1
|
Schmidt EP, Damarla M, Rentsendorj O, Servinsky LE, Zhu B, Moldobaeva A, Gonzalez A, Hassoun PM, Pearse DB. Soluble guanylyl cyclase contributes to ventilator-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2008; 295:L1056-65. [PMID: 18849438 DOI: 10.1152/ajplung.90329.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
High tidal volume (HV(T)) ventilation causes pulmonary endothelial barrier dysfunction. HV(T) ventilation also increases lung nitric oxide (NO) and cGMP. NO contributes to HV(T) lung injury, but the role of cGMP is unknown. In the current study, ventilation of isolated C57BL/6 mouse lungs increased perfusate cGMP as a function of V(T). Ventilation with 20 ml/kg V(T) for 80 min increased the filtration coefficient (K(f)), an index of vascular permeability. The increased cGMP and K(f) caused by HV(T) were attenuated by nitric oxide synthase (NOS) inhibition and in lungs from endothelial NOS knockout mice. Inhibition of soluble guanylyl cyclase (sGC) in wild-type lungs (10 muM ODQ) also blocked cGMP generation and inhibited the increase in K(f), suggesting an injurious role for sGC-derived cGMP. sGC inhibition also attenuated lung Evans blue dye albumin extravasation and wet-to-dry weight ratio in an anesthetized mouse model of HV(T) injury. Additional activation of sGC (1.5 muM BAY 41-2272) in isolated lungs at 40 min increased cGMP production and K(f) in lungs ventilated with 15 ml/kg V(T). HV(T) endothelial barrier dysfunction was attenuated with a nonspecific phosphodiesterase (PDE) inhibitor (100 muM IBMX) as well as an inhibitor (10 muM BAY 60-7550) specific for the cGMP-stimulated PDE2A. Concordantly, we found a V(T)-dependent increase in lung cAMP hydrolytic activity and PDE2A protein expression with a decrease in lung cAMP concentration that was blocked by BAY 60-7550. We conclude that HV(T)-induced endothelial barrier dysfunction resulted from a simultaneous increase in NO/sGC-derived cGMP and PDE2A expression causing decreased cAMP.
Collapse
Affiliation(s)
- Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Day JP, Houslay MD, Davies SA. A novel role for a Drosophila homologue of cGMP-specific phosphodiesterase in the active transport of cGMP. Biochem J 2006; 393:481-8. [PMID: 16232123 PMCID: PMC1360698 DOI: 10.1042/bj20051505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
cGMP was first discovered in urine, demonstrating that kidney cells extrude this cyclic nucleotide. Drosophila Malpighian tubules provide a model renal system in which a homologue of mammalian PDE (phosphodiesterase) 6 is expressed. In humans, this cG-PDE (cGMP-specific PDE) is specifically expressed in the retinal system, where it controls visual signal transduction. In order to gain insight into the functional role of DmPDE6 (Drosophila PDE6-like enzyme) in epithelial function, we generated transgenic animals with targeted expression of DmPDE6 to tubule Type I (principal) cells. This revealed localization of DmPDE6 primarily at the apical membranes. As expected, overexpression of DmPDE6 resulted in elevated cG-PDE activity and decreased tubule cGMP content. However, such targeted overexpression of DmPDE6 creates a novel phenotype that manifests itself in inhibition of the active transport and efflux of cGMP by tubules. This effect is specific to DmPDE6 action, as no effect on cGMP transport is observed in tubules from a bovine PDE5 transgenic line which display reduced rates of fluid secretion, an effect not seen in DmPDE6 transgenic animals. Specific ablation of DmPDE6 in tubule principal cells, via expression of a targeted DmPDE6 RNAi (RNA interference) transgene, conferred increased active transport of cGMP, confirming a direct role for DmPDE6 in regulating cGMP transport in tubule principal cells. Pharmacological inhibition of DmPDE6 in wild-type tubules using the cG-PDE inhibitor, zaprinast, similarly results in stimulated cGMP transport. We provide the first demonstration of a novel role for a cG-PDE in modulating cGMP transport and efflux.
Collapse
Affiliation(s)
- Jonathan P Day
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Glasgow G11 6NU, UK.
| | | | | |
Collapse
|
3
|
Ritter CA, Jedlitschky G, Meyer zu Schwabedissen H, Grube M, Köck K, Kroemer HK. Cellular export of drugs and signaling molecules by the ATP-binding cassette transporters MRP4 (ABCC4) and MRP5 (ABCC5). Drug Metab Rev 2005; 37:253-78. [PMID: 15747503 DOI: 10.1081/dmr-200047984] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Like other members of the multidrug resistance protein (MRP)/ABCC subfamily of ATP-binding cassette transporters, MRP4 (ABCC4) and MRP5 (ABCC5) are organic anion transporters. They have, however, the outstanding ability to transport nucleotides and nucleotide analogs. In vitro experiments using drug-selected or -transfected cells indicated that these transport proteins, when overexpressed, can lower the intracellular concentration of nucleoside/nucleotide analogs, such as the antiviral compounds PMEA (9-(2-phosphonylmethoxyethyl)adenine) or ganciclovir, and of anticancer nucleobase analogs, such as 6-mercaptopurine, after their conversion into the respective nucleotides. This may lead to an impaired ability of these compounds to inhibit virus replication or cell proliferation. It remains to be tested whether antiviral or anticancer chemotherapy based on nucleobase, nucleoside, or nucleotide precursors can be modulated by inhibition of MRP4 and MRP5. MRP4 also seems to be able to mediate the transport of conjugated steroids, prostaglandins, and glutathione. Furthermore, cyclic nucleotides (cyclic adenosine monophosphate and cyclic guanine monophosphate) are exported from cells by MRP4 and MRP5. This may modulate the intracellular concentration of these important mediators, besides the action of phosphodiesterases, as well as provide extracellular nucleotides for a possible paracrine action. In this line, tissue distribution and subcellular localization of MRP4 and MRP5 specifically in smooth muscle cells (MRP5), platelet-dense granules (MRP4), and nervous cells (MRP4 and MRP5), besides the capillary endothelium, point not only to a possible function of these transporters as exporters in cellular defense, but also to a physiological function in signaling processes.
Collapse
Affiliation(s)
- Christoph A Ritter
- Department of Pharmacology, Peter Holtz Research Center of Pharmacology and Experimental Therapeutics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
The biokinetics of guanosine 3',5'-cyclic monophosphate (cGMP) is characterized by three distinct processes: synthesis by guanylate cyclases (GCs), conversion of cGMP to GMP by cyclic nucleotide phosphodiesterases (PDEs) and the excretion of unchanged cGMP by transport proteins in the cell membrane. Efflux is observed in virtually all cell types including cells which originate from brain. Studies of intact cells, in which metabolic inhibitors and probenecid reduced extrusion of cGMP and wherein cGMP was extruded against concentration gradients, indicated the existence of ATP requiring organic anion transport system(s). Functional studies of inside-out vesicles have revealed cGMP transport systems wherein translocation is coupled to hydrolysis of ATP. The extrusion of cGMP is inhibited by a number of unrelated compounds and this indicates that cGMP is substrate for multispecific transporters. Recent transfection studies suggest that members of the MRP (multidrug resistance protein) family; MRP4, MRP5 and MRP8 translocate cGMP across the cell membrane. Many of the MRPs have been detected in brain. In addition tertiary active transport by the organic anion transporter family has also been identified. At least one member (OAT1) shows relative high affinity for cGMP and is also expressed in brain. The biological significance of cGMP transporters has to be clarified. Their role in cGMP biokinetics, being responsible for one of the cellular elimination pathways, is well established. However, there is growing evidence that extracellular cGMP has effects on cell physiology and pathophysiology by an auto- or paracrine mechanism.
Collapse
Affiliation(s)
- Georg Sager
- Department of Pharmacology, Faculty of Medicine, Institute of Medical Biology, University of Tromsø, NB 9037, Tromsø, Norway.
| |
Collapse
|
5
|
Dazert P, Meissner K, Vogelgesang S, Heydrich B, Eckel L, Böhm M, Warzok R, Kerb R, Brinkmann U, Schaeffeler E, Schwab M, Cascorbi I, Jedlitschky G, Kroemer HK. Expression and localization of the multidrug resistance protein 5 (MRP5/ABCC5), a cellular export pump for cyclic nucleotides, in human heart. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1567-77. [PMID: 14507663 PMCID: PMC1868287 DOI: 10.1016/s0002-9440(10)63513-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The multidrug resistance protein 5 (MRP5/ABCC5) has been recently identified as cellular export pump for cyclic nucleotides with 3',5'-cyclic GMP (cGMP) as a high-affinity substrate. In view of the important role of cGMP for cardiovascular function, expression of this transport protein in human heart is of relevance. We analyzed the expression and localization of MRP5 in human heart [21 auricular (AS) and 15 left ventricular samples (LV) including 5 samples of dilated and ischemic cardiomyopathy]. Quantitative real-time polymerase chain reaction normalized to beta-actin revealed expression of the MRP5 gene in all samples (LV, 38.5 +/- 12.9; AS, 12.7 +/- 5.6; P < 0.001). An MRP5-specific polyclonal antibody detected a glycoprotein of approximately 190 kd in crude cell membrane fractions from these samples. Immunohistochemistry with the affinity-purified antibody revealed localization of MRP5 in cardiomyocytes as well as in cardiovascular endothelial and smooth muscle cells. Furthermore, we could detect MRP5 and ATP-dependent transport of [(3)H]cGMP in sarcolemma vesicles of human heart. Quantitative analysis of the immunoblots indicated an interindividual variability with a higher expression of MRP5 in the ischemic (104 +/- 38% of recombinant MRP5 standard) compared to normal ventricular samples (53 +/- 36%, P < 0.05). In addition, we screened genomic DNA from our samples for 20 single-nucleotide polymorphisms in the MRP5 gene. These results indicate that MRP5 is localized in cardiac and cardiovascular myocytes as well as endothelial cells with increased expression in ischemic cardiomyopathy. Therefore, MRP5-mediated cellular export may represent a novel, disease-dependent pathway for cGMP removal from cardiac cells.
Collapse
Affiliation(s)
- Peter Dazert
- Department of Pharmacology, Peter Holtz Research Center of Pharmacology and Experimental Therapeutics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Guo Y, Kotova E, Chen ZS, Lee K, Hopper-Borge E, Belinsky MG, Kruh GD. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2',3'-dideoxycytidine and 9'-(2'-phosphonylmethoxyethyl)adenine. J Biol Chem 2003; 278:29509-14. [PMID: 12764137 DOI: 10.1074/jbc.m304059200] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MRP8 (ABCC11) is a recently identified cDNA that has been assigned to the multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporters, but its functional characteristics have not been determined. Here we examine the functional properties of the protein using transfected LLC-PK1 cells. It is shown that ectopic expression of MRP8 reduces basal intracellular levels of cAMP and cGMP and enhances cellular extrusion of cyclic nucleotides in the presence or absence of stimulation with forskolin or SIN-1A. Analysis of the sensitivity of MRP8-overexpressing cells revealed that they are resistant to a range of clinically relevant nucleotide analogs, including the anticancer fluoropyrimidines 5'-fluorouracil (approximately 3-fold), 5'-fluoro-2'-deoxyuridine (approximately 5-fold), and 5'-fluoro-5'-deoxyuridine (approximately 3-fold), the anti-human immunodeficiency virus agent 2',3'-dideoxycytidine (approximately 6-fold) and the anti-hepatitis B agent 9'-(2'-phosphonylmethoxynyl)adenine (PMEA) (approximately 5-fold). By contrast, increased resistance was not observed for several natural product chemotherapeutic agents. In accord with the notion that MRP8 functions as a drug efflux pump for nucleotide analogs, MRP8-transfected cells exhibited reduced accumulation and increased efflux of radiolabeled PMEA. In addition, it is shown by the use of in vitro transport assays that MRP8 is able to confer resistance to fluoropyrimidines by mediating the MgATP-dependent transport of 5'-fluoro-2'-deoxyuridine monophosphate, the cytotoxic intracellular metabolite of this class of agents, but not of 5'-fluorouracil or 5'-fluoro-2'-deoxyuridine. We conclude that MRP8 is an amphipathic anion transporter that is able to efflux cAMP and cGMP and to function as a resistance factor for commonly employed purine and pyrimidine nucleotide analogs.
Collapse
Affiliation(s)
- Yanping Guo
- Medical Science Division, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Bryan PM, Potter LR. The atrial natriuretic peptide receptor (NPR-A/GC-A) is dephosphorylated by distinct microcystin-sensitive and magnesium-dependent protein phosphatases. J Biol Chem 2002; 277:16041-7. [PMID: 11821394 DOI: 10.1074/jbc.m110626200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Natriuretic peptide receptor (NPR)-A is the primary signaling receptor for atrial natriuretic peptide and brain natriuretic peptide. Ligand binding to NPR-A rapidly activates its guanylyl cyclase domain, but its rate of cGMP synthesis declines with time. This waning of activity is called homologous desensitization and is mediated in part by receptor dephosphorylation. Here, we characterize two distinct NPR-A phosphatase activities. The serine/threonine protein phosphatase inhibitor, microcystin, inhibited the desensitization of NPR-A in membrane guanylyl cyclase assays in the absence of magnesium. EDTA also inhibited the desensitization, whereas MgCl(2) stimulated the desensitization. Because the effects of microcystin and EDTA were additive, and microcystin did not block the magnesium-dependent desensitization, the targets for these agents appear to be distinct. Incubation of membranes at 37 degrees C stimulated the dephosphorylation of NPR-A, and microcystin blocked the temperature-dependent dephosphorylation. The addition of MgCl(2) or MnCl(2), but not CaCl(2), further stimulated the dephosphorylation of NPR-A, and microcystin failed to inhibit this process. The desensitization required changes in the phosphorylation state of NPR-A because the guanylyl cyclase activity of a receptor variant containing glutamate substitutions at all six phosphorylation sites was unaffected by MgCl(2), EDTA, or microcystin. Together, these data indicate that NPR-A is regulated by two distinct phosphatases, possibly including a member of the protein phosphatase 2C family. Finally, we observed that the desensitization of NPR-A in membranes from mouse kidneys and NIH3T3 cells was increased by prior exposure to atrial natriuretic peptide, suggesting that hormone binding enhances receptor dephosphorylation.
Collapse
Affiliation(s)
- Paula M Bryan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
8
|
Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 2001; 276:33747-54. [PMID: 11447229 DOI: 10.1074/jbc.m104833200] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human multidrug resistance protein 4 (MRP4) has recently been determined to confer resistance to the antiviral purine analog 9-(2-phosphonylmethoxyethyl)adenine and methotrexate. However, neither its substrate selectivity nor physiological functions have been determined. Here we report the results of investigations of the in vitro transport properties of MRP4 using membrane vesicles prepared from insect cells infected with MRP4 baculovirus. It is shown that expression of MRP4 is specifically associated with the MgATP-dependent transport of cGMP, cAMP, and estradiol 17-beta-D-glucuronide (E(2)17 beta G). cGMP, cAMP, and E(2)17 beta G are transported with K(m) and V(max) values of 9.7 +/- 2.3 microm and 2.0 +/- 0.3 pmol/mg/min, 44.5 +/- 5.8 microm and 4.1 +/- 0.4 pmol/mg/min, and 30.3 +/- 6.2 microm and 102 +/- 16 pmol/mg/min, respectively. Consistent with its ability to transport cyclic nucleotides, it is demonstrated that the MRP4 drug resistance profile extends to 6-mercaptopurine and 6-thioguanine, two anticancer purine analogs that are converted in the cell to nucleotide analogs. On the basis of its capacity to transport cyclic nucleotides and E(2)17 beta G, it is concluded that MRP4 may influence diverse cellular processes regulated by cAMP and cGMP and that its substrate range is distinct from that of any other characterized MRP family member.
Collapse
Affiliation(s)
- Z S Chen
- Medical Science Division, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
9
|
Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 2000; 275:30069-74. [PMID: 10893247 DOI: 10.1074/jbc.m005463200] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular export of cyclic nucleotides has been observed in various tissues and may represent an elimination pathway for these signaling molecules, in addition to degradation by phosphodiesterases. In the present study we provide evidence that this export is mediated by the multidrug resistance protein isoform MRP5 (gene symbol ABCC5). The transport function of MRP5 was studied in V79 hamster lung fibroblasts transfected with a human MRP5 cDNA. An MRP5-specific antibody detected an overexpression of the glycoprotein of 185 +/- 15 kDa in membranes from MRP5-transfected cells and a low basal expression of hamster Mrp5 in control membranes. ATP-dependent transport of 3',5'-cyclic GMP at a substrate concentration of 1 micrometer was 4-fold higher in membrane vesicles from MRP5-transfected cells than in control membranes. This transport was saturable with a K(m) value of 2.1 micrometer. MRP5-mediated transport was also detected for 3',5'-cyclic AMP at a lower affinity, with a K(m) value of 379 micrometer. A potent inhibition of MRP5-mediated transport was observed by several compounds, known as phosphodiesterase modulators, including trequinsin, with a K(i) of 240 nm, and sildenafil, with a K(i) value of 267 nm. Thus, cyclic nucleotides are physiological substrates for MRP5; moreover, MRP5 may represent a novel pharmacological target for the enhancement of tissue levels of cGMP.
Collapse
Affiliation(s)
- G Jedlitschky
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
10
|
Sundkvist E, Jaeger R, Sager G. Leukotriene C(4) (LTC(4)) does not share a cellular efflux mechanism with cGMP: characterisation of cGMP transport by uptake to inside-out vesicles from human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:121-30. [PMID: 10631301 DOI: 10.1016/s0005-2736(99)00184-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The transport of cGMP out of cells is energy requiring and has characteristics compatible with an ATP-energised anion pump. In the present study a model with inside-out vesicles from human erythrocytes was employed for further characterisation of the cGMP transporter. The uptake of leukotriene C(4) (LTC(4)), a substrate for multidrug resistance protein (MRP), was concentration-dependently inhibited by the leukotriene antagonist MK571 (IC(50)=110+/-20 nM), but cGMP was unable to inhibit LTC(4) uptake. Oxidised glutathione (GSSG) and glutathione S-conjugates caused a concentration-dependent inhibition of [(3)H]cGMP uptake with IC(50) of 2200+/-700 microM for GSSG, 410+/-210 microM for S-(p-nitrobenzyl)glutathione and 37+/-16 microM for S-decylglutathione, respectively. Antioxidants such as reduced glutathione and dithiothreitol did not influence transport for concentrations up to 100 microM, but both inhibited cGMP uptake with approx. 25% at 1 mM. The cGMP pump was sensitive to temperature without activity below 20 degrees C. The transport of cGMP was dependent on pH with maximal activity between pH 8.0 and 8.5. Calcium caused a concentration-dependent inhibition with IC(50) of 43+/-12 microM. Magnesium gave a marked activation in the range between 1 and 20 mM with maximum effect at 10 mM. The other divalent cations, Mn(2+) and Co(2+), were unable to substitute Mg(2+), but caused some activation at 1 mM. EDTA and EGTA stimulated cGMP transport concentration-dependently with 50% and 100% above control at 100 microM, respectively. The present study shows that the cGMP pump has properties compatible with an organic anion transport ATPase, without affinity for the MRP substrate LTC(4). However, the blockade of the cGMP transporter by glutathione S-conjugates suggests it is one of several GS-X pumps.
Collapse
Affiliation(s)
- E Sundkvist
- Department of Pharmacology, Institute of Medical Biology, Faculty of Medicine, University of Tromso, N-9037, Tromso, Norway
| | | | | |
Collapse
|
11
|
Potter LR, Hunter T. A constitutively "phosphorylated" guanylyl cyclase-linked atrial natriuretic peptide receptor mutant is resistant to desensitization. Mol Biol Cell 1999; 10:1811-20. [PMID: 10359598 PMCID: PMC25375 DOI: 10.1091/mbc.10.6.1811] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dephosphorylation of the natriuretic peptide receptor-A (NPR-A) is hypothesized to mediate its desensitization in response to atrial natriuretic peptide (ANP) binding. Recently, we identified six phosphorylation sites within the kinase homology domain of NPR-A and determined that the conversion of these residues to alanine abolished the ability of the receptor to be phosphorylated or to be activated by ANP and ATP. In an attempt to generate a form of NPR-A that mimics a fully phosphorylated receptor but that is resistant to dephosphorylation, we engineered a receptor variant (NPR-A-6E) containing glutamate substitutions at all six phosphorylation sites. Consistent with the known ability of negatively charged glutamate residues to substitute functionally, in some cases, for phosphorylated residues, we found that NPR-A-6E was activated 10-fold by ANP and ATP. As determined by guanylyl cyclase assays, the hormone-stimulated activity of the wild-type receptor declined over time in membrane preparations in vitro, and this loss was blocked by the serine/threonine protein phosphatase inhibitor microcystin. In contrast, the activity of NPR-A-6E was more linear with time and was unaffected by microcystin. The nonhydrolyzable ATP analogue adenosine 5'-(beta,gamma-imino)-triphosphate was half as effective as ATP in stimulating the wild-type receptor but was equally as potent in stimulating NPR-A-6E, suggesting that ATP is required to keep the wild-type but not 6E variant phosphorylated. Finally, the desensitization of NPR-A-6E in whole cells was markedly blunted compared with that of the wild-type receptor, consistent with its inability to shed the negative charge from its kinase homology domain via dephosphorylation. These data provide the first direct test of the requirement for dephosphorylation in guanylyl cyclase desensitization and they indicate that it is an essential component of this process.
Collapse
Affiliation(s)
- L R Potter
- Molecular Biology and Virology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
12
|
Stoos BA, Garvin JL. Effect of efflux of guanosine 3',5' cyclic monophosphate (cGMP) on the regulation of intracellular levels of cGMP in the inner medullary collecting duct. Biochem Pharmacol 1997; 53:631-6. [PMID: 9113081 DOI: 10.1016/s0006-2952(96)00858-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Guanosine 3',5' cyclic monophosphate (cGMP) acts as a second messenger in the inner medullary collecting duct (IMCD) where it inhibits sodium transport; therefore, it is important to investigate processes that regulate intracellular cGMP levels. We hypothesized that efflux of cGMP is a major mechanism in this process. IMCDs were isolated from rat kidneys and exposed to atrial natriuretic peptide (ANP) for 0, 3, and 20 min in buffer with or without isobutyl methylxanthine (IBMX), a phosphodiesterase (PDE) inhibitor. Extracellular and intracellular cGMP levels were measured by radioimmunoassay. After cGMP production was stimulated by addition of ANP (10(-7) M), cGMP efflux was 3.29 +/- 0.60 fmol/microgram.min at 3 min (P = 0.016) and 0.51 +/- 0.25 fmol/microgram.min at 20 min (NS). Intracellular cGMP peaked at 3 min at 26.66 +/- 4.84 fmol/microgram (P = 0.017) and decreased to 12.98 +/- 2.76 fmol/microgram at 20 min (NS). Since PDEs were inhibited, these data suggest that efflux regulates intracellular cGMP. Efflux was correlated with intracellular cGMP levels (r = 0.97). After 3 min of stimulation with 10(-9) M ANP, efflux was 2.0 +/- 0.3 fmol/microgram.min, while intracellular cGMP content was 13.8 +/- 3.6 fmol/microgram. With 10(-8) M ANP, efflux was 3.5 +/- 0.7 fmol/microgram.min, while intracellular content was 20.5 +/- 7.6 fmol/microgram; and at 10(-7) M ANP, efflux was 5.1 +/- 0.6 fmol/microgram.min and intracellular content was 26.6 +/- 8.0 fmol/microgram. By 20 min, efflux and intracellular levels had returned to control values. Finally, we measured, efflux and PDE activity in the absence of IBMX. Efflux was approximately 15% of PDE activity (N = 7). We conclude that cGMP efflux is concentration-dependent and, under some circumstances, may be an important regulator of intracellular cGMP levels in isolated IMCDs.
Collapse
Affiliation(s)
- B A Stoos
- Department of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | |
Collapse
|
13
|
Garcia NH, Stoos BA, Carretero OA, Garvin JL. Mechanism of the nitric oxide-induced blockade of collecting duct water permeability. Hypertension 1996; 27:679-83. [PMID: 8613224 DOI: 10.1161/01.hyp.27.3.679] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide has a diuretic effect in vivo. We have shown that nitric oxide inhibits antidiuretic hormone-stimulated osmotic water permeability in the collecting duct; however, the mechanism by which this occurs is unknown. We hypothesized that inhibition of antidiuretic hormone-stimulated water permeability by nitric oxide in the collecting duct is the result of activation of cGMP-dependent protein kinase, which in turn decreases intracellular cAMP. To test this hypothesis, we microperfused cortical collecting ducts. Antidiuretic hormone-stimulated water permeability was 317 +/- 47 microm/s (P < .001). Addition of spermine NONOate, a nitric oxide donor, to the bath decreased water permeability to 74 +/- 38 microm/s (P < .002). In the presence of LY 83583, an inhibitor of soluble guanylate cyclase, spermine NONOate did not change water permeability. Addition of spermine NONOate increased cGMP production (P < .01). In the presence of the cGMP-dependent protein kinase inhibitor, spermine NONOate did not change water permeability. Since antidiuretic hormone increases water permeability by increasing cAMP, we hypothesized that nitric oxide inhibits water permeability by decreasing cAMP. In tubules pretreated with antidiuretic hormone, intracellular cAMP was 18.9 +/- 3.9 fmol/mm. In tubules treated with antidiuretic hormone and spermine NONOate, cAMP was 9.3 +/- 1.7 fmol/mm (P < .03). We also examined the effect of spermine NONOate on dibutyryl-cAMP-stimulated water permeability. In the presence of dibutyryl-cAMP, water permeability was 388 +/- 30 microm/s. Addition of spermine NONOate had no significant effect on water permeability. Time controls and inhibitors by themselves did not change antidiuretic hormone-stimulated water permeability. We concluded that nitric oxide decreases antidiuretic hormone-stimulated water permeability by increasing cGMP via soluble guanylate cyclase, activating cGMP-dependent protein kinase and decreasing cAMP.
Collapse
Affiliation(s)
- N H Garcia
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
14
|
Coste H, Grondin P. Characterization of a novel potent and specific inhibitor of type V phosphodiesterase. Biochem Pharmacol 1995; 50:1577-85. [PMID: 7503759 DOI: 10.1016/0006-2952(95)02031-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Guanosine cyclic 3':5'-monophosphate (cGMP) plays a crucial role in regulating vascular smooth muscle contractile state. In rat aortic smooth muscle cells (RSMC) three isozymes of phosphodiesterase (PDE) may be involved in the degradation of cGMP, namely PDE I, PDE III, and PDE V. To study the effective contribution of PDE V to the control of intracellular cGMP levels, a specific and potent PDE V inhibitor 1,3-dimethyl-6-(2-propoxy-5-methanesulfonylamidophenyl)pyrazolo[3, 4d]- pyrimidin-4-(5H)-one (DMPPO) was synthesized. DMPPO is a competitive inhibitor with respect to cGMP (Ki = 3 nM) and displayed high selectivity for PDE V as compared to other PDE isozymes. DMPPO strongly potentiated the cGMP response of atrial natriuretic peptide- or sodium nitroprusside-treated RSMC (EC50 = 0.5 microM). In addition, similar intracellular cGMP levels were obtained in the presence of a saturating concentration of DMPPO or 3-isobutyl-1-methylxanthine, a nonspecific PDE inhibitor, suggesting that cGMP is almost exclusively hydrolyzed by PDE V in RSMC. Stimulation of RSMC with atrial natriuretic factor resulted in accumulation of cGMP in the extracellular media. This egression was shown to be proportional to the intracellular level of cGMP and a first-order rate constant of 0.04 min-1 was determined for the egression process. DMPPO did not interfere with the efflux and allowed us to show that intracellular cGMP levels are mainly controlled by PDE V, rather than by egression in RSMC. DMPPO is, therefore, a useful tool for determining the role of PDE V in the control of cGMP levels in living cells and tissues.
Collapse
Affiliation(s)
- H Coste
- Laboratoires Glaxo, Centre de Recherches, Les Ulis, France
| | | |
Collapse
|
15
|
Radziszewski W, Chopra M, Zembowicz A, Gryglewski R, Ignarro LJ, Chaudhuri G. Nitric oxide donors induce extrusion of cyclic GMP from isolated human blood platelets by a mechanism which may be modulated by prostaglandins. Int J Cardiol 1995; 51:211-20. [PMID: 8586470 DOI: 10.1016/0167-5273(95)02427-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the presence of 3-isobutyl-methylxanthine (IBMX), induction of cyclic 3',5'-guanosine monophosphate (GMP) production in human washed platelets (HWP) by nitric oxide donors (NOD) is followed by its accumulation in the surrounding medium in a time- and concentration-dependent manner. Thirty minutes incubation of HWP with 3-morpholino-sydonimine (SIN-1, 10 microM) at 37 degrees C resulted in a 4.6-fold increase of cyclic GMP in platelets, whereas in the extracellular medium the increase was 17.6-fold. Similar results were obtained when other NOD such as S-nitroso-N-acetylpenicyllamine (SNAP) and 3-(2-methoxy-5-chlorophenyl)oxatriazol-5-imine (GEA 3184) and the selective phosphodiesterase inhibitor, zaprinast (M&B 22948, 10 microM), were used. Probenecid (1-300 microM), an inhibitor of organic anion transport, or ouabain (1-300 microM), an inhibitor of Na+/K+ adenine triphosphate (ATP)-ase had no effect on cyclic GMP production or extrusion after stimulation with SIN-1. Significantly prostaglandin A1 (PGA1) and prostaglandin D2 (PGD2) inhibited the efflux of cyclic GMP from platelets induced by SNAP (10 microM) in a concentration-dependent fashion, with an IC50 of 63 +/- 16 and 143 +/- 17 microM, respectively. These studies suggest that the extrusion of cyclic GMP from human platelets after activation of soluble guanylate cyclase by NOD may contribute to the control of cyclic GMP levels in platelets with potential physiological and therapeutic consequences.
Collapse
Affiliation(s)
- W Radziszewski
- Department of Pharmacology, UCLA School of Medicine 90024-1735, USA
| | | | | | | | | | | |
Collapse
|
16
|
Parfenova H, Leffler CW. Functional study on vasodilator effects of prostaglandin E2 in the newborn pig cerebral circulation. Eur J Pharmacol 1995; 278:133-42. [PMID: 7545580 DOI: 10.1016/0014-2999(95)00113-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebral vascular reactivity to prostaglandin E2 was investigated in newborn pigs using closed cranial windows. Exogenous prostaglandin E2 is a dilator of pial arterioles that elevates cyclic AMP in cortical cerebrospinal fluid. Pial arterioles are less sensitive to prostaglandin E2 than to the prostacyclin receptor agonist iloprost, but their maximal responses to the dilator prostanoids are similar. The cerebrovascular effects of prostaglandin E2 and iloprost are not additive. Pretreatment with either iloprost or prostaglandin E2 decreases pial arteriolar responsiveness to iloprost without affecting responses to isoproterenol. The homologous desensitization of pial arterioles suggests that auto- and cross-tachyphylaxis in vascular effects of iloprost and prostaglandin E2 occur at the receptor level. Indomethacin, which selectively inhibits prostacyclin receptor-mediated responses in cerebral vascular smooth muscle, greatly reduces the vascular responses to prostaglandin E2. These results suggest that vasodilator effects of prostaglandin E2 in the newborn cerebral circulation are mediated via prostacyclin receptors coupled to adenylyl cyclase.
Collapse
Affiliation(s)
- H Parfenova
- Department of Physiology and Biophysics, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
17
|
Zembowicz A, Hatchett RJ, Jakubowski AM, Gryglewski RJ. Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta. Br J Pharmacol 1993; 110:151-8. [PMID: 7693274 PMCID: PMC2175976 DOI: 10.1111/j.1476-5381.1993.tb13785.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The effects of hydrogen peroxide (H2O2, 0.1-1 mM) on the tone of the rings of rabbit aorta precontracted with phenylephrine (0.2-0.3 microM) were studied. 2. H2O2 induced a concentration-dependent relaxation of both the intact and endothelium-denuded rings. However, in the presence of intact endothelium, H2O2-induced responses were 2-3 fold larger than in its absence, demonstrating the existence of endothelium-independent and endothelium-dependent components of the vasorelaxant action of H2O2. 3. The endothelium-dependent component of H2O2-induced relaxation was prevented by NG-nitro-L-arginine methyl ester (L-NAME, 30 microM) or NG-monomethyl-L-arginine (300 microM), inhibitors of nitric oxide synthase (NOS), in a manner that was reversible by L-, but not by D-arginine (2mM). The inhibitors of NOS did not affect the responses of denuded rings. 4. Methylene blue (10 microM), an inhibitor of soluble guanylate cyclase, blocked H2O2-induced relaxation of both the intact and denuded rings. 5. H2O2 (1 mM) enhanced the efflux of cyclic GMP from both the endothelium-intact and denuded rings. The effect of H2O2 was 4 fold greater in the presence of intact endothelium and this endothelium-dependent component was abolished after the inhibition of NOS by L-NAME (30 microM). 6. In contrast to the effects of H2O2, the vasorelaxant action of stable organic peroxides, tert-butyl hydroperoxide or cumene hydroperoxide, did not have an endothelium-dependent component. Moreover, they did not potentiate the efflux of cyclic GMP from the rings of rabbit aorta. 7. Exogenous donors of NO, specifically, 3-morpholinosydnonimine (SIN-1), glyceryl trinitrate or sodium nitroprusside were used to decrease the tone of denuded rings to the level induced by endogenous NO released from intact endothelium. This procedure did not influence the vasorelaxant activity of H202, showing that H202 does not potentiate the vasorelaxant action of NO within the smooth muscle.8. Thus, H202-induced relaxation in the rabbit aorta has both endothelium-dependent and independent components. The endothelium-dependent component of the relaxant action of H202 is due to enhanced endothelial synthesis of NO.
Collapse
Affiliation(s)
- A Zembowicz
- Department of Pharmacology, Copernicus Academy of Medicine, Kraków, Poland
| | | | | | | |
Collapse
|
18
|
Radziszewski W, Surdacki A, Vuorinen P, Vapaatalo H, Saari M, Uusitalo A, Ruskoaho H, Dubiel JS, Gryglewski RJ. Plasma ANP and cyclic GMP after physical exercise in patients with mitral valve disease and in healthy subjects. Int J Cardiol 1993; 40:203-9. [PMID: 8225655 DOI: 10.1016/0167-5273(93)90002-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasma levels of both atrial natriuretic peptide (ANP) and cyclic GMP are elevated in patients with various heart diseases as compared to healthy subjects. In this study patients with advanced mitral valve disease (Group A) and healthy subjects (Group B) were exposed to symptom-limited upright stepwise physical exercise on a cycle ergometer. Concentrations of ANP and cyclic GMP were measured in plasma at rest (20 min in supine position) or 5 min after physical exercise by specific radioimmunoassays. Here we show that short dynamic exercise caused a significant increase in plasma levels of ANP and cyclic GMP, in both groups. In Group A strong correlation between plasma ANP and cyclic GMP was found at rest (r = 0.91, P < 0.001, n = 11) and after physical exercise (r = 0.85, P < 0.001, n = 11). In contrast, there was no correlation between plasma concentrations of ANP and cyclic GMP in Group B at rest (r = -0.16, P > 0.05, n = 10) or after exercise loading (r = 0.14, P > 0.05, n = 10). Absolute increases in circulating levels of both substances were not found to correlate in either group. These data suggest that exercise-induced elevations in plasma cyclic GMP may be due not only to ANP release but also to an as yet undetermined factor, possibly EDRF/NO.
Collapse
Affiliation(s)
- W Radziszewski
- Department of Pharmacology, Copernicus University School of Medicine, Cracow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|