1
|
Nawaz MA, Pervez S, Rehman HU, Jamal M, Jan T, Hazrat A, Attaullah M, Khan W, Qader SAU. Utilization of different polymers for the improvement of catalytic properties and recycling efficiency of bacterial maltase. Int J Biol Macromol 2020; 163:1344-1352. [PMID: 32698068 DOI: 10.1016/j.ijbiomac.2020.07.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022]
Abstract
Current study deals with the comparative study related to immobilization of maltase using synthetic (polyacrylamide) and non-synthetic (calcium alginate, agar-agar and agarose) polymers via entrapment technique. Polyacrylamide beads were formed by cross-linking of monomers, agar-agar and agarose through solidification while alginate beads were prepared by simple gelation. Results showed that the efficiency of enzyme significantly improved after immobilization and among all tested supports agar-agar was found to be the most promising and biocompatible for maltase in terms of immobilization yield (82.77%). The catalytic behavior of maltase was slightly shifted in terms of reaction time (free enzyme, agarose and polyacrylamide: 5.0 min; agar-agar and alginate: 10.0 min), pH (free enzyme, alginate and polyacrylamide: 6.5; agar-agar, agarose: 7.0) and temperature (free enzyme: 45 °C; alginate: 50 °C; polyacrylamide: 55 °C; agarose: 60 °C; agar-agar: 65 °C). Stability profile of immobilized maltase also revealed that all the supports utilized have significantly enhanced the activity of maltase at higher temperatures then its free counterpart. However, recycling data showed that agar-agar entrapped maltase retained 20.0% of its initial activity even after 10 cycles followed by agarose (10.0%) while polyacrylamide and alginate showed no activity after 8 and 6 cycles respectively.
Collapse
Affiliation(s)
- Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan; The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan.
| | - Haneef Ur Rehman
- Department of Chemistry, University of Turbat, Kech, Balochistan, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, KPK, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdara, KPK, Pakistan
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara, KPK, Pakistan
| | | | - Wali Khan
- Department of Zoology, University of Malakand, Chakdara, KPK, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Van Wijk R, Van Wijk EP, Pang J, Yang M, Yan Y, Han J. Integrating Ultra-Weak Photon Emission Analysis in Mitochondrial Research. Front Physiol 2020; 11:717. [PMID: 32733265 PMCID: PMC7360823 DOI: 10.3389/fphys.2020.00717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Once regarded solely as the energy source of the cell, nowadays mitochondria are recognized to perform multiple essential functions in addition to energy production. Since the discovery of pathogenic mitochondrial DNA defects in the 1980s, research advances have revealed an increasing number of common human diseases, which share an underlying pathogenesis involving mitochondrial dysfunction. A major factor in this dysfunction is reactive oxygen species (ROS), which influence the mitochondrial-nuclear crosstalk and the link with the epigenome, an influence that provides explanations for pathogenic mechanisms. Regarding these mechanisms, we should take into account that mitochondria produce the majority of ultra-weak photon emission (UPE), an aspect that is often ignored - this type of emission may serve as assay for ROS, thus providing new opportunities for a non-invasive diagnosis of mitochondrial dysfunction. In this article, we overviewed three relevant areas of mitochondria-related research over the period 1960-2020: (a) respiration and energy production, (b) respiration-related production of free radicals and other ROS species, and (c) ultra-weak photon emission in relation to ROS and stress. First, we have outlined how these research areas initially developed independently of each other - following that, our review aims to show their stepwise integration during later stages of development. It is suggested that a further stimulation of research on UPE may have the potential to enhance the progress of modern mitochondrial research and its integration in medicine.
Collapse
Affiliation(s)
- Roeland Van Wijk
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | | | - Jingxiang Pang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Yan
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Nawaz MA, Pervez S, Jamal M, Jan T, Khan W, Rauf A, Aman A, Qader SAU. Maltose deterioration approach: Catalytic behavior optimization and stability profile of maltase from Bacillus licheniformis KIBGE-IB4. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 24:e00400. [PMID: 31799147 PMCID: PMC6881636 DOI: 10.1016/j.btre.2019.e00400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/12/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022]
Abstract
Maltase is an economically valuable enzyme that is used to catalyze the hydrolytic process of maltose and yields d-glucose as a product. In this study, the catalytic behavior of maltase was optimized under various physicochemical condition. Results indicated that bacterial maltase exhibited maximum catalytic activity at 45 °C and pH-6.5 after 5.0 min. It presented greater stability within 0.1 M K2HPO4 buffer having pH-6.5 and showed 100 % activity even after 1.0 h. It retained 83.6 % and 45.0 % activity at 40 °C after 1.0 and 3.0 h, respectively. The enzyme retained 90.0 % activity at -20 °C even after 60 days. The molecular weight of enzyme was deduced to be 157.2 kDa as calculated using polyacrylamide gel electrophoresis (PAGE) and zymography. It was concluded that the characterized maltase has notable stability profile with reference to temperature, pH and other reaction conditions which anticipates its utilization in various starch and maltose hydrolyzing processes for the synthesis of glucose.
Collapse
Affiliation(s)
- Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), KPK, Pakistan
| | - Sidra Pervez
- Department of Microbiology, Hazara University, Mansehra, KPK, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdara, Khyberpakhtunkhwa, Pakistan
| | - Wali Khan
- Department of Zoology, University of Malakand, Chakdara, Khyberpakhtunkhwa, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyberpakhtunkhwa, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
4
|
Kodama Y, Fukui N, Ashikari T, Shibano Y, Morioka-Fujimoto K, Hiraki Y, Nakatani K. Improvement of Maltose Fermentation Efficiency: Constitutive Expression ofMALGenes in Brewing Yeasts. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-53-0024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yukiko Kodama
- Suntory Ltd., 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| | - Nobuyuki Fukui
- Suntory Ltd., 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| | - Toshihiko Ashikari
- Suntory Ltd., 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| | - Yuji Shibano
- Suntory Ltd., 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| | | | - Yuji Hiraki
- Osaka University, 1–8, Yamadaoka, Suita, Osaka 565, Japan
| | - Kazuo Nakatani
- Suntory Ltd., 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| |
Collapse
|
5
|
Maltase entrapment approach as an efficient alternative to increase the stability and recycling efficiency of free enzyme within agarose matrix. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Käppeli O, Sonnleitner B, Blanch HW. Regulation of Sugar Metabolism inSaccharomyces-Type Yeast: Experimental and Conceptual Considerations. Crit Rev Biotechnol 2008. [DOI: 10.3109/07388558609150798] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
SCHWELITZ FAYED, CISNEROS PAULINEL, JAGIELO JULIAA, COMER JEFFREYL, BUTTERFIED KEVINA. The Relationship of Fixed Carbon and Nitrogen Sources to the Greening Process inEuglena gracilisstrain Z*. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1978.tb04410.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
LASMAN M. Glucosidase Activity inAcanthamoeba(Mayorella)palestinensis. The Effect of Glucose and Natural Glucosides on α- and β-Glucosidases. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1975.tb05201.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Barnett JA, Entian KD. A history of research on yeasts 9: regulation of sugar metabolism. Yeast 2005; 22:835-94. [PMID: 16134093 DOI: 10.1002/yea.1249] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | |
Collapse
|
10
|
Niederacher D, Schüller HJ, Grzesitza D, Gütlich H, Hauser HP, Wagner T, Entian KD. Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase. Curr Genet 1992; 22:363-70. [PMID: 1330335 DOI: 10.1007/bf00352437] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fructose-1,6-bisphosphatase is a key enzyme in gluconeogenesis and the FBP1 gene is not transcribed during growth with glucose. Genetic analysis indicated a positive regulation of FBP1 expression after exhaustion of glucose. By linker-deletion analysis, two upstream activation sites (UAS1 and UAS2) were localized and the respective UAS-binding factors (DAP I and DAP II for derepression activating protein) were identified by gel retardation. UAS1 and UAS2 span about 30 bp each, and are separated by approximately 30 bp. Both UAS sites act synergistically. Although UAS1 showed some similarities to the DNA-binding consensus for the general yeast activator Rap1, competition experiments and DEAE-chromatography proved that DAP I and Rap1 correspond to different proteins. Gel retardation by DAP I depended on carbon sources and did not occur in cells growing logarithmically with glucose, whereas a strong retardation signal was obtained with ethanol-grown cells. The present results suggest that DAP I and DAP II are the final regulatory elements for glucose derepression.
Collapse
Affiliation(s)
- D Niederacher
- Institut für Mikrobiologie, J. W. Goethe-Universität, Frankfurt/M., Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Levine J, Tanouye L, Michels CA. The UAS(MAL) is a bidirectional promotor element required for the expression of both the MAL61 and MAL62 genes of the Saccharomyces MAL6 locus. Curr Genet 1992; 22:181-9. [PMID: 1525871 DOI: 10.1007/bf00351724] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Maltose fermentation in Saccharomyces yeasts requires one of five unlinked MAL loci: MAL1, 2, 3, 4, or 6. Each locus consists of three genes encoding maltose permease, maltase and the MAL activator. At MAL6 the genes are called MAL61, MAL62 and MAL63, respectively. Transcription of MAL61 and MAL62 is coordinately induced by maltose and repressed by glucose and this regulation is mediated by the MAL activator. By deletion analysis of the MAL61-MAL62 intergenic region, we show that a 68-basepair region, from base pairs -515 to -582 upstream of the MAL61 start codon, contains a sequence necessary for the maltose-induced expression of MAL61 and MAL62, the UAS(MAL). This sequence contains two copies of an 11-basepair dyad which may be the active elements of the UAS(MAL). Using heterologous gene plasmid constructs, we demonstrate that the UAS(MAL) sequence is sufficient for maltose inducibility of MAL62 and that this regulated expression requires a functional MAL activator. Our results suggest that the MAL61-MAL62 intergenic region contains additional distinct elements which function to precisely regulate MAL61 and/or MAL62 expression. Among these are repressing sequences, including a glucose-responsive element located between base pairs -583 and -638, which is partially responsible for mediating glucose-repression of MAL62 expression.
Collapse
Affiliation(s)
- J Levine
- Department of Biology, Queens College, Flushing, NY 11367
| | | | | |
Collapse
|
12
|
Bilinski CA, Marmiroli N, Miller JJ. Apomixis in Saccharomyces cerevisiae and other eukaryotic micro-organisms. Adv Microb Physiol 1990; 30:23-52. [PMID: 2700540 DOI: 10.1016/s0065-2911(08)60109-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C A Bilinski
- Research Department, Labatt Brewing Company Limited, London, Ontario, Canada
| | | | | |
Collapse
|
13
|
Vanoni M, Sollitti P, Goldenthal M, Marmur J. Structure and regulation of the multigene family controlling maltose fermentation in budding yeast. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1989; 37:281-322. [PMID: 2672110 DOI: 10.1016/s0079-6603(08)60701-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Barredo JL, Alvarez E, Cantoral JM, Diez B, Martin JF. Glucokinase-deficient mutant of Penicillium chrysogenum is derepressed in glucose catabolite regulation of both beta-galactosidase and penicillin biosynthesis. Antimicrob Agents Chemother 1988; 32:1061-7. [PMID: 3142341 PMCID: PMC172344 DOI: 10.1128/aac.32.7.1061] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
One glucokinase-deficient mutant (glk1) of Penicillium chrysogenum AS-P-78 was isolated after germ tube-emitting spores were mutated with nitrosoguanidine and selected for growth on lactose-containing medium in the presence of inhibitory concentrations of D-2-deoxyglucose (3 mM). Penicillin biosynthesis was greatly reduced (55%) in D-glucose-grown cultures of the parental strain, but this sugar had no repressive effect on the rate of penicillin biosynthesis in the mutant glk1. This mutant was deficient in ATP-dependent glucokinase and showed a greatly reduced uptake of D-glucose. The parental strain P. chrysogenum AS-P-78 showed in vitro ATP-dependent phosphorylating activities of D-glucose, D-2-deoxyglucose, and D-galactose. The glk1 mutant was deficient in the in vitro phosphorylation of D-glucose and D-2-deoxyglucose but retained a normal D-galactose-phosphorylating activity. D-Glucose repressed both beta-galactosidase and isopenicillin-N-synthase but not acyl coenzyme A:6-aminopenicillanic acid acyltransferase in the parental strain. The glucokinase-deficient mutant was simultaneously derepressed in carbon catabolite regulation of beta-galactosidase and isopenicillin-N-synthase, suggesting that a common regulatory mechanism is involved in carbon catabolite regulation of both sugar utilization and penicillin biosynthesis.
Collapse
Affiliation(s)
- J L Barredo
- Departamento de Ecología, Universidad de León, Spain
| | | | | | | | | |
Collapse
|
15
|
Constitutive expression of the maltose fermentative enzymes in Saccharomyces carlsbergensis is dependent upon the mutational activation of a nonessential homolog of MAL63. Mol Cell Biol 1988. [PMID: 2835655 DOI: 10.1128/mcb.8.3.1027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maltose fermentation in Saccharomyces carlsbergensis is dependent upon the MAL6 locus. This complex locus is composed of the MAL61 and MAL62 genes, which encode maltose permease and maltase, respectively, and a third gene, MAL63, which codes for a trans-acting positive regulatory product. In wild-type strains, expression of the MAL61 and MAL62 mRNAs and proteins is induced by maltose and induction is dependent upon the MAL63 gene. Mutants constitutively expressing the MAL61 and MAL62 gene products have been isolated in mal63 backgrounds, and the mutations which have been analyzed map to a fourth MAL6-linked gene, MAL64. Cloning and characterization of this new gene are described in this report. The results revealed that the MAL64-C alleles present in constitutive strains encode a trans-acting positive function required for constitutive expression of the MAL61 and MAL62 gene products. In inducible strains, the MAL64 gene is dispensable, as deletion of the gene had no effect on maltose fermentation or maltose-regulated induction. MAL64 encoded transcripts of 2.0 and 1.4 kilobase pairs. While both MAL64 mRNAs were constitutively expressed in constitutive strains, they were maltose inducible in wild-type strains and induction was dependent upon the MAL63 gene. The MAL63 and MAL64 genes are at least partially structurally homologous, suggesting that they control MAL61 and MAL62 transcript accumulation by similar mechanisms.
Collapse
|
16
|
Dubin RA, Charron MJ, Haut SR, Needleman RB, Michels CA. Constitutive expression of the maltose fermentative enzymes in Saccharomyces carlsbergensis is dependent upon the mutational activation of a nonessential homolog of MAL63. Mol Cell Biol 1988; 8:1027-35. [PMID: 2835655 PMCID: PMC363245 DOI: 10.1128/mcb.8.3.1027-1035.1988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Maltose fermentation in Saccharomyces carlsbergensis is dependent upon the MAL6 locus. This complex locus is composed of the MAL61 and MAL62 genes, which encode maltose permease and maltase, respectively, and a third gene, MAL63, which codes for a trans-acting positive regulatory product. In wild-type strains, expression of the MAL61 and MAL62 mRNAs and proteins is induced by maltose and induction is dependent upon the MAL63 gene. Mutants constitutively expressing the MAL61 and MAL62 gene products have been isolated in mal63 backgrounds, and the mutations which have been analyzed map to a fourth MAL6-linked gene, MAL64. Cloning and characterization of this new gene are described in this report. The results revealed that the MAL64-C alleles present in constitutive strains encode a trans-acting positive function required for constitutive expression of the MAL61 and MAL62 gene products. In inducible strains, the MAL64 gene is dispensable, as deletion of the gene had no effect on maltose fermentation or maltose-regulated induction. MAL64 encoded transcripts of 2.0 and 1.4 kilobase pairs. While both MAL64 mRNAs were constitutively expressed in constitutive strains, they were maltose inducible in wild-type strains and induction was dependent upon the MAL63 gene. The MAL63 and MAL64 genes are at least partially structurally homologous, suggesting that they control MAL61 and MAL62 transcript accumulation by similar mechanisms.
Collapse
Affiliation(s)
- R A Dubin
- Department of Biology, Queens College, New York
| | | | | | | | | |
Collapse
|
17
|
Entian KD, Meurer B, Köhler H, Mann KH, Mecke D. Studies on the regulation of enolases and compartmentation of cytosolic enzymes in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 923:214-21. [PMID: 3545298 DOI: 10.1016/0304-4165(87)90006-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three enolase isoenzymes can be distinguished after electrophoresis of yeast crude extracts. After adding glucose to derepressed cells, there was a coordinated increase in the activity of enolase I and decrease in enolase II activity. Enolase I was found to be repressed and enolase II simultaneously induced by glucose. The third enolase activity remained unchanged and was identified as that of a hybrid enzyme. Enolase catalyses the first common step of glycolysis and gluconeogenesis. Gluconeogenic enolase I shows substrate inhibition for 2-phosphoglycerate (glycolytic substrate) and glycolytic enolase II is substrate-inhibited by phosphoenolpyruvate (gluconeogenic substrate). The gluconeogenic reaction was inhibited up to 45% by physiological concentrations of fructose 1,6-bisphosphate. To test for cytological compartmentation, a method was developed for isolating microsomes. Effective enrichment of rough and smooth endoplasmic reticulum was demonstrated by electron microscopy. No evidence was obtained for any compartmentation of either enolases or other glycolytic enzymes.
Collapse
|
18
|
Identification of a second trans-acting gene controlling maltose fermentation in Saccharomyces carlsbergensis. Mol Cell Biol 1987. [PMID: 3537726 DOI: 10.1128/mcb.6.8.2757] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maltose fermentation in Saccharomyces spp. requires the presence of a dominant MAL locus. The MAL6 locus has been cloned and shown to encode the structural genes for maltose permease (MAL61), maltase (MAL62), and a positively acting regulatory gene (MAL63). Induction of the MAL61 and MAL62 gene products requires the presence of maltose and the MAL63 gene. Mutations within the MAL63 gene produce nonfermenting strains unable to induce the two structural gene products. Reversion of these mal63 nonfermenters to maltose fermenters nearly always leads to the constitutive expression of maltase and maltose permease, and constitutivity is always linked to MAL6. We demonstrated that for one such revertant, strain C2, constitutivity did not require the MAL63 gene, since deletion disruption of this gene did not affect the constitutive expression of the structural genes. In addition, constitutivity was trans acting. Deletion disruption of the MAL6-linked structural genes for maltase and maltose permease in this strain did not affect the constitutive expression of a second, unlinked maltase structural gene. We isolated new maltose-fermenting revertants of a nonfermenting strain which carried a deletion disruption of the MAL63 gene. All 16 revertants isolated expressed maltase constitutively. In one revertant studied in detail, strain R10, constitutive expression was demonstrated to be linked to MAL6, semidominant, trans acting, and residing outside the MAL63-MAL61-MAL62 genes. From these studies we propose the existence of a second trans-acting regulatory gene at the MAL6 locus. We call this new gene MAL64. We mapped the MAL64 gene 2.3 centimorgans to the left of MAL63. The role of the MAL64 gene product in maltose fermentation is discussed.
Collapse
|
19
|
Käppeli O. Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 1987; 28:181-209. [PMID: 3544735 DOI: 10.1016/s0065-2911(08)60239-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Cloning of hexokinase structural genes from Saccharomyces cerevisiae mutants with regulatory mutations responsible for glucose repression. Mol Cell Biol 1986. [PMID: 3018496 DOI: 10.1128/mcb.5.11.3035] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory hexokinase PII mutants isolated previously (K.-D. Entian and K.-U. Fröhlich, J. Bacteriol. 158:29-35, 1984) were characterized further. These mutants were defective in glucose repression. The mutation was thought to be in the hexokinase PII structural gene, but it did not affect the catalytic activity of the enzyme. Hence, a regulatory domain for glucose repression was postulated. For further understanding of this regulatory system, the mutationally altered hexokinase PII proteins were isolated from five mutants obtained independently and characterized by their catalytic constants and bisubstrate kinetics. None of these characteristics differed from those of the wild type, so the catalytic center of the mutant enzymes remained unchanged. The only noticeable difference observed was that the in vivo modified form of hexokinase PII, PIIM, which has been described recently (K.-D. Entian and E. Kopetzki, Eur. J. Biochem. 146:657-662, 1985), was absent from one of these mutants. It is possible that the PIIM modification is directly connected with the triggering of glucose repression. To establish with certainty that the mutation is located in the hexokinase PII structural gene, the genes of these mutants were isolated after transforming a hexokinaseless mutant strain and selecting for concomitant complementation of the nuclear function. Unlike hexokinase PII wild-type transformants, glucose repression was not restored in the hexokinase PII mutant transformants. In addition mating experiments with these transformants followed by tetrad analysis of sporulated diploids gave clear evidence of allelism to the hexokinase PII structural gene.
Collapse
|
21
|
Dubin RA, Perkins EL, Needleman RB, Michels CA. Identification of a second trans-acting gene controlling maltose fermentation in Saccharomyces carlsbergensis. Mol Cell Biol 1986; 6:2757-65. [PMID: 3537726 PMCID: PMC367842 DOI: 10.1128/mcb.6.8.2757-2765.1986] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Maltose fermentation in Saccharomyces spp. requires the presence of a dominant MAL locus. The MAL6 locus has been cloned and shown to encode the structural genes for maltose permease (MAL61), maltase (MAL62), and a positively acting regulatory gene (MAL63). Induction of the MAL61 and MAL62 gene products requires the presence of maltose and the MAL63 gene. Mutations within the MAL63 gene produce nonfermenting strains unable to induce the two structural gene products. Reversion of these mal63 nonfermenters to maltose fermenters nearly always leads to the constitutive expression of maltase and maltose permease, and constitutivity is always linked to MAL6. We demonstrated that for one such revertant, strain C2, constitutivity did not require the MAL63 gene, since deletion disruption of this gene did not affect the constitutive expression of the structural genes. In addition, constitutivity was trans acting. Deletion disruption of the MAL6-linked structural genes for maltase and maltose permease in this strain did not affect the constitutive expression of a second, unlinked maltase structural gene. We isolated new maltose-fermenting revertants of a nonfermenting strain which carried a deletion disruption of the MAL63 gene. All 16 revertants isolated expressed maltase constitutively. In one revertant studied in detail, strain R10, constitutive expression was demonstrated to be linked to MAL6, semidominant, trans acting, and residing outside the MAL63-MAL61-MAL62 genes. From these studies we propose the existence of a second trans-acting regulatory gene at the MAL6 locus. We call this new gene MAL64. We mapped the MAL64 gene 2.3 centimorgans to the left of MAL63. The role of the MAL64 gene product in maltose fermentation is discussed.
Collapse
|
22
|
Identification of two forms of the maltose transport system in Saccharomyces cerevisiae and their regulation by catabolite inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1985. [DOI: 10.1016/0005-2736(85)90128-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Dubin RA, Needleman RB, Gossett D, Michels CA. Identification of the structural gene encoding maltase within the MAL6 locus of Saccharomyces carlsbergensis. J Bacteriol 1985; 164:605-10. [PMID: 3902789 PMCID: PMC214295 DOI: 10.1128/jb.164.2.605-610.1985] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Saccharomyces yeast strains able to ferment maltose carry at least one member of a family of MAL loci: MAL1, MAL2, MAL3, MAL4, and MAL6. The MAL6 locus has been cloned and shown to be a cluster of at least three transcribed regions, all of which are required for maltose fermentation. Transcription at two of these genes, MAL61 and MAL62, is both induced by maltose and repressed by glucose. The third gene, MAL63, appears to encode a regulatory product controlling maltose fermentation. In this report, we demonstrate that the MAL62 gene is the structural gene coding for the enzyme maltase. Strain 332-5A is a maltose fermenter of the genotype MAL6 mal1(0). Integrative disruption of the MAL62 gene of the MAL6 locus produces a strain which is still capable of fermenting maltose, but which synthesizes a more heat-labile form of maltase than the undisrupted strain. Synthesis of this more heat-labile maltase was shown to be linked to the mal1(0) locus present in the strain. Integrative disruption of both the MAL62 gene and the MAL62-homologous sequence present at the mal1(0) locus produces a nonfermenter which is unable to synthesize maltase. These results identify MAL62 as the maltase structural gene.
Collapse
|
24
|
Entian KD, Hilberg F, Opitz H, Mecke D. Cloning of hexokinase structural genes from Saccharomyces cerevisiae mutants with regulatory mutations responsible for glucose repression. Mol Cell Biol 1985; 5:3035-40. [PMID: 3018496 PMCID: PMC369116 DOI: 10.1128/mcb.5.11.3035-3040.1985] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The regulatory hexokinase PII mutants isolated previously (K.-D. Entian and K.-U. Fröhlich, J. Bacteriol. 158:29-35, 1984) were characterized further. These mutants were defective in glucose repression. The mutation was thought to be in the hexokinase PII structural gene, but it did not affect the catalytic activity of the enzyme. Hence, a regulatory domain for glucose repression was postulated. For further understanding of this regulatory system, the mutationally altered hexokinase PII proteins were isolated from five mutants obtained independently and characterized by their catalytic constants and bisubstrate kinetics. None of these characteristics differed from those of the wild type, so the catalytic center of the mutant enzymes remained unchanged. The only noticeable difference observed was that the in vivo modified form of hexokinase PII, PIIM, which has been described recently (K.-D. Entian and E. Kopetzki, Eur. J. Biochem. 146:657-662, 1985), was absent from one of these mutants. It is possible that the PIIM modification is directly connected with the triggering of glucose repression. To establish with certainty that the mutation is located in the hexokinase PII structural gene, the genes of these mutants were isolated after transforming a hexokinaseless mutant strain and selecting for concomitant complementation of the nuclear function. Unlike hexokinase PII wild-type transformants, glucose repression was not restored in the hexokinase PII mutant transformants. In addition mating experiments with these transformants followed by tetrad analysis of sporulated diploids gave clear evidence of allelism to the hexokinase PII structural gene.
Collapse
|
25
|
Freer SN, Detroy RW. Regulation of β-1, 4-Glucosidase Expression by
Candida wickerhamii. Appl Environ Microbiol 1985; 50:152-9. [PMID: 16346833 PMCID: PMC238588 DOI: 10.1128/aem.50.1.152-159.1985] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida wickerhamii
NRRL Y-2563 expressed β-glucosidase activity (3 to 8 U/ml) constitutively when grown aerobically in complex medium containing either glycerol, succinate, xylose, galactose, or cellobiose as the carbon source. The addition of a high concentration of glucose (>75 g/liter) repressed β-glucosidase expression (<0.3 U/ml); however, this yeast did produce β-glucosidase when the initial glucose concentration was ≤50 g/liter. When grown aerobically in medium containing glucose plus the above-listed carbon sources, diauxic utilization of the carbon source was observed and the expression of β-glucosidase was glucose repressed. Surprisingly, glucose repression did not occur when the cells were grown anaerobically. When grown anaerobically in medium containing 100 g of glucose per liter,
C. wickerhamii
produced 6 to 9 U of enzyme per ml and did not demonstrate diauxic utilization of glucose-cellobiose mixtures. To our knowledge, this is the first report of apparent derepression of a glucose-repressed enzyme by anaerobiosis.
Collapse
Affiliation(s)
- S N Freer
- Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | |
Collapse
|
26
|
Entian KD, Kopetzki E, Fröhlich KU, Mecke D. Cloning of hexokinase isoenzyme PI from Saccharomyces cerevisiae: PI transformants confirm the unique role of hexokinase isoenzyme PII for glucose repression in yeasts. MOLECULAR & GENERAL GENETICS : MGG 1984; 198:50-4. [PMID: 6394965 DOI: 10.1007/bf00328699] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hexokinase isoenzyme PI was cloned using a gene pool obtained from a yeast strain having only one functional hexokinase, isoenzyme PI. The gene was characterized using 20 restriction enzymes and located within a region of 2.0 kbp. The PI plasmid strongly hybridized with the PII plasmids isolated previously (Fröhlich et al. 1984). Hence there was a close relationship between the two genes, one of which must have been derived from the other by gene duplication. In contrast, glucose repression was restored only in hexokinase PII transformants; PI transformants remained non-repressible. This observation provided additional evidence for the hypothesis of Entian (1980) that only hexokinase PII is necessary for glucose repression. Furthermore, glucose phosphorylating activity in PI transformants exceeded that of wild-type cells, giving clear evidence that the phosphorylating capacity is not important for glucose repression.
Collapse
|
27
|
Fröhlich KU, Entian KD, Mecke D. Cloning and restriction analysis of the hexokinase PII gene of the yeast Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1984; 194:144-8. [PMID: 6328210 DOI: 10.1007/bf00383509] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Carbon catabolite repression in yeast depends on catalytic active hexokinase isoenzyme PII ( Entian 1980a ). A yeast strain lacking hexokinase isoenzymes PI and PII was transformed, using a recombinant pool with inserts of yeast nuclear DNA up to 10 kbp in length. One hundred transformants for hexokinase were obtained. All selected plasmids coded for hexokinase isoenzyme PII, none for hexokinase isoenzyme PI, and carbon catabolite repression was restored in the transformants. Thirty-five independently isolated stable plasmids were investigated further. Analysis with the restriction enzyme EcoRI showed that these plasmids fell into two classes with different restriction behaviour. One representative of each class was amplified in Escherichia coli and transferred back into the yeast hexokinase-deficient strain with concomitant complementation of the nuclear mutation. The two types of insert were analysed in detail with 16 restriction enzymes, having 0-3 cleavage sites on transformant vector YRp7 . The plasmids differed from each other by the orientation of the yeast insert in the vector. After yeast transformation with fragments of one plasmid the hexokinase PII gene was localised within a region of 1.65 kbp.
Collapse
|
28
|
Guarente L, Lalonde B, Gifford P, Alani E. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 1984; 36:503-11. [PMID: 6319028 DOI: 10.1016/0092-8674(84)90243-5] [Citation(s) in RCA: 423] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The upstream activation site (UAS) of the yeast CYC1 gene is shown to contain two homologous subsites, UAS1 and UAS2. Each site, when placed upstream of the transcriptional initiation region of the yeast LEU2 gene, activates LEU2 transcription which is regulated by catabolite repression. UAS1 is responsible for most of the transcription under glucose repressed conditions, while UAS1 and UAS2 contribute equally to lactate derepressed transcription. A single point mutation in UAS2 increases its activity in glucose 10- to 20-fold. Several experiments indicate that UAS1 and UAS2 are regulated distinctly at the molecular level. First, UAS1 but not UAS2 is fully depressed in glucose by increasing the levels of intracellular heme. Second, trans-acting regulatory mutations, hap1-1 and hap2-1, selectively abolish the activity of UAS1 or UAS2. HAP1 appears to encode a protein that mediates catabolite repression of UAS1 by responding to intracellular heme levels.
Collapse
|
29
|
Borralho LM, Panek AD, Malamud DR, Sanders HK, Mattoon JR. In situ assay for 5-aminolevulinate dehydratase and application to the study of a catabolite repression-resistant Saccharomyces cerevisiae mutant. J Bacteriol 1983; 156:141-7. [PMID: 6352674 PMCID: PMC215062 DOI: 10.1128/jb.156.1.141-147.1983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To facilitate the study of the effects of carbon catabolite repression and mutations on 5-aminolevulinate dehydratase (EC 4.2.1.24) from Saccharomyces cerevisiae, a sensitive in situ assay was developed, using cells permeabilized by five cycles of freezing and thawing. Enzymatic activity was measured by colorimetric determination of porphobilinogen with a modified Ehrlich reagent. For normal strains, porphobilinogen production was linear for 15 min, and the reaction rate was directly proportional to the permeabilized cell concentration up to 20 mg (dry weight) per ml. The reaction exhibited Michaelis-Menten-type kinetics, and an apparent Km of 2.6 mM was obtained for 5-aminolevulinic acid. This value is only slightly higher than the value of 1.8 mM obtained for the enzyme assayed in cell extracts. The in situ assay was used to assess catabolite repression-dependent changes in 5-aminolevulinate dehydratase during batch culture on glucose medium. In normal S. cerevisiae cells, the enzyme is strongly repressed as long as glucose is present in the medium. In contrast, a strain bearing the hex2-3 mutation exhibits derepressed levels of enzyme activity during growth on glucose. Synthesis of cytochromes by this strain is also resistant to catabolite repression. Similar studies employing a strain containing the glc1 mutation, which enhances porphyrin accumulation, did not reveal any significant phenotypic change in catabolite regulation of 5-aminolevulinate dehydratase.
Collapse
|
30
|
A genetic and physical analysis of the MAL1 and MAL3 standard strains of Saccharomyces cerevisiae. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/bf00334818] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Federoff HJ, Eccleshall TR, Marmur J. Regulation of maltase synthesis in Saccharomyces carlsbergensis. J Bacteriol 1983; 154:1301-8. [PMID: 6343348 PMCID: PMC217604 DOI: 10.1128/jb.154.3.1301-1308.1983] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The induction of maltase (EC 3.2.1.20) by its inducer maltose in a strain of the yeast Saccharomyces carlsbergensis carrying a functional MAL locus is regulated at the level of transcription. Preceding the synthesis of increased levels of maltase is the de novo synthesis of maltase-specific RNA sequences. This was detected by determining the level of maltase mRNA by DNA-RNA hybridizations by using a maltase structural gene DNA sequence probe and by assaying functional maltase mRNA by in vitro RNA-directed synthesis of immunologically reactive maltase. Once maltase has accumulated, late in induction, further synthesis of the enzyme is inhibited, as reflected by reduced levels of the mRNA that encodes maltase.
Collapse
|
32
|
Entian KD, Dröll L, Mecke D. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae. Arch Microbiol 1983; 134:187-192. [PMID: 6311131 DOI: 10.1007/bf00407756] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Experimental conditions have been elaborated to test for reversibility of the malate dehydrogenase inactivation (E.C.1.1.1.37) after addition of glucose to derepressed yeast cells. Malate dehydrogenase inactivation was shown to be irreversible at all stages of inactivation. In contrast fructose-1,6-bisphosphatase inactivation (E.C.3.1.11) remained reversible for at least 30 min after addition of glucose. Rapid reversible inactivation of fructose-1,6-bisphosphatase and irreversible inactivation of malate dehydrogenase were additionally investigated in glycolytic block mutants. Normal inactivation kinetics were observed in mutants without catalytic activity of phosphoglucose isomerase (E.C.5.3.1.9), phosphofructokinase (E.C.2.7.1.11), triosephosphate isomerase (E.C.5.3.1.1) and phosphoglycerate kinase (E.C.2.7.2.3). Hence, neither type of inactivation depended on the accumulation of any glucose metabolite beyond glucose-6-phosphate. Under anaerobic conditions irreversible inactivation was completely abolished in glycolytic block mutants. In contrast rapid reversible inactivation was independent of energy provided by respiration or fermentation. Reversibility of fructose-1,6-bisphosphatase inactivation was tested under conditions which prevented irreversible malate dehydrogenase inactivation. In these experiments, fructose-1,6-bisphosphatase inactivation remained reversible for at least 120 min, whereas reversibility was normally restricted to about 30 min. This indicated a common mechanism between the irreversible part of fructose-1,6-bisphosphatase inactivation and irreversible malate dehydrogenase inactivation.
Collapse
|
33
|
Michels CA, Hahnenberger KM, Sylvestre Y. Pleiotropic mutations regulating resistance to glucose repression in Saccharomyces carlsbergensis are allelic to the structural gene for hexokinase B. J Bacteriol 1983; 153:574-8. [PMID: 6848488 PMCID: PMC217414 DOI: 10.1128/jb.153.1.574-578.1983] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Previously, we described a mutation glr1-1 in Saccharomyces carlsbergensis which pleiotropically relieves the synthesis of the following enzymes from glucose repression: maltase, galactokinase, alpha-galactosidase, NADH:cytochrome c reductase, and cytochrome c oxidase (C. A. Michels and A. Romanowski, J. Bacteriol, 143:674-679, 1980.) In this report, we demonstrate that glr1-1 and two other alleles, glr1-3 and glr1-16, are also insensitive to the glucose repression of invertase synthesis. Determinations of the levels of hexokinase activity and the rate of glucose transport in these mutants show that both are reduced as compared with the parent strain. Complementation tests and genetic analysis indicate that the glr1 mutations are allelic to HXK2, the structural gene for hexokinase B. The significance of this result is discussed with regard to the mechanism of glucose repression in S. carlsbergensis.
Collapse
|
34
|
Guarente L, Yocum RR, Gifford P. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc Natl Acad Sci U S A 1982; 79:7410-4. [PMID: 6760197 PMCID: PMC347349 DOI: 10.1073/pnas.79.23.7410] [Citation(s) in RCA: 460] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have identified the promoter region of the GAL10 gene (whose product is UDP-galactose epimerase) of Saccharomyces cerevisiae; this promoter mediates galactose induction of transcription in conjunction with the product of the GAL4 regulatory gene. This identification was achieved by excising a 365-base-pair fragment of GAL10 leader DNA with a GAL10 proximal endpoint greater than 100 base pairs upstream of the transcriptional start site and substituting it in place of the upstream activation site of the CYC1 (iso-1-cytochrome c) promoter [Guarente, L. & Ptashne, M. (1981) Proc. Natl. Acad. Sci. USA 78, 2199-2203]. The hybrid promoter is composed of DNA encoding CYC1 mRNA start sites and the GAL segment upstream of these sites. This promoter is regulated in a manner analogous to GAL10; i.e., it is induced by galactose and responds to mutations in the GAL4 and GAL80 regulatory loci. The activity of the hybrid promoter requires sequences in the region of the CYC1 mRNA start sites but does not require a precise spacing between these sequences and the GAL segment. The transposed GAL segment appears not to contain sequences that mediate glucose repression. Thus, the picture of the GAL10 promoter that emerges is one of an upstream activation site that responds to the GAL4 product plus galactose, and a region of transcription initiation that may contain sequences that mediate glucose repression. Experiments employing strains inducible (GAL80) or constitutive (gal80) for GAL10 expression indicate that an additional component of glucose repression is inducer exclusion.
Collapse
|
35
|
Entian KD, Zimmermann FK. New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. J Bacteriol 1982; 151:1123-8. [PMID: 7050076 PMCID: PMC220387 DOI: 10.1128/jb.151.3.1123-1128.1982] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A mutation causing resistance to carbon catabolite repression in gene HEX2, mutant allele hex2-3, causes an extreme sensitivity to maltose when in combination with the genes necessary for maltose metabolism. This provided a convenient system for the selective isolation of mutations in genes specifically required for maltose metabolism and other genes involved in general carbon catabolite repression. In addition to reversion of the hex2-3 allele, mutations in three other genes were detected. These genes were called CAT1, CAT3, and MUR1 and in a mutated form abolished maltose inhibition caused by mutant allele hex2-3. Mutant alleles cat1 and cat3 also restored normal repression in the presence of the hex2-3 allele. Segregants having only mutant alleles cat1 or cat3 were obtained by tetrad analysis. These segregants could not grow on nonfermentable carbon sources. Mutant alleles of gene CAT1 were allelic to a mutant allele cat1-1 previously isolated (Zimmermann et al., Mol. Gen. Genet. 151:95-103). Such mutants prevented derepression not only of the maltose catabolizing system, the selected property, but also of glyoxylate shunt and gluconeogenic enzymes. However, respiratory activities and invertase formation were not affected under derepressing conditions. cat3 mutants had the same phenotypic properties as cat1 mutants. This showed that carbon metabolism in yeast cells is under a very complex and ramified control of repressing and derepressing genes, which are interdependent.
Collapse
|
36
|
Böker-Schmitt E, Francisci S, Schweyen RJ. Mutations releasing mitochondrial biogenesis from glucose repression in Saccharomyces cerevisiae. J Bacteriol 1982; 151:303-10. [PMID: 7045078 PMCID: PMC220242 DOI: 10.1128/jb.151.1.303-310.1982] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mutants which exhibit a constitutive glucose-insensitive expression of respiratory activity were selected by use of a triphenyltetrazolium staining technique. These mutants lack carbon catabolite repression, as was demonstrated by measuring cytochromes, the activity of succinate cytochrome c reduction, total cellular respiration, mitochondrial protein, and DNA synthesis. High growth rates of mutant cells in glucose medium and normal fermentative CO2 production exclude the possibility that this carbon catabolite insensitivity of mitochondrial functions is merely due to a decreased utilization of glucose. Accordingly, the activities of the two cytoplasmic enzymes measured, maltase and malate synthase, were glucose repressible to the same extent in the mutants as in the wild type. The mutations are dominant and showed nuclear inheritance. The results are discussed in terms of carbon catabolite-regulated expression of genes involved in the biogenesis of mitochondria.
Collapse
|
37
|
Guerin M, Camougrand N, Velours G, Guerin B. New mutants resistant to glucose repression affected in the regulation of the NADH reoxidation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 124:457-63. [PMID: 7049695 DOI: 10.1111/j.1432-1033.1982.tb06615.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Spontaneous mutants resistant to vanadate, arsenate or thiophosphate were isolated from a haploid strain of Saccharomyces cerevisiae. These three anions have an inhibitory effect on some mitochondrial functions and at the level of glyceraldehyde 3-phosphate dehydrogenase, a glycolysis enzyme. All the selected mutants had the same phenotype: they were deficient in alcohol dehydrogenase I, the terminal enzyme of the glycolysis, and possessed a high content of cytochrome c oxidase, the terminal enzyme of the respiratory chain. Moreover, cytochrome c oxidase biosynthesis had become insensitive to the catabolite repression, while the biosynthesis of the other enzymes sensitive to this phenomenon were always inhibited by glucose. Metabolic effects of this pleiotropic mutation manifested themselves in the following ways. 1. Growth rate and final cell mass were enhanced, compared to the wild type, when cells were grown on glucose or on glycerol, but not on lactate or ethanol. 2. Growth under anaerobiosis was nil and mutants did not ferment. 3. Mitochondrial respiration of the mutant strains was identical to the wild type with succinate or 2-oxo-glutarate as substrate, and weak with ethanol. But with added NADH, respiration rate of the mutants was higher than that of the wild type and partially insensitive to antimycin, even when cells were grown in repression conditions. It is postulated that in mutants strains, NADH produced at the level of glyceraldehyde 3-phosphate dehydrogenase, failing to be reoxidized via alcohol dehydrogenase, could be reoxidized with a high turnover owing to the enhancement of the amount of cytochrome c oxidase. Since NADH reoxidation is partially insensitive to antimycin, a secondary pathway going from external NADH dehydrogenase to cytochrome c oxidase is suggested.
Collapse
|
38
|
Entian K, Mecke D. Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)68278-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Oliveira DE, Santos Neto AL, Panek AD. Permeabilization of yeast for in situ determination of alpha-glucosidase. Anal Biochem 1981; 113:188-92. [PMID: 7023275 DOI: 10.1016/0003-2697(81)90064-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
|
41
|
Michels CA, Romanowski A. Pleiotropic glucose repression-resistant mutation in Saccharomyces carlesbergensis. J Bacteriol 1980; 143:674-9. [PMID: 7204332 PMCID: PMC294338 DOI: 10.1128/jb.143.2.674-679.1980] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We describe the characterization of a mutation of the locus GLR1. This mutation allowed for (i) the glucose repression-insensitive synthesis ot the enzymes maltase, galactokinase, alpha-galactosidase, reduced nicotinamide adenine dinucleotide-cytochrome c reductase, and cytochrome c oxidase and (ii) growth on maltose in the presence of the gratuitous glucose repressor D-glucosamine. The glucosamine resistance cosegregated with the glucose-insensitive synthesis of the enzymes listed above. In addition, crosses between the glucosamine-resistant mutant and isogenic sensitive strains gave only tetrads containing two resistant and two sensitive spores. Thus, a single pleiotropic mutation is responsible for both phenotypes. We call the locus GLR1, for glucose regulation, and the glucose repression-insensitive mutation glr1-1.
Collapse
|
42
|
Entian KD, Zimmermann FK. Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1980; 177:345-50. [PMID: 6988675 DOI: 10.1007/bf00267449] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glycolytic parameters were determined in recessive yeast mutants with partial defects in carbon catabolite repression. Specific activities of pyruvate kinase and pyruvate decarboxylase in glucose grown cells of all mutant and wild type strains were 4--5 times higher than in ethanol grown cells. Mutants of gene HEX1 had a reduced hexose phosphorylating activity on all media whereas those of gene HEX2 had elevated levels but only in glucose grown cells. Mutants of gene CAT80 were normal in this respect. All other glycolytic enzymes were normal in all mutants. This was also true for glycolytic intermediates. Only hex1-mutants showed a reduced fermentation of repressing sugars. The three genes appear to be involved in catabolite repression of several but not of all repressible enzymes. Even though all three types of mutants show a limited overlap in their effects on certain enzymes, they still are distinctly different in their action spectra. Carbon catabolite repression apparently does not depend on the sole accumulation of glycolytic intermediates. The activity of the products of the three genes HEX1, HEX2 and CAT80 are required directly or indirectly for triggering carbon catabolite repression. Even a small segment of carbon catabolite repression is controlled by several genes with regulatory functions indicating that the entire regulatory circuit is highly complex.
Collapse
|
43
|
Schwelitz FD, Cisneros PL, Jagielo JA. The effect of glucose on the biochemical and ultrastructural characteristics of developing Euglena chloroplasts. THE JOURNAL OF PROTOZOOLOGY 1978; 25:398-403. [PMID: 102787 DOI: 10.1111/j.1550-7408.1978.tb03914.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chloroplast development is inhibited in Euglena gracilis strain Z, when greened in a medium containing glucose. This inhibition is reflected not only in the pattern of chlorophyll accumulation but also in the chloroplast ultrastructure and activities of the 2 light reactions of photosynthesis. Chloroplasts of cells greening in the presence of glucose are delayed in developing certain structures. Photosystem I activity develops at about the same rate as that of the controls during the first 48 h of greening, after which it develops at a slower rate. The rate of development of photosystem II activity in cells greening in a glucose medium lags considerably behing that of the controls until the later hours of greening. There are similarities between glucose inhibition and chloramphenicol inhibition of chloroplast development. Glucose may inhibit a step in chloroplast development ultimately controlled by the chloroplast genome.
Collapse
|
44
|
Ciriacy M. A yeast mutant with glucose-resistant formation of mitochondrial enzymes. MOLECULAR & GENERAL GENETICS : MGG 1978; 159:329-35. [PMID: 204862 DOI: 10.1007/bf00268270] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yeast mutants with glucose-insensitive formation of mitochondrial enzymes were isolated starting with a strain completely lacking alcohol dehydrogenase activity. The mutations could uniquely be attributed to a single nuclear gene, designated CCR80. They were largely dominant. Glucose-resistant enzyme formation was most prominent with regard to mitochondrial enzymes succinate dehydrogenase and NADH: cytochrome c oxidoreductase. The effect of CCR80r mutations was rather small but significant on the gluconeogenetic enzymes isocitrate lyase, malate synthase and fructose-1,6-bisphosphatase and on invertase synthesis. The repressive effect of maltose in CCR80r mutants was also reduced showing that glucose-resistance is not caused by a mere hexose uptake defect. This regulatory disorders were not accompanied by reduced levels of glycolytic enzymes or drastically altered levels of glycolytic intermediates. Aerobic fermentation of glucose was almost completely inhibited in the mutants; anaerobic glucose degradation was reduced but not completely abolished. Therefore, the mutants appear to be altered in the regulation of glycolysis. A largely glucose-resistant synthesis of respiratory enzymes is obviously a corollary of this alteration.
Collapse
|
45
|
Furst A, Michels CA. An evaluation of D-glucosamine as a gratuitous catabolite repressor of Saccharomyces carlsbergensis. MOLECULAR & GENERAL GENETICS : MGG 1977; 155:309-14. [PMID: 202860 DOI: 10.1007/bf00272810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucose represses mitochondrial biogenesis and the fermentation of maltose, galactose and sucrose in yeast. We have analyzed the effect of D-glucosamine on these functions in order to determine if it can produce a similar repression. It was found that glucosamine represses the respiration rate (QO2) but more rapidly than glucose and to a final level slightly higher than in glucose-treated cells. Derepression of the respiration rate following either glucose or glucosamine repression was similar. A two hour lag was followed by a linear increase in QO2 to the derepressed level. Both glucose and glucosamine repressed the level of cytochrome oxidase to the same level. Glucosamine was also found to repress maltose and galactose fermentation but not sucrose fermentation. The derepression of maltase synthesis was inhibited by glucosamine. The constitutive synthesis of maltase was repressed by the addition of glucosamine. Glucosamine was judged to produce a repressed state similar to glucose repression in many respects.
Collapse
|
46
|
Sorrentino AP, Zorzópulos J, Terenzi HF. Inducible alpha-glucosidase of Mucor rouxii. Effects of dimorphism on the development of the wall-bound activity. Arch Biochem Biophys 1977; 180:232-8. [PMID: 879786 DOI: 10.1016/0003-9861(77)90033-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Zimmermann FK, Kaufmann I, Rasenberger H, Haubetamann P. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process. MOLECULAR & GENERAL GENETICS : MGG 1977; 151:95-103. [PMID: 194140 DOI: 10.1007/bf00446918] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A recessive mutant cat1-1, wild type CAT1, was isolated in Saccharomyces cerevisiae. It did not grow on glycerol nor ferment maltose even with fully constitutive, glucose resistant maltase synthesis. It prevented derepression of isocitrate lyase, fructose-1,6-diphosphatase and maltase in a constitutive but glucose sensitive maltase mutant. Derepression of malate dehydrogenase was retarded and slowed down. Sucrose fermentation and invertase synthesis was not affected. Respiration was normal. From this mutant, two reverse mutants were isolated. One was recessive, acted as a suppressor of cat1-1 and was called cat2-1, wild type CAT2; the other was dominant and allelic to CAT1 and designated CAT1-2d and cat2-1 caused an earlier derepression of enzymes studied but did not affect the repressed nor the fully derepressed enzyme levels. CAT1-2d and cat2-1 did not show any additive effects. It is proposed that carbon catabolite repression acts in two ways. The direct way represses synthesis of sensitive enzymes, during growth on repressing carbon sources whereas the other way regulates the derepression process. After alleviation of carbon catabolite repression, gene CAT1 becomes active and prevents the activity of CAT2 which functions as a repressor of sensitive enzyme synthesis. The CAT2 gene product has to be eliminated before derepression can actually occur. The time required for this causes a delay in derepression after the depletion of a repressible carbon source. cat1-1 cannot block CAT2 activity and therefore, derepression is blocked. cat2-1 is inactive and derepression can start after carbon catabolite repression has ceased. CAT1-2d permanently active as a repressor of CAT2 and eliminates the delay in derepression.
Collapse
|
48
|
Venkov PV, Milchev GI, Hadjiolov AA. Rifampin susceptibility of ribonucleic acid synthesis in a fragile Saccharomyces cerevisiae mutant. Antimicrob Agents Chemother 1975; 8:627-32. [PMID: 1108780 PMCID: PMC429438 DOI: 10.1128/aac.8.6.627] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ribonucleic acid (RNA) synthesis in the sorbitol-dependent, fragile yeast mutant VY1160 (Venkov et al., 1974) is rapidly inhibited by rifampin. The growth of the mutant cells and protein synthesis are more slowly affected by the antibiotic, apparently as secondary phenomena. Lower doses of rifampin (50 to 100 mug/ml) preferentially inhibit ribosomal RNA synthesis in comparison to that of messenger RNA and transfer RNA. Transcription and translation of messenger RNA continues in the presence of low doses of rifampin, as evidenced by the unimpaired induction of alpha-glucosidase. Partially purified RNA polymerase II from this mutant, in contrast to that from the parental strain, is strongly inhibited by low concentrations (1 mug/ml) of rifampin, whereas RNA polymerase I from the two strains is similar in behavior. The mutant may be useful for the study of regulatory mechanisms of transcription in eukaryotes.
Collapse
|
49
|
|
50
|
|