1
|
Fleyfel LM, Matta J, Sayegh NF, El Najjar NH. Olive mill wastewater treatment using coagulation/flocculation and filtration processes. Heliyon 2024; 10:e40348. [PMID: 39641042 PMCID: PMC11617752 DOI: 10.1016/j.heliyon.2024.e40348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Olive mill wastewater (OMWW), a pollutant resulting from the olive oil industry, poses a serious ecological challenge due to its high pollution load. This effluent is highly concentrated in chemical oxygen demand (COD), which is 200 times higher than that of sewage wastewater. Moreover, OMWW is characterized by a strong acidity, high content of fatty matter, and high concentration of phenolic compounds. In this study, coagulation/flocculation and filtration processes were investigated in order to decrease the pollution load of OMWW for potential reuse in olive orchard irrigation. First, two successive coagulation/flocculation steps were applied to a centrifuged OMWW. Lime and aluminum sulfate (alum) were used as coagulants by testing different concentrations in order to select optimal conditions. Then, the efficiency of various filtration systems using activated carbon and/or natural materials (olive stones, olive leaves, sand, Celite, and gravel) was tested. pH, electrical conductivity (EC), total solid (TS), and COD were measured before and after each treatment step (coagulation or filtration). Five phenolic compounds were monitored before and after applying the selected treatment steps under optimal conditions. The quantification and valorization of the sludge derived from coagulation/flocculation were also performed. During the first coagulation/flocculation step, the results showed that the application of 8 g/L of lime combined with 7 g/L of alum allows the removal rates for EC, TS, and COD of approximately 10 %, 41 %, and 48 %, respectively. While the application of 5 g/L of lime and 4 g/L of alum during the second coagulation/flocculation step allows for lower reductions rates for TS (37 %) and higher reduction rates for COD (67 %). In addition, the resulting sludge showed its potential usage as a solid alternative fuel with a calorific value of 3295.79 cal/g. Moreover, filtration using activated carbon and gravel was found to be the optimum filtration system. The reduction rates were 51 %, 37 %, and 26 % for EC, TS, and COD, respectively. Finally, the combination of coagulation/flocculation and filtration allows the substantial elimination of the studied phenolic compounds with global reduction yields of 97 % for vanillyl alcohol, 92 % for tyrosol, and 91 % for vanillic acid and p-coumaric acid. Besides, Mediterranean countries are suffering from water shortages and the majority of olive mill trituration units are known for their artisanal types thus facing economic challenges. This research suggests a practical treatment process and the final effluent can be used to irrigate olive orchards at a rate of 170 m3 per hectare.
Collapse
Affiliation(s)
- Layla Moustafa Fleyfel
- Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon
| | - Joseph Matta
- Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon
- Industrial Research Institute (IRI), Lebanese University Campus, Hadeth Baadba, Lebanon
| | - Nicole Fakhoury Sayegh
- Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon
| | - Nasma Hamdi El Najjar
- Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon
| |
Collapse
|
2
|
Khalil J, Jaafar AAK, Habib H, Bouguerra S, Nogueira V, Rodríguez-Seijo A. The impact of olive mill wastewater on soil properties, nutrient and heavy metal availability - A study case from Syrian vertisols. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119861. [PMID: 38142600 DOI: 10.1016/j.jenvman.2023.119861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
Olive oil mill wastewater (OMW) is an environmental concern in olive oil producers' regions due to its use in agricultural soils as an organic amendment. However, OMW can also be used as organic fertilizer due to their high organic matter and nutrient levels, but its use, when it occurs without environmental management, can cause serious environmental implications for soils and waters. This work evaluated the impact of different OMW levels on a set of physicochemical parameters from an agricultural vertisol where wheat grew (Triticum aestivum L var. Douma 1). A set of physicochemical parameters were conducted before adding different levels of OMW (0, 5, 10 and 15 L m-2) at two soil depths (0-30 and 30-60 cm) and for the two growing seasons to determine: i) the effect of OMW treatments on the studied physicochemical soil properties (bulk density, soil porosity, soil pH, electrical conductivity and organic matter), ii) available primary (N, P, K) and secondary macronutrients (Ca, Mg and Na), ii) micronutrients (Cu Fe, Mn and Zn), and iv) available heavy metals (Cd and Pb). The results indicated that soil physicochemical parameters were slightly improved, mainly due to improvement in organic matter, macro- and micronutrients, usually proportionally to the olive mill wastewater dose. Cadmium and Pb were within the permissible limits. The increased OMW had different behaviour on the soil nutritional balances of different elements, leading to nutrient imbalances, although in some cases, they were improved. However, the plant growth was not affected, and it was improved under 10 L m-2 and 15 L m-2 doses. The results offer valuable data about the use of OMW as organic fertilizer for crops and their potential impact on soil properties.
Collapse
Affiliation(s)
- Jehan Khalil
- Department of Soil Science, Faculty of Agricultural, Damascus University, Damascus, Syrian Arab Republic.
| | - Abd Al Karim Jaafar
- Department of Soil Science, Faculty of Agricultural, Damascus University, Damascus, Syrian Arab Republic.
| | - Hassan Habib
- Department of Soil Science, Faculty of Agricultural, Damascus University, Damascus, Syrian Arab Republic.
| | - Sirine Bouguerra
- GreenUPorto, Sustainable Agrifood Production Research Center & Inov4Agro | Rua da Agrária 747, 4485-64, Vairão, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N. 4169-007 Porto, Portugal.
| | - Verónica Nogueira
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N. 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Andrés Rodríguez-Seijo
- Department of Plant Biology and Soil Science, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Agroecology and Food Institute (IAA), University of Vigo - Campus Auga, 32004, Ourense, Spain.
| |
Collapse
|
3
|
Elayadi F, Achak M, Boumya W, Barka N, Lamy E, El Adlouni C. Olive mill wastewater treatment using natural adsorbents: phytotoxicity on durum wheat (Triticum turgidum L. var. durum) and white bean (Phaseolus vulgaris L.) seed germination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109481-109499. [PMID: 37924176 DOI: 10.1007/s11356-023-29741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/02/2023] [Indexed: 11/06/2023]
Abstract
This research was undertaken to optimize the phenolic compound removal from Olive Mill Wastewater (OMW) by sawdust and red clay as natural adsorbents. Fractional factorial experimental design at 25-1 was used in order to optimize the experimental conditions for high removal efficiency. Statistics ANOVA analysis, Fisher's test, and Student's test suggested that the adsorbent dose has the most significant influence on polyphenol removal for both adsorbents. The maximum removal of polyphenols by sawdust reached 49.6% at 60 °C by using 60 g/L of adsorbent dose, pH 2, reaction time of 24 h, and agitation speed of 80 rpm. Whereas, for red clay, 48.08% of polyphenols removal was observed under the same conditions for sawdust except the temperature of 25 °C instead of 60 °C. In addition, the thermodynamic parameters suggested spontaneous process for both adsorbents, endothermic for the sawdust and exothermic for red clay. Furthermore, the phytotoxicity effect of OMW on durum wheat (Triticum turgidum L. var. durum) and white bean (Phaseolus vulgaris L.) seed germination was investigated. The obtained results showed that the untreated OMW inhibited the seed germination of T. turgidum and P. vulgaris seeds. OMW treatment with red clay followed by dilution (95% water) resulted in 87 and 30% germination of P. vulgaris and T. turgidum, respectively. While, the treatment of OMW with sawdust and dilution at 95% resulted in 51 and 26% germination of P. vulgaris and T. turgidum, respectively.
Collapse
Affiliation(s)
- Fatima Elayadi
- Marine Biotechnologies and Environment, Laboratory Sciences Faculty, Chouaïb Doukkali University, El Jadida, Morocco
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Mounia Achak
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco.
- Chemical & Biochemical Sciences. Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Wafaa Boumya
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, Morocco
| | - Noureddine Barka
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, Morocco
| | - Edvina Lamy
- Integrated Transformations of Renewable Matter (TIMR), Sorbonne University, University of Technology of Compiegne, UTC/ESCOM, EA 4297 TIMR, Compiegne, France
| | - Chakib El Adlouni
- Marine Biotechnologies and Environment, Laboratory Sciences Faculty, Chouaïb Doukkali University, El Jadida, Morocco
| |
Collapse
|
4
|
Alaoui SB, Lamy E, Achak M. Assessment of the impact of diluted and pretreated olive mill wastewater on the treatment efficiency by infiltration-percolation using natural bio-adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16305-16320. [PMID: 36181593 DOI: 10.1007/s11356-022-23373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The current study was carried out to treat the olive mill wastewater (OMW) via infiltration percolation process, using low-cost natural adsorbents that could improve the ability of the system to enhance the disposal rate of elimination of pollutant from the OMW. The experimental pilot was composed of three PVC (polyvinyl chloride) columns with 10 cm in diameter and 110-cm height equipped with lateral air entries. Each column was filled with four layers of 10 cm of a mixture of sand (70%), charcoal (20%) and sawdust (10%) respectively. These layers were alternated by four permeable layers of 10 cm of Pouzzolane. To assess the effect of the pretreatment on the efficiency of the system, three types of OMW were used: raw OMW, diluted OMW with domestic wastewater at 1/1(v/v) ratio and OMW pretreated with lime. For the column feed with raw OMW, an average removal of total COD (41%), dissolved COD (54%), NH4-N (40.25%), NO3- (15.76%), total phosphorus (55.63%) and orthophosphate (50.84%) was recorded. The results showed that the column feed with diluted OMW with domestic wastewater was the most efficient one with a removal rate that reached 93.2% of total COD, 86.2% of dissolved COD, 92% of polyphenol, 92% of orthophosphate (OP), 97.2% of total phosphorus (TP) and 81% of NH4-N. The pretreatment of OMW with lime gave the lowest removal rate for all the parameters: total COD (34%), dissolved COD (50%), NH4-N (30%), NO3- (- 21%), total phosphorus (15.19%) and orthophosphate (9.04%). This study demonstrated that the dilution is a way to optimize the efficiency of the system of infiltration-percolation in treating the OMW.
Collapse
Affiliation(s)
- Soufiane Bakri Alaoui
- Science Engineer Laboratory for Energy (LabSIPE), National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco
- Integrated Transformations of Renewable Matter (TIMR), Sorbonne University, University of Technology of Compiègne, UTC/ESCOM, EA 4297 TIMR, Compiègne, France
| | - Edvina Lamy
- Integrated Transformations of Renewable Matter (TIMR), Sorbonne University, University of Technology of Compiègne, UTC/ESCOM, EA 4297 TIMR, Compiègne, France
| | - Mounia Achak
- Science Engineer Laboratory for Energy (LabSIPE), National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco.
- Chemical and Biochemical Sciences, Green Process Engineering, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.
| |
Collapse
|
5
|
Abu-Dalo MA, Al-Rawashdeh NAF, Almurabi M, Abdelnabi J, Al Bawab A. Phenolic Compounds Removal from Olive Mill Wastewater Using the Composite of Activated Carbon and Copper-Based Metal-Organic Framework. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031159. [PMID: 36770169 PMCID: PMC9920182 DOI: 10.3390/ma16031159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/12/2023]
Abstract
As the industry of olive oil continues to grow, the management of olive mill wastewater (OMW) by-products has become an area of great interest. While many strategies for processing OMW have been established, more studies are still required to find an effective adsorbent for total phenolic content uptake. Here, we present a composite of a Cu 1,4-benzene dicarboxylate metal-organic framework (Cu (BDC) MOF) and granular activated carbon (GAC) as an adsorbent for total phenolic content removal from OMW. Experimental results demonstrated that the maximum adsorption capacity was 20 mg/g of total phenolic content (TPC) after 4 h. using 2% wt/wt of GAC/Cu (BDC) MOF composite to OMW at optimum conditions (pH of 4.0 and 25 °C). The adsorption of phenolic content onto the GAC/Cu (BDC) MOF composite was described by the Freundlich adsorption and pseudo-second-order reaction. The adsorption reaction was found to be spontaneous and endothermic at 298 K where ΔS° and ΔH° were found to be 0.105 KJ/mol and 25.7 kJ/mol, respectively. While ΔGº value was -5.74 (kJ/mol). The results of this study provide a potential solution for the local and worldwide olive oil industry.
Collapse
Affiliation(s)
- Muna A. Abu-Dalo
- Chemistry Department, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nathir A. F. Al-Rawashdeh
- Chemistry Department, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Moath Almurabi
- Chemistry Department, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Jehad Abdelnabi
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
| | - Abeer Al Bawab
- Department of Chemistry, School of Science, University of Jordan, Amman 11942, Jordan
- Hamdi Mango Center for Scientific Research, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
6
|
Sustainable vs. Conventional Approach for Olive Oil Wastewater Management: A Review of the State of the Art. WATER 2022. [DOI: 10.3390/w14111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main goal of this review is to collect and analyze the recently published research concerning the conventional and sustainable treatment processes for olive mill wastewater (OMW). In the conventional treatment processes, it is noticed that the main objective is to meet the environmental regulations for remediated wastewater without considering the economical values of its valuable constituents such as polyphenols. These substances have many important environmental values and could be used in many vital applications. Conversely, sustainable treatment processes aim to recover the valuable constituents through different processes and then treat the residual wastewater. Both approaches’ operational and design parameters were analyzed to generalize their advantages and possible applications. A valorization-treatment approach for OMW is expected to make it a sustainable resource for ingredients of high economical value that could lead to a profitable business. In addition, inclusion of a recovery process will detoxify the residual OMW, simplify its management treatment, and allow the possible reuse of the vast amounts of processed water. In a nutshell, the proposed approach led to zero waste with a closed water cycle development.
Collapse
|
7
|
Mahmoodi Z, Abhari AR, Lalehloo RS, Bakr ZH, Ali GAM. Thermodynamic Studies on the Adsorption of Organophosphate Pesticides (Diazinon) onto ZnO/Polyethersulfone Nanocomposites. ChemistrySelect 2022. [DOI: 10.1002/slct.202103619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Zahra Mahmoodi
- Department of Chemistry University of Applied Science and Technology Center of Arya Gach Poldokhtar Iran
| | - Abbas Rajabi Abhari
- Department of Chemistry University of Applied Science and Technology Tehran Iran
| | | | - Zinab H. Bakr
- Physics Department Faculty of Science Assiut University Assiut 71516 Egypt
| | - Gomaa A. M. Ali
- Chemistry Department Faculty of Science Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
8
|
Sustainable Treatment of Food Industry Wastewater Using Membrane Technology: A Short Review. WATER 2021. [DOI: 10.3390/w13233450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water is needed for food processing facilities to carry out a number of tasks, including moving goods, washing, processing, and cleaning operations. This causes them to produce wastewater effluent, and they are typically undesirable since it contains a high volume of suspended solids, bacteria, dyestuffs, salts, oils, fats, chemical oxygen demand and biological oxygen demand. Therefore, treatment of food industry wastewater effluent is critical in improving process conditions, socio-economic benefits and our environmental. This short review summarizes the role of available membrane technologies that have been employed for food wastewater treatment and analyse their performance. Particularly, electrospun nanofiber membrane technology is revealed as an emerging membrane science and technology area producing materials of increasing performance and effectiveness in treating wastewater. This review reveals the challenges and perspectives that will assist in treating the food industry wastewater by developing novel membrane technologies.
Collapse
|
9
|
Effect of storage time on the biodegradability of olive oil mill wastewater from the cold extraction of olive oil system. EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The olive oil processing industry’s liquid effluents (OMW) have a polluting capacity for the ecosystems. This study aimed to evaluate the physicochemical quality of OMW of two varieties of separated and combined olives cultivated in Khenchela Eastern Algeria, from the cold extraction of the olive oil extraction system. These was to determine their degree of pollution and biodegradability during one year of storage at ambient temperature to recommend the correct treatment for each storage time. Results of the measured parameters pH, EC,TSS percent, H2O percent, lipids, DM, OM, MM, VM, COT percent, NTK percent, C/N, BOD5, COD, BI, TOM, BOD5/COD show that wastewater from olive oil mills has an acid pH, and they are very loaded with organic matter evaluated in terms of COD and BOD5, quite filled with minerals. The storage of olive mill waste can reduce progressively the pollution caused by this waste. Whereas during one year, the reduction rate of COD, BOD5, TOM, BI, is respectively 29.4%, 54.8%, 39.16%, 54.2%, but C/N, BOD5/COD continue to increase as well as pH that continues to decrease during the storage. Accordingly, storing olive mill waste during a year reduces its pollution rate, so it is slowly biodegradable. When disposing of it, an adequate treatment procedure must be required to protect the environment.
Collapse
|
10
|
Olive Mill and Olive Pomace Evaporation Pond’s By-Products: Toxic Level Determination and Role of Indigenous Microbiota in Toxicity Alleviation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diverse vegetable oils are extracted from oleagenic trees and plants all over the world. In particular, olive oil represents a strategic socio-economic branch in the Mediterranean countries. These countries use either two or three-phase olive oil extraction systems. In this work, we focus on the by-products from three-phase olive oil extraction, which are the liquid olive mill wastewater (OMW) and the solid olive mill pomace (OMP) rejected in evaporative ponds. The disposal of this recalcitrant waste poses environmental problems such as the death of different species of insects and animals. In-depth ICP-OES analysis of the heavy metal composition of OMW and OMP revealed the presence of many metals ranging from non-toxic to highly toxic. The LC-HRMS characterization of these by-products indicated the presence of several secondary metabolites harmful to humans or to the environment. Thus, we aimed to identify OMW and OMP indigenous microbiota through metagenomics. The bacterial population was dominated by the Acetobacter (49.7%), Gluconobacter (17.3%), Gortzia (13.7%) and Nardonalla (5.3%) genera. The most abundant fungal genera were Nakazawaea, Saccharomyces, Lachancea and Candida. These microbial genera are responsible for OMW, OMP and soil toxicity alleviation.
Collapse
|
11
|
Mohamad-Zainal NSL, Ramli N, Zolkefli N, Mustapha NA, Hassan MA, Maeda T. Survivability of Alcaligenaceae and Chromatiaceae as palm oil mill effluent pollution bioindicators under fluctuations of temperature, pH and total suspended solid. J Biosci Bioeng 2021; 132:174-182. [PMID: 34074597 DOI: 10.1016/j.jbiosc.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Alcaligenaceae and Chromatiaceae were previously reported as the specific pollution bioindicators in the receiving river water contaminated by palm oil mill effluent (POME) final discharge. Considering the inevitable sensitivity of bacteria under environmental stresses, it is crucial to assess the survivability of both bacteria in the fluctuated environmental factors, proving their credibility as POME pollution bioindicators in the environment. In this study, the survivability of Alcaligenaceae and Chromatiaceae from facultative pond, algae (aerobic) pond and final discharge were evaluated under varying sets of temperature (25-40°C), pH (pH 7-9) and low/high total suspended solid (TSS) contents of POME collected during low/high crop seasons of oil palm, respectively. Following treatment, the viability status and compositions of the bacterial community were assessed using flow cytometry-based assay and high-throughput Illumina MiSeq, respectively, in correlation with the changes of physicochemical properties. The changes in temperature, pH and TSS indeed changed the physicochemical properties of POME. The functionality of bacterial cells was also shifted where the viable cells and high nucleic acid contents reduced at elevated levels of temperature and pH but increased at high TSS content. Interestingly, the Alcaligenaceae and Chromatiaceae continuously detected in the samples which accounted for more than 0.5% of relative abundance, with a positive correlation with biological oxygen demand (BOD5) concentration. Therefore, either Alcaligenaceae or Chromatiaceae or both could be regarded as the reliable and specific bacterial indicators to indicate the pollution in river water due to POME final discharge despite the fluctuations in temperature, pH and TSS.
Collapse
Affiliation(s)
- Noor Shaidatul Lyana Mohamad-Zainal
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nurhasliza Zolkefli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurul Asyifah Mustapha
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Fukuoka 808-0196, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Fukuoka 808-0196, Japan
| |
Collapse
|