1
|
Chang D, Kong F, Jiang W, Li F, Zhang C, Ding H, Kang Y, Li W, Huang C, Zhou X, Zhang X, Jiao H, Kang Y, Shang X, Zhang B. Effects of L-carnitine Administration on Sperm and Sex Hormone Levels in a Male Wistar Rat Reproductive System Injury Model in a High-Altitude Hypobaric Hypoxic Environment. Reprod Sci 2023; 30:2231-2247. [PMID: 36633830 PMCID: PMC10310634 DOI: 10.1007/s43032-022-00948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023]
Abstract
The plateau environment impacts male reproductive function, causing decreased sperm quality and testosterone levels. L-carnitine can improve the semen microenvironment. However, the role of L-carnitine in a high-altitude environment remains unclear. In our study, we investigated the effects of L-carnitine administration in a male Wistar rat reproductive system injury model in the context of a simulated high-altitude environment. Rats were randomly divided into a normal control group (group A1, A2-low dose and A3-high dose) and high-altitude model groups (group B, C-low dose and D-high dose) with 20 rats in each group. With the exception of the normal control group exposed to normoxic conditions, the other groups were maintained in a hypobaric oxygen chamber that simulated an altitude of 6000 m for 28 days. In the experimental period, the low-dose groups (A2 and C) were administered 50 mg/kg L-carnitine via intraperitoneal injection once a day, and the high-dose groups (A3 and D) were given 100 mg/kg. After the feeding period, blood samples were collected to assess blood gas, serum hormone levels and oxidative stress. Sperm from the epididymis were collected to analyse various sperm parameters. After obtaining the testicular tissue, the morphological and pathological changes were observed under a light microscope and transmission electron microscopy (TEM). The impact of the simulated high-altitude environment on the rat testis tissue is obvious. Specifically, a decreased testicular organ index and altered indices of arterial blood gas and serum sex hormone levels caused testicular tissue morphological damage, reduced sperm quality, increased sperm deformity rate and altered malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) concentrations. The results demonstrate that L-carnitine can be administered as a preventive intervention to reduce the reproductive damage caused by high-altitude hypobaric and hypoxic environments and improve semen quality in a rat model.
Collapse
Affiliation(s)
- Dehui Chang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Feiyan Kong
- Second Department of Surgery, Beijing Fengtai Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wei Jiang
- Air Force Hangzhou Secret Service Rehabilitation Center, Convalescent Section First of Convalescent Zone Second, Hangzhou, Zhejiang, China
| | - Fudong Li
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Chunlei Zhang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Haoshuai Ding
- The First Affiliated Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Yindong Kang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Weiping Li
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Chuang Huang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Xin Zhou
- The First Affiliated Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoli Zhang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Hongmei Jiao
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Yafen Kang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Xuejun Shang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Bin Zhang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Zhyvoloup A, Nemazanyy I, Panasyuk G, Valovka T, Fenton T, Rebholz H, Wang ML, Foxon R, Lyzogubov V, Usenko V, Kyyamova R, Gorbenko O, Matsuka G, Filonenko V, Gout IT. Subcellular localization and regulation of coenzyme A synthase. J Biol Chem 2003; 278:50316-21. [PMID: 14514684 DOI: 10.1074/jbc.m307763200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CoA synthase mediates the last two steps in the sequence of enzymatic reactions, leading to CoA biosynthesis. We have recently identified cDNA for CoA synthase and demonstrated that it encodes a bifunctional enzyme possessing 4'-phosphopantetheine adenylyltransferase and dephospho-CoA kinase activities. Molecular cloning of CoA synthase provided us with necessary tools to study subcellular localization and the regulation of this bifunctional enzyme. Transient expression studies and confocal microscopy allowed us to demonstrate that full-length CoA synthase is associated with the mitochondria, whereas the removal of the N-terminal region relocates the enzyme to the cytosol. In addition, we showed that the N-terminal sequence of CoA synthase (amino acids 1-29) exhibits a hydrophobic profile and targets green fluorescent protein exclusively to mitochondria. Further analysis, involving subcellular fractionation and limited proteolysis, indicated that CoA synthase is localized on the mitochondrial outer membrane. Moreover, we demonstrate for the first time that phosphatidylcholine and phosphatidylethanolamine, which are the main components of the mitochondrial outer membrane, are potent activators of both enzymatic activities of CoA synthase in vitro. Taken together, these data provide the evidence that the final stages of CoA biosynthesis take place on mitochondria and the activity of CoA synthase is regulated by phospholipids.
Collapse
Affiliation(s)
- Alexander Zhyvoloup
- Department of Structure and Function of Nucleic Acid, The Institute of Molecular Biology and Genetics, Kyiv 03143, Ukraine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bremer J. The biochemistry of hypo- and hyperlipidemic fatty acid derivatives: metabolism and metabolic effects. Prog Lipid Res 2001; 40:231-68. [PMID: 11412891 DOI: 10.1016/s0163-7827(01)00004-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A selection of amphipatic hyper- and hypolipidemic fatty acid derivatives (fibrates, thia- and branched chain fatty acids) are reviewed. They are probably all ligands for the peroxisome proliferation activation receptor (PPARalpha) which has a low selectivity for its ligands. These compounds give hyper- or hypolipidemic responses depending on their ability to inhibit or stimulate mitochondrial fatty acid oxidation in the liver. The hypolipidemic response is explained by the following metabolic effects: Lipoprotein lipase is induced in liver where it is normally not expressed. Apolipoprotein CIII is downregulated. These two effects in liver lead to a facilitated (re)uptake of chylomicrons and VLDL, thus creating a direct transport of fatty acids from the gut to the liver. Fatty acid metabolizing enzymes in the liver (CPT-I and II, peroxisomal and mitochondrial beta-oxidation enzymes, enzymes of ketogenesis, and omega-oxidation enzymes) are induced and create an increased capacity for fatty acid oxidation. The increased oxidation of fatty acids "drains" fatty acids from the body, reduces VLDL formation, and ultimately explains the antiadiposity and improved insulin sensitivity observed after administration of peroxisome proliferators.
Collapse
Affiliation(s)
- J Bremer
- Institute of Medical Biochemistry, University of Oslo, Pb 1112 Blindern, 0317, Oslo, Norway
| |
Collapse
|
4
|
Hashimoto F, Furuya Y, Hayashi H. Accumulation of medium chain acyl-CoAs during beta-oxidation of long chain fatty acid by isolated peroxisomes from rat liver. Biol Pharm Bull 2001; 24:600-6. [PMID: 11411544 DOI: 10.1248/bpb.24.600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have reported fatty alcohol synthesis accompanied by chain elongation in liver peroxisomes (Biochim. Biophys. Acta, 1346, 38 (1997)). In the present experiment, we studied what kind of acyl-CoA(s) destined to be utilized as primer for fatty alcohol synthesis accumulate(s) during peroxisomal beta-oxidation. Peroxisomes were prepared from rat liver treated with clofibrate, a peroxisome proliferator, and incubated with [U-14C]palmitate, in order to investigate acyl-CoAs after beta-oxidation. At 1 mM concentration, MgATP activated beta-oxidation, but inhibited beta-oxidation at concentrations higher than 1 mM. After incubation of peroxisomes with palmitate, various acyl-CoAs were formed. Among medium-chain labelled acyl-CoAs, octanoyl-CoA was mainly detected. These results suggest that octanoyl-CoA accumulates during beta-oxidation of palmitate. When peroxisomes were incubated with [9,10-(3)H]palmitate and [9,10-(3)H]stearate, among medium-chain acyl-CoAs, octanoyl-CoA and decanoyl-CoA were primarily detected, respectively, suggesting the occurrence of at least 4 cycles of beta-oxidation of both fatty acids by peroxisomes.
Collapse
Affiliation(s)
- F Hashimoto
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | | | | |
Collapse
|
5
|
Eaton S, Middleton B, Sherratt HS, Pourfarzam M, Quant PA, Bartlett K. Control of mitochondrial beta-oxidation at the levels of [NAD+]/[NADH] and CoA acylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 466:145-54. [PMID: 10709638 DOI: 10.1007/0-306-46818-2_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- S Eaton
- Unit of Paediatric Surgery, University College London Medical School.
| | | | | | | | | | | |
Collapse
|
6
|
Aureli T, Puccetti C, Di Cocco ME, Arduini A, Ricciolini R, Scalibastri M, Manetti C, Conti F. Entry of [(1,2-13C2)acetyl]-L-carnitine in liver tricarboxylic acid cycle and lipogenesis: a study by 13C NMR spectroscopy in conscious, freely moving rats. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:287-93. [PMID: 10429215 DOI: 10.1046/j.1432-1327.1999.00524.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The biochemical pathways involved in acetyl-L-carnitine utilization were investigated in conscious, freely moving rats by 13C NMR spectroscopy. Following 4-h [(1,2-13C2)acetyl]-L-carnitine infusion in fasted animals, the free carnitine levels in serum were increased, and an efflux of unlabelled acetyl-L-carnitine from tissues was observed. [(1,2-13C2)Acetyl]-L-carnitine was found to enter biosynthetic pathways in liver, and the acetyl moiety was incorporated into both cholesterol and 3-hydroxybutyrate carbon skeleton. In accord with the entry of [(1,2-13C2)acetyl]-L-carnitine in the mitochondrial acetylCoA pool associated with tricarboxylic acid cycle, the 13C label was also found in liver glutamate, glutamine, and glutathione. The analysis of the 13C-labelling pattern in 3-hydroxybutyrate and cholesterol carbon skeleton provided evidence that the acetyl-L-carnitine-derived acetylCoA pool used for ketone bodies synthesis in mitochondria was homogeneous, whereas cholesterol was synthesized from two different acetylCoA pools located in the extra- and intramitochondrial compartment, respectively. Furthermore, cholesterol molecules were shown to be preferentially synthesized by the metabolic route involving the direct channelling of CoA-activated mitochondria-derived ketone bodies into 3-hydroxy-3-methylglutarylCoA pathway, prior to equilibration of their acyl groups with extramitochondrial acetylCoA pool via acetoacetylCoA thiolase.
Collapse
Affiliation(s)
- T Aureli
- Department of Biochemistry, Sigma-Tau S.p.A. Research Labs, Pomezia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Abstract
Peroxisomes are small, subcellular organelles that play a major role in lipid metabolism. Inherited disorders of peroxisomal structure and metabolism can result from defective assembly, missing protein import transporters, or individual enzyme deficiencies. Molecular studies helped by the range of disorders have now elucidated many of the pathways, including the paths of alpha-oxidation for phytanic acid and beta-oxidation for very-long-chain and branched-chain fatty acids and for bile acid synthesis. The mechanism of the transfer of substrates, intermediates, and products across the membrane is poorly understood. The carnitine system, known to transport activated acyl groups between localized coenzyme A pools, is presented. The evidence for the involvement of carnitine in the transfer of activated acyl groups to and from the peroxisomes is reviewed.
Collapse
Affiliation(s)
- R R Ramsay
- School of Biomedical Sciences, University of St. Andrews, Fife, UK.
| |
Collapse
|
9
|
Madsen L, Berge RK. 3-Thia fatty acid treatment, in contrast to eicosapentaenoic acid and starvation, induces gene expression of carnitine palmitoyltransferase-II in rat liver. Lipids 1999; 34:447-56. [PMID: 10380116 DOI: 10.1007/s11745-999-0384-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to investigate the hepatic regulation and beta-oxidation of long-chain fatty acids in peroxisomes and mitochondria, after 3-thia- tetradecylthioacetic acid (C14-S-acetic acid) treatment. When palmitoyl-CoA and palmitoyl-L-carnitine were used as substrates, hepatic formation of acid-soluble products was significantly increased in C14-S-acetic acid treated rats. Administration of C14-S-acetic acid resulted in increased enzyme activity and mRNA levels of hepatic mitochondrial carnitine palmitoyltransferase (CPT)-II. CPT-II activity correlated with both palmitoyl-CoA and palmitoyl-L-carnitine oxidation in rats treated with different chain-length 3-thia fatty acids. CPT-I activity and mRNA levels were, however, marginally affected. The hepatic CPT-II activity was mainly localized in the mitochondrial fraction, whereas the CPT-I activity was enriched in the mitochondrial, peroxisomal, and microsomal fractions. In C14-S-acetic acid-treated rats, the specific activity of peroxisomal and microsomal CPT-I increased, whereas the mitochondrial activity tended to decrease. C14-S-Acetyl-CoA inhibited CPT-I activity in vitro. The sensitivity of CPT-I to malonyl-CoA was unchanged, and the hepatic malonyl-CoA concentration increased after C14-S-acetic acid treatment. The mRNA levels of acetyl-CoA carboxylase increased. In hepatocytes cultured from palmitic acid- and C14-S-acetic acid-treated rats, the CPT-I inhibitor etomoxir inhibited the formation of acid-soluble products 91 and 21%, respectively. In contrast to 3-thia fatty acid treatment, eicosapentaenoic acid treatment and starvation increased the mitochondrial CPT-I activity and reduced its malonyl-CoA sensitivity. Palmitoyl-L-carnitine oxidation and CPT-II activity were, however, unchanged after either EPA treatment or starvation. The results from this study open the possibility that the rate control of mitochondrial beta-oxidation under mitochondrion and peroxisome proliferation is distributed between an enzyme or enzymes of the pathway beyond the CPT-I site after 3-thia fatty acid treatment. It is suggested that fatty acids are partly oxidized in the peroxisomes before entering the mitochondria as acylcarnitines for further oxidation.
Collapse
Affiliation(s)
- L Madsen
- Department of Clinical Biochemistry, Haukeland Hospital, University of Bergen, Norway.
| | | |
Collapse
|
10
|
Eaton S, Bartlett K, Pourfarzam M. Intermediates of myocardial mitochondrial beta-oxidation: possible channelling of NADH and of CoA esters. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:402-8. [PMID: 10101273 DOI: 10.1016/s1388-1981(99)00027-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adult rat heart mitochondria were isolated and incubated with [U-14C]hexadecanoyl-CoA or unlabelled hexadecanoyl-CoA. The accumulating CoA and carnitine esters and [NAD+]/[NADH] ratio were measured by HPLC or tandem mass spectrometry. Despite minimal changes in the intramitochondrial [NAD+]/[NADH] ratio, 2, 3-unsaturated and 3-hydroxyacyl esters were observed as well as saturated acyl-CoA and acylcarnitine esters. In addition to acetylcarnitine, significant amounts of butyryl-, hexanoyl-, octanoyl- and decanoylcarnitines were detected and measured. Rat myocardial beta-oxidation is subject to control at the level of 3-hydroxyacyl-CoA dehydrogenase but this control is not due to a simple lack of oxidised NAD. We hypothesise a pool of NAD in contact between the trifunctional protein of beta-oxidation and complex I of the respiratory chain, the turnover of which is responsible for some of the control of beta-oxidation flux. In addition, short- and medium-chain acylcarnitine esters were detected whereas only small amounts of long-chain acylcarnitines were present. This may imply the presence of a mitochondrial carnitine octanoyl transferase or may reflect channelling of long-chain CoA esters so that they are not available for carnitine palmitoyl transferase II activity.
Collapse
Affiliation(s)
- S Eaton
- Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle-upon-Tyne NE1 4LP, UK.
| | | | | |
Collapse
|
11
|
Chen Q, Luthria DL, Sprecher H. Analysis of the acyl-CoAs that accumulate during the peroxisomal beta-oxidation of arachidonic acid and 6,9,12-octadecatrienoic acid. Arch Biochem Biophys 1998; 349:371-5. [PMID: 9448727 DOI: 10.1006/abbi.1997.0461] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biosynthesis of 4,7,10,13,16-22:5 and 4,7,10,13,16,19-22:6 requires that when 6,9,12,15,18-24:5 and 6,9,12,15,18,21-24:6 are produced in microsomes they must move to peroxisomes for partial beta-oxidation. When the 24-carbon acids were incubated with peroxisomes, 22-carbon acids with their first double bond at position 4 accumulated as did those with their first two double bonds at the 2-trans-4-cis-positions (D. L. Luthria, S. B. Mohammed, and H. Sprecher, J. Biol. Chem. 271, 16020-16025, 1996; and B. S. Mohammed, D. L. Luthria, S. P. Baykousheva, and H. Sprecher, Biochem. J., 326, 425-430, 1997). In the study reported here we analyzed the acyl-CoAs that accumulated when peroxisomes were incubated with 5,8,11,14-20:4 and 6,9,12-18:3, a metabolite that would be produced via one cycle of arachidonate degradation via the pathway requiring both NADPH-dependent 2,4-dienoyl-CoA reductase and delta 3,5, delta 2,4-dienoyl-CoA isomerase. With both substrates the acyl-CoAs of 2-trans-4-10:2, 4-10:1, 2-trans-4,7,10-16:4, and 4,7,10-16:3 accumulated. These results further establish that the reductase catalyzes a control step in the peroxisomal degradation of unsaturated fatty acids. It was not possible to detect any 18- or 12-carbon acyl-CoA when arachidonate was the substrate, nor did any 12-carbon catabolite accumulate from 6,9,12-18:3. The fractional amount of 5,8-14:2 and arachidonate catabolized via the pathway using only the enzymes of saturated fatty acid degradation versus the pathway that also uses the reductase and the isomerase could thus not be estimated.
Collapse
Affiliation(s)
- Q Chen
- Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
12
|
Abstract
The enzymic stages of mammalian mitochondrial beta-oxidation were elucidated some 30-40 years ago. However, the discovery of a membrane-associated multifunctional enzyme of beta-oxidation, a membrane-associated acyl-CoA dehydrogenase and characterization of the carnitine palmitoyl transferase system at the protein and at the genetic level has demonstrated that the enzymes of the system itself are incompletely understood. Deficiencies of many of the enzymes have been recognized as important causes of disease. In addition, the study of these disorders has led to a greater understanding of the molecular mechanism of beta-oxidation and the import, processing and assembly of the beta-oxidation enzymes within the mitochondrion. The tissue-specific regulation, intramitochondrial control and supramolecular organization of the pathway is becoming better understood as sensitive analytical and molecular techniques are applied. This review aims to cover enzymological and organizational aspects of mitochondrial beta-oxidation together with the biochemical aspects of inherited disorders of beta-oxidation and the intrinsic control of beta-oxidation.
Collapse
Affiliation(s)
- S Eaton
- Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle-upon-Tyne, U.K
| | | | | |
Collapse
|