesized AgNPs were characterized via spectroscopic and microscopic techniques such as Fouirer Transform Infrared Spectrophotometer (FTIR), UV-Visible Spectroscopy, and Transmission Electron Microscopy (TEM). The average size of the AgNPs was determined less than 60 nm using the TEM and Zetasizer measurement system (measured in purity water suspension). The characteristic peak of AgNPs was observed at ~414 nm from UV-Vis results. Antibacterial and genotoxic activity of synthesized AgNPs (0.1, 1, and 10 ppm) were also determined by using the agar well diffusion method and in vivo Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. AgNPs exhibited potential antimicrobial activity against all the tested bacteria (Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa) except Escherichia coli in a dose-dependent manner. AgNPs did not induce genotoxicity in the Drosophila SMART assay. 79.33, 65.47, and 41.95% inhibition of biofilms formed by P. aeruginosa were observed at 10, 1, and 0.1 ppm of AgNPs, respectively. The overall results indicate that N. clavispora MH244410.1 is a good candidate for novel applications in biomedical research.
Collapse
|
32
|
Santos TS, Silva TM, Cardoso JC, de Albuquerque-Júnior RLC, Zielinska A, Souto EB, Severino P, Mendonça MDC. Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics (Basel) 2021; 10:852. [PMID: 34356773 PMCID: PMC8300670 DOI: 10.3390/antibiotics10070852] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Silver nanoparticles are widely used in the biomedical and agri-food fields due to their versatility. The use of biological methods for the synthesis of silver nanoparticles has increased considerably due to their feasibility and high biocompatibility. In general, microorganisms have been widely explored for the production of silver nanoparticles for several applications. The objective of this work was to evaluate the use of entomopathogenic fungi for the biological synthesis of silver nanoparticles, in comparison to the use of other filamentous fungi, and the possibility of using these nanoparticles as antimicrobial agents and for the control of insect pests. In addition, the in vitro methods commonly used to assess the toxicity of these materials are discussed. Several species of filamentous fungi are known to have the ability to form silver nanoparticles, but few studies have been conducted on the potential of entomopathogenic fungi to produce these materials. The investigation of the toxicity of silver nanoparticles is usually carried out in vitro through cytotoxicity/genotoxicity analyses, using well-established methodologies, such as MTT and comet assays, respectively. The use of silver nanoparticles obtained through entomopathogenic fungi against insects is mainly focused on mosquitoes that transmit diseases to humans, with satisfactory results regarding mortality estimates. Entomopathogenic fungi can be employed in the synthesis of silver nanoparticles for potential use in insect control, but there is a need to expand studies on toxicity so to enable their use also in insect control in agriculture.
Collapse
Affiliation(s)
- Tárcio S. Santos
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Tarcisio M. Silva
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Juliana C. Cardoso
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Ricardo L. C. de Albuquerque-Júnior
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Aleksandra Zielinska
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Eliana B. Souto
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Patrícia Severino
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Marcelo da Costa Mendonça
- University of Tiradentes (Unit), Av. Murilo Dantas, Aracaju 49010-390, Brazil; (T.S.S.); (T.M.S.); (J.C.C.); (R.L.C.d.A.-J.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, Aracaju 49010-390, Brazil
- Sergipe Agricultural Development Company (Emdagro), Av. Carlos Rodrigues da Cruz s/n, Aracaju 49081-015, Brazil
| |
Collapse
|
33
|
Zamanpour N, Mohammad Esmaeily A, Mashreghi M, Shahnavaz B, Reza Sharifmoghadam M, Kompany A. Application of a marine luminescent Vibrio sp. B4L for biosynthesis of silver nanoparticles with unique characteristics, biochemical properties, antibacterial and antibiofilm activities. Bioorg Chem 2021; 114:105102. [PMID: 34174634 DOI: 10.1016/j.bioorg.2021.105102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/17/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022]
Abstract
Biosynthesis of silver nanoparticles (AgNPs) by marine bacteria especially luminescent Vibrio species is least investigated. In this study, AgNPs were first synthesized by the culture supernatant of a luminescent bacterium (Vibrio sp. B4L) and then, the prepared samples were characterized employing several techniques. The antibacterial activity of the AgNPs was investigated against Escherichia coli and Staphylococcus aureus using disk diffusion agar and broth microdilution methods. The growth curve, Reactive Oxygen Species (ROS) formation, and Lactate Dehydrogenase (LDH) activity of the samples were measured along with Field Emission Scanning Electron Microscopy (FESEM) observation and inhibition of biofilm formation. Dynamic light scattering (DLS) analysis showed that the average particle size of the synthesized AgNPs was in the range of about 32.67-107.18 nm and the polydispersity index (PDI) of 0.1120 indicated the formation of monodispersed particles. The average zeta potential of AgNPs obtained -36.15 mV, showing the high stability of biosynthetic nanoparticles. Antibacterial studies indicated that not only the AgNPs had antibacterial activity but also increased the antibacterial properties of tetracycline when used in combination. ROS production was enhanced in a dose-dependent manner. A high difference in LDH activities was found between AgNPs treated cells and the control group. FESEM images revealed membrane disruption and lysis in AgNPs treated cells. The formation of E. coli biofilm was 100% inhibited at 62.5 µg/ml showing that our bacteriogenic AgNPs can be a potential alternative remedies for controlling antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Noushin Zamanpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ali Mohammad Esmaeily
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Bahar Shahnavaz
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | | | - Ahmad Kompany
- Nano Research Center, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
34
|
Alavi M, Nokhodchi A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov Today 2021; 26:1953-1962. [PMID: 33845219 DOI: 10.1016/j.drudis.2021.03.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Ag and ZnO nanoparticles (NP) can be prepared by physical, chemical, or eco-friendly methods. The biosynthesis of metal and metal oxide NPs by plants, fungi, and bacteria could be a promising way to obtain biocompatible NPs that have desirable antibacterial activities. However, the uniformity of shape, size, and size distribution of NPs are crucial to producing significant antibacterial results, particularly in physiological conditions such as infected wounds or septicemia. In this review, we discuss recent progress and challenges in the use of novel approaches for the biosynthesis of Ag and ZnO nanoparticles that have antibacterial activities.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Faculty of Science, Razi University, Iran.
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
35
|
Garg D, Sarkar A, Chand P, Bansal P, Gola D, Sharma S, Khantwal S, Surabhi, Mehrotra R, Chauhan N, Bharti RK. Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications-a review. Prog Biomater 2020; 9:81-95. [PMID: 32654045 PMCID: PMC7544790 DOI: 10.1007/s40204-020-00135-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022] Open
Abstract
The evolving technology of nanoparticle synthesis, especially silver nanoparticle (AgNPs) has already been applied in various fields i.e., electronics, optics, catalysis, food, health and environment. With advancement in research, it is possible to develop nanoparticles of various size, shape, morphology, and surface to volume ratio utilizing biological systems. A number of different agents and methods can be employed to develop choice based AgNPs using algae, plants, fungi and bacteria. The use of plant extracts to produce AgNPs appears to be more convenient, as the method is simple, environmental friendly and inexpensive, also requiring a single-step. The microbial synthesis of AgNps showed intracellular and extracellular mechanisms to reduce metal ions into nanoparticles. Studies have shown that different size (1-100 nm) and shapes (spherical, triangular and hexagonal etc.) of nanoparticles can be produced from various biological routes and these diverse nanoparticles have various functions and usability i.e., agriculture, medical-science, textile, cosmetics and environment protection. The present review provides an overview of various biological systems used for AgNP synthesis, its underlying mechanisms, further highlighting the current research and applications of variable shape and sized AgNPs.
Collapse
Affiliation(s)
- Divyanshi Garg
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Aritri Sarkar
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Pooja Chand
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Pulkita Bansal
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Deepak Gola
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Shivangi Sharma
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Sukirti Khantwal
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Surabhi
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Rekha Mehrotra
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Nitin Chauhan
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India.
| | - Randhir K Bharti
- University School of Environmental Management, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|