1
|
Davis RC, Castellani LW, Hosseini M, Ben-Zeev O, Mao HZ, Weinstein MM, Jung DY, Jun JY, Kim JK, Lusis AJ, Péterfy M. Early hepatic insulin resistance precedes the onset of diabetes in obese C57BLKS-db/db mice. Diabetes 2010; 59:1616-25. [PMID: 20393148 PMCID: PMC2889760 DOI: 10.2337/db09-0878] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To identify metabolic derangements contributing to diabetes susceptibility in the leptin receptor-deficient obese C57BLKS/J-db/db (BKS-db) mouse strain. RESEARCH DESIGN AND METHODS Young BKS-db mice were used to identify metabolic pathways contributing to the development of diabetes. Using the diabetes-resistant B6-db strain as a comparison, in vivo and in vitro approaches were applied to identify metabolic and molecular differences between the two strains. RESULTS Despite higher plasma insulin levels, BKS-db mice exhibit lower lipogenic gene expression, rate of lipogenesis, hepatic triglyceride and glycogen content, and impaired insulin suppression of gluconeogenic genes. Hepatic insulin receptor substrate (IRS)-1 and IRS-2 expression and insulin-stimulated Akt-phosphorylation are decreased in BKS-db primary hepatocytes. Hyperinsulinemic-euglycemic clamp studies indicate that in contrast to hepatic insulin resistance, skeletal muscle is more insulin sensitive in BKS-db than in B6-db mice. We also demonstrate that elevated plasma triglyceride levels in BKS-db mice are associated with reduced triglyceride clearance due to lower lipase activities. CONCLUSIONS Our study demonstrates the presence of metabolic derangements in BKS-db before the onset of beta-cell failure and identifies early hepatic insulin resistance as a component of the BKS-db phenotype. We propose that defects in hepatic insulin signaling contribute to the development of diabetes in the BKS-db mouse strain.
Collapse
Affiliation(s)
- Richard C. Davis
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | | | - Maryam Hosseini
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Lipid Research Laboratory, VA Greater Los Angeles Healthcare System, Los Angeles, California
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Osnat Ben-Zeev
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Lipid Research Laboratory, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Hui Z. Mao
- Lipid Research Laboratory, VA Greater Los Angeles Healthcare System, Los Angeles, California
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael M. Weinstein
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dae Young Jung
- Program in Molecular Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cellular and Molecular Physiology, Pennsylvania State University School of Medicine, Hershey, Pennsylvania
| | - John Y. Jun
- Department of Cellular and Molecular Physiology, Pennsylvania State University School of Medicine, Hershey, Pennsylvania
| | - Jason K. Kim
- Program in Molecular Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cellular and Molecular Physiology, Pennsylvania State University School of Medicine, Hershey, Pennsylvania
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Aldons J. Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Miklós Péterfy
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Lipid Research Laboratory, VA Greater Los Angeles Healthcare System, Los Angeles, California
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Corresponding author: Miklos Peterfy,
| |
Collapse
|
2
|
Radenne A, Akpa M, Martel C, Sawadogo S, Mauvoisin D, Mounier C. Hepatic regulation of fatty acid synthase by insulin and T3: evidence for T3 genomic and nongenomic actions. Am J Physiol Endocrinol Metab 2008; 295:E884-94. [PMID: 18682535 DOI: 10.1152/ajpendo.90438.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fatty acid synthase (FAS) is a key enzyme of hepatic lipogenesis responsible for the synthesis of long-chain saturated fatty acids. This enzyme is mainly regulated at the transcriptional level by nutrients and hormones. In particular, glucose, insulin, and T(3) increase FAS activity, whereas glucagon and saturated and polyunsaturated fatty acids decrease it. In the present study we show that, in liver, T(3) and insulin were able to activate FAS enzymatic activity, mRNA expression, and gene transcription. We localized the T(3) response element (TRE) that mediates the T(3) genomic effect, on the FAS promoter between -741 and -696 bp that mediates the T(3) genomic effect. We show that both T(3) and insulin regulate FAS transcription via this sequence. The TRE binds a TR/RXR heterodimer even in the absence of hormone, and this binding is increased in response to T(3) and/or insulin treatment. The use of H7, a serine/threonine kinase inhibitor, reveals that a phosphorylation mechanism is implicated in the transcriptional regulation of FAS in response to both hormones. Specifically, we show that T(3) is able to modulate FAS transcription via a nongenomic action targeting the TRE through the activation of a PI 3-kinase-ERK1/2-MAPK-dependent pathway. Insulin also targets the TRE sequence, probably via the activation of two parallel pathways: Ras/ERK1/2 MAPK and PI 3-kinase/Akt. Finally, our data suggest that the nongenomic actions of T(3) and insulin are probably common to several TREs, as we observed similar effects on a classical DR4 consensus sequence.
Collapse
Affiliation(s)
- Anne Radenne
- Département des Sciences Biologiques, Centre de recherche BioMed, Université du Québec, CP 8888, Succursale Centreville, Montreal, Canada H36 3P8
| | | | | | | | | | | |
Collapse
|
3
|
Perra A, Simbula G, Simbula M, Pibiri M, Kowalik MA, Sulas P, Cocco MT, Ledda-Columbano GM, Columbano A. Thyroid hormone (T3) and TRβ agonist GC‐1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J 2008; 22:2981-9. [DOI: 10.1096/fj.08-108464] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrea Perra
- Department of Toxicology, Oncology and Molecular Pathology UnitUniversity of CagliariCagliariItaly
| | - Gabriella Simbula
- Department of Toxicology, Oncology and Molecular Pathology UnitUniversity of CagliariCagliariItaly
| | - Michela Simbula
- Department of Toxicology, Oncology and Molecular Pathology UnitUniversity of CagliariCagliariItaly
| | - Monica Pibiri
- Department of Toxicology, Oncology and Molecular Pathology UnitUniversity of CagliariCagliariItaly
| | - Marta A. Kowalik
- Department of Toxicology, Oncology and Molecular Pathology UnitUniversity of CagliariCagliariItaly
| | - Pia Sulas
- Department of Toxicology, Oncology and Molecular Pathology UnitUniversity of CagliariCagliariItaly
| | - Maria T. Cocco
- Department of Toxicology, Oncology and Molecular Pathology UnitUniversity of CagliariCagliariItaly
| | | | - Amedeo Columbano
- Department of Toxicology, Oncology and Molecular Pathology UnitUniversity of CagliariCagliariItaly
| |
Collapse
|
4
|
Castellani LW, Nguyen CN, Charugundla S, Weinstein MM, Doan CX, Blaner WS, Wongsiriroj N, Lusis AJ. Apolipoprotein AII is a regulator of very low density lipoprotein metabolism and insulin resistance. J Biol Chem 2007; 283:11633-44. [PMID: 18160395 DOI: 10.1074/jbc.m708995200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein AII (apoAII) transgenic (apoAIItg) mice exhibit several traits associated with the insulin resistance (IR) syndrome, including IR, obesity, and a marked hypertriglyceridemia. Because treatment of the apoAIItg mice with rosiglitazone ameliorated the IR and hypertriglyceridemia, we hypothesized that the hypertriglyceridemia was due largely to overproduction of very low density lipoprotein (VLDL) by the liver, a normal response to chronically elevated insulin and glucose. We now report in vivo and in vitro studies that indicate that hepatic fatty acid oxidation was reduced and lipogenesis increased, resulting in a 25% increase in triglyceride secretion in the apoAIItg mice. In addition, we observed that hydrolysis of triglycerides from both chylomicrons and VLDL was significantly reduced in the apoAIItg mice, further contributing to the hypertriglyceridemia. This is a direct, acute effect, because when mouse apoAII was injected into mice, plasma triglyceride concentrations were significantly increased within 4 h. VLDL from both control and apoAIItg mice contained significant amounts of apoAII, with approximately 4 times more apoAII on apoAIItg VLDL. ApoAII was shown to transfer spontaneously from high density lipoprotein (HDL) to VLDL in vitro, resulting in VLDL that was a poorer substrate for hydrolysis by lipoprotein lipase. These results indicate that one function of apoAII is to regulate the metabolism of triglyceride-rich lipoproteins, with HDL serving as a plasma reservoir of apoAII that is transferred to the triglyceride-rich lipoproteins in much the same way as VLDL and chylomicrons acquire most of their apoCs from HDL.
Collapse
Affiliation(s)
- Lawrence W Castellani
- Departments of Medicine/Cardiology University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sadana P, Zhang Y, Song S, Cook GA, Elam MB, Park EA. Regulation of carnitine palmitoyltransferase I (CPT-Ialpha) gene expression by the peroxisome proliferator activated receptor gamma coactivator (PGC-1) isoforms. Mol Cell Endocrinol 2007; 267:6-16. [PMID: 17239528 PMCID: PMC1892282 DOI: 10.1016/j.mce.2006.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 11/28/2006] [Indexed: 12/19/2022]
Abstract
The peroxisome proliferator activated receptor gamma coactivators (PGC-1) have important roles in mitochondrial biogenesis and metabolic control in a variety of tissues. There are multiple isoforms of PGC-1 including PGC-1alpha and PGC-1beta. Both the PGC-1alpha and beta isoforms promote mitochondrial biogenesis and fatty acid oxidation, but only PGC-1alpha stimulates gluconeogenesis in the liver. Carnitine palmitoyltransferase I (CPT-I) is a key enzyme regulating mitochondrial fatty acid oxidation. In these studies, we determined that PGC-1beta stimulated expression of the "liver" isoform of CPT-I (CPT-Ialpha) but that PGC-1beta did not induce pyruvate dehydrogenase kinase 4 (PDK4) which is a regulator of pyruvate metabolism. The CPT-Ialpha gene is induced by thyroid hormone. We found that T3 increased the expression of PGC-1beta and that PGC-1beta enhanced the T3 induction of CPT-Ialpha. The thyroid hormone receptor interacts with PGC-1beta in a ligand dependent manner. Unlike PGC-1alpha, the interaction of PGC-1beta and the T3 receptor does not occur exclusively through the leucine-X-X-leucine-leucine motif in PGC-1beta. We have found that PGC-1beta is associated with the CPT-Ialpha gene in vivo. Overall, our results demonstrate that PGC-1beta is a coactivator in the T3 induction of CPT-Ialpha and that PGC-1beta has similarities and differences with the PGC-1alpha isoform.
Collapse
Affiliation(s)
- Prabodh Sadana
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN, 38163
| | - Yi Zhang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN, 38163
| | - Shulan Song
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN, 38163
| | - George A. Cook
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN, 38163
| | | | - Edwards A. Park
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN, 38163
| |
Collapse
|
6
|
|
7
|
Lanni A, Moreno M, Lombardi A, de Lange P, Silvestri E, Ragni M, Farina P, Baccari GC, Fallahi P, Antonelli A, Goglia F. 3,5-diiodo-L-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J 2005; 19:1552-4. [PMID: 16014396 DOI: 10.1096/fj.05-3977fje] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The effect of thyroid hormones on metabolism has long supported their potential as drugs to stimulate fat reduction, but the concomitant induction of a thyrotoxic state has greatly limited their use. Recent evidence suggests that 3,5-diiodo-L-thyronine (T2), a naturally occurring iodothyronine, stimulates metabolic rate via mechanisms involving the mitochondrial apparatus. We examined whether this effect would result in reduced energy storage. Here, we show that T2 administration to rats receiving a high-fat diet (HFD) reduces both adiposity and body weight gain without inducing thyrotoxicity. Rats receiving HFD + T2 showed (when compared with rats receiving HFD alone) a 13% lower body weight, a 42% higher liver fatty acid oxidation rate, appoximately 50% less fat mass, a complete disappearance of fat from the liver, and significant reductions in the serum triglyceride and cholesterol levels (-52% and -18%, respectively). Thyroid hormones and thyroid-stimulating hormone (TSH) serum levels were not influenced by T2 administration. The biochemical mechanism underlying the effects of T2 on liver metabolism involves the carnitine palmitoyl-transferase system and mitochondrial uncoupling. If the results hold true for humans, pharmacological administration of T2 might serve to counteract the problems associated with overweight, such as accumulation of lipids in liver and serum, without inducing thyrotoxicity. However, the results reported here do not exclude deleterious effects of T2 on a longer time scale as well as do not show that T2 acts in the same way in humans.
Collapse
Affiliation(s)
- Antonia Lanni
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Caserta, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 2004; 18:157-69. [PMID: 14729567 PMCID: PMC324422 DOI: 10.1101/gad.1138104] [Citation(s) in RCA: 283] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) has been shown to regulate adaptive thermogenesis and glucose metabolism. Here we show that PGC-1alpha regulates triglyceride metabolism through both farnesoid X receptor (FXR)-dependent and -independent pathways. PGC-1alpha increases FXR activity through two pathways: (1) it increases FXR mRNA levels by coactivation of PPARgamma and HNF4alpha to enhance FXR gene transcription; and (2) it interacts with the DNA-binding domain of FXR to enhance the transcription of FXR target genes. Ectopic expression of PGC-1alpha in murine primary hepatocytes reduces triglyceride secretion by a process that is dependent on the presence of FXR. Consistent with these in vitro studies, we demonstrate that fasting induces hepatic expression of PGC-1alpha and FXR and results in decreased plasma triglyceride levels in wild-type but not in FXR-null mice. Our data suggest that PGC-1alpha plays an important physiological role in maintaining energy homeostasis during fasting by decreasing triglyceride production/secretion while it increases fatty acid beta-oxidation to meet energy needs.
Collapse
Affiliation(s)
- Yanqiao Zhang
- Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
9
|
Bodnar JS, Chatterjee A, Castellani LW, Ross DA, Ohmen J, Cavalcoli J, Wu C, Dains KM, Catanese J, Chu M, Sheth SS, Charugundla K, Demant P, West DB, de Jong P, Lusis AJ. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat Genet 2002; 30:110-6. [PMID: 11753387 PMCID: PMC2846781 DOI: 10.1038/ng811] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Familial combined hyperlipidemia (FCHL, MIM-144250) is a common, multifactorial and heterogeneous dyslipidemia predisposing to premature coronary artery disease and characterized by elevated plasma triglycerides, cholesterol, or both. We identified a mutant mouse strain, HcB-19/Dem (HcB-19), that shares features with FCHL, including hypertriglyceridemia, hypercholesterolemia, elevated plasma apolipoprotein B and increased secretion of triglyceride-rich lipoproteins. The hyperlipidemia results from spontaneous mutation at a locus, Hyplip1, on distal mouse chromosome 3 in a region syntenic with a 1q21-q23 FCHL locus identified in Finnish, German, Chinese and US families. We fine-mapped Hyplip1 to roughly 160 kb, constructed a BAC contig and sequenced overlapping BACs to identify 13 candidate genes. We found substantially decreased mRNA expression for thioredoxin interacting protein (Txnip). Sequencing of the critical region revealed a Txnip nonsense mutation in HcB-19 that is absent in its normolipidemic parental strains. Txnip encodes a cytoplasmic protein that binds and inhibits thioredoxin, a major regulator of cellular redox state. The mutant mice have decreased CO2 production but increased ketone body synthesis, suggesting that altered redox status down-regulates the citric-acid cycle, sparing fatty acids for triglyceride and ketone body production. These results reveal a new pathway of potential clinical significance that contributes to plasma lipid metabolism.
Collapse
MESH Headings
- Animals
- Animals, Congenic
- Carbon Dioxide/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Human, Pair 1/genetics
- Citric Acid Cycle/genetics
- Cloning, Molecular
- Codon/genetics
- Codon, Nonsense
- Contig Mapping
- Cosmids/genetics
- Cricetinae
- Crosses, Genetic
- Disease Models, Animal
- Energy Metabolism/genetics
- Exons/genetics
- Fatty Acids/metabolism
- Haplotypes/genetics
- Humans
- Hybrid Cells
- Hyperlipidemia, Familial Combined/genetics
- Hyperlipidemia, Familial Combined/metabolism
- Ketone Bodies/biosynthesis
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Molecular Sequence Data
- Oxidation-Reduction
- Thioredoxins/antagonists & inhibitors
- Triglycerides/blood
Collapse
Affiliation(s)
- Jackie S Bodnar
- Department of Medicine, University of California, Los Angeles, 47-123 CHS, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- A M Choudhary
- Department of Medicine, Bridgeport Hospital/Yale University School of Medicine, CT, USA.
| | | |
Collapse
|
11
|
Palacios E, Piñon-López MJ, Racotta IS, Racotta R. Effect of lipectomy and long-term dexamethasone on visceral fat and metabolic variables in rats. Metabolism 1995; 44:1631-8. [PMID: 8786735 DOI: 10.1016/0026-0495(95)90086-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intraperitoneal (IP) fat accumulation in humans is a risk factor for a number of diseases. We tried to increase this particular adipose mass in rats by long-term administration of low-dose dexamethasone (Dex) and/or elimination of other fat depots. Male adult Wistar rats were lipectomized (Lip) or sham-operated (Sh). Bilateral lipectomy of retroperitoneal and inguinal fat pads was performed under anesthesia with Na pentobarbital 40 mg/kg supplemented with ether. After 8 days, half the animals of each group received Dex in their drinking water (0.1 microgram/mL) while the other half received water (W), for a total of four groups: Sh-W, Lip-W, Sh-Dex, and Lip-Dex. Body weight (BW) and food and water intake were measured throughout the treatment period. A glucose tolerance test was performed 34 days after starting Dex treatment, and then rats were killed, fat depots were weighed, and plasma and liver were obtained for metabolic determinations. Dex rats ate the same amount of food as W controls, but gained significantly less weight (2.02 +/- 0.18 v 3.82 +/- 0.10 g/d, P < .01). Mean daily W intake was approximately 40 mL/d in all groups, which means that Dex rats ingested approximately 4 micrograms/d Dex. Average glycemic values during the 180-minute glucose tolerance test were as follows: Sh-W, 162 +/- 13; Lip-W, 166 +/- 7; Sh-Dex, 118 +/- 6; and Lip-Dex, 229 +/- 27 mg/dL. These values show that glucose tolerance was improved by Dex treatment alone, but was impaired in Lip-Dex animals. The same trend was evident for the relative weights (percent of BW) of two intact adipose depots: IP and epididymal (EPI) (Sh-W, 2.08 +/- 0.13 and 1.35 +/- 0.11, respectively; Lip-W, 1.67 +/- 0.15 and 1.17 +/- 0.11; Sh-Dex, 1.66 +/- 0.10 and 1.28 +/- 0.07; Lip-Dex, 2.41 +/- 0.11 and 1.53 +/- 0.09). Average glycemia for all rats was significantly correlated with IP (r = .55, P < .01) but not with EPI; moreover it was correlated in the Sh-W control group (r = .81, P < .05), suggesting a normal relation between these variables. Liver triglycerides (LTG), which were elevated in Dex rats, were also correlated with IP (r = .51, P < .02 for all rats and r = .82, P < .05 for Sh-W rats). The results show that long-term administration of low-dose Dex has some different effects in normal versus Lip rats concerning mainly the IP fat depot, the relative mass of which seems to significantly affect glucose tolerance.
Collapse
Affiliation(s)
- E Palacios
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ICN), México Distrito Federal, Mexico
| | | | | | | |
Collapse
|