1
|
Xu Q, Li H, Zhou W, Zou X, Dong X. Age-Related Changes in Serum Lipid Levels, Hepatic Morphology, Antioxidant Status, Lipid Metabolism Related Gene Expression and Enzyme Activities of Domestic Pigeon Squabs ( Columba livia). Animals (Basel) 2020; 10:E1121. [PMID: 32630261 PMCID: PMC7401562 DOI: 10.3390/ani10071121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to evaluate the age-related changes in antioxidant status and the lipid metabolism of pigeon squabs (Columba livia), by determining the BW, antioxidant indices, serum lipid levels, lipid metabolism-related enzyme activities, lipid metabolism-related gene expression, and liver morphology in squabs. Ten squabs were randomly selected and sampled on the day of hatching (DOH), days 7 (D7), 14 (D14) and 21 (D21) post-hatch, respectively. The results showed that BW of squabs increased linearly from DOH to D21. The minimum fold of BW gain was observed in the phase from D14 to D21. Serum triglyceride and free fatty acid levels displayed linear and quadratic trends as age increased, with these maximum responses in D14. Serum low-density lipoprotein cholesterol level responded to age linearly and quadratically with the minimum in D14. Serum high-density lipoprotein cholesterol level and the ratio of high-density lipoprotein cholesterol to low-density lipoprotein cholesterol increased linearly with age, whereas the very low-density lipoprotein cholesterol level decreased linearly. The activities of glutathione peroxidase, catalase, and superoxide dismutase in liver displayed linear and quadratic trends as age increased, with these minimum responses in D14. Hepatic malondialdehyde concentration responded to age linearly and quadratically, with the maximum in D14. Activities of lipoprotein lipase, hepatic lipase, and 3-hydroxy-3-methyl glutaryl coenzyme A reductase in liver responded to age linearly and quadratically, with these minimum responses in D14. Hepatic hormone-sensitive lipase activity displayed linear and quadratic trends as age increased with the maximum in D14. Hepatic acetyl CoA carboxylase activity on D14 was significantly lower than squabs on DOH and D7. Hepatic carnitine palmitoyltransferase 1 mRNA expression responded to age linearly and quadratically, with minimum response in D14. Hepatic mRNA expression of acetyl CoA carboxylase and fatty acid synthetase increased linearly with age. Hepatic Oil-Red-O staining area displayed a quadratic trend as age increased, with the maximum response in D14. In conclusion, the phase from DOH to D14 was a crucial development stage for growth, antioxidant status and lipid metabolism in pigeon squabs. The results suggest it is better to take nutritional manipulation in squabs before D14.
Collapse
Affiliation(s)
| | | | | | | | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (Q.X.); (H.L.); (W.Z.); (X.Z.)
| |
Collapse
|
2
|
Jiang GZ, Zhou M, Zhang DD, Li XF, Liu WB. The mechanism of action of a fat regulator: Glycyrrhetinic acid (GA) stimulating fatty acid transmembrane and intracellular transport in blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol A Mol Integr Physiol 2018; 226:83-90. [PMID: 30193864 DOI: 10.1016/j.cbpa.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
High-fat diets are associated with fatty liver and aberrant hepatic lipid metabolism, and glycyrrhetinic acid (GA) has been shown to exert a beneficial effect on lipolysis and fat deposition in fish. In the present study, we evaluated the effect of GA on the growth performance and expression of hepatic lipid transport related genes in blunt snout bream (Megalobrama amblycephala) fed a high fat diet. Two hundred and sixteen fish (average body weight: 45.57 g ± 0.98 g) were fed three experimental diets (6% fat/L6 group, control, 11% fat/L11 group, and 11% fat with 0.3 mg kg-1 GA/L11GA group) for 8 weeks. Compared to the control group, the weight gain and specific growth rate of high-fat fed group at the end of the trialwere significantly improved (P < .05).However, GA showed no effect on animals' growth performance(P > .05). Dietary supplementation with 0.3 mg kg-1 GA significantly decreased the hepatosomatic index, viscera/body ratio, and intraperitoneal fat ratio (P < .05), and up-regulated the expression levels of fatty acids transport protein (FATP), fatty acids binding protein (FABP), fatty acid translocase (CD36), carnitine palmitoyl transferase I (CPT1) and peroxisome proliferators-activated receptors α (PPARα) compared to both the L6 group and L11 group (P < .05). However, no significant difference was observed in fatty acid synthetase (FAS), acetyl-CoA carboxylase α (ACCα), or lipoprotein lipase (LPL) between groups (P > .05). In conclusion, GA significantly rescued high-fat diet induced hepatic lipid accumulation and metabolism dysfunction in M. amblycephalaby stimulating hepatic fatty acid transport and β-oxidation. Dietary GA may be used as a promising supplement to alleviate high-fat diet induced side effects on M. amblycephala.
Collapse
Affiliation(s)
- Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Man Zhou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China.
| |
Collapse
|
3
|
Liu S, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Zeng YY, Xu SD, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 55:88-105. [PMID: 27164217 DOI: 10.1016/j.fsi.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P < 0.05), up-regulated the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and hepcidin) and anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1) and signaling molecules inhibitor protein-κBα (IκBα) and target of rapamycin (TOR) (P < 0.05), down-regulated the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), and signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ) (P < 0.05) in the intestine of young grass carp. Moreover, optimal exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents (P < 0.05), improved the activities of anti-superoxide anion (ASA) and anti-hydroxyl radical (AHR), glutathione content, and the activities and mRNA levels of antioxidant enzymes (copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferases and glutathione reductase) (P < 0.05), up-regulated signaling molecule NF-E2-related factor 2 (Nrf2) (P < 0.05), down-regulated signaling molecules (Kelch-like-ECH-associated protein 1a, Kelch-like-ECH-associated protein 1b) (P < 0.05) in the intestine of young grass carp. Furthermore, optimal exogenous lipase supplementation significantly elevated the mRNA levels of tight junction proteins (Occludin, zonula occludens 1, Claudin b, Claudin c and Claudin 3) (P < 0.05), down-regulated the mRNA levels of tight junction proteins (Claudin 12 and Claudin 15a) (P < 0.05), down-regulated signaling molecules myosin light chain kinase (P < 0.05) in the intestine of young grass carp. In conclusion, dietary lipid could partially spare protein, and the low-protein and high-lipid diet could improve growth, intestinal growth and function, immune response and antioxidant capability of fish. Meanwhile, in high-fat and low-protein diets, optimal exogenous lipase supplementation improved growth, intestinal growth and function, intestinal immunity, physical barrier, and regulated the mRNA expression of related signal molecules of fish. The optimal level of exogenous lipase supplementation in young grass carp (255-771 g) was estimated to be 1193 U kg(-1) diet.
Collapse
Affiliation(s)
- Sen Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-De Xu
- Guangdong Vtr Bio-tech Co., Ltd., Zhuhai 519060, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Qin Y, Prescott LM, Deitch EA, Kaiser VL. Heparin use in a rat hemorrhagic shock model induces biologic activity in mesenteric lymph separate from shock. Shock 2011; 35:411-21. [PMID: 21063238 PMCID: PMC3089771 DOI: 10.1097/shk.0b013e31820239ee] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Experimental data have shown that mesenteric lymph from rats subjected to trauma-hemorrhagic shock (THS) but not trauma-sham shock induces neutrophil activation, cytotoxicity, decreased red blood cell (RBC) deformability, and bone marrow colony growth suppression. These data have led to the hypothesis that gut factors produced from THS enter the systemic circulation via the mesenteric lymphatics and contribute to the progression of multiple organ failure after THS. Ongoing studies designed to identify bioactive lymph agents implicated factors associated with the heparin use in the THS procedure. We investigated if heparin itself was responsible for reported toxicity to human umbilical vein endothelial cells (HUVECs). Human umbilical vein endothelial cell toxicity was not induced by lymph when alternate anticoagulants (citrate and EDTA) were used in THS. Human umbilical vein endothelial cell toxicity was induced by lymph after heparin but not saline or citrate injection into trauma-sham shock and naive animals and was dose dependent. Activities of both heparin-releasable lipases (lipoprotein and hepatic) were detected in the plasma and lymph from THS and naive animals receiving heparin but not citrate or saline. Lymph-induced HUVEC toxicity correlated with lymph lipase activities. Finally, incubation of HUVECs with purified lipoprotein lipase added to naive lymph-induced toxicity in vitro. These data show that heparin, not THS, is responsible for the reported lymph-mediated HUVEC toxicity through its release of lipases into the lymph. These findings can provide alternative explanations for several of the THS effects reported in the literature using heparin models, thus necessitating a review of previous work in this field.
Collapse
Affiliation(s)
- Yong Qin
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Edwin A. Deitch
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | - Vicki L. Kaiser
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
5
|
|
6
|
Magnoni L, Weber JM. Endurance swimming activates trout lipoprotein lipase: plasma lipids as a fuel for muscle. J Exp Biol 2007; 210:4016-23. [DOI: 10.1242/jeb.007708] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
SUMMARY
Fish endurance swimming is primarily powered by lipids supplied to red muscle by the circulation, but the mechanism of delivery remains unknown. By analogy to mammals, previous studies have focused on non-esterified fatty acids (NEFA bound to albumin), but lipoproteins have not been considered as an energy shuttle to working muscles. The effects of exercise on fish lipoprotein lipase (LPL) have never been investigated. We hypothesized that LPL and circulating lipoproteins would be modified by prolonged swimming. Because LPL is naturally bound to the endothelium, we have used heparin to release the enzyme in the circulation and to characterize reserve capacity for lipoprotein catabolism. The effects of exercise (4 days at 1.5 body lengths s–1 in a swim tunnel) were measured for red muscle LPL,post-heparin plasma LPL, and lipoprotein concentration/composition. Red muscle LPL activity increased from 18±5 (rest) to 49± 9 nmol fatty acids min–1 g–1 (swimming). In resting fish,heparin administration caused a 27-fold increase in plasma LPL activity that reached a maximum of 1.32± 0.67 μmol fatty acids min–1 ml–1 plasma. This heparin-induced response of plasma LPL was not different between resting controls and exercised fish. Heparin or prolonged swimming had no effect on the concentration/composition of lipoproteins that contain 92% of the energy in total plasma lipids. We conclude that (1) red muscle LPL is strongly activated by endurance swimming, (2) rainbow trout have a high reserve capacity for hydrolyzing lipoproteins, and (3) future studies should aim to measure lipoprotein flux because their concentration does not reflect changes in flux. These novel characteristics of fish LPL imply that lipoproteins are used as a metabolic shuttle between fat reserves and working muscles, a strategy exploiting an abundant source of energy in rainbow trout.
Collapse
Affiliation(s)
- Leonardo Magnoni
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa,Ontario, K1N 6N5, Canada
| | - Jean-Michel Weber
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa,Ontario, K1N 6N5, Canada
| |
Collapse
|
7
|
Albalat A, Saera-Vila A, Capilla E, Gutiérrez J, Pérez-Sánchez J, Navarro I. Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus aurata). Comp Biochem Physiol B Biochem Mol Biol 2007; 148:151-9. [PMID: 17600746 DOI: 10.1016/j.cbpb.2007.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/10/2007] [Accepted: 05/11/2007] [Indexed: 11/20/2022]
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipoprotein metabolism by virtue of its capacity to hydrolyze triglycerides circulating in the form of lipoprotein particles. Here we analyzed the fasting effects of LPL in gilthead sea bream (Sparus aurata) and also present the first study in fish of the role of insulin as a potential modulator of both LPL activity and expression. Fasting for 2 weeks provoked a clear decrease in adipose tissue LPL activity, concomitant with lower levels of plasma insulin, while no effects were observed in red muscle. To elucidate the specific role of insulin, increases of plasma insulin were experimentally induced by arginine and insulin injections. However, arginine predominantly stimulated glucagon over insulin secretion in this fish species while LPL activity did not change significantly in adipose tissue. Instead, insulin administration induced an increase in adipose tissue LPL activity 3 h after the injection, whereas LPL activity in red muscle was not affected. Changes in LPL activity were accompanied by an increase in LPL mRNA levels in the adipose tissue of insulin-injected gilthead sea bream, although changes in LPL expression were delayed in time with respect to variations in LPL activity. Finally, LPL mRNA levels in red muscle were similar between control and insulin-injected gilthead sea bream, suggesting that insulin does not play a direct role in the regulation of LPL in this tissue. The current study shows that LPL activity is regulated by nutritional condition and underscores the importance of insulin as a modulator of LPL activity and expression in the adipose tissue of gilthead sea bream.
Collapse
Affiliation(s)
- A Albalat
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, Barcelona, E-0807, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G. Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br J Nutr 2006; 96:299-309. [PMID: 16923224 DOI: 10.1079/bjn20061821] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to investigate the effects of dietary lipid sources on mechanisms involved in lipid deposition, two groups of rainbow trout were fed from first-feeding to the commercial size of 1 kg (for 62 weeks) with two diets differing only by lipid source: 100% fish oil or 100% blend of vegetable oils (55% rapeseed oil, 30% palm oil, 15% linseed oil). The activities and levels of gene expression of lipogenic enzymes (fatty acid synthetase, glucose-6-phosphate dehydrogenase and malic enzyme) in liver and of lipoprotein lipase in perivisceral adipose tissue, white muscle and liver were determined. Transport of lipid was studied by determining lipid composition of plasma and lipoprotein classes. We also examined the clearance of LDL by assaying the level of LDL receptor gene expression in several tissues. Total replacement of dietary fish oil by the blend of vegetable oils did not affect growth of rainbow trout and did not modify muscle lipid content. Hepatic lipogenesis and lipid uptake in perivisceral adipose tissue, white muscle and liver were also not modified by dietary treatments. Diets containing the blend of vegetable oils induced a decrease in plasma cholesterol and LDL. In trout fed the vegetable oils diet, expression of LDL receptor gene in the liver was down-regulated.
Collapse
Affiliation(s)
- Nadège Richard
- UMR Nutrition Aquaculture Génomique, INRA Pôle Hydrobiologie, 64310 Saint Pée-sur-Nivelle, France
| | | | | | | | | |
Collapse
|
9
|
Albalat A, Sánchez-Gurmaches J, Gutiérrez J, Navarro I. Regulation of lipoprotein lipase activity in rainbow trout (Oncorhynchus mykiss) tissues. Gen Comp Endocrinol 2006; 146:226-35. [PMID: 16457827 DOI: 10.1016/j.ygcen.2005.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 11/14/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Lipoprotein lipase (LPL) is considered as a key enzyme in the lipid deposition and metabolism of many tissues. Information on LPL activity and its regulation in fish remains very scarce. In the present study, we have examined the nutritional regulation of LPL activity by conducting post-feeding and fasting experiments in rainbow trout (Oncorhynchus mykiss). As insulin plays an important role in the nutritional regulation of LPL activity in mammals, the effects of this hormone were tested in vivo by intraperitoneal administration. Moreover, we conducted in vitro studies using fat pads of rainbow trout to better clarify the direct role of insulin and tumor necrosis factor-alpha (TNFalpha) as possible regulators of LPL activity in rainbow trout. LPL activity in adipose tissue increased in response to feeding, 4h after ingestion of food, then decreasing to basal levels at 6h. No clear response was found in either red or white muscles, where LPL values were lower. Moreover, fasting produced a down-regulation of LPL activity in adipose tissue, concomitant with low levels of plasma insulin. While insulin administration stimulated LPL activity of adipose tissue 3h after injection, no response was observed in red or white muscles. Finally, in vitro studies using fat pads revealed that insulin significantly stimulated the proportion of LPL in active conformation at the extracellular level. On the other hand, TNFalpha did not greatly affect LPL activity using this in vitro model. These data indicate that LPL activity is regulated in a tissue-specific manner following food intake, and suggest that insulin is an important regulator of LPL activity in the adipose tissue of rainbow trout.
Collapse
Affiliation(s)
- Amaya Albalat
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Lindberg A, Olivecrona G. Lipoprotein lipase from rainbow trout differs in several respects from the enzyme in mammals. Gene 2002; 292:213-23. [PMID: 12119116 DOI: 10.1016/s0378-1119(02)00680-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously we found lipase activity with characteristics similar to lipoprotein lipase (LPL) in tissues from rainbow trout [Biochim. Biophys. Acta 1255 (1995) 205], whereas no equivalent to the related hepatic lipase could be found. An equivalent to apolipoprotein CII was also identified and characterized [Gene 254 (2000) 189]. We present here the full nucleotide sequence for LPL from rainbow trout (Oncorhynchus mykiss) and have investigated some properties of the enzyme. In contrast to what has been found in mammals, LPL mRNA was expressed in livers of adult trout. This indicates that trout LPL carries out functions that hepatic lipase has evolved to take over in mammals. Trout LPL was unstable at 37 degrees C compared with bovine and human LPL. Two sequence differences that may relate to the instability are that trout LPL lacks the disulfide bridge in the C-terminal domain and lacks Pro(258). This residue is conserved in LPL from all mammals and has been shown to be critical for enzyme stability at 37 degrees C. On chromatography on heparin-Sepharose trout and chicken LPL eluted at higher salt concentration than bovine (or other mammalian) LPL. The C-terminal end of LPL has been implied in heparin binding and the higher heparin affinity of the trout and chicken enzymes may be because they have 17 and 15 extra amino acid residues at the C-terminal end, of which three residues are positively charged.
Collapse
Affiliation(s)
- Anna Lindberg
- Department of Medical Biosciences, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
11
|
Liang XF, Oku H, Ogata HY. The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major. Comp Biochem Physiol A Mol Integr Physiol 2002; 131:335-42. [PMID: 11818223 DOI: 10.1016/s1095-6433(01)00481-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of feeding condition and dietary lipid level on lipoprotein lipase (LPL) gene expression in the liver and visceral adipose tissue of red sea bream Pagrus major were investigated by competitive polymerase chain reaction. Not only visceral adipose tissue but also liver of red sea bream showed substantial LPL gene expression. In the liver, starvation (at 48 h post-feeding) drastically stimulated LPL gene expression in the fish-fed low lipid diet, but had no effect in the fish fed high lipid diet. Dietary lipid level did not significantly affect the liver LPL mRNA level under fed condition (at 5 h post-feeding). In the visceral adipose tissue, LPL mRNA number per tissue weight was significantly higher in the fed condition than in the starved condition, irrespective of the dietary lipid levels. Dietary lipid levels did not affect the visceral adipose tissue LPL mRNA levels under fed or starved conditions. Our results demonstrate that both feeding conditions and dietary lipid levels alter the liver LPL mRNA levels, while only the feeding conditions but not dietary lipid levels cause changes in the visceral adipose LPL mRNA level. It was concluded that the liver and visceral adipose LPL gene expression of red sea bream seems to be regulated in a tissue-specific fashion by the nutritional state.
Collapse
Affiliation(s)
- Xu Fang Liang
- Fish Nutrition Division, National Research Institute of Aquaculture, Nansei, Mie 516-0193, Japan
| | | | | |
Collapse
|
12
|
Shen Y, Lindberg A, Olivecrona G. Apolipoprotein CII from rainbow trout (Oncorhynchus mykiss) is functionally active but structurally very different from mammalian apolipoprotein CII. Gene 2000; 254:189-98. [PMID: 10974550 DOI: 10.1016/s0378-1119(00)00268-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apolipoprotein CII (apoCII) plays an important role in plasma lipid metabolism as an activator for lipoprotein lipase (LPL). We have amplified and sequenced apoCII cDNA from rainbow trout. Amino acid sequence analyses confirmed that this sequence corresponded to the protein that had apoCII activity. Northern blot analyses showed that apoCII mRNA was present in both liver and intestine, but the level in intestine was very low. Two major transcripts (800 and 600bp) were found. The predicted amino acid sequence consists of 112 amino acid residues, including the signal peptide. The mature peptide is seven residues longer than human apoCII (86 versus 79 residues) due to an extension at the amino-terminal end. The rainbow trout sequence showed an overall identity of only 20-25% to previously known apoCII sequences. The carboxy-terminal region (residues 51-79, human numbering) showed 35-45% identity to other apoCII sequences, while in the amino-terminal region, there was little if any identity and it was not possible to predict any long amphipathic, potentially lipid-binding alpha-helices. Trout apoCII was present in all lipoprotein fractions including LDL. At +10 degrees C trout plasma showed higher ability to stimulate LPL than human plasma. We conclude that apoCII from rainbow trout is in most parts structurally different from apoCII from other species, and that it is adapted to function at low temperature.
Collapse
Affiliation(s)
- Y Shen
- Department of Medical Biosciences, Medical Biochemistry, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
13
|
Hocquette JF, Graulet B, Olivecrona T. Lipoprotein lipase activity and mRNA levels in bovine tissues. Comp Biochem Physiol B Biochem Mol Biol 1998; 121:201-12. [PMID: 9972295 DOI: 10.1016/s0305-0491(98)10090-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lipoprotein lipase (LPL) in cattle has been extensively studied in adipose tissue, milk and mammary gland, but only to a limited extent in muscles. Therefore, we have adapted our in vitro LPL assay method for the measurement of LPL activity and describe, for the first time, sensitive procedures to quantify LPL activity and mRNA levels in bovine muscles. In vitro activation of bovine LPL activity is approximately 5-fold greater with rat than with bovine sera for heart and muscles, but not for adipose tissues. Values of LPL activity are in the upper range of those previously reported for rat or bovine tissues. With rat serum as activator, LPL activity in the heart of seven calves (662-832 mU g-1) is at least 3-fold lower than in the rat heart (2150-2950 mU g-1, P < 0.05). LPL activity is higher in bovine heart and oxidative muscles (412-972 mU g-1), except the diaphragm, than in mixed or glycolytic muscles (33-154 mU g-1, P < 0.05). The levels of LPL transcripts are positively related to LPL activity in bovine tissues, including muscles and adipose tissues.
Collapse
Affiliation(s)
- J F Hocquette
- INRA, Laboratoire Croissance et Métabolismes des Herbivores, Theix, Saint-Genès Champanelle, France.
| | | | | |
Collapse
|
14
|
Guinea pig apolipoprotein C-II: expression in E. coli, functional studies of recombinant wild-type and mutated variants, and distribution on plasma lipoproteins. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37141-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Andersson Y, Nilsson S, Lindberg A, Thelander L, Olivecrona G. Apolipoprotein CII from chicken (Gallus domesticus). The amino-terminal domain is different from corresponding domains in mammals. J Biol Chem 1996; 271:33060-6. [PMID: 8955153 DOI: 10.1074/jbc.271.51.33060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The amino acid sequence of chicken apolipoprotein CII (apoCII) was determined from cDNA sequencing and from partial protein sequencing. The chicken sequence showed an overall identity of around 30% to all the other previously known apoCII sequences. Comparison of the carboxyl-terminal domain (residues 51-79, human numbering) showed at least 50% identity between species. By limiting the region to residues 51-70 the similarity was remarkably high, about 85%. This is in concert with the previous opinion that residues in the region 56-76 are directly engaged in binding to lipoprotein lipase and in activation of this enzyme. In contrast, in the amino-terminal end up to residue 50 (human numbering) less than 24% of the amino acid residues in chicken apoCII were identical to residues of any of the other species. In addition, chicken apoCII is four residues longer than human apoCII (83 versus 79 residues), probably due to an extension at the amino-terminal end. Although the sequence was completely different in the amino-terminal domain, the structures necessary for binding to lipid appear to be present in chicken apoCII. Secondary structure prediction showed that the amino-terminal domain could form two amphipathic alpha-helices in almost similar areas of the sequence as was previously predicted for human apoCII.
Collapse
Affiliation(s)
- Y Andersson
- Department of Medical Biochemistry and Biophysics, Umeâ University, S-901 87 Umeâ, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Arnault F, Etienne J, Noé L, Raisonnier A, Brault D, Harney JW, Berry MJ, Tse C, Fromental-Ramain C, Hamelin J, Galibert F. Human lipoprotein lipase last exon is not translated, in contrast to lower vertebrates. J Mol Evol 1996; 43:109-15. [PMID: 8660435 DOI: 10.1007/bf02337355] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have sequenced the first fish (zebrafish, Brachydanio rerio) lipoprotein lipase (LPL) cDNA clone. Similarities were found in mammalian LPL cDNA, but the codon spanning the last two exons (which is thus split by the last intron) is AGA (Arg) as opposed to TGA in mammals. Exon 10 is thus partially translated. These results were confirmed with rainbow trout (Oncorhynchus mykiss). We also investigated whether mammal TGA coded for selenocystein (SeCys), the 21st amino acid, but found that this was not the case: TGA does not encode SeCys but is a stop codon. It thus appears that the sense codon AGA (fish) has been transformed into a stop codon TGA (human) during the course of evolution. It remains to be determined if the "loss" of the C-terminal end of mammalian LPL protein has conferred an advantage in terms of LPL activity or, on the contrary, a disadvantage (e.g., susceptibility to diabetes or atherosclerosis).
Collapse
Affiliation(s)
- F Arnault
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté de Médecine St-Antoine-Tenon, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|