1
|
Thabit ZA, AlShaheeb ZA, Jaafar MR, Al-Qaysi SAS, Al-Shimmary SMH. Multidrug resistance and virulence profile of the commensal Proteus mirabilis isolated from a native Iraqi frozen chicken carcass. J Genet Eng Biotechnol 2025; 23:100490. [PMID: 40390501 DOI: 10.1016/j.jgeb.2025.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 05/21/2025]
Abstract
This study aimed to determine the prevalence of Proteus mirabilis in frozen chicken carcass from local slaughterhouse. It assesses the activities of nine antimicrobial agents and the presence of antimicrobial resistance genes and virulence genes. Thirty samples were collected from five local Iraqi companies. and then the antibiotic-resistance genes and virulence factor-related genes were detected via polymerase chain reaction (PCR). The results revealed that Nine P. mirabilis isolates were recovered, and the majority of the isolates were resistant to both nalidixic acid and azithromycin at a ratio of (100 %), followed by trimethoprim-sulfamethoxazole (sul1) (88.8 %), whereas the isolates were susceptible to imipenem and meropenem, and both ceftazidime and cefotaxime were efficient at a ratio of (88.8 %). All the isolates (100 %) were resistant to at least three classes of antibiotics and were classified as multidrug resistant. The PCR results indicated that the most common resistance genes were DNA Gyrase Subunit A Gene (gyrA) (100 %), Dihydropteroate Synthase Gene (sul1) (88.8 %), and Florenicol Resistance Gene (floR) (88.8 %), followed by Aminoglycoside N-Acetyltransferase Gene (acc (6')-lb) (44.4 %) and Macrolide Phosphotransferase Gene (mphA) (33.3 %). In addition, the virulence genes Zinc Metalloprotease A Gene (zapA), Uridine Monophosphate Synthase Gene (uraC), Histone-Modifying Protein A Gene (hpmA), Flagellin A Gene (flaA), Anti-Sigma Factor RsbA Gene (rsbA), and Multidrug Resistance Protein A Gene (mrpA) were found in the same proportion (100 %) of all P. mirabilis isolates. Our study emphasized that Proteus mirabilis has a high frequency of antibiotic resistance as a multidrug resistance pattern and furthermore demonstrated a high level of virulence factor gene detection, which might be a threat to food safety and human health. The phylogenetic tree analysis of the P. mirabilis isolates from chicken meat revealed high similarity to the database strain.
Collapse
Affiliation(s)
- Zaid A Thabit
- Al-Nahrain University, Biotechnology Research Center, Baghdad, Iraq
| | | | - May Ridha Jaafar
- Department of Forensic Biology, Higher Institute of Forensic Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Safaa A S Al-Qaysi
- Biology Department, College of Science for Women/University of Baghdad, Baghdad, Iraq.
| | - Sana M H Al-Shimmary
- Biology Department, College of Science for Women/University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
2
|
Chen Z, Wang J, Wang K, An F, Liu S, Yan H, Hua Y. Multidrug-resistant Proteus mirabilis in a critically endangered Malayan pangolin: clinical and genomic insights. Front Vet Sci 2025; 12:1552499. [PMID: 40370834 PMCID: PMC12075528 DOI: 10.3389/fvets.2025.1552499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Proteus mirabilis, an important zoonotic opportunistic pathogen, is widely found in nature and the intestinal tracts of animals, which can cause diarrhea, pneumonia, urinary tract infections, and other symptoms in domestic animals including sheep, pigs, cattle and chickens. In this study, necropsy of a deceased critically endangered Malayan pangolin revealed lobar pneumonia in the lungs and hepatocyte necrosis with hepatic cord disintegration in the liver. A strain of Proteus mirabilis (PM2022) was isolated from the affected lungs and liver. This bacterium exhibited multidrug resistance, being susceptible only to cefoxitin and amikacin. Whole-genome sequencing identified 26 antibiotic resistance genes, including CTX-M-65, FosA3, which mediate resistance to five classes of antibiotics, such as penicillins and quinolones. Additionally, 20 virulence factors (including the T6SS secretion system, hemolysins HpmA/B, among others) were detected. Mouse experiments confirmed its high pathogenicity (LD50 = 1.45 × 109 CFU/mL). Based on experimental and genomic testing results, the initial symptoms of Proteus mirabilis infection in pangolins manifest in the lungs, liver, and intestines, and the use of penicillins and quinolones should be avoided during treatment. This study offers clinical guidance for diagnosing and treating P. mirabilis infections in pangolins, informing evidence-based antimicrobial strategies.
Collapse
Affiliation(s)
- Ziqiao Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Jiayi Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Fuyu An
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Shasha Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Haikuo Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| |
Collapse
|
3
|
González-Fandos E, Martínez Laorden A, Condón Usón S, Serrano Andrés MJ. Growth and Diversity of Spoiling and Foodborne Bacteria in Poultry Hamburgers in Modified Atmosphere and with Sulfites During Shelf Life. Microorganisms 2025; 13:754. [PMID: 40284591 PMCID: PMC12029653 DOI: 10.3390/microorganisms13040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Poultry meat is the most consumed meat worldwide due to its low fat content, sensory qualities, and affordability. However, its rapid spoilage, especially when minced for products like hamburgers, is a challenge. Strategies such as sulfite addition or modified-atmosphere packaging (MAP) can help control spoilage and microbial growth. This study evaluated both approaches by analyzing bacterial development in poultry hamburgers through total viable counts and MALDI-TOF identification, combining food-pathogens detection. The addition of 5 mg/kg sulfites had a limited effect, whereas increasing CO2 levels in the packaging significantly extended the shelf life by reducing the bacterial growth rates and prolonging the lag phases. The most affected bacteria were aerobic mesophilic and psychrotrophic bacteria, as well as Brochothrix thermosphacta. Carnobacterium spp. dominated the aerobic mesophilic group, while Enterobacter spp. was prevalent in Enterobacteriaceae and aerobic mesophilic isolates, highlighting its role in spoilage. Hafnia alvei was also relevant in the final spoilage stages. These results suggest the importance of these bacteria in poultry hamburger decay and demonstrate that MAP is an effective method to delay spoilage.
Collapse
Affiliation(s)
- Elena González-Fandos
- Department of Food Technology, CIVA Research Center, University of La Rioja, de la Paz Avenue, 26006 Logroño, Spain; (E.G.-F.); (A.M.L.)
| | - Alba Martínez Laorden
- Department of Food Technology, CIVA Research Center, University of La Rioja, de la Paz Avenue, 26006 Logroño, Spain; (E.G.-F.); (A.M.L.)
| | - Santiago Condón Usón
- Food Science and Technology Department, Instituto Agroalimentario de Aragón IA2, Universidad de Zaragoza, Miguel Servet St. 177, 50013 Zaragoza, Spain;
| | - María Jesús Serrano Andrés
- Instituto Agroalimentario de Aragón IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Miguel Servet St. 177, 50013 Zaragoza, Spain
| |
Collapse
|
4
|
de Almeida LKS, Silva LC, Guidone GHM, de Oliva BHD, do Nascimento AB, Faustino G, da Silva Pimenta J, Vespero EC, Rocha SPD. Impact of COVID-19 pandemic on antimicrobial resistance of Proteus mirabilis in a Brazilian hospital. Braz J Microbiol 2025; 56:499-510. [PMID: 39630218 PMCID: PMC11885744 DOI: 10.1007/s42770-024-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/07/2024] [Indexed: 03/09/2025] Open
Abstract
This study analyzes the resistance and virulence profiles of Proteus mirabilis isolates obtained from patients admitted to the University Hospital of Londrina, Paraná, between 2019 and 2022. We evaluated the antimicrobial resistance phenotypes, genes associated with resistance, biofilm formation through a phenotypic assay, and the presence of specific virulence genes. When comparing the "pre-pandemic" (2019) and "pandemic" (2020-2022) periods, we observed an increase in resistance rates to all tested antimicrobials. Multidrug-resistant (MDR) pathogens producing extended-spectrum β-lactamase (ESBL) phenotypes were isolated in both periods, but their occurrence was significantly higher during the pandemic. We also observed an increase in the frequency of nearly all studied resistance genes. The virulence profiles remained largely unchanged. Analysis of patients' clinical and demographic data revealed that those hospitalized during the pandemic were older, required longer hospital stays, and had a higher usage of invasive devices. These findings suggest that the recent COVID-19 pandemic has impacted the antimicrobial resistance of P. mirabilis, a bacterium of significant clinical interest associated with urinary tract infections (UTIs) and healthcare-associated infections (HAIs).
Collapse
Affiliation(s)
- Luana Karolyne Salomão de Almeida
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Arthur Bossi do Nascimento
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Gabriela Faustino
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Julia da Silva Pimenta
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Londrina, Paraná, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Londrina, Paraná, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil.
| |
Collapse
|
5
|
Sarwar A, Aslam B, Mahmood S, Muzammil S, Siddique AB, Sarwar F, Khurshid M, Rasool MH, Sasanya J, Aljasir SF. Distribution of multidrug-resistant Proteus mirabilis in poultry, livestock, fish, and the related environment: One Health heed. Vet World 2025; 18:446-454. [PMID: 40182804 PMCID: PMC11963587 DOI: 10.14202/vetworld.2025.446-454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/22/2025] [Indexed: 04/05/2025] Open
Abstract
Background and Aim The emergence of multidrug-resistant (MDR) Proteus mirabilis in food-producing animals and their associated environments is a growing public health concern. The indiscriminate use of antimicrobials in animal husbandry exacerbates resistance development, posing significant threats to food safety and sustainability. This study investigates the distribution, antibiotic resistance patterns, and virulence-associated genes (VAGs) of P. mirabilis isolated from poultry, livestock, fish, and their environments in Pakistan under a One Health perspective. Materials and Methods A total of 225 samples were collected from poultry (n = 100), livestock (n = 75), and aquatic sources (n = 50) from March 2023 to September 2024. Standard microbiological methods were employed for the isolation and identification of P. mirabilis. Polymerase chain reaction (PCR)-based detection of antibiotic resistance genes and VAGs was performed using specific primers. Antibiotic susceptibility was assessed through the disk diffusion method following Clinical and Laboratory Standards Institute 2022 guidelines. Statistical analyses, including analysis of variance and correlation models, were applied to assess the relationships between variables. Results P. mirabilis was detected in 28.44% (64/225) of the total samples, with the highest occurrence observed in poultry (38%), followed by livestock (22.67%) and aquatic sources (18%). Resistance to ampicillin (100%), chloramphenicol (82%), cefepime (75%), and ciprofloxacin (75%) was widespread. PCR analysis revealed a high occurrence of extended-spectrum beta-lactamase-producing P. mirabilis carrying bla CTX-M (49%), bla OXA (54%), and bla TEM (25.67%) genes. In addition, VAGs such as zapA (39.53%), ucaA (34.88%), and hpmA (32.55%) were frequently identified. The presence of MDR P. mirabilis in fish and related environments (18%) is alarming, highlighting potential zoonotic and foodborne transmission risks. Conclusion The study underscores the widespread distribution of MDR P. mirabilis in animal-based food sources, raising significant concerns regarding food safety and antimicrobial resistance. The findings reinforce the need for stringent monitoring and regulatory policies to mitigate MDR bacterial dissemination across the food supply chain. Future research should employ metagenomic approaches for comprehensive surveillance and risk assessment.
Collapse
Affiliation(s)
- Ayesha Sarwar
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Sara Mahmood
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Fatima Sarwar
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | | | | | - Sulaiman F. Aljasir
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Xu Y, Ji X, Chen X, Gui G, He T, Xiao Y, Lv L, Lyu W. Characterisation of Proteus mirabilis isolates from the poultry production chain in Zhejiang Province, China: antimicrobial resistance, virulence factors and genotypic profiling. Br Poult Sci 2025:1-10. [PMID: 39853207 DOI: 10.1080/00071668.2024.2436995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 01/26/2025]
Abstract
1. This study investigated antimicrobial resistance, virulence factors and genotypic profiling among Proteus mirabilis isolated from three sources (poultry farms, slaughterhouses and retail markets) in the poultry production chain in Zhejiang Province, China, to assess its potential risk to public health.2. A total of 112 P. mirabilis strains were isolated from 409 samples, including 35 from poultry farms, 35 from slaughterhouses and 42 from retail markets. Antimicrobial susceptibility was tested using 18 antimicrobials in 9 categories, in which 110 (98.2%) strains were considered multidrug-resistant (MDR). These strains carried numerous antimicrobial resistance genes, with the sulphonamide resistance gene (sul1) having the highest rate (100%) and the polymyxin resistance gene (mcr-1) the lowest (3.6%).3. These isolates were validated to carry virulence genes pmfA, mrpA, atfC, rsbA, atfA, ureC and ucaA with the high prevalence of 96.4, 92.9, 92.0, 85.7, 85.7, 57.1 and 46.4%, respectively. Genotyping results using the ERIC-PCR indicated that the genetic similarity of all the isolates was 68.6% to 100% which fell into 4 clusters.4. The P. mirabilis isolates from the slaughterhouses exhibited higher levels of antibiotic resistance and a more pronounced MDR phenomenon than those from poultry farms and retail markets. The proportion of isolates carrying the most commonly detected resistant and virulence genes was higher in samples from poultry farms and slaughterhouses as opposed to retail markets. Importantly, there was genetic similarity and heterogeneity among P. mirabilis isolates from the three sources and genotypic diversity was the highest among isolates from retail markets, followed by slaughterhouses and poultry farms.
Collapse
Affiliation(s)
- Y Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - X Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - X Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - G Gui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - T He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - L Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - W Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Liu H, Xia N, Suksawat F, Tengjaroenkul B, Hu Y, Zhou X, Li X, Huang C, Bao Y, Wu Q, Zhang C, Angkititrakul S, Xiang B, Wu X. Prevalence and characterization of IncQ1α-mediated multi-drug resistance in Proteus mirabilis Isolated from pigs in Kunming, Yunnan, China. Front Microbiol 2025; 15:1483633. [PMID: 39850143 PMCID: PMC11754265 DOI: 10.3389/fmicb.2024.1483633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 01/25/2025] Open
Abstract
Background Proteus mirabilis is a conditionally pathogenic bacterium that is inherently resistant to polymyxin and tigecycline, largely due to antibiotic resistance genes (ARGs). These ARGs can be horizontally transferred to other bacteria, raising concerns about the Inc plasmid-mediated ARG transmission from Proteus mirabilis, which poses a serious public health threat. This study aims to investigate the presence of Inc plasmid types in pig-derived Proteus mirabilis in Kunming, Yunnan, China. Methods Fecal samples were collected from pig farms across six districts of Kunming (Luquan, Jinning, Yiliang, Anning, Songming, and Xundian) from 2022 to 2023. Proteus mirabilis isolates were identified using IDS and 16S rRNA gene sequencing. Then, positive strains underwent antimicrobial susceptibility testing and incompatibility plasmid typing. Multi-drug-resistant isolates with positive incompatibility plasmid genes were selected for whole-genome sequencing. Resistance and Inc group data were then isolated and compared with 126 complete genome sequences from public databases. Whole-genome multi-locus sequence typing, resistance group analysis, genomic island prediction, and plasmid structural gene analysis were performed. Results A total of 30 isolates were obtained from 230 samples, yielding a prevalence of 13.04%. All isolates exhibited multi-drug resistance, with 100% resistance to cotrimoxazole, erythromycin, penicillin G, chloramphenicol, ampicillin, and streptomycin. Among these, 15 isolates tested positive for the IncQ1α plasmid repC gene. The two most multi-drug-resistant and repC-positive strains, NO. 15 and 21, were sequenced to compare genomic features on Inc groups and ARGs with public data. Genome analysis revealed that the repC gene was primarily associated with IncQ1α, with structural genes from other F-type plasmids (TraV, TraU, TraN, TraL, TraK, TraI, TraH, TraG, TraF, TraE/GumN, and TraA) also present. Strain NO. 15 carried 33 ARGs, and strain NO. 21 carried 38 ARGs, conferring resistance to tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, peptides, chloramphenicol, cephalosporins, lincomycins, macrolides, and 2-aminopyrimidines. Conclusion The repC gene is primarily associated with IncQ1α, with structural genes from other F-type plasmids. A comparison with 126 public genome datasets confirmed this association.
Collapse
Affiliation(s)
- Hongmei Liu
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Na Xia
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Fanan Suksawat
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Yue Hu
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaofeng Zhou
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaojiang Li
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
| | - Qiong Wu
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
| | - Chunrong Zhang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
| | | | - Bin Xiang
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xin Wu
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
de Oliva BHD, do Nascimento AB, de Oliveira JP, Guidone GHM, Schoeps BL, Silva LC, Barbosa MGL, Montini VH, de Oliveira Junior AG, Rocha SPD. Genomic insights into a Proteus mirabilis strain inducing avian cellulitis. Braz J Microbiol 2024; 55:4157-4166. [PMID: 39235714 PMCID: PMC11711737 DOI: 10.1007/s42770-024-01508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Proteus mirabilis, a microorganism distributed in soil, water, and animals, is clinically known for causing urinary tract infections in humans. However, recent studies have linked it to skin infections in broiler chickens, termed avian cellulitis, which poses a threat to animal welfare. While Avian Pathogenic Escherichia coli (APEC) is the primary cause of avian cellulitis, few cases of P. mirabilis involvement are reported, raising questions about the factors facilitating such occurrences. This study employed a pan-genomic approach to investigate whether unique genes exist in P. mirabilis strains causing avian cellulitis. The genome of LBUEL-A33, a P. mirabilis strain known to cause this infection, was assembled, and compared with other P. mirabilis strains isolated from poultry and other sources. Additionally, in silico serogroup analysis was conducted. Results revealed numerous genes unique to the LBUEL-A33 strain. No function in cellulitis was identified for these genes, and in silico investigation of the virulence potential of LBUEL-A33's exclusive proteins proved inconclusive. These findings support that multiple factors are necessary for P. mirabilis to cause avian cellulitis. Furthermore, this species likely employs its own unique arsenal of virulence factors, as many identified mechanisms are analogous to those of E. coli. While antigenic gene clusters responsible for serogroups were identified, no clear trend was observed, and the gene cluster of LBUEL-A33 did not show homology with any sequenced Proteus serogroups. These results reinforce the understanding that this disease is multifactorial, necessitating further research to unravel the mechanisms and underpin the development of control and prevention strategies.
Collapse
Affiliation(s)
- Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Arthur Bossi do Nascimento
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - João Paulo de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Beatriz Lernic Schoeps
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Mario Gabriel Lopes Barbosa
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | | | - Sérgio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil.
| |
Collapse
|
9
|
Han S, Li S, Hu G, Lei M, Li C, Xiao L, Li S. Characterization and genomic analysis phage PmP19, a novel Proteus mirabilis phage with a broad host range. Arch Virol 2024; 169:221. [PMID: 39412589 DOI: 10.1007/s00705-024-06154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 11/30/2024]
Abstract
A lytic Proteus mirabilis phage, PmP19, was isolated from sewage on a farm. PmP19 has an icosahedral head (60 ± 3 nm in diameter) and a short tail (15 ± 2 nm long). Its genome, a linear, double-stranded DNA molecule 44,305 bp in length with an average GC content of 51.93%, has 52 putative open reading frames (ORFs). BLASTn comparisons and phylogenetic analysis revealed a close relationship between Pmp19 and Klebsiella phage vB_KpnP_ZK1. Bioinformatic analysis revealed that PmP19 belongs to the phage subfamily Molineuxvirinae.
Collapse
Affiliation(s)
- Shengyi Han
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, PR China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease, Green Technical Research for Prevention and Control, Xining, 810016, PR China
| | - Shuping Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, PR China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease, Green Technical Research for Prevention and Control, Xining, 810016, PR China
| | - Guoyuan Hu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, PR China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease, Green Technical Research for Prevention and Control, Xining, 810016, PR China
| | - Mengtong Lei
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, PR China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease, Green Technical Research for Prevention and Control, Xining, 810016, PR China
| | - Chunhua Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, PR China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease, Green Technical Research for Prevention and Control, Xining, 810016, PR China
| | - Licheng Xiao
- Animal husbandry and veterinary workstation of Yushu City, Yushu, 815000, PR China
| | - Shengqing Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, PR China.
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease, Green Technical Research for Prevention and Control, Xining, 810016, PR China.
| |
Collapse
|
10
|
Ramatla T, Ramaili T, Lekota K, Mileng K, Ndou R, Mphuthi M, Khasapane N, Syakalima M, Thekisoe O. Antibiotic resistance and virulence profiles of Proteus mirabilis isolated from broiler chickens at abattoir in South Africa. Vet Med Sci 2024; 10:e1371. [PMID: 38357843 PMCID: PMC10867704 DOI: 10.1002/vms3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the blaCTX-M gene (62%), blaTEM (58%) and blaCTX-M-2 (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of blaCTX -M -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
- Gastrointestinal Research UnitDepartment of SurgerySchool of Clinical MedicineUniversity of the Free StateBloemfonteinSouth Africa
| | - Taole Ramaili
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Kealeboga Mileng
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Rendani Ndou
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Malekoba Mphuthi
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Ntelekwane Khasapane
- Department of Life SciencesCentre for Applied Food Safety and BiotechnologyCentral University of TechnologyBloemfonteinSouth Africa
| | - Michelo Syakalima
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
- Department of Disease ControlSchool of Veterinary MedicineUniversity of ZambiaLusakaZambia
| | - Oriel Thekisoe
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
11
|
Tian L, Gao C, Lu J, Liao S, Gong G. Key biological processes and essential genes for Proteus mirabilis biofilm development inhibition by protocatechuic acid. Int J Food Microbiol 2024; 412:110570. [PMID: 38219343 DOI: 10.1016/j.ijfoodmicro.2024.110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Proteus mirabilis is an opportunistic pathogen linked to human urinary tract infections, and is potentially present as a foodborne pathogen within poultry products, including broiler chickens. This report outlines the inhibitory impacts of protocatechuic acid (PCA) on P. mirabilis isolated from a broiler slaughterhouse in China as well as its biofilm. This investigation encompasses assays related to motility and adhesion, bacterial metabolic activity, extracellular polymer (EPS) production, and scavenging capacity. The findings demonstrated that PCA reduced biofilm formation by 61 %. Transcriptomics findings identified that PCA limited the expression of genes like PstS that promote adhesin formation, rbsA and RcsB that alter bacterial chemotaxis, lipopolysaccharide synthesis genes LpxA and EptB, and cell wall synthesis genes MurF and MrdA, and affects the Regulator of Capsule Synthesis (RCS) two-component modulation system. Weighted gene co-expression network analysis (WGCNA) was conducted to identify the core genes. Furthermore, the binding sites of PCA to cytochrome oxidases cydA and cydB, two subunits of ATP synthase atpI and atpH, and ftsZ, which regulate bacterial division, were predicted via molecular docking. Metabolome analysis determined that PCA critically influenced coenzyme A biosynthesis, nucleotide metabolism, alanine, aspartic acid, and glutamate metabolic pathways of P. mirabilis. Therefore, PCA impacts metabolism within bacteria via various pathways, limiting the levels of extracellular polymer and bacterial viability to hinder biofilm formation. Additionally, we prepared an antibacterial plastic film containing protocatechuic acid using PVA as the monomer and CNC as the reinforcing agent. We examined the mechanical and antibacterial properties of this film. When used to wrap chicken, it reduced the total number of colonies, slowed the deterioration of chicken, and maintained the freshness of chicken. In conclusion, the information outlined in this study complements our comprehension of P. mirabilis inhibition by PCA and provides clues for the reduction of foodborne infections associated with P. mirabilis.
Collapse
Affiliation(s)
- Lu Tian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Chang Gao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jiaxing Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Sichen Liao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
12
|
Guidone GHM, Cardozo JG, Silva LC, Sanches MS, Galhardi LCF, Kobayashi RKT, Vespero EC, Rocha SPD. Epidemiology and characterization of Providencia stuartii isolated from hospitalized patients in southern Brazil: a possible emerging pathogen. Access Microbiol 2023; 5:000652.v4. [PMID: 37970084 PMCID: PMC10634494 DOI: 10.1099/acmi.0.000652.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/08/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to characterize the virulence factors and antimicrobial resistance of Providencia stuartii , an opportunistic pathogen that causes human infections. We examined 45 isolates of P. stuartii both genotypically and phenotypically by studying their adherence to HeLa cells, biofilm formation, cytotoxicity and antimicrobial resistance, and analysed their genomes for putative virulence and resistance genes. This study found that most isolates possessed multiple virulence genes, including fimA, mrkA, fptA, iutA, ireA and hlyA, and were cytotoxic to Vero cells. All the isolates were resistant to amoxicillin plus clavulanic acid, levofloxacin and sulfamethoxazole plus trimethoprim, and most were resistant to ceftriaxone and cefepime. All isolates harboured extended-spectrum beta-lactamase coding genes such as bla CTX-M-2 and 23/45(51.11 %) of them also harboured bla CTX-M-9. The gene KPC-2 (carbapenemase) was detected in 8/45(17.77 %) isolates. This study also found clonality among the isolates, indicating the possible spread of the pathogen among patients at the hospital. These results have significant clinical and epidemiological implications and emphasize the importance of a continued understanding of the virulence and antimicrobial resistance of this pathogen for the prevention and treatment of future infections.
Collapse
Affiliation(s)
| | - Jennifer Germiniani Cardozo
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Matheus Silva Sanches
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Ligia Carla Faccin Galhardi
- Virology Laboratory, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Paraná, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
13
|
Mao X, Wu Y, Ma R, Li L, Wang L, Tan Y, Li Z, Liu H, Han K, Cao Y, Li Y, Peng H, Li X, Hu C, Wang X. Oral phage therapy with microencapsulated phage A221 against Escherichia coli infections in weaned piglets. BMC Vet Res 2023; 19:165. [PMID: 37730566 PMCID: PMC10510151 DOI: 10.1186/s12917-023-03724-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is a common pathogen that often causes diarrhea in piglets. Since bacteria are becoming more and more resistant to antibiotics, phages have become a promising alternative therapy. However, the therapy of oral phage often fails to achieve the desired effect. A novel phage named A221 was isolated by using E. coli GXXW-1103 as host strain, characterized by electron microscopy, genomic sequencing and analyzed by measuring lysis ability in vitro. RESULTS Phage A221 was identified as a member of Ackermannviridae, Aglimvirinae, Agtrevirus with 153297 bp genome and effectively inhibited bacterial growth in vitro for 16 h. This study was conducted to evaluate the therapeutic effect of oral microencapsulated phage A221 on E. coli GXXW-1103 infections in weaned piglets. The protective effect of phage was evaluated by body weight analysis, bacterial load and histopathological changes. The results showed that with the treatment of phage A221, the body weight of piglets increased, the percentage of Enterobacteriaceae in duodenum decreased to 0.64%, the lesions in cecum and duodenum were alleviated, and the bacterial load in the jejunal lymph nodes, cecum and spleen were also significantly different with infected group (P < 0.001). CONCLUSIONS The results showed that phage A221 significantly increased the daily weight gain of piglets, reduced the bacterial load of tissues and the intestinal lesions, achieved the same therapeutic effect as antibiotic Florfenicol. Taken together, oral microencapsulated phage A221 has a good therapeutic effect on bacterial diarrhea of weaned piglets, which provides guidance for the clinical application of phage therapy in the future.
Collapse
Affiliation(s)
- Xinyu Mao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Yuxing Wu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Runwen Ma
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Lei Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Yizhou Tan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Ziyong Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Hui Liu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Yinan Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Hao Peng
- Guangxi Veterinary Research Institute, Nanning, 530004, Guangxi, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, Guangxi, China.
| |
Collapse
|
14
|
Mumbo MT, Nyaboga EN, Kinyua J, Muge EK, Mathenge SGK, Muriira G, Rotich H, Njiraini B, Njiru JM. Prevalence and antimicrobial resistance profile of bacterial foodborne pathogens in Nile tilapia fish ( Oreochromis niloticus) at points of retail sale in Nairobi, Kenya. FRONTIERS IN ANTIBIOTICS 2023; 2:1156258. [PMID: 39816642 PMCID: PMC11731917 DOI: 10.3389/frabi.2023.1156258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/02/2023] [Indexed: 01/18/2025]
Abstract
Proteus spp., Staphylococcus spp., Pseudeomonas spp., and pathogenic Vibrios are among the major foodborne pathogens associated with the consumption of contaminated fish. The increasing occurrence of antimicrobial resistance in these pathogens is a serious public health concern globally and therefore continuous monitoring of antimicrobial resistance of these bacteria along the food chain is crucial for for control of foodborne illnesses. The aim of this study was to assess the prevalence, antimicrobial resistance patterns, antibiotic resistance genes, and genetic diversity of bacterial foodborne pathogens recovered from fresh Nile tilapia (Oreochromis niloticus) obtained from retail markets in Nairobi, Kenya. A total of 68 O. niloticus fish with an average weight of 300.12 ± 25.66 g and body length of 23.00 ± 0.82 cm were randomly sampled from retail markets and tested for the presence of Proteus, Staphylococcus aureus, Pseudomonas aeruginosa, Vibrio cholerae, and Vibrio parahaemolyticus. Standard culture-based microbiological and Kirby-Bauer agar disk diffusion methods were used to isolate and determine the antimicrobial resistance patterns of the isolates to 11 selected antibiotics. Statistical analysis was performed using Minitab v17.1, with p < 0.05 considered significant. The genetic diversity of the multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria was determined using 16S rRNA sequencing and phylogenetic analysis, and polymerase chain reaction (PCR) was used for detection of antibiotic resistance genes in MDR bacterial isolates. High levels of bacterial contamination were detected in fresh O. niloticus fish (44/68, 64.71%). The most prevalent bacteria were Proteus spp. (44.12%), with the rest of the bacterial species registering a prevalence of 10.29%, 4.41%, 2.94%, and 2.94% (for S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus, respectively). Antimicrobial resistance was detected in all the bacteria species and all the isolates were resistant to at least one antibiotic except cefepime (30 µg). Additionally, 86.36% of the isolates exhibited multidrug resistance, with higher multiple antibiotic resistance indices (MAR index >0.3) indicating that fresh O. niloticus fish were highly contaminated with MDR bacteria. Results of 16S rRNA sequences, BLASTn analysis, and phylogenetic trees confirmed the identified MDR bacterial isolates as Proteus mirabilis and other Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus. PCR analysis confirmed the presence of multiple antibiotic resistance genes blaTEM-1, blaCMY-2, tetA, tetC, Sul2, dfrA7, strA, and aadA belonging to β-lactamases, tetracycline, sulfonamide, trimethoprim, and aminoglycosides in all the MDR bacterial isolates. There was strong correlation between antibiotic- resistant genes and phenotypic resistance to antibiotics of MDR bacteria. This study showed high prevalence of multidrug resistance among foodborne bacterial isolates from fresh O. niloticus fish obtained from retail markets. From this study, we conclude that fresh O. niloticus fish are a potential source of MDR bacteria, which could be a major risk to public health as a consequence of their dissemination along the human food chain. These results highlight the prevalence of antimicrobial-resistant foodborne pathogens in fish purchased from retail markets and underscore the risk associated with improper handling of fish.
Collapse
Affiliation(s)
- Millicent T. Mumbo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
- Department of Medical Laboratory Science, Kenyatta University, Nairobi, Kenya
| | - Evans N. Nyaboga
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Johnson Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Edward K. Muge
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Geoffrey Muriira
- Research and Development Department, Kenya Bureau of Standards, Nairobi, Kenya
| | - Henry Rotich
- Research and Development Department, Kenya Bureau of Standards, Nairobi, Kenya
| | - Bernard Njiraini
- Research and Development Department, Kenya Bureau of Standards, Nairobi, Kenya
| | - Joshua M. Njiru
- Research and Development Department, Kenya Bureau of Standards, Nairobi, Kenya
| |
Collapse
|
15
|
Ma S, Shen J, Xu Y, Ding P, Gao X, Pan Y, Wu H, Hu G, He D. Epidemic characteristics of the SXT/R391 integrated conjugative elements in multidrug-resistant Proteus mirabilis isolated from chicken farm. Poult Sci 2023; 102:102640. [PMID: 37068352 PMCID: PMC10130350 DOI: 10.1016/j.psj.2023.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
This study was designed to depict prevalence and antimicrobial resistance characteristics of Proteus mirabilis (P. mirabilis) strains in 4 chicken farms and to probe the transfer mechanism of resistance genes. A total of 187 P. mirabilis isolates were isolated from 4 chicken farms. The susceptibility testing of these isolates to 14 antimicrobials showed that the multidrug resistance (MDR) rate was as high as 100%. The β-lactamase resistance genes blaOXA-1, blaCTX-M-1G, blaCTX-M-9G and colistin resistance gene mcr-1 were highly carried in the P. mirabilis isolates. An MDR strain W47 was selected for whole genome sequencing (WGS) and conjugation experiment. The results showed that W47 carried 23 resistance genes and 64 virulence genes, and an SXT/R391 integrated conjugative elements (ICEs) named ICEPmiChn5 carrying 17 genes was identified in chromosome. ICEPmiChn5 was able to be excised from the chromosome of W47 forming a circular intermediate, but repeated conjugation experiments were unsuccessful. Among 187 P. mirabilis isolates, 144 (77.01%, 144/187) isolates carried ICEPmiChn5-like ICEs, suggesting that ICEs may be the major vector for the transmission of resistance genes among MDR chicken P. mirabilis strains in this study. The findings were conducive to insight into the resistance mechanism of chicken P. mirabilis strains and provide a theoretical basis for the use of antibiotics for the treatment of MDR P. mirabilis infections in veterinary clinic.
Collapse
Affiliation(s)
- Shengnan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiaxing Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yakun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengyun Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
16
|
Sanches MS, Silva LC, da Silva CR, Montini VH, de Oliva BHD, Guidone GHM, Nogueira MCL, Menck-Costa MF, Kobayashi RKT, Vespero EC, Rocha SPD. Prevalence of Antimicrobial Resistance and Clonal Relationship in ESBL/AmpC-Producing Proteus mirabilis Isolated from Meat Products and Community-Acquired Urinary Tract Infection (UTI-CA) in Southern Brazil. Antibiotics (Basel) 2023; 12:370. [PMID: 36830280 PMCID: PMC9952622 DOI: 10.3390/antibiotics12020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The present study aimed to evaluate the prevalence of antimicrobial resistance and clonal relationships in Proteus mirabilis isolated from chicken meat, beef, pork, and community-acquired urinary tract infections (UTI-CA). Chicken meat isolates showed the highest multidrug resistance (MDR), followed by those from pork and UTI-CA, whereas beef had relatively few MDR strains. All sources had strains that carried blaCTX-M-65, whereas blaCTX-M-2 and blaCMY-2 were only detected in chicken meat and UTI-CA isolates. This indicates that chicken meat should be considered an important risk factor for the spread of P. mirabilis carrying ESBL and AmpC. Furthermore, ESBL/AmpC producing strains were resistant to a greater number of antimicrobials and possessed more resistance genes than non-producing strains. In addition, the antimicrobial resistance genes qnrD, aac(6')-Ib-cr, sul1, sul2, fosA3, cmlA, and floR were also found. Molecular typing showed a genetic similarity between chicken meat and UTI-CA isolates, including some strains with 100% similarity, indicating that chicken can be a source of P. mirabilis causing UTI-CA. It was concluded that meat, especially chicken meat, can be an important source of dissemination of multidrug-resistant P. mirabilis in the community.
Collapse
Affiliation(s)
- Matheus Silva Sanches
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Caroline Rodrigues da Silva
- Microorganism Research Center, Health Sciences Center, Department of Dermatological, Infectious and Parasitic Diseases, Medical School of São José do Rio Preto, São José do Rio Preto P.O. Box 15.090, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Mara Corrêa Lelles Nogueira
- Microorganism Research Center, Health Sciences Center, Department of Dermatological, Infectious and Parasitic Diseases, Medical School of São José do Rio Preto, São José do Rio Preto P.O. Box 15.090, Brazil
| | - Maísa Fabiana Menck-Costa
- Laboratory of Basic and Applied Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Health Sciences Center, Clinical and Toxicological Analysis, University Hospital of Londrina, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| |
Collapse
|
17
|
Drug-Resistant Proteus Virulence Factors Characterization and Their Inhibition Using Probiotic Bacteria. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-124234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The genus Proteus is a Gram-negative bacterium with a unique characteristic of swarming. Mainly three species are involved in initiating urinary tract infections in the community and in immunocompromised patients, particularly in patients going through long-term catheterization. Due to their strong virulence factors like biofilm formations, protease, and hemolysin, they can lead to lengthening infections in affected individuals. Probiotics are live bacteria and yeasts that are beneficial to human health and can be used as an alternative for the control of nosocomial diseases. Lactobacilli are one of the common probiotics mostly found in yogurt and other fermented foods that have been used as a substitute for infection control. Objectives: The current study was designed to screen potential probiotic bacteria to encounter antibiotic-resistant and virulent Proteus species. Methods: In the current study, using probiotics, already known antibiotic-resistant isolates (n = 25) of Proteus were processed to characterize their virulence factors and their inhibition. Biofilm formation, protease, and hemolysin activities were studied using different phenotypic detection methods. Further, their virulence genes zapA, flg, hmpA, mrp, and rsbA were explored using their genomic DNA. These isolates were found resistant to different classes of antibiotics, and a strategy was designed to inhibit their growth by using probiotic bacteria isolated from the soil. Results: Virulence factors first, all isolates were subjected to biofilm detection, and they were 32% (n = 8) strong, 40% (n = 10) moderate, 16% (n = 4) weak, and 12% (n = 3) non-biofilm producers. All isolates were positive for swarming activity by showing a differentiated ring form of growth. Protease activity showed 56% (n = 14) isolates. Only 24% (n = 6) of isolates were positive for hemolysin. Virulence factors and molecular mechanisms were studied, and gene rsbA responsible for swarming was amplified in 17 (68%) Proteus isolates, and mrp responsible for fimbria was detected in 19 (76%) bacterial isolates. Further, these isolates were subjected to flagella, protease, and hemolysin, and it was revealed that flg 11 (44%), 13 (52%) protease coding zapA, and hmA gene coding hemolysin were amplified in 2 (8%) Proteus isolates. Probiotic bacteria isolated from soil samples were probed for antagonistic activity against Proteus species. The probiotic bacteria were identified as Lactobacillus plantarum, Bacillus subtilis, and B. licheniformis. Due to their strong growth inhibitory effects against Proteus, it is crucial to characterize further the metabolites that have shown suppressive results against Proteus. Conclusions: Findings from the current study will provide new avenues for drug development and also help clinicians manage resistant pathogens in healthcare settings. Probiotic applications for infection control can be useful in treating resistant pathogens. Further purification and characterization of metabolites will provide alternative options for managing resistance issues in microbes.
Collapse
|
18
|
Alfifi A, Christensen JP, Hounmanou YMG, Sandberg M, Dalsgaard A. Characterization of Escherichia coli and other bacteria isolated from condemned broilers at a Danish abattoir. Front Microbiol 2022; 13:1020586. [PMID: 36439808 PMCID: PMC9686377 DOI: 10.3389/fmicb.2022.1020586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 10/17/2023] Open
Abstract
Meat inspection is important to ensure food safety and protect public health. Visual inspection of slaughtered carcasses for pathological changes should be supported by bacteriological analysis to determine whether the entire carcass or parts of it should be condemned. The aim of this study was to determine the bacterial species present in different sample types from condemned broiler carcasses. Furthermore, we investigated the genetic characteristics, zoonotic potential, and relatedness of Escherichia coli, the predominant bacterial species isolated from the carcasses. A total of 400 broiler carcasses condemned because of cellulitis (100), scratches (100), hepatitis (100), and healthy control carcasses (100) were selected. Samples of meat, pathological lesion, and bone marrow of each carcass were obtained for microbial analysis. From the analyzed samples, 469 bacterial isolates were recovered with E. coli accounting for 45.8%, followed by Aeromonas spp. (27.9%), in particular A. veronii. The highest rate of bacterial isolation was observed in carcasses condemned with cellulitis, whereas carcasses with hepatitis had the lowest rate of bacterial isolation. Forty-four E. coli isolates originating from different sample types were selected for whole genome sequencing. A clonal relationship was shown between E. coli from different sample types of the same carcass condemned with cellulitis and scratches. A major clade of E. coli was found in carcasses condemned with cellulitis with isolates containing mdf(A), tet(A), and bla TEM-1B genes that confer resistance to macrolides, tetracycline, and ampicillin, respectively. E. coli in this clade all belonged to ST117 and clustered with E. coli isolates previously collected from dead chickens and carcasses condemned due to cellulitis in Denmark, Finland, and the United Kingdom. Bacterial evaluation results of carcasses condemned with cellulitis, scratches (moderate to severe skin lesion), and acute hepatitis confirmed the need for total condemnation of carcasses with these pathological findings. A similar evaluation should be done for carcasses affected with chronic hepatitis, and minor scratches lesions.
Collapse
Affiliation(s)
- Ahmed Alfifi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jens P. Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne Sandberg
- National Food Institute, Danish Technical University, Lyngby, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
19
|
Niemiec MJ, Kapitan M, Himmel M, Döll K, Krüger T, Köllner TG, Auge I, Kage F, Alteri CJ, Mobley HL, Monsen T, Linde S, Nietzsche S, Kniemeyer O, Brakhage AA, Jacobsen ID. Augmented Enterocyte Damage During Candida albicans and Proteus mirabilis Coinfection. Front Cell Infect Microbiol 2022; 12:866416. [PMID: 35651758 PMCID: PMC9149288 DOI: 10.3389/fcimb.2022.866416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
The human gut acts as the main reservoir of microbes and a relevant source of life-threatening infections, especially in immunocompromised patients. There, the opportunistic fungal pathogen Candida albicans adapts to the host environment and additionally interacts with residing bacteria. We investigated fungal-bacterial interactions by coinfecting enterocytes with the yeast Candida albicans and the Gram-negative bacterium Proteus mirabilis resulting in enhanced host cell damage. This synergistic effect was conserved across different P. mirabilis isolates and occurred also with non-albicans Candida species and C. albicans mutants defective in filamentation or candidalysin production. Using bacterial deletion mutants, we identified the P. mirabilis hemolysin HpmA to be the key effector for host cell destruction. Spatially separated coinfections demonstrated that synergism between Candida and Proteus is induced by contact, but also by soluble factors. Specifically, we identified Candida-mediated glucose consumption and farnesol production as potential triggers for Proteus virulence. In summary, our study demonstrates that coinfection of enterocytes with C. albicans and P. mirabilis can result in increased host cell damage which is mediated by bacterial virulence factors as a result of fungal niche modification via nutrient consumption and production of soluble factors. This supports the notion that certain fungal-bacterial combinations have the potential to result in enhanced virulence in niches such as the gut and might therefore promote translocation and dissemination.
Collapse
Affiliation(s)
- Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Maximilian Himmel
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Kristina Döll
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Tobias G. Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Isabel Auge
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Franziska Kage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Harry L.T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tor Monsen
- Department Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Susanne Linde
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- *Correspondence: Ilse D. Jacobsen,
| |
Collapse
|
20
|
Li Z, Peng C, Zhang G, Shen Y, Zhang Y, Liu C, Liu M, Wang F. Prevalence and characteristics of multidrug-resistant Proteus mirabilis from broiler farms in Shandong Province, China. Poult Sci 2022; 101:101710. [PMID: 35134599 PMCID: PMC8844651 DOI: 10.1016/j.psj.2022.101710] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 01/15/2023] Open
Abstract
Animal-derived Proteus mirabilis (P. mirabilis) is an important food-borne zoonotic bacillus and widely exists in the broiler-breeding industry. The present study was designed to explore the P. mirabilis prevalence and antimicrobial resistance characteristics in 6 conventional broiler-fattening farms in Shandong Province, China. The overall isolation rate of P. mirabilis was 7.07% (50/707). Antimicrobial resistance was very common in the P. mirabilis isolated from these farms and varied for different antibacterial drugs, with chloramphenicol, ciprofloxacin, and trimethoprim-sulfamethoxazole having the highest resistance rate (98%) and aztreonam the lowest (0%). Multidrug resistance was as high as 100%. The majority of the MDR isolates were resistant to between 9 and 12 of the antibiotics, with these accounting for 76% (38/50) of multidrug resistant strains. These P. mirabilis isolates carried 24 drug-resistance genes in 6 types, with stcM having the highest rate (96%) and cmlA, blaTEM, and qnrC the lowest (2%). Superdrug resistance gene blaNDM-1 was found in 10% (5/50) of isolates from poultry farms in Shandong. All the P. mirabilis isolates carried at least 6 virulence genes, with 100% detection rates of the ireA and hpmA genes. Our study revealed that the P. mirabilis strains isolated in the Shandong area all showed the MDR phenotype and the poultry-derived carbapenem-resistant MDR P. mirabilis strains may pose a potential risk to humans. Surveillance findings presented herein will be conducive to our understanding of the prevalence and characteristics of carbapenem-resistant P. mirabilis strains in Shandong, China.
Collapse
|
21
|
Lv P, Hao G, Cao Y, Cui L, Wang G, Sun S. Detection of Carbapenem Resistance of Proteus mirabilis Strains Isolated from Foxes, Raccoons and Minks in China. BIOLOGY 2022; 11:biology11020292. [PMID: 35205158 PMCID: PMC8869598 DOI: 10.3390/biology11020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
Proteus mirabilis, an opportunistic pathogen, is found to be an emerging threat to both animals and humans for a variety of infections. However, the characteristics of P. mirabilis infections from foxes, raccoons and minks remain unclear. In this context, we identified the antibiotic resistance genes and virulence genes of P. mirabilis isolates from foxes, raccoons and minks in China. Most isolates showed resistance to florfenicol (90.57%), trimethoprim-sulfamethoxazole (73.58%), and imipenem (71.70%). A total of 73.58% of isolates were resistant to antibiotics from at least three or more classes, and were categorized as multi-drug resistant. A total of 33.33% of the isolates were resistant to antibiotics from seven classes. The most prevalent resistant were sul1 (94.34%), followed by floR, blaTEM, aac(6’)Ib-cr and blaOXA-1 with the detection rate of 88.68%, 83.02%, 71.70% and 60.38%, respectively. Among the 51 P. mirabilis isolates that were resistant to beta-lactam antibiotics, all isolates carried at least one beta-lactam gene. In addition, blaNDM and blaOXA-24 genes were firstly reported in carbapenem-resistant P. mirabilis isolates from foxes, raccoons and minks. All isolates exhibited the virulence genes ureC, zapA, pmfA, atfA and mrpA. P. mirabilis isolates carrying all detected 10 virulence genes from different animal species showed different lethal abilities in a G. mellonella larvae model. More importantly, the profiles of antibiotic resistance genes of isolates from fur animals and the environment were generally similar, and phylogenetic analysis showed that the P. mirabilis isolates from farm environment samples may have close relatedness with that from animals.
Collapse
Affiliation(s)
- Penghao Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
- Correspondence: (G.H.); (G.W.); (S.S.); Tel.: +86-182-5202-6546 (G.H.); +86-185-6011-3839 (G.W.); +86-137-0538-9710 (S.S.)
| | - Yanli Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
| | - Lulu Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
| | - Guisheng Wang
- Shandong Animal Disease Prevention and Control Center, Taian 261500, China
- Correspondence: (G.H.); (G.W.); (S.S.); Tel.: +86-182-5202-6546 (G.H.); +86-185-6011-3839 (G.W.); +86-137-0538-9710 (S.S.)
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
- Correspondence: (G.H.); (G.W.); (S.S.); Tel.: +86-182-5202-6546 (G.H.); +86-185-6011-3839 (G.W.); +86-137-0538-9710 (S.S.)
| |
Collapse
|
22
|
Virulence factors of Proteus mirabilis clinical isolates carrying bla KPC-2 and bla NDM-1 and first report bla OXA-10 in Brazil. J Infect Chemother 2021; 28:363-372. [PMID: 34815168 DOI: 10.1016/j.jiac.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Proteus mirabilis is one of the main pathogens that cause urinary tract infections. Therefore, the aim of this study was to analyze and compare the genetic profile of 36 clinical isolates of P. mirabilis that carry and do not carry the blaKPC and blaNDM gene with respect to virulence factors (mrpG, pmfA, ucaA, nrpG and pbtA) and antimicrobial resistance (blaVIM,blaIMP, blaSPM, blaGES,blaOXA-23-like, blaOXA-48-like, blaOXA-58-like and blaOXA-10-like). METHODS The virulence and resistance genes were investigated by using PCR and sequencing. RESULTS ERIC-PCR typing showed that the isolates showed multiclonal dissemination and high genetic variability. The gene that was most found blaOXA-10-like (n = 18), followed by blaKPC (n = 10) and blaNDM (n = 8). To our knowledge, this is the first report of blaOXA-10 in P. mirabilis in Brazil, as well as the first report of the occurrence of P. mirabilis co-carrying blaOXA-10/blaKPC and blaOXA-10/blaNDM. The blaNDM or blaKPC carrier isolates showed important virulence genes, such as ucaA (n = 8/44.4%), pbtA (n = 10/55.5%) and nrpG (n = 2/11.1%). However, in general, the non-carrier isolates of blaKPC and blaNDM showed a greater number of virulence genes when compared to the carrier group. CONCLUSION Clinical isolates of P. mirabilis, in addition to being multi-drug resistant, presented efficient virulence factors that can establish infection outside the gastrointestinal tract.
Collapse
|
23
|
Identification of Three Novel PmGRI1 Genomic Resistance Islands and One Multidrug Resistant Hybrid Structure of Tn 7-like Transposon and PmGRI1 in Proteus mirabilis. Antibiotics (Basel) 2021; 10:antibiotics10101268. [PMID: 34680847 PMCID: PMC8532799 DOI: 10.3390/antibiotics10101268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/01/2022] Open
Abstract
The widespread use of antibiotics in large-scale livestock production has led to serious antibiotic resistance. Proteus mirabilis is an important pathogenic bacterium on large-scale farms. Chromosomally localized mobilizable genetic elements (genomic islands) and mobile genetic elements (Tn7-like transposons) play an important role in the acquisition and transmission of resistance genes by P. mirabilis. To study the prevalence and resistance characteristics of antibiotic-resistant genomic islands in P. mirabilis of animal origin in China, we performed whole genome sequencing of P. mirabilis isolated from large-scale pig and chicken farms. Three new variants of PmGRI1 (HN31, YN8, and YN9), and a hybrid structure (HN2p) formed by the multidrug-resistant Tn7-like-HN2p transposon and a genomic island PmGRI1-HN2p, were identified from P. mirabilis. All variants underwent homologous recombination mediated by insertion sequence IS26. A genomic rearrangement in the chromosome between the Tn7-like-HN2p transposon and PmGRI1-HN2p occurred in HN2p. The heterozygous structure contained various antimicrobial resistance genes, including three copies of fluoroquinolone resistance gene qnrA1 and 16S rRNA methylase gene rmtB, which are rarely found in P. mirabilis. Our results highlight the structural genetic diversity of genomic islands by characterizing the novel variants of PmGRI1 and enrich the research base of multidrug resistance genomic islands.
Collapse
|
24
|
Sanches MS, Rodrigues da Silva C, Silva LC, Montini VH, Lopes Barboza MG, Migliorini Guidone GH, Dias de Oliva BH, Nishio EK, Faccin Galhardi LC, Vespero EC, Lelles Nogueira MC, Dejato Rocha SP. Proteus mirabilis from community-acquired urinary tract infections (UTI-CA) shares genetic similarity and virulence factors with isolates from chicken, beef and pork meat. Microb Pathog 2021; 158:105098. [PMID: 34280499 DOI: 10.1016/j.micpath.2021.105098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Proteus mirabilis is an opportunistic pathogen associated with a variety of infections in humans, especially those in the urinary tract. The isolation of this pathogen in foods of animal origin such as meat is poorly documented and should not be neglected, in view of the zoonotic risk that this can pose to human health. Thus, the objective of this study was to evaluate the prevalence, virulence profile, and similarity between P. mirabilis strains isolated from chicken, beef, and pork meat and those causing community-acquired urinary tract infections (UTI-CA), in order to better understand the role of this bacterium as a zoonotic pathogen. P. mirabilis was isolated from the three types of meat and was found to be more prevalent in chicken. All isolates exhibited several genotypic and phenotypic virulence characteristics, such as adhesion capacity in HEp-2 cell culture, biofilm formation, cytotoxicity in Vero cells and genes that express fimbriae (mrpA, pmfA, ucaA, atfA), hemolysin (hpmA), proteases (zapA and ptA) and siderophore receptor (ireA). UTI-CA strains showed a higher prevalence of ucaA and ireA genes, whereas those from the chicken meat had a higher prevalence of the atfA gene compared with the isolates from the beef and pork meat. It was observed that chicken meat and UTI-CA strains mainly formed very strong biofilms, whereas strains isolated from beef and pork formed more weak and moderate biofilms. Several strains from meat showed close genetic similarity to those from UTI-CA and had the same virulence profiles. Thus, meats may be an important source of the dissemination of P. mirabilis responsible for causing UTIs in the community.
Collapse
Affiliation(s)
- Matheus Silva Sanches
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Caroline Rodrigues da Silva
- Microorganism Research Center, Department of Dermatological, Infectious and Parasitic Diseases, Health Sciences Center, Medical School of São José Do Rio Preto, São José Do Rio Preto, São Paulo, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Mario Gabriel Lopes Barboza
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Erick Kenji Nishio
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Ligia Carla Faccin Galhardi
- Virology Laboratory, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Paraná, Brazil
| | - Mara Corrêa Lelles Nogueira
- Microorganism Research Center, Department of Dermatological, Infectious and Parasitic Diseases, Health Sciences Center, Medical School of São José Do Rio Preto, São José Do Rio Preto, São Paulo, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil.
| |
Collapse
|
25
|
Lu J, Zhao K, Xie H, Li R, Zhou M. Identification and Characterization of a Novel SXT/R391 Integrative and Conjugative Element in a Proteus mirabilis Food Isolate. Foodborne Pathog Dis 2021; 18:727-732. [PMID: 33970016 DOI: 10.1089/fpd.2020.2886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteus mirabilis is an opportunistic human pathogen. In this study, a novel SXT/R391 integrative and conjugative element (ICE), named ICEPmiChnS012, was identified in the multidrug-resistant P. mirabilis strain S012 that was isolated from retail chicken in China. Whole genome sequencing revealed that ICEPmiChnS012 carried 22 resistance genes including aac(6')-Ib-cr, fosA3, blaOXA-1, blaCTX-M-65, and blaHMS-1. ICEPmiChnS012 harbored 10 copies of IS26 and IS26-mediated genetic new rearrangements caused variations in HS4 region. To our knowledge, an unusual gene cassette array dfrA1-ereA1-aadA2 was found in P. mirabilis in this study for the first time. And this is the first report of identification of aph3-VI and blaHMS-1 in VRIII region in P. mirabilis. The conjugation experiments proved that ICEPmiChnS012 could be transferred to Escherichia coli EC600 through conjugation. These findings demonstrated that ICEPmiChnS012 was a special ICE that carried the largest number of antimicrobial resistance genes in the family of SXT/R391 ICEs. This element could serve as an important vehicle for the dissemination of antibiotic resistance genes and should receive great concern.
Collapse
Affiliation(s)
- Jieyuan Lu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Kang Zhao
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huadong Xie
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Rui Li
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
26
|
Campista-León S, Rivera-Serrano BV, Garcia-Guerrero JT, Peinado-Guevara LI. Phylogenetic characterization and multidrug resistance of bacteria isolated from seafood cocktails. Arch Microbiol 2021; 203:3317-3330. [PMID: 33864113 DOI: 10.1007/s00203-021-02319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
The continual increase in resistance to antibacterial drugs has become a major public health problem, and their indiscriminate use in agriculture, aquaculture, and the treatment of human and animal diseases has severely contributed to the occurrence and spread of multidrug resistance genes. This study phylogenetically characterized multidrug-resistant bacteria isolated from seafood cocktails. Seafood cocktail dishes from 20 establishments on public roads were sampled. Samples were grown on TCBS agar and blood agar. Forty colonies with different macro- and microscopic characteristics were isolated. The 16S rRNA gene V4 and V6 hypervariable regions were amplified, sequenced and phylogenetically analyzed. Antibacterial drug resistance was determined by disk diffusion assay. Isolated bacteria were identical to species of the genera Enterococcus, Proteus, Vibrio, Staphylococcus, Lactococcus, Vagococcus, Micrococcus, Acinetobacter, Enterobacter, and Brevibacterium, with 75-100% presenting resistance or intermediate resistance to dicloxacillin, ampicillin, and penicillin; 50-70% to cephalosporins; 30-67.5% to amikacin, netilmicin and gentamicin; 40% to nitrofurantoin and other antibacterial drugs; 25% to chloramphenicol; and 2.5% to trimethoprim with sulfamethoxazole. In general, 80% of the bacteria showed resistance to multiple antibiotics. The high degree of bacterial resistance to antibacterial drugs indicates that their use in producing raw material for marine foods requires established guidelines and the implementation of good practices.
Collapse
Affiliation(s)
- Samuel Campista-León
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Bianca V Rivera-Serrano
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Joel T Garcia-Guerrero
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Luz I Peinado-Guevara
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico.
| |
Collapse
|
27
|
Isolation, characterization and antibiotic resistance of Proteus mirabilis from Belgian broiler carcasses at retail and human stool. Food Microbiol 2020; 96:103724. [PMID: 33494897 DOI: 10.1016/j.fm.2020.103724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
Proteus mirabilis is an important pathogen involved in human urinary tract infections, and also more isolated from stools of patients with diarrheal disease than from healthy patients. The role of food, especially poultry products as source for human infection and multi-resistant strains remains unclear. As a resident in broilers' intestines, P. mirabilis can contaminate broiler carcasses due to slaughter practices, and be a risk for human infection. The present study evaluated the performance of five isolation media, and subsequently examined the presence of P. mirabilis on broiler carcasses at retail. Additionally, isolates were characterized by the Dienes' test, repetitive element PCR fingerprinting and pulsed-field gel electrophoresis, and their antibiotic resistance profile determined. Using a combined isolation protocol on blood agar, xylose lysine deoxycholate agar and violet red bile glucose agar, P. mirabilis was isolated from 29 out of 80 broiler carcasses (36.25%) with a mean contamination level of 2.25 ± 0.50 log10 CFU/g. A high strain heterogeneity was present in isolates from broilers and human stool. The same strains were not shared, but the antibiotic resistance profiling was similar. A role of poultry products as source for human infection should be taken into account.
Collapse
|
28
|
Virulence, resistance and clonality of Proteus mirabilis isolated from patients with community-acquired urinary tract infection (CA-UTI) in Brazil. Microb Pathog 2020; 152:104642. [PMID: 33246088 PMCID: PMC7938216 DOI: 10.1016/j.micpath.2020.104642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are among the most common human infections, both in hospitals and in communities. Proteus mirabilis is known to cause community-acquired urinary tract infection (CA-UTI) and is an important causative agent of nosocomial UTIs. The pathogenesis of this species is related to its ability to manifest virulence factors, such as biofilms, adhesion molecules, urease, proteases, siderophores, and toxins. In this study, we investigated the virulence, sensitivity to antimicrobials, and clonal relationship of 183 strains isolated from the urine of CA-UTI patients in Londrina, Paraná State, Brazil. A total of 100% of the strains were positive for hpmA, ptA, zapA, mrpA, pmfA, ireA, and atfA virulence genes. The ucaA gene was positive in 81.4% of the cases. The strains showed high rates of sensitivity to the evaluated antimicrobials, and only one was ESBL-positive. All the tested bacteria showed the capacity to form biofilms: 73.2% had a very strong intensity, while 25.7% had a strong intensity, and 1.1% had a moderate intensity. Regarding clonality, 40 clonal clusters were found among the microorganisms tested. Our results showed that strains of P. mirabilis isolated from CA-UTI patients have several virulence factors. Although the urinary clinical isolates studied showed high sensitivity to antimicrobials, the strains showed a strong capacity to form biofilms, making antibiotic therapy difficult. In addition, it was observed that there were clones of P. mirabilis circulating in the city of Londrina. All strains presented a variety of virulence genes. It was observed that there were clones of P. mirabilis circulating. 98.1% of strains produced strong or very strong biofilm.
Collapse
|
29
|
Dos Santos Pozza J, Voss-Rech D, Dos Santos Lopes L, Silveira Luiz Vaz C. Research Note: A baseline survey of thermotolerant Campylobacter in retail chicken in southern Brazil. Poult Sci 2020; 99:2690-2695. [PMID: 32359606 PMCID: PMC7597543 DOI: 10.1016/j.psj.2019.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 11/18/2022] Open
Abstract
Chicken is a leading source of thermotolerant Campylobacter, which triggers human foodborne enteritis. This study evaluated thermotolerant Campylobacter contamination of retail chicken in southern Brazil, using qualitative and quantitative analyses. Selective enrichment in Bolton broth for 24 and 48 h after plating onto modified charcoal-cefoperazone-deoxycholate (mCCD) agar and Preston agar was assessed. The combined results of the detection and enumeration methods revealed a frequency of 70% occurrence of thermotolerant Campylobacter in chicken samples. Campylobacter was enumerated in 60% of the samples, whereas 46% of the samples were positive in the qualitative analysis. Quantitative analysis showed average counts of 3.10 ± 0.15 log10 CFU/sample. Higher numbers of Campylobacter-positive samples were found using 24-h enrichment before plating onto Preston agar (46%) than onto mCCD agar (2%). The majority of isolated strains were identified as Campylobacter jejuni, and Campylobacter coli was also found but to a lesser extent. Subtyping revealed a clear distinction between strains isolated from different chicken sources. The enriched samples plated onto mCCD agar showed extensive spreading of nonproducing extended-spectrum β-lactamases Proteus mirabilis that hampered the identification of Campylobacter colonies. P. mirabilis strains showed resistance to cefoperazone, trimethoprim, and polymyxin B present in broth and plate media used and were inhibited by rifampicin present in Preston agar. The results underline the effect of the spread of contaminant strains on Campylobacter cultures, which might be prevented using a recently revised International Organization for Standardization method for qualitative analysis of chicken.
Collapse
|
30
|
Proteus mirabilis causing cellulitis in broiler chickens. Braz J Microbiol 2020; 51:1353-1362. [PMID: 32067208 DOI: 10.1007/s42770-020-00240-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022] Open
Abstract
Given the need to understand the virulence profile of Proteus mirabilis isolates from cellulitis in broiler chickens and their ability to cause lesions, the present study aimed to characterize genotypically and phenotypically the virulence profiles of two strains of P. mirabilis isolated from cellulitis in broilers, as well as to evaluate their ability to experimentally reproduce the lesions in vivo. The strain with the highest virulence potential (LBUEL-A33) possessed mrpA, pmfA, ucaA, atfA (fimbriae), zapA, ptA (proteases), hpmA (hemolysin), and ireA (siderophore) genes, formed a very strong biofilm, and expressed the pattern of aggregative adhesion and cytotoxicity in Vero cells. The strain with the lowest virulence potential (LBUEL-A34) did not present the pmfA and ucaA genes, but expressed the pattern of aggregative adhesion, formed a strong biofilm, and did not show cytotoxicity. Both strains developed cellulitis in an animal model within 24 h post-inoculation (PI), and the degree of lesions was not significantly altered up to 120 h PI. The LBUEL-A33 strain was also inoculated in combination with an avian pathogenic Escherichia coli (APEC 046), and the lesions showed no significant changes from the individual inoculation of these two strains. Histological analysis showed that the LBUEL-A33 strain developed characteristic cellulitis lesions. Thus, both strains of P. mirabilis isolated in our study have several virulence factors and the ability to develop cellulitis in broilers.
Collapse
|