1
|
White RG, Barton DA. The cytoskeleton in plasmodesmata: a role in intercellular transport? JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5249-66. [PMID: 21862484 DOI: 10.1093/jxb/err227] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin and myosin are components of the plant cell cytoskeleton that extend from cell to cell through plasmodesmata (PD), but it is unclear how they are organized within the cytoplasmic sleeve or how they might behave as regulatory elements. Early work used antibodies to locate actin and myosin to PD, at the electron microscope level, or to pitfields (aggregations of PD in the cell wall), using immunofluorescence techniques. More recently, a green fluorescent protein (GFP)-tagged plant myosin VIII was located specifically at PD-rich pitfields in cell walls. Application of actin or myosin disrupters may modify the conformation of PD and alter rates of cell-cell transport, providing evidence for a role in regulating PD permeability. Intriguingly, there is now evidence of differentiation between types of PD, some of which open in response to both actin and myosin disrupters, and others which are unaffected by actin disrupters or which close in response to myosin inhibitors. Viruses also interact with elements of the cytoskeleton for both intracellular and intercellular transport. The precise function of the cytoskeleton in PD may change during cell development, and may not be identical in all tissue types, or even in all PD within a single cell. Nevertheless, it is likely that actin- and myosin-associated proteins play a key role in regulating cell-cell transport, by interacting with cargo and loading it into PD, and may underlie the capacity for one-way transport across particular cell and tissue boundaries.
Collapse
Affiliation(s)
- Rosemary G White
- Commonwealth Scientific and Industrial Research Organisation, Division of Plant Industry, Canberra, ACT 2601, Australia.
| | | |
Collapse
|
2
|
Colás C, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JÁ. Changes in Actin Distribution of Ram Spermatozoa under Different Experimental Conditions. Reprod Domest Anim 2009; 44:221-7. [DOI: 10.1111/j.1439-0531.2007.01033.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Bertola LD, Ott EB, Griepsma S, Vonk FJ, Bagowski CP. Developmental expression of the alpha-skeletal actin gene. BMC Evol Biol 2008; 8:166. [PMID: 18518953 PMCID: PMC2443135 DOI: 10.1186/1471-2148-8-166] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/02/2008] [Indexed: 01/01/2023] Open
Abstract
Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish). Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.
Collapse
Affiliation(s)
- Laura D Bertola
- Institute of Biology, Department of Integrative Zoology University of Leiden, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
4
|
Bessonov AN, Schagina LV, Takemoto JY, Gurnev PA, Kuznetsova IM, Turoverov KK, Malev VV. Actin and amphiphilic polymers influence on channel formation by Syringomycin E in lipid bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:382-92. [PMID: 16470378 DOI: 10.1007/s00249-006-0045-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/16/2005] [Accepted: 01/06/2006] [Indexed: 10/25/2022]
Abstract
The bacterial lipodepsipeptide syringomycin E (SRE) added to one (cis-) side of bilayer lipid membrane forms voltage dependent ion channels. It was found that G-actin increased the SRE-induced membrane conductance due to formation of additional SRE-channels only in the case when actin and SRE were applied to opposite sides of a lipid bilayer. The time course of conductance relaxation depended on the sequence of SRE and actin addition, suggesting that actin binds to the lipid bilayer and binding is a limiting step for SRE-channel formation. G-actin adsorption on the membrane was irreversible. The amphiphilic polymers, Konig's polyanion (KP) and poly(Lys, Trp) (PLT) produced the actin-like effect. It was shown that the increase in the SRE membrane activity was due to hydrophobic interactions between the adsorbing molecules and membrane. Nevertheless, hydrophobic interactions were not sufficient for the increase of SRE channel-forming activity. The dependence of the number of SRE-channels on the concentration of adsorbing species gave an S-shaped curve indicating cooperative adsorption of the species. Kinetic analysis of SRE-channel number growth led to the conclusion that the actin, KP, and PLT molecules form aggregates (domains) on the trans-monolayer. It is suggested that an excess of SRE-channel formation occurs within the regions of the cis-monolayer adjacent to the domains of the adsorbed molecules, which increase the effective concentration of SRE-channel precursors.
Collapse
Affiliation(s)
- Andrey N Bessonov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | | | | | | | | | | | | |
Collapse
|
5
|
Le Bihan T, Pelletier D, Tancrède P, Heppell B, Chauvet JP, Gicquaud CR. Effect of the polar headgroup of phospholipids on their interaction with actin. J Colloid Interface Sci 2005; 288:88-96. [PMID: 15927566 DOI: 10.1016/j.jcis.2005.02.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/23/2005] [Accepted: 02/26/2005] [Indexed: 10/25/2022]
Abstract
It is generally admitted that actin filaments are anchored to a membrane by membranar actin-binding-proteins. However, we found that actin may also interact directly with membrane phospholipids. The actin-phospholipid complex has been investigated at the air-water interface using a film balance technique. In order to probe the effect of the phospholipid headgroup on the actin-phospholipid interaction, we focus mainly on phospholipids that have the same acyl chain length but different headgroups. For all the phospholipids, the apparent area per molecule (the total surface divided by the number of lipid molecules) increases after the injection of the protein into the subphase, which suggests an intercalation of actin between the phospholipid molecules. This effect seems to be more important for DMPE and DMPS than for DMPG, suggesting that the headgroup plays an important role in this intercalation. The critical surface pressure associated to the liquid expanded-liquid condensed (LE-LC) phospholipid transition increases with the concentration of G-actin and thus suggests that G-actin acts as an impurity, simply competing as a surfactant at the air-water interface. On the other hand, F-actin affects the LE to LC transition of phospholipids differently. In this case, the LE to LC transition is broader and F-actin slightly decreases the critical surface pressure, which suggests that electrostatic interactions are involved.
Collapse
Affiliation(s)
- T Le Bihan
- MDS-Proteomics, 251 Attwell Drive, Toronto, Ontario, Canada M9W 7H4
| | | | | | | | | | | |
Collapse
|
6
|
Wang H, Schultz R, Hong J, Cundiff DL, Jiang K, Soff GA. Cell Surface-Dependent Generation of Angiostatin4.5. Cancer Res 2004; 64:162-8. [PMID: 14729620 DOI: 10.1158/0008-5472.can-03-1862] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiostatin4.5 (AS4.5) is a naturally occurring human angiostatin isoform, consisting of plasminogen kringles 1-4 plus 85% of kringle 5 (amino acids Lys78 to Arg529). Prior studies indicate that plasminogen is converted to AS4.5 in a two-step reaction. First, plasminogen is activated to plasmin. Then plasmin undergoes autoproteolysis within the inner loop of kringle 5, which can be induced by a free sulfhydryl donor or an alkaline pH. We now demonstrate that plasminogen can be converted to AS4.5 in a cell membrane-dependent reaction. Actin was shown previously to be a surface receptor for plasmin(ogen). We now show that beta-actin is present on the extracellular membranes of cancer cells (PC-3, HT1080, and MDA-MB231), and beta-actin can mediate plasmin binding to the cell surface and autoproteolysis to AS4.5. In the presence of beta-actin, no small molecule-free sulfhydryl donor is needed for generation of AS4.5. Antibodies to actin reduced membrane-dependent generation of AS4.5 by 70%. In a cell-free system, addition of actin to in vitro-generated plasmin resulted in stoichiometric conversion to AS4.5. Annexin II and alpha-enolase have been reported to be plasminogen receptors, but we did not demonstrate a role for these proteins in conversion of plasminogen to AS4.5. Our data indicate that membrane-associated beta-actin, documented previously as a plasminogen receptor, is a key cell membrane receptor capable of mediating conversion of plasmin to AS4.5. This conversion may serve an important role in regulating tumor angiogenesis, invasion, and metastasis, and surface beta-actin may also serve as a prognostic marker to predict tumor behavior.
Collapse
Affiliation(s)
- Hao Wang
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Hematology/Oncology, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
7
|
Gicquaud C, Chauvet JP, Tancrède P. Surface film pressure of actin: interactions with lipids in mixed monolayers. Biochem Biophys Res Commun 2003; 308:995-1000. [PMID: 12927818 DOI: 10.1016/s0006-291x(03)01505-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The interactions of actin with neutral lipid films made from DLPC, and with positively charged films built from DLPC and stearylamine (SA), have been characterized by the monolayer technique. Injection of actin underneath an expanded lipid film produces an increase in the surface pressure that is consistent with a penetration of the lipid molecules by actin. This adsorption of actin to the lipid is more pronounced either with positively charged films or with Mg(2+) present in the sub-phase, suggesting that the mechanism involves an electrostatic attraction. During compression, the actin molecules are squeezed out into the sub-phase, carrying along some lipid molecules; this suggests a strong affinity of the lipids for actin. An analysis of the dilational modulus shows that when actin is found as monomers at the interface, the mixed actin-lipid film undergoes three phase changes upon compression. On the other hand, when actin is polymerized at the interface, the actin and the lipid form a rigid film for which the compressibility is mostly dominated by actin.
Collapse
Affiliation(s)
- C Gicquaud
- Département de Chimie Biologie, Université du Québec à Trois-Rivières, CP 500, Trois-Rivières, Qc, Canada G9A 5H7.
| | | | | |
Collapse
|
8
|
Lange K. Role of microvillar cell surfaces in the regulation of glucose uptake and organization of energy metabolism. Am J Physiol Cell Physiol 2002; 282:C1-26. [PMID: 11742794 DOI: 10.1152/ajpcell.2002.282.1.c1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental evidence suggesting a type of glucose uptake regulation prevailing in resting and differentiated cells was surveyed. This type of regulation is characterized by transport-limited glucose metabolism and depends on segregation of glucose transporters on microvilli of differentiated or resting cells. Earlier studies on glucose transport regulation and a recently presented general concept of influx regulation for ions and metabolic substrates via microvillar structures provide the basic framework for this theory. According to this concept, glucose uptake via transporters on microvilli is regulated by changes in the structural organization of the microfilament bundle, which is acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. Both microvilli formation and the switch of glucose metabolism from "metabolic regulation" to "transport limitation" occur during differentiation. The formation of microvillar cell surfaces creates the essential preconditions to establish the characteristic functions of specialized tissue cells including the coordination between glycolysis and oxidative phosphorylation, regulation of cellular functions by external signals, and Ca(2+) signaling. The proposed concept integrates various aspects of glucose uptake regulation into a ubiquitous cellular mechanism involved in regulation of transmembrane ion and substrate fluxes.
Collapse
|
9
|
Lange K, Gartzke J. Microvillar cell surface as a natural defense system against xenobiotics: a new interpretation of multidrug resistance. Am J Physiol Cell Physiol 2001; 281:C369-85. [PMID: 11443036 DOI: 10.1152/ajpcell.2001.281.2.c369] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phenomenon of multidrug resistance (MDR) is reinterpreted on the basis of the recently proposed concept of microvillar signaling. According to this notion, substrate and ion fluxes across the surface of differentiated cells occur via transporters and ion channels that reside in membrane domains at the tips of microvilli (MV). The flux rates are regulated by the actin-based cytoskeletal core structure of MV, acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. The expression of this diffusion barrier system is a novel aspect of cell differentiation and represents a functional component of the natural defense system of epithelial cells against environmental hazardous ions and lipophilic compounds. Because of the specific organization of epithelial Ca(2+) signaling and the secretion, lipophilic compounds associated with the plasma membrane are transferred from the basal to the apical cell surface by a lipid flow mechanism. Drug release from the apical pole occurs by either direct secretion from the cell surface or metabolization by the microvillar cytochrome P-450 system and efflux of the metabolites and conjugation products through the large multifunctional anion channels localized in apical MV. The natural microvillar defense system also provides a mechanistic basis of acquired MDR in tumor cells. The microvillar surface organization is lost in rapidly growing cells such as tumor or embryonic cells but is restored during exposure of tumor cells to cytotoxins by induction of a prolonged G(0)/G(1) resting phase.
Collapse
Affiliation(s)
- K Lange
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, D-10317 Berlin, Germany
| | | |
Collapse
|
10
|
Gedde MM, Yang E, Huestis WH. Resolution of the paradox of red cell shape changes in low and high pH. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1417:246-53. [PMID: 10082800 DOI: 10.1016/s0005-2736(99)00007-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular basis of cell shape regulation in acidic pH was investigated in human erythrocytes. Intact erythrocytes maintain normal shape in the cell pH range 6.3-7.9, but invaginate at lower pH values. However, consistent with predicted pH-dependent changes in the erythrocyte membrane skeleton, isolated erythrocyte membranes evaginate in acidic pH. Moreover, intact cells evaginate at pH greater than 7.9, but isolated membranes invaginate in this condition. Labeling with the hydrophobic, photoactivatable probe 5-[125I]iodonaphthyl-1-azide demonstrated pH-dependent hydrophobic insertion of an amphitropic protein into membranes of intact cells but not into isolated membranes. Based on molecular weight and on reconstitution experiments using stripped inside-out vesicles, the most likely candidate for the variably labeled protein is glyceraldehyde-3-phosphate dehydrogenase. Resealing of isolated membranes reconstituted both the shape changes and the hydrophobic labeling profile seen in intact cells. This observation appears to resolve the paradox of the contradictory pH dependence of shape changes of intact cells and isolated membranes. In intact erythrocytes, the demonstrated protein-membrane interaction would oppose pH-dependent shape effects of the spectrin membrane skeleton, stabilizing cell shape in moderately abnormal pH. Stabilization of erythrocyte shape in moderately acidic pH may prevent inappropriate red cell destruction in the spleen.
Collapse
Affiliation(s)
- M M Gedde
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
11
|
Bouchard M, Pare C, Dutasta JP, Chauvet JP, Gicquaud C, Auger M. Interaction between G-actin and various types of liposomes: A 19F, 31P, and 2H nuclear magnetic resonance study. Biochemistry 1998; 37:3149-55. [PMID: 9485468 DOI: 10.1021/bi971892r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have investigated in the present study the interaction between G-actin and various types of liposomes, zwitterionic, positively charged, and negatively charged. To investigate at the molecular level the conformation of actin in the presence of lipids, we have selectively attached a fluorinated probe, 3-bromo-1,1,1-trifluoropropanone, to the actin cysteine residues 10, 285, and 374 and used high-resolution 19F nuclear magnetic resonance spectroscopy to investigate the probe resonances. The results indicate a change in the mobility of the 19F labels when G-actin is in the presence of positively charged liposomes made of DMPC and stearylamine and in the presence of DMPG, a negatively charged lipid. No conformational change was observed in the actin molecule in the presence of neutral liposomes. Electron micrographs of these systems reveal the formation of paracrystalline arrays of actin filaments at the surface of the positively charged liposomes, while no evidence of actin polymerization or paracrystallization was observed in the presence of DMPG. The interaction between actin and the lipid polar headgroup has also been investigated using solid-state phosphorus and deuterium NMR. The results indicate no evidence of interaction between actin and zwitterionic liposomes but show an interaction between the positively charged liposomes and a negative charge on the actin molecules. Interestingly, the negatively charged liposomes interact with a positive charge, which is most likely associated with the three residues (His-Arg-Lys) preceding the cysteine 374 residue in the protein.
Collapse
Affiliation(s)
- M Bouchard
- Departement de Chimie, CERSIM, Universite Laval, Quebec, Quebec, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
12
|
Han X, Li G, Lin K. Interactions between smooth muscle alpha-actinin and lipid bilayers. Biochemistry 1997; 36:10364-71. [PMID: 9265616 DOI: 10.1021/bi962929v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
alpha-Actinin has been proposed to be the actin-plasma membrane linker. This assumption is based on the discovery of direct interaction of alpha-actinin with two specific lipids, diacylglycerol and palmitic acid [Burn, P. (1988) Trends Biochem. Sci. 13, 79-83]. In our study, the binding of alpha-actinin with vesicles containing negatively charged phospholipids was measured by the method of 90 degrees light-scattering. Our results show that alpha-actinin is able to bind membranes containing negatively charged phospholipids, but not to bind membranes composed of neutral lipids only. Diacylglycerol and palmitic acid, on the other hand, have little effect on the binding of alpha-actinin to lipid vesicles. Analysis of binding isotherms in terms of a membrane binding model gave apparent dissociation constants which varied between 0.2 and 3 microM over a range of 5-20 mol % negatively charged phospholipid. Comparing the kinetics of alpha-chymotrypsin digestion of alpha-actinin in solution to those of vesicle-bound alpha-actinin, it can be seen that the cleavage site at the junction between the C-terminal and the central rod domain of alpha-actinin and another cleavage site on the C-terminal domain can be most effectively protected by its membrane binding. Analysis of the amide I and II regions of Fourier-transform infrared spectra of alpha-actinin revealed that the association of alpha-actinin with negatively charged phospholipid vesicles resulted in some perturbation of the protein secondary structure. Monolayers containing negatively charged phospholipid were layered and incubated on the surface of a polymerization solution of actin and alpha-actinin, and observed with an electron microscope. The results show that the bundle structure of actin filaments can be formed if diacylglycerol and palmitic acid are present in lipid layers.
Collapse
Affiliation(s)
- X Han
- Department of Biophysics, Beijing Medical University, Beijing 100083, China
| | | | | |
Collapse
|
13
|
Abstract
Altered external pH transforms human erythrocytes from discocytes to stomatocytes (low pH) or echinocytes (high pH). The mechanism of this transformation is unknown. The preceding companion study (Gedde and Huestis) demonstrated that these shape changes are not mediated by changes in membrane potential, as has been reported. The aim of this study was to identify the physiological properties that mediate this shape change. Red cells were placed in a wide range of physiological states by manipulation of buffer pH, chloride concentration, and osmolality. Morphology and four potential predictor properties (cell pH, membrane potential, cell water, and cell chloride concentration) were assayed. Analysis of the data set by stratification and nonlinear multivariate modeling showed that change in neither cell water nor cell chloride altered the morphology of normal pH cells. In contrast, change in cell pH caused shape change in normal-range membrane potential and cell water cells. The results show that change in cytoplasmic pH is both necessary and sufficient for the shape changes of human erythrocytes equilibrated in altered pH environments.
Collapse
Affiliation(s)
- M M Gedde
- Department of Chemistry, Stanford University, California 94305, USA
| | | | | |
Collapse
|
14
|
de las Heras MA, Valcarcel A, Pérez LJ, Moses DF. Actin localization in ram spermatozoa: effect of freezing/thawing, capacitation and calcium ionophore-induced acrosomal exocytosis. Tissue Cell 1997; 29:47-53. [PMID: 9061977 DOI: 10.1016/s0040-8166(97)80071-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have analyzed, by immunofluorescence, the localization of actin in ram spermatozoa, its colocalization with the actin-binding protein, gelsolin, and the effect of freeze/thawing, in vitro capacitation, and induced acrosomal exocytosis on its distribution. The monoclonal anti-actin and anti-gelsolin antibodies used recognized single bands at 43,000 and 90,000 kDa, respectively. In all spermatozoa, intense actin staining was observed in the whole length of the flagellum and, depending on the protocol used, in the neck and postacrosomal region of the head. Comparison of three staining methods, together with the use of NBD-phallacidin, allowed us to characterize ram sperm actin as a monomeric, intracellular, membrane-associated protein. Gelsolin was also present in ram spermatozoa and precisely colocalized with actin. Processes involving alterations in membrane structure such as freezing/thawing, in vitro capacitation, and calcium ionophore-induced acrosomal exocytosis provoked changes in the exposure of actin to the antibody. This strongly suggests a physical association of this protein to the plasma membrane, most likely by its intracellular side. The possible role of actin in sperm function is discussed.
Collapse
Affiliation(s)
- M A de las Heras
- Centro de Investigaciones Reproductivas Pérez Companc, Fundación Margarita Pérez Companc, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
15
|
Gicquaud C, Wong P. Mechanism of interaction between actin and membrane lipids: a pressure-tuning infrared spectroscopy study. Biochem J 1994; 303 ( Pt 3):769-74. [PMID: 7980445 PMCID: PMC1137613 DOI: 10.1042/bj3030769] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using pressure-tuning Fourier transform infrared spectroscopy to study an in vitro system consisting of actin and distearoyl-phosphatidylcholine (DSPC) liposomes, we have determined the mechanism of interaction between actin and membrane lipids. This interaction results in a significant conformational change in actin molecules. Analysis of the amide I band of actin shows an increase in the beta-sheets to alpha-helix ratio, in random turns, and in interactions between actin monomers. In the absence of lipids, the actin molecules are denatured by pressures of 8 x 10(8) Pa and more, which give rise to a random organization of the peptide chain. However, in the presence of DSPC liposomes, pressure greater than 2 x 10(8) Pa induces a change in actin conformation, which is dominated by strongly interacting beta-sheets. As the spectra of the lipid molecules are not changed by the presence of actin, the organization of the lipid molecules in the bilayer is not affected by the protein. It is concluded from these results that this interaction of actin with membrane lipids involves very few lipid molecules. These lipid molecules may interact with actin at a few specific sites on the protein.
Collapse
Affiliation(s)
- C Gicquaud
- Département de Chimie Biologie, Université de Québec à Trois Rivières, Canada
| | | |
Collapse
|
16
|
Samuelsson SJ, Luther PW, Pumplin DW, Bloch RJ. Structures linking microfilament bundles to the membrane at focal contacts. J Cell Biol 1993; 122:485-96. [PMID: 7686554 PMCID: PMC2119644 DOI: 10.1083/jcb.122.2.485] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We used quick-freeze, deep-etch, rotary replication and immunogold cytochemistry to identify a new structure at focal contacts. In Xenopus fibroblasts, elongated aggregates of particles project from the membrane to contact bundles of actin microfilaments. Before terminating, a single bundle of microfilaments interacts with several aggregates that appear intermittently over a distance of several microns. Aggregates are enriched in proteins believed to mediate actin-membrane interactions at focal contacts, including beta 1-integrin, vinculin, and talin, but they appear to contain less alpha-actinin and filamin. We also identified a second, smaller class of aggregates of membrane particles that contained beta 1-integrin but not vinculin or talin and that were not associated with actin microfilaments. Our results indicate that vinculin, talin, and beta 1-integrin are assembled into distinctive structures that mediate multiple lateral interactions between microfilaments and the membrane at focal contacts.
Collapse
Affiliation(s)
- S J Samuelsson
- Department of Physiology, University of Maryland School of Medicine, Baltimore 21201
| | | | | | | |
Collapse
|
17
|
Kovacs AM, Zimmer WE. Molecular cloning and expression of the chicken smooth muscle gamma-actin mRNA. CELL MOTILITY AND THE CYTOSKELETON 1993; 24:67-81. [PMID: 8319268 DOI: 10.1002/cm.970240108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have investigated the expression of chicken smooth muscle gamma-actin mRNA by isolation and characterization of cDNAs representing this actin isoform and utilizing the cDNA to probe RNA from adult and developing cells. Nucleotide sequence elucidated from an apparent full length smooth muscle gamma-actin cDNA revealed that it contained 94 bp of 5' non-translated sequence, an open reading frame of 1131 bp, and 97 bp of 3' non-translated sequence. Within the 376 amino acid sequence deduced from the chicken cDNA were diagnostic amino acids at the NH2- and COOH-terminal regions which provided unequivocal identification of the gamma-enteric smooth muscle actin isoform. In addition, the chicken gamma-enteric actin deduced from our cDNA clones was found to differ from the sequence reported in earlier protein studies [J. Vandekerckhove and K. Weber, FEBS Lett. 102:219, 1979] by containing a proline rather than a glutamine at position 359 of the protein, indicating that the avian gamma-enteric actin isoform is identical to its mammalian counterpart. Comparison of the 5' and 3' non-translated sequence determined from the chicken cDNA to that elucidated for rat, mouse, and human showed that there is not a high degree of cross-species sequence conservation outside of the coding regions among these mRNAs. Northern hybridization analyses demonstrated that the gamma-enteric actin mRNA is expressed in adult aorta and oviduct tissues but not in adult skeletal muscle, cardiac muscle, liver, brain, and spleen tissues. The gamma-enteric actin mRNA was first observed in measurable quantities in gizzard tissue from 4-5 day embryos and increased in content in developing smooth muscle cells through 16-17 embryonic days. Following this initial increase during embryonic development, the gamma-enteric actin mRNA exhibits a decline in content until approximately 7 days posthatching, after which there is an increase in content to maximal levels found in adult gizzard tissue. In general, the developmental appearance of the gamma-enteric mRNA parallels that observed for this protein in previous studies indicating that the developmental expression of smooth muscle gamma-actin is regulated, in part, by an increased content of mRNA in chicken visceral smooth muscle cells during myogenesis.
Collapse
Affiliation(s)
- A M Kovacs
- Department of Structural and Cellular Biology, University of South Alabama, School of Medicine, Mobile 36688
| | | |
Collapse
|
18
|
Kahana E, Pinder JC, Smith KS, Gratzer WB. Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites. Biochem J 1992; 282 ( Pt 1):75-80. [PMID: 1540147 PMCID: PMC1130891 DOI: 10.1042/bj2820075] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The intrinsic fluorescence of spectrin is strongly quenched by low concentrations of 2-bromostearate. This results from binding at a series of hydrophobic sites. Analysis of dynamic fluorescence quenching by acrylamide, iodide and caesium ions, separately and in conjunction with 2-bromostearate, leads to the conclusion that most of the tryptophan side-chains are exposed to solvent. The sites at which the fatty-acid-quenched tryptophans are located apparently interact with the lipid bilayer in the cell, as judged by quenching by bromostearate dissolved in the lipid phase. A minor proportion of the side-chains in native spectrin give rise to sharp proton magnetic resonance signals, indicative of segmental mobility; these chain elements contain some tryptophan residues, as revealed by weak downfield signals from the heterocyclic ring protons. These signals are not appreciably perturbed by stearic acid or by phosphatidylserine liposomes, suggesting that the hydrophobic binding sites are not in mobile chain elements. By contrast with a series of globular proteins which, with the exception of serum albumins, show little or no quenching by 2-bromostearate, the peripheral red cell membrane skeletal proteins ankyrin (and its spectrin-binding domain), protein 4.1 and (to a lesser extent) actin show evidence of a high affinity for the hydrophobic ligand and may, like spectrin, interact directly with the bilayer in situ.
Collapse
Affiliation(s)
- E Kahana
- Medical Research Council Muscle and Cell Motility Unit, King's College, London, U.K
| | | | | | | |
Collapse
|
19
|
McHugh KM, Crawford K, Lessard JL. A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family in the rat. Dev Biol 1991; 148:442-58. [PMID: 1743394 DOI: 10.1016/0012-1606(91)90263-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study represents the first comprehensive analysis of isoactin gene expression in the developing rat. Our results clearly demonstrate that the developmental and tissue-specific expression of the actin multigene family is a highly integrated and complex process involving a variety of regulatory paradigms. The distinct temporal patterns of expression reported in this study indicate that there are three key phases in the regulation of expression of the actin multigene family during development. These include early embryonic development, late fetal development, and early postnatal development. The specific spatial patterns of expression observed in this study demonstrate that the expression of the actin multigene family is much more permissive than previously reported. This permissive expression includes a wide range of "ectopic" expression of the striated muscle isoactins as well as an extended expression of the alpha-smooth muscle isoactin. These findings expand our current understanding of the expression of the actin multigene family in development and provide a fundamental basis for future studies directed at investigating these processes.
Collapse
Affiliation(s)
- K M McHugh
- Department of Anatomy, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | |
Collapse
|
20
|
Chapter 12 Development of Epithelial Na+ Channels and Regulation by Guanine Nucleotide Regulatory (G) Proteins and Phospholipids. CURRENT TOPICS IN MEMBRANES 1991. [DOI: 10.1016/s0070-2161(08)60810-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|