1
|
Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2023; 48:227-257. [PMID: 35998874 PMCID: PMC10248804 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
2
|
Chellian R, Wilks I, Levin B, Xue S, Behnood-Rod A, Wilson R, McCarthy M, Ravula A, Chandasana H, Derendorf H, Bruijnzeel AW. Tobacco smoke exposure enhances reward sensitivity in male and female rats. Psychopharmacology (Berl) 2021; 238:845-855. [PMID: 33410984 PMCID: PMC7914215 DOI: 10.1007/s00213-020-05736-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Systemic administration of the tobacco smoke constituent nicotine stimulates brain reward function in rats. However, it is unknown if the inhalation of tobacco smoke affects brain reward function. OBJECTIVES These experiments investigated if exposure to smoke from high-nicotine SPECTRUM research cigarettes increases reward function and affects the rewarding effects of nicotine in adult male and female Wistar rats. METHODS Reward function after smoke or nicotine exposure was investigated using the intracranial self-stimulation (ICSS) procedure. A decrease in reward thresholds reflects an increase in reward function. In the first experiment, the rats were exposed to tobacco smoke for 40 min/day for 9 days, and the rewarding effects of nicotine (0.03-0.6 mg/kg) were investigated 3 weeks later. In the second experiment, the dose effects of tobacco smoke exposure (40-min sessions, 1-4 cigarettes burnt simultaneously) on reward function were investigated. RESULTS Tobacco smoke exposure did not affect the nicotine-induced decrease in reward thresholds or response latencies in male and female rats. Smoke exposure lowered the brain reward thresholds to a similar degree in males and females and caused a greater decrease in latencies in females. There was a positive relationship between plasma nicotine and cotinine levels and the nicotine content of the SPECTRUM research cigarettes. Similar smoke exposure conditions led to higher plasma nicotine and cotinine levels in female than male rats. CONCLUSION These findings indicate that tobacco smoke exposure enhances brain reward function but does not potentiate the rewarding effects of nicotine in male and female rats.
Collapse
Affiliation(s)
- Ranjithkumar Chellian
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Brandon Levin
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Song Xue
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Megan McCarthy
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Abhigyan Ravula
- Department of Pharmaceutics, University of Florida, Gainesville, USA
| | - Hardik Chandasana
- Department of Pharmaceutics, University of Florida, Gainesville, USA
| | - Hartmut Derendorf
- Department of Pharmaceutics, University of Florida, Gainesville, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Cano M, Reynaga DD, Belluzzi JD, Loughlin SE, Leslie F. Chronic exposure to cigarette smoke extract upregulates nicotinic receptor binding in adult and adolescent rats. Neuropharmacology 2020; 181:108308. [PMID: 32950561 PMCID: PMC7655523 DOI: 10.1016/j.neuropharm.2020.108308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/23/2023]
Abstract
Heavy smokers display increased radioligand binding of nicotinic acetylcholine receptors (nAChRs). This "upregulation" is thought to be a contributing factor to tobacco dependence. Although cigarette smoke contains thousands of constituents that can contribute to nicotine dependence, it is not well understood whether non-nicotine constituents contribute to nAChR upregulation. In this study, we used an aqueous cigarette smoke extract (CSE), which contains nicotine and soluble constituents of cigarette smoke, to induce nAChR upregulation in adult and adolescent rats. To do this, male rats were exposed to nicotine or CSE (1.5 mg/kg/day nicotine equivalent, intravenously) daily for ten days. This experimental procedure produces equivalent levels of brain and plasma nicotine in nicotine- and CSE-treated animals. We then assessed nAChR upregulation using quantitative autoradiography to measure changes in three nAChR types. Adolescents were found to have consistently greater α4β2 nAChR binding than adults in many brain regions. Chronic nicotine exposure did not significantly increase nAChR binding in any brain region at either age. Chronic CSE exposure selectively increased α4β2 nAChR binding in adolescent medial amygdala and α7 binding in adolescent central amygdala and lateral hypothalamus. CSE also increased α3β4 nAChR binding in the medial habenula and interpeduncular nucleus, and α7 binding in the medial amygdala, independent of age. Overall, this work provides evidence that cigarette smoke constituents influence nAChR upregulation in an age-, nAChR type- and region-dependent manner.
Collapse
Affiliation(s)
- Michelle Cano
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| | - Daisy D Reynaga
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - James D Belluzzi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Sandra E Loughlin
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Frances Leslie
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
4
|
E-cigarette aerosols containing nicotine modulate nicotinic acetylcholine receptors and astroglial glutamate transporters in mesocorticolimbic brain regions of chronically exposed mice. Chem Biol Interact 2020; 333:109308. [PMID: 33242460 DOI: 10.1016/j.cbi.2020.109308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022]
Abstract
Nicotine exposure increases the release of glutamate in part through stimulatory effects on pre-synaptic nicotinic acetylcholine receptors (nAChRs). To assess the impact of chronic electronic (e)-cigarette use on these drug dependence pathways, we exposed C57BL/6 mice to three types of inhalant exposures for 3 months; 1) e-cigarette aerosol generated from liquids containing nicotine (ECN), 2) e-cigarette aerosol generated from liquids containing vehicle chemicals without nicotine (Veh), and 3) air only (AC). We investigated the effects of daily e-cigarette exposure on protein levels of α7 nAChR and α4/β2 nAChR, gene expression and protein levels of astroglial glutamate transporters, including glutamate transporter-1 (GLT-1) and cystine/glutamate antiporter (xCT), in the frontal cortex (FC), striatum (STR) and hippocampus (HIP). We found that chronic inhalation of ECN increased α4/β2 nAChR in all brain regions, and increased α7 nAChR expression in the FC and STR. The total GLT-1 relative mRNA and protein expression were decreased in the STR. Moreover, GLT-1 isoforms (GLT-1a and GLT-1b) were downregulated in the STR in ECN group. However, inhalation of e-cigarette aerosol downregulated xCT expression in STR and HIP compared to AC and Veh groups. ECN group had increased brain-derived neurotrophic factor in the STR compared to control groups. Finally, mass spectrometry detected high concentrations of the nicotine metabolite, cotinine, in the FC and STR in ECN group. This work demonstrates that chronic inhalation of nicotine within e-cigarette aerosols significantly alters the expression of nAChRs and astroglial glutamate transporters in specific mesocorticolimbic brain regions.
Collapse
|
5
|
Mahmood HM, Aldhalaan HM, Alshammari TK, Alqasem MA, Alshammari MA, Albekairi NA, AlSharari SD. The Role of Nicotinic Receptors in the Attenuation of Autism-Related Behaviors in a Murine BTBR T + tf/J Autistic Model. Autism Res 2020; 13:1311-1334. [PMID: 32691528 DOI: 10.1002/aur.2342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/28/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic receptors are distributed throughout the central and peripheral nervous system. Postmortem studies have reported that some nicotinic receptor subtypes are altered in the brains of autistic people. Recent studies have demonstrated the importance of nicotinic acetylcholine receptors (nAChRs) in the autistic behavior of BTBR T + tf/J mouse model of autism. This study was undertaken to examine the behavioral effects of targeted nAChRs using pharmacological ligands, including nicotine and mecamylamine in BTBR T + tf/J and C57BL/6J mice in a panel of behavioral tests relating to autism. These behavioral tests included the three-chamber social interaction, self-grooming, marble burying, locomotor activity, and rotarod test. We examined the effect of various oral doses of nicotine (50, 100, and 400 mcg/mL; po) over a period of 2 weeks in BTBR T + tf/J mouse model. The results indicated that the chronic administration of nicotine modulated sociability and repetitive behavior in BTBR T + tf/J mice while no effects observed in C57BL/6J mice. Furthermore, the nonselective nAChR antagonist, mecamylamine, reversed nicotine effects on sociability and increased repetitive behaviors in BTBR T + tf/J mice. Overall, the findings indicate that the pharmacological modulation of nicotinic receptors is involved in modulating core behavioral phenotypes in the BTBR T + tf/J mouse model. LAY SUMMARY: The involvement of brain nicotinic neurotransmission system plays a crucial role in regulating autism-related behavioral features. In addition, the brain of the autistic-like mouse model has a low acetylcholine level. Here, we report that nicotine, at certain doses, improved sociability and reduced repetitive behaviors in a mouse model of autism, implicating the potential therapeutic values of a pharmacological intervention targeting nicotinic receptors for autism therapy. Autism Res 2020, 13: 1311-1334. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M Aldhalaan
- Department of Neuroscience, Center for Autism Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mashael A Alqasem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Tiwari RK, Sharma V, Pandey RK, Shukla SS. Nicotine Addiction: Neurobiology and Mechanism. J Pharmacopuncture 2020; 23:1-7. [PMID: 32322429 PMCID: PMC7163392 DOI: 10.3831/kpi.2020.23.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/29/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023] Open
Abstract
Nicotine, primary component of tobaco produces craving and withdrawal effect both in humans and animals. Nicotine shows a close resemblance to other addictive drugs in molecular, neuroanatomical and pharmacological, particularly the drugs which enhances the cognitive functions. Nicotine mainly shows its action through specific nicotinic acetylcholine receptors located in brain. It stimulates presynaptic acetylcholine receptors thereby enhancing Ach release and metabolism. Dopaminergic system is also stimulated by it, thus increasing the concentration of dopamine in nuclear accumbens. This property of nicotine according to various researchers is responsible for reinforcing behavioral change and dependence of nicotine. Various researchers have also depicted that some non dopaminergic systems are also involved for rewarding effect of nicotinic withdrawal. Neurological systems such as GABAergic, serotonergic, noradrenergic, and brain stem cholinergic may also be involved to mediate the actions of nicotine. Further, the neurobiological pathway to nicotine dependence might perhaps be appropriate to the attachment of nicotine to nicotinic acetylcholine receptors, peruse by stimulation of dopaminergic system and activation of general pharmacological changes that might be responsible for nicotine addiction. It is also suggested that MAO A and B both are restrained by nicotine. This enzyme helps in degradation dopamine, which is mainly responsible for nicotinic actions and dependence. Various questions remain uninsurable to nicotine mechanism and require more research. Also, various genetic methods united with modern instrumental analysis might result for more authentic information for nicotine addiction.
Collapse
Affiliation(s)
| | - Vikas Sharma
- Columbia Institute of Pharmacy, Raipur, C.G., India
| | | | | |
Collapse
|
7
|
Huang TH, Lin YW, Huang CP, Chen JM, Hsieh CL. Short-term auricular electrical stimulation rapidly elevated cortical blood flow and promoted the expression of nicotinic acetylcholine receptor α4 in the 2 vessel occlusion rats model. J Biomed Sci 2019; 26:36. [PMID: 31078140 PMCID: PMC6511660 DOI: 10.1186/s12929-019-0526-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/23/2019] [Indexed: 01/14/2023] Open
Abstract
Background Vascular dementia is the second dementing illness after Alzheimer’s disease and caused by reduced blood flow to the brain, and affects cognitive abilities. Our previous study found that auricular electrical stimulation (ES) improved motor and learning impairment, and this phenomenon related with nicotinic acetylcholine receptor (nAChR) expressed cells. However, the underlying mechanism was not clear. In the present study, we investigated the effects of auricular ES on cortical blood flow (CBF) and acetylcholine (ACh) - nAChRs expressed cells. Methods Vascular dementia rat animal model was established by permanent occlusions of common carotid arteries with 6–0 nylon suture filament. At 21 day after surgery, motor impairment was confirmed by rotarod test. 15-Hz auricular ES were applied to the ears for 20 min and CBF was recorded at the mean time. The brains were immediately dissected for immunohistochemical stain and western blot analysis. Results Our results showed that 15-Hz auricular ES rapidly elevated CBF in the middle cerebral artery. The numbers of nAChR α4 immuno-positive cells and western blot levels were significally increased by 15-Hz auricular ES in the hippocampal CA2 output cortex. The numbers of choline acetyltransferase (ChAT) – a key enzyme for biosynthesis of ACh – immuno-positive cells and western blot levels had no significant differences. Conclusions The present data suggested that the 15-Hz auricular ES for 20 min rapidly elevated cortical blood flow, promoted the expression of nAChR α4, and would be beneficial for the treatment of Alzheimer type and vascular type dementia.
Collapse
Affiliation(s)
- Tai-Hsiang Huang
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
| | - Chun-Ping Huang
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
| | - Jing-Ming Chen
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City, 510, Taiwan
| | - Ching-Liang Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan. .,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan. .,Department of Chinese Medicine, China Medical University Hospital, Taichung, 40447, Taiwan. .,Research Center for Chinese Medicine and Acupuncture, China Medical Univeristy, Taichung, 40402, Taiwan.
| |
Collapse
|
8
|
Page SJ, Zhu M, Appleyard SM. Effects of acute and chronic nicotine on catecholamine neurons of the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2018; 316:R38-R49. [PMID: 30354182 DOI: 10.1152/ajpregu.00344.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine's effects; however nicotine's effect on these neurons is unknown. Here, we determined nicotine's actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4β2 agonist RJR2403 and blocked by nAChRα4β2 antagonist DHβE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.
Collapse
Affiliation(s)
- Stephen J Page
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
9
|
Underner M, Perriot J, Peiffer G, Harika-Germaneau G, Jaafari N. [Smoking cessation: Pharmacological strategies different from standard treatments]. REVUE DE PNEUMOLOGIE CLINIQUE 2018; 74:205-214. [PMID: 29773262 DOI: 10.1016/j.pneumo.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/23/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Three drugs are used as an aid for smoking cessation: nicotine replacement therapy (NRT), varenicline and bupropion. Standard pharmacological strategies have proven their efficacy but may have poor efficacy, especially among "Hard-core smokers" who display low smoking abstinence rates and high relapse rates. OBJECTIVES Systematic literature review of data on pharmacological strategies for smoking cessation which are different from standard treatments. RESULTS Sixteen studies were included. Higher dose of nicotine patchs increases smoking abstinence rates. Increasing varenicline dose in smokers who do not respond to the standard dose is associated with high success rates. Extended treatment with nicotine patchs is associated with higher abstinence rate at 6 months but not in the long term. Results of studies on extended treatment with oral NRT are conflicting. Extended treatment with varenicline increases smoking cessation rates. Results of studies on extended treatment with bupropion are conflicting as regards smoking cessation rates. Combination therapy of varenicline with nicotine patchs or with bupropion are more effective than varénicline alone. Varenicline using a flexible quit date have similar efficacy compared with previous fixed quit date studies. Pre-cessation treatment with nicotine patchs or with varenicline increases abstinence rates. There is no difference in smoking cessation effectiveness among bupropion, nicotine replacement therapy and their combination. Similarly, there is no differences in abstinence rates between the active bupropion and nicotine gum and the active bupropion and placebo gum groups. Retreatment with varenicline is efficacious in smokers who have previously taken it. CONCLUSION Pharmacological strategies different from standard treatments maybe useful for smoking cessation aid.
Collapse
Affiliation(s)
- M Underner
- Consultation de tabacologie, unité de recherche clinique, université de Poitiers, centre hospitalier Henri-Laborit, 370, avenue Jacques-Cœur, CS 10587, 86021 Poitiers cedex, France.
| | - J Perriot
- Dispensaire Emile-Roux, centre de tabacologie, 63100 Clermont-Ferrand, France
| | - G Peiffer
- Service de pneumologie, CHR Metz-Thionville, 57038 Metz, France
| | - G Harika-Germaneau
- Consultation de tabacologie, unité de recherche clinique, université de Poitiers, centre hospitalier Henri-Laborit, 370, avenue Jacques-Cœur, CS 10587, 86021 Poitiers cedex, France
| | - N Jaafari
- Consultation de tabacologie, unité de recherche clinique, université de Poitiers, centre hospitalier Henri-Laborit, 370, avenue Jacques-Cœur, CS 10587, 86021 Poitiers cedex, France
| |
Collapse
|
10
|
Jones B, Donovan C, Liu G, Gomez HM, Chimankar V, Harrison CL, Wiegman CH, Adcock IM, Knight DA, Hirota JA, Hansbro PM. Animal models of COPD: What do they tell us? Respirology 2016; 22:21-32. [DOI: 10.1111/resp.12908] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Bernadette Jones
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Gang Liu
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Celeste L. Harrison
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Cornelis H. Wiegman
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Ian M. Adcock
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Darryl A. Knight
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Jeremy A. Hirota
- James Hogg Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| |
Collapse
|
11
|
Nicotinic acetylcholine receptor availability in cigarette smokers: effect of heavy caffeine or marijuana use. Psychopharmacology (Berl) 2016; 233:3249-57. [PMID: 27370018 PMCID: PMC4982797 DOI: 10.1007/s00213-016-4367-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022]
Abstract
RATIONALE Upregulation of α4β2* nicotinic acetylcholine receptors (nAChRs) is one of the most well-established effects of chronic cigarette smoking on the brain. Prior research by our group gave a preliminary indication that cigarette smokers with concomitant use of caffeine or marijuana have altered nAChR availability. OBJECTIVE We sought to determine if smokers with heavy caffeine or marijuana use have different levels of α4β2* nAChRs than smokers without these drug usages. METHODS One hundred and one positron emission tomography (PET) scans, using the radiotracer 2-FA (a ligand for β2*-containing nAChRs), were obtained from four groups of males: non-smokers without heavy caffeine or marijuana use, smokers without heavy caffeine or marijuana use, smokers with heavy caffeine use (mean four coffee cups per day), and smokers with heavy marijuana use (mean 22 days of use per month). Total distribution volume (Vt/fp) was determined for the brainstem, prefrontal cortex, and thalamus, as a measure of nAChR availability. RESULTS A significant between-group effect was found, resulting from the heavy caffeine and marijuana groups having the highest Vt/fp values (especially for the brainstem and prefrontal cortex), followed by smokers without such use, followed by non-smokers. Direct between-group comparisons revealed significant differences for Vt/fp values between the smoker groups with and without heavy caffeine or marijuana use. CONCLUSIONS Smokers with heavy caffeine or marijuana use have higher α4β2* nAChR availability than smokers without these drug usages. These findings are likely due to increased nicotine exposure but could also be due to an interaction on a cellular/molecular level.
Collapse
|
12
|
Parikh V, Kutlu MG, Gould TJ. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr Res 2016; 171:1-15. [PMID: 26803692 PMCID: PMC4762752 DOI: 10.1016/j.schres.2016.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. METHODS Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 276 articles were used for the qualitative synthesis of this review. RESULTS Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. CONCLUSIONS The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States.
| | - Munir Gunes Kutlu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| |
Collapse
|
13
|
Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system. Psychopharmacology (Berl) 2015; 232:4303-16. [PMID: 26337613 DOI: 10.1007/s00213-015-4058-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/19/2015] [Indexed: 12/13/2022]
Abstract
RATIONALE Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. OBJECTIVE The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. METHODS Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). RESULTS Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. CONCLUSIONS These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.
Collapse
|
14
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
15
|
Esterlis I, Bois F, Pittman B, Picciotto MR, Shearer L, Anticevic A, Carlson J, Niciu M, Cosgrove KP, D’Souza DC, D'Souza DC. In vivo evidence for β2 nicotinic acetylcholine receptor subunit upregulation in smokers as compared with nonsmokers with schizophrenia. Biol Psychiatry 2014; 76:495-502. [PMID: 24360979 PMCID: PMC4019710 DOI: 10.1016/j.biopsych.2013.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 10/16/2013] [Accepted: 11/04/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Schizophrenia is associated with very high rates of tobacco smoking. The latter may be related to an attempt to self-medicate symptoms and/or to alterations in function of high-affinity β2-subunit-containing nicotinic acetylcholine receptors (β2*-nAChRs). METHODS Smoking and nonsmoking subjects with schizophrenia (n=31) and age-, smoking-, and sex-matched comparison subjects (n=31) participated in one [123I]5-IA-85380 single photon emission computed tomography scan to quantify β2*-nAChR availability. Psychiatric, cognitive, nicotine craving, and mood assessments were obtained during active smoking, as well as smoking abstinence. RESULTS There were no differences in smoking characteristics between smokers with and without schizophrenia. Subjects with schizophrenia had lower β2*-nAChR availability relative to comparison group, and nonsmokers had lower β2*-nAChR availability relative to smokers. However, there was no smoking by diagnosis interaction. Relative to nonsmokers with schizophrenia, smokers with schizophrenia had higher β2*-nAChR availability in limited brain regions. In smokers with schizophrenia, higher β2*-nAChR availability was associated with lower negative symptoms of schizophrenia and better performance on tests of executive control. Chronic exposure to antipsychotic drugs was not associated with changes in β2*-nAChR availability in schizophrenia. CONCLUSIONS Although subjects with schizophrenia have lower β2*-nAChR availability relative to comparison group, smokers with schizophrenia appear to upregulate in the cortical regions. Lower receptor availability in smokers with schizophrenia in the cortical regions is associated with a greater number of negative symptoms and worse performance on tests of executive function, suggesting smoking subjects with schizophrenia who upregulate to a lesser degree may be at risk for poorer outcomes.
Collapse
Affiliation(s)
- Irina Esterlis
- Department of Psychiatry, School of Medicine, Yale University; Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.
| | - Frederic Bois
- School of Medicine, Yale University,Departments of Psychiatry VACHS
| | | | | | | | | | - Jon Carlson
- School of Medicine, Yale University,Departments of Psychiatry VACHS
| | | | - Kelly P. Cosgrove
- School of Medicine, Yale University,Departments of Psychiatry VACHS
| | - D. Cyril D’Souza
- School of Medicine, Yale University,Departments of Psychiatry VACHS
| | - D Cyril D'Souza
- Department of Psychiatry, School of Medicine, Yale University; Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
16
|
Jasinska AJ, Zorick T, Brody AL, Stein EA. Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology 2014; 84:111-22. [PMID: 23474015 PMCID: PMC3710300 DOI: 10.1016/j.neuropharm.2013.02.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/28/2012] [Accepted: 02/19/2013] [Indexed: 12/11/2022]
Abstract
Substantial evidence demonstrates both nicotine's addiction liability and its cognition-enhancing effects. However, the neurobiological mechanisms underlying nicotine's impact on brain function and behavior remain incompletely understood. Elucidation of these mechanisms is of high clinical importance and may lead to improved therapeutics for smoking cessation as well as for a number of cognitive disorders such as schizophrenia. Neuroimaging techniques such as positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), which make it possible to study the actions of nicotine in the human brain in vivo, play an increasingly important role in identifying these dual mechanisms of action. In this review, we summarize the current state of knowledge and discuss outstanding questions and future directions in human neuroimaging research on nicotine and tobacco. This research spans from receptor-level PET and SPECT studies demonstrating nicotine occupancy at nicotinic acetylcholine receptors (nAChRs) and upregulation of nAChRs induced by chronic smoking; through nicotine's interactions with the mesocorticolimbic dopamine system believed to mediate nicotine's reinforcing effects leading to dependence; to functional activity and connectivity fMRI studies documenting nicotine's complex behavioral and cognitive effects manifest by its actions on large-scale brain networks engaged both during task performance and at rest. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Agnes J Jasinska
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Todd Zorick
- University of California at Los Angeles, Department of Psychiatry, 300 UCLA Medical Plaza, Los Angeles, CA 90095, United States; VA Greater Los Angeles Healthcare System, United States
| | - Arthur L Brody
- University of California at Los Angeles, Department of Psychiatry, 300 UCLA Medical Plaza, Los Angeles, CA 90095, United States; VA Greater Los Angeles Healthcare System, United States.
| | - Elliot A Stein
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| |
Collapse
|
17
|
Brody AL, Mukhin AG, Mamoun MS, Luu T, Neary M, Liang L, Shieh J, Sugar CA, Rose JE, Mandelkern MA. Brain nicotinic acetylcholine receptor availability and response to smoking cessation treatment: a randomized trial. JAMA Psychiatry 2014; 71:797-805. [PMID: 24850280 PMCID: PMC4634637 DOI: 10.1001/jamapsychiatry.2014.138] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Cigarette smoking leads to upregulation of nicotinic acetylcholine receptors (nAChRs) in the human brain, including the common α4β2* nAChR subtype. While subjective aspects of tobacco dependence have been extensively examined as predictors of quitting smoking with treatment, no studies to our knowledge have yet reported the relationship between the extent of pretreatment upregulation of nAChRs and smoking cessation. OBJECTIVE To determine whether the degree of nAChR upregulation in smokers predicts quitting with a standard course of treatment. DESIGN, SETTING, AND PARTICIPANTS Eighty-one tobacco-dependent cigarette smokers (volunteer sample) underwent positron emission tomographic (PET) scanning of the brain with the radiotracer 2-FA followed by 10 weeks of double-blind, placebo-controlled treatment with nicotine patch (random assignment). Pretreatment specific binding volume of distribution (VS/fP) on PET images (a value that is proportional to α4β2* nAChR availability) was determined for 8 brain regions of interest, and participant-reported ratings of nicotine dependence, craving, and self-efficacy were collected. Relationships between these pretreatment measures, treatment type, and outcome were then determined. The study took place at academic PET and clinical research centers. MAIN OUTCOMES AND MEASURES Posttreatment quit status after treatment, defined as a participant report of 7 or more days of continuous abstinence and an exhaled carbon monoxide level of 3 ppm or less. RESULTS Smokers with lower pretreatment VS/fP values (a potential marker of less severe nAChR upregulation) across all brain regions studied were more likely to quit smoking (multivariate analysis of covariance, F8,69 = 4.5; P < .001), regardless of treatment group assignment. Furthermore, pretreatment average VS/fP values provided additional predictive power for likelihood of quitting beyond the self-report measures (stepwise binary logistic regression, likelihood ratio χ21 = 19.8; P < .001). CONCLUSIONS AND RELEVANCE Smokers with less upregulation of available α4β2* nAChRs have a greater likelihood of quitting with treatment than smokers with more upregulation. In addition, the biological marker studied here provided additional predictive power beyond subjectively rated measures known to be associated with smoking cessation outcome. While the costly, time-consuming PET procedure used here is not likely to be used clinically, simpler methods for examining α4β2* nAChR upregulation could be tested and applied in the future to help determine which smokers need more intensive and/or lengthier treatment. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01526005.
Collapse
Affiliation(s)
- Arthur L. Brody
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, California2Department of Psychiatry, University of California, Los Angeles
| | - Alexey G. Mukhin
- Department of Psychiatry, Duke University, Durham, North Carolina
| | - Michael S. Mamoun
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Trinh Luu
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Meaghan Neary
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Lidia Liang
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Jennifer Shieh
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Catherine A. Sugar
- Department of Psychiatry, University of California, Los Angeles4Department of Biostatistics, University of California, Los Angeles
| | - Jed E. Rose
- Department of Psychiatry, Duke University, Durham, North Carolina
| | - Mark A. Mandelkern
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, California5Department of Physics, University of California, Irvine
| |
Collapse
|
18
|
Green BT, Welch KD, Panter KE, Lee ST. Plant toxins that affect nicotinic acetylcholine receptors: a review. Chem Res Toxicol 2013; 26:1129-38. [PMID: 23848825 DOI: 10.1021/tx400166f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants produce a wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis, or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. However, in some cases these secondary metabolites found in poisonous plants perturb biological systems. Ingestion of toxins from poisonous plants by grazing livestock often results in large economic losses to the livestock industry. The chemical structures of these compounds are diverse and range from simple, low molecular weight toxins such as oxalate in halogeton to the highly complex norditerpene alkaloids in larkspurs. While the negative effects of plant toxins on people and the impact of plant toxins on livestock producers have been widely publicized, the diversity of these toxins and their potential as new pharmaceutical agents for the treatment of diseases in people and animals has also received widespread interest. Scientists are actively screening plants from all regions of the world for bioactivity and potential pharmaceuticals for the treatment or prevention of many diseases. In this review, we focus the discussion to those plant toxins extensively studied at the USDA Poisonous Plant Research Laboratory that affect the nicotinic acetylcholine receptors including species of Delphinium (Larkspurs), Lupinus (Lupines), Conium (poison hemlock), and Nicotiana (tobaccos).
Collapse
Affiliation(s)
- Benedict T Green
- USDA/ARS Poisonous Plant Research Laboratory , 1150 East 1400 North, Logan, Utah 84341, USA
| | | | | | | |
Collapse
|
19
|
Brody AL, Mukhin AG, Stephanie Shulenberger, Mamoun MS, Kozman M, Phuong J, Neary M, Luu T, Mandelkern MA. Treatment for tobacco dependence: effect on brain nicotinic acetylcholine receptor density. Neuropsychopharmacology 2013; 38:1548-56. [PMID: 23429692 PMCID: PMC3682149 DOI: 10.1038/npp.2013.53] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 11/08/2022]
Abstract
Cigarette smoking leads to upregulation of brain nicotinic acetylcholine receptors (nAChRs), including the common α4β2* nAChR subtype. Although a substantial percentage of smokers receive treatment for tobacco dependence with counseling and/or medication, the effect of a standard course of these treatments on nAChR upregulation has not yet been reported. In the present study, 48 otherwise healthy smokers underwent positron emission tomography (PET) scanning with the radiotracer 2-FA (for labeling α4β2* nAChRs) before and after treatment with either cognitive-behavioral therapy, bupropion HCl, or pill placebo. Specific binding volume of distribution (VS/fP), a measure proportional to α4β2* nAChR density, was determined for regions known to have nAChR upregulation with smoking (prefrontal cortex, brainstem, and cerebellum). In the overall study sample, significant decreases in VS/fP were found for the prefrontal cortex, brainstem, and cerebellum of -20 (±35), -25 (±36), and -25 (±31)%, respectively, which represented movement of VS/fP values toward values found in non-smokers (mean 58.2% normalization of receptor levels). Participants who quit smoking had significantly greater reductions in VS/fP across regions than non-quitters, and correlations were found between reductions in cigarettes per day and decreases in VS/fP for brainstem and cerebellum, but there was no between-group effect of treatment type. Thus, smoking reduction and cessation with commonly used treatments (and pill placebo) lead to decreased α4β2* nAChR densities across brain regions. Study findings could prove useful in the treatment of smokers by providing encouragement with the knowledge that decreased smoking leads to normalization of specific brain receptors.
Collapse
Affiliation(s)
- Arthur L Brody
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
One-third of smokers primarily use menthol cigarettes and usage of these cigarettes leads to elevated serum nicotine levels and more difficulty quitting in standard treatment programmes. Previous brain imaging studies demonstrate that smoking (without regard to cigarette type) leads to up-regulation of β(2)*-containing nicotinic acetylcholine receptors (nAChRs). We sought to determine if menthol cigarette usage results in greater nAChR up-regulation than non-menthol cigarette usage. Altogether, 114 participants (22 menthol cigarette smokers, 41 non-menthol cigarette smokers and 51 non-smokers) underwent positron emission tomography scanning using the α(4)β(2)* nAChR radioligand 2-[(18)F]fluoro-A-85380 (2-FA). In comparing menthol to non-menthol cigarette smokers, an overall test of 2-FA total volume of distribution values revealed a significant between-group difference, resulting from menthol smokers having 9-28% higher α(4)β(2)* nAChR densities than non-menthol smokers across regions. In comparing the entire group of smokers to non-smokers, an overall test revealed a significant between-group difference, resulting from smokers having higher α(4)β(2)* nAChR levels in all regions studied (36-42%) other than thalamus (3%). Study results demonstrate that menthol smokers have greater up-regulation of nAChRs than non-menthol smokers. This difference is presumably related to higher nicotine exposure in menthol smokers, although other mechanisms for menthol influencing receptor density are possible. These results provide additional information about the severity of menthol cigarette use and may help explain why these smokers have more trouble quitting in standard treatment programmes.
Collapse
|
21
|
The dorsal motor nucleus of the vagus (DMNV) in sudden infant death syndrome (SIDS): pathways leading to apoptosis. Respir Physiol Neurobiol 2012; 185:203-10. [PMID: 22975482 DOI: 10.1016/j.resp.2012.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/08/2012] [Accepted: 09/04/2012] [Indexed: 12/20/2022]
Abstract
Sudden infant death syndrome (SIDS) remains the commonest cause of death in the post-neonatal period in the developed world. A leading hypothesis is that an abnormality in the brainstem of infants who succumb to SIDS, either causes or predisposes to failure to respond appropriately to an exogenous stressor. Neuronal apoptosis can lead to loss of cardiorespiratory reflexes, compromise of the infant's ability to respond to stressors such as hypoxia, and ultimately a sleep-related death. The dorsal motor nucleus of the vagus (DMNV) is a medullary autonomic nucleus where abnormalities have regularly been identified in SIDS research. This review collates neurochemical findings documented over the last 30 years, including data from our laboratory focusing on neuronal apoptosis and the DMNV, and provides potential therapeutic interventions targeting neurotransmitters, growth factors and/or genes.
Collapse
|
22
|
Bruijnzeel AW. Tobacco addiction and the dysregulation of brain stress systems. Neurosci Biobehav Rev 2012; 36:1418-41. [PMID: 22405889 PMCID: PMC3340450 DOI: 10.1016/j.neubiorev.2012.02.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/01/2012] [Accepted: 02/23/2012] [Indexed: 11/15/2022]
Abstract
Tobacco is a highly addictive drug and is one of the most widely abused drugs in the world. The first part of this review explores the role of stressors and stress-associated psychiatric disorders in the initiation of smoking, the maintenance of smoking, and relapse after a period of abstinence. The reviewed studies indicate that stressors facilitate the initiation of smoking, decrease the motivation to quit, and increase the risk for relapse. Furthermore, people with depression or an anxiety disorder are more likely to smoke than people without these disorders. The second part of this review describes animal studies that investigated the role of brain stress systems in nicotine addiction. These studies indicate that corticotropin-releasing factor, Neuropeptide Y, the hypocretins, and norepinephrine play a pivotal role in nicotine addiction. In conclusion, the reviewed studies indicate that smoking briefly decreases subjective stress levels but also leads to a further dysregulation of brain stress systems. Drugs that decrease the activity of brain stress systems may diminish nicotine withdrawal and improve smoking cessation rates.
Collapse
Affiliation(s)
- Adrie W Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida, 1149 S. Newell Dr., Gainesville, FL 32611, USA.
| |
Collapse
|
23
|
Counotte DS, Smit AB, Pattij T, Spijker S. Development of the motivational system during adolescence, and its sensitivity to disruption by nicotine. Dev Cogn Neurosci 2011; 1:430-43. [PMID: 22436565 DOI: 10.1016/j.dcn.2011.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/18/2011] [Accepted: 05/29/2011] [Indexed: 12/18/2022] Open
Abstract
The brain continues to develop during adolescence, and exposure to exogenous substances such as nicotine can exert long-lasting adaptations during this vulnerable period. In order to fully understand how nicotine affects the adolescent brain it is important to understand normal adolescent brain development. This review summarizes human and animal data on brain development, with emphasis on the prefrontal cortex, for its important function in executive control over behavior. Moreover, we discuss how nicotine exposure during adolescence can disrupt brain development bearing long-term consequences on executive cognitive function in adulthood.
Collapse
Affiliation(s)
- Danielle S Counotte
- Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research (CNCR), VU University, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Brody AL, Mandelkern MA, London ED, Khan A, Kozman D, Costello MR, Vellios EE, Archie MM, Bascom R, Mukhin AG. Effect of secondhand smoke on occupancy of nicotinic acetylcholine receptors in brain. ACTA ACUST UNITED AC 2011; 68:953-60. [PMID: 21536968 DOI: 10.1001/archgenpsychiatry.2011.51] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Despite progress in tobacco control, secondhand smoke (SHS) exposure remains prevalent worldwide and is implicated in the initiation and maintenance of cigarette smoking. OBJECTIVE To determine whether moderate SHS exposure results in brain α(4)β(2)* nicotinic acetylcholine receptor (nAChR) occupancy. DESIGN, SETTING, AND PARTICIPANTS Positron emission tomography scanning and the radiotracer 2-[18F]fluoro-3-(2(S)azetidinylmethoxy) pyridine (also known as 2-[(18)F]fluoro-A-85380, or 2-FA) were used to determine α(4)β(2)* nAChR occupancy from SHS exposure in 24 young adult participants (11 moderately dependent cigarette smokers and 13 nonsmokers). Participants underwent two bolus-plus-continuous-infusion 2-FA positron emission tomography scanning sessions during which they sat in the passenger's seat of a car for 1 hour and either were exposed to moderate SHS or had no SHS exposure. The study took place at an academic positron emission tomography center. Main Outcome Measure Changes induced by SHS in 2-FA specific binding volume of distribution as a measure of α(4)β(2)* nAChR occupancy. RESULTS An overall multivariate analysis of variance using specific binding volume of distribution values revealed a significant main effect of condition (SHS vs control) (F(1,22) = 42.5, P < .001) but no between-group (smoker vs nonsmoker) effect. Exposure to SHS led to a mean 19% occupancy of brain α(4)β(2)* nAChRs (1-sample t test, 2-tailed, P < .001). Smokers had both a mean 23% increase in craving with SHS exposure and a correlation between thalamic α(4)β(2)* nAChR occupancy and craving alleviation with subsequent cigarette smoking (Spearman ρ = -0.74, P = .01). CONCLUSIONS Nicotine from SHS exposure results in substantial brain α(4)β(2)* nAChR occupancy in smokers and nonsmokers. Study findings suggest that such exposure delivers a priming dose of nicotine to the brain that contributes to continued cigarette use in smokers. This study has implications for both biological research into the link between SHS exposure and cigarette use and public policy regarding the need to limit SHS exposure in cars and other enclosed spaces.
Collapse
Affiliation(s)
- Arthur L Brody
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
D'Souza MS, Markou A. Schizophrenia and tobacco smoking comorbidity: nAChR agonists in the treatment of schizophrenia-associated cognitive deficits. Neuropharmacology 2011; 62:1564-73. [PMID: 21288470 DOI: 10.1016/j.neuropharm.2011.01.044] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 12/22/2022]
Abstract
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Very high rates of tobacco smoking are seen in patients with schizophrenia. Importantly, smokers with schizophrenia generally have higher nicotine dependence scores, experience more severe withdrawal symptoms upon smoking cessation, have lower cessation rates than healthy individuals, and suffer from significant smoking-related morbidity and premature mortality compared with the general population. Interestingly, significant disturbances in cholinergic function are reported in schizophrenia patients. The high smoking-schizophrenia comorbidity observed in schizophrenia patients may be an attempt to compensate for this cholinergic dysfunction. Cholinergic neurotransmission plays an important role in cognition and is hypothesized to play an important role in schizophrenia-associated cognitive deficits. In this review, preclinical evidence highlighting the beneficial effects of nicotine and subtype-selective nicotinic receptor agonists in schizophrenia-associated cognitive deficits, such as working memory and attention, is discussed. Furthermore, some of the challenges involved in the development of procognitive medications, particularly subtype-selective nicotinic receptor agonists, are also discussed. Amelioration of schizophrenia-associated cognitive deficits may help in the treatment of schizophrenia-smoking comorbidity by promoting smoking cessation and thus help in the better management of schizophrenia patients.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Psychiatry, M/C 0603, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
26
|
Abstract
As indicated by the profound cognitive impairments caused by cholinergic receptor antagonists, cholinergic neurotransmission has a vital role in cognitive function, specifically attention and memory encoding. Abnormally regulated cholinergic neurotransmission has been hypothesized to contribute to the cognitive symptoms of neuropsychiatric disorders. Loss of cholinergic neurons enhances the severity of the symptoms of dementia. Cholinergic receptor agonists and acetylcholinesterase inhibitors have been investigated for the treatment of cognitive dysfunction. Evidence from experiments using new techniques for measuring rapid changes in cholinergic neurotransmission provides a novel perspective on the cholinergic regulation of cognitive processes. This evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance. Furthermore, the evidence indicates cholinergic induction of evoked intrinsic, persistent spiking mechanisms for active maintenance of sensory input, and planned responses. Models have been developed to describe the neuronal mechanisms underlying the transient modulation of cortical target circuits by cholinergic activity. These models postulate specific locations and roles of nicotinic and muscarinic acetylcholine receptors and that cholinergic neurotransmission is controlled in part by (cortical) target circuits. The available evidence and these models point to new principles governing the development of the next generation of cholinergic treatments for cognitive disorders.
Collapse
|
27
|
Brennan KA, Lea RA, Fitzmaurice PS, Truman P. Nicotinic receptors and stages of nicotine dependence. J Psychopharmacol 2010; 24:793-808. [PMID: 19251827 DOI: 10.1177/0269881108100256] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Smoking is one of the leading causes of preventable death, where nicotine has been identified as the primary addictive constituent of tobacco. Consequently, there have been extensive investigations into the neuroadaptations that occur as nicotine dependence develops, where numerous neurological systems have been implicated. The focus of this review was on nicotinic acetylcholine receptor neuroadaptations that occur during the development of nicotine dependence. This focus was selected because (1) the nicotinic receptors are the primary binding sites for both nicotine and the most efficacious pharmacological smoking cessation treatments and (2) the receptors are located throughout the brain with considerable neuromodulatory ability. However, there was difficulty associated in outlining the role of nicotinic receptors in the development of nicotine dependence because it comprises a series of stages involving different neurological systems rather than a single state. To address this issue, the review adopts a novel approach and considers the role of nicotinic receptor subtypes at separate stages of the nicotine dependence cycle. This information was then used to examine the nicotinic receptor-related therapeutic mechanisms of three main pharmacological smoking cessation treatments.
Collapse
Affiliation(s)
- K A Brennan
- Environmental Science and Research Ltd, Porirua, Wellington, New Zealand.
| | | | | | | |
Collapse
|
28
|
Parikh V, Ji J, Decker MW, Sarter M. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 2010; 30:3518-30. [PMID: 20203212 PMCID: PMC2864641 DOI: 10.1523/jneurosci.5712-09.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/17/2010] [Accepted: 01/22/2010] [Indexed: 11/21/2022] Open
Abstract
One-second-long increases in prefrontal cholinergic activity ("transients") were demonstrated previously to be necessary for the incorporation of cues into ongoing cognitive processes ("cue detection"). Nicotine and, more robustly, selective agonists at alpha4beta2* nicotinic acetylcholine receptors (nAChRs) enhance cue detection and attentional performance by augmenting prefrontal cholinergic activity. The present experiments determined the role of beta2-containing and alpha7 nAChRs in the generation of prefrontal cholinergic and glutamatergic transients in vivo. Transients were evoked by nicotine, the alpha4beta2* nAChR agonist ABT-089 [2-methyl-3-(2-(S)-pyrrolindinylmethoxy) pyridine dihydrochloride], or the alpha7 nAChR agonist A-582941 [2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole]. Transients were recorded in mice lacking beta2 or alpha7 nAChRs and in rats after removal of thalamic glutamatergic or midbrain dopaminergic inputs to prefrontal cortex. The main results indicate that stimulation of alpha4beta2* nAChRs evokes glutamate release and that the presence of thalamic afferents is necessary for the generation of cholinergic transients. ABT-089-evoked transients were completely abolished in mice lacking beta2* nAChRs. The amplitude, but not the decay rate, of nicotine-evoked transients was reduced by beta2* knock-out. Conversely, in mice lacking the alpha7 nAChR, the decay rate, but not the amplitude, of nicotine-evoked cholinergic and glutamatergic transients was attenuated. Substantiating the role of alpha7 nAChR in controlling the duration of release events, stimulation of alpha7 nAChR produced cholinergic transients that lasted 10- to 15-fold longer than those evoked by nicotine. alpha7 nAChR-evoked cholinergic transients are mediated in part by dopaminergic activity. Prefrontal alpha4beta2* nAChRs play a key role in evoking and facilitating the transient glutamatergic-cholinergic interactions that are necessary for cue detection and attentional performance.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1043, and
| | - Jinzhao Ji
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1043, and
| | - Michael W. Decker
- Neuroscience Research, Abbott Laboratories, Abbott Park, Illinois 60064-6125
| | - Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1043, and
| |
Collapse
|
29
|
Small E, Shah HP, Davenport JJ, Geier JE, Yavarovich KR, Yamada H, Sabarinath SN, Derendorf H, Pauly JR, Gold MS, Bruijnzeel AW. Tobacco smoke exposure induces nicotine dependence in rats. Psychopharmacology (Berl) 2010; 208:143-58. [PMID: 19936715 PMCID: PMC3586198 DOI: 10.1007/s00213-009-1716-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 10/26/2009] [Indexed: 11/26/2022]
Abstract
RATIONALE Tobacco smoke contains nicotine and many other compounds that act in concert on the brain reward system. Therefore, animal models are needed that allow the investigation of chronic exposure to the full spectrum of tobacco smoke constituents. OBJECTIVES The aim of these studies was to investigate if exposure to tobacco smoke leads to nicotine dependence in rats. METHODS The intracranial self-stimulation procedure was used to assess the negative affective aspects of nicotine withdrawal. Somatic signs were recorded from a checklist of nicotine abstinence signs. Nicotine self-administration sessions were conducted to investigate if tobacco smoke exposure affects the motivation to self-administer nicotine. Nicotinic receptor autoradiography was used to investigate if exposure to tobacco smoke affects central alpha7 nicotinic acetylcholine receptor (nAChR) and non-alpha7 nAChR levels (primarily alpha4beta2 nAChRs). RESULTS The nAChR antagonist mecamylamine dose-dependently elevated the brain reward thresholds of the rats exposed to tobacco smoke and did not affect the brain reward thresholds of the untreated control rats. Furthermore, mecamylamine induced more somatic withdrawal signs in the smoke-exposed rats than in the control rats. Nicotine self-administration was decreased 1 day after the last tobacco smoke exposure sessions and was returned to control levels 5 days later. Tobacco smoke exposure increased the alpha7 nAChR density in the CA2/3 area and the stratum oriens and increased the non-alpha7 nAChR density in the dentate gyrus. CONCLUSION Tobacco smoke exposure leads to nicotine dependence as indicated by precipitated affective and somatic withdrawal signs and induces an upregulation of nAChRs in the hippocampus.
Collapse
Affiliation(s)
- Elysia Small
- Department of Psychiatry, College of Medicine, McKnight Brain Institute, University of Florida, 100 S. Newell Dr., PO Box 100256, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hosur V, Leppanen S, Abutaha A, Loring RH. Gene regulation of alpha4beta2 nicotinic receptors: microarray analysis of nicotine-induced receptor up-regulation and anti-inflammatory effects. J Neurochem 2009; 111:848-58. [PMID: 19732285 DOI: 10.1111/j.1471-4159.2009.06373.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
alpha4beta2 Nicotinic acetylcholine receptors play an important role in the reward pathways for nicotine. We investigated whether receptor up-regulation of alpha4beta2 nicotinic acetylcholine receptors involves expression changes for non-receptor genes. In a microarray analysis, 10 muM nicotine altered expression of 41 genes at 0.25, 1, 8 and 24 h in halpha4beta2 SH-EP1 cells. The maximum number of gene changes occurred at 8 h, around the initial increase in (3)[H]-cytisine binding. Quantitative RT-PCR corroborated gene induction of endoplasmic reticulum proteins CRELD2, PDIA6, and HERPUD1, and suppression of the pro-inflammatory cytokines IL-1beta and IL-6. Nicotine suppresses IL-1beta and IL-6 expression at least in part by inhibiting NFkappaB activation. Antagonists dihydro-beta-erythroidine and mecamylamine blocked these nicotine-induced changes showing that receptor activation is required. Antagonists alone or in combination with nicotine suppressed CRELD2 message while increasing alpha4beta2 binding. Additionally, small interfering RNA knockdown of CRELD2 increased basal alpha4beta2 receptor expression, and antagonists decreased CRELD2 expression even in the absence of alpha4beta2 receptors. These data suggest that endoplasmic reticulum proteins such as CRELD2 can regulate alpha4beta2 expression, and may explain antagonist actions in nicotine-induced receptor up-regulation. Further, the unexpected finding that nicotine suppresses inflammatory cytokines suggests that nicotinic alpha4beta2 receptor activation promotes anti-inflammatory effects similar to alpha7 receptor activation.
Collapse
Affiliation(s)
- Vishnu Hosur
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
31
|
Pilarski JQ, Fregosi RF. Prenatal nicotine exposure alters medullary nicotinic and AMPA-mediated control of respiratory frequency in vitro. Respir Physiol Neurobiol 2009; 169:1-10. [PMID: 19651248 DOI: 10.1016/j.resp.2009.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/22/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
Prenatal nicotine exposure (PNE) is correlated with breathing abnormalities in humans and other animals. Despite evidence that this relationship results from alterations in nicotinic acetylcholine receptors (nAChRs), the mechanisms are poorly understood. Here, we hypothesize that PNE blunts nAChR-mediated respiratory-related motor output. We also hypothesize that the PNE-induced changes in nAChRs leads to secondary alterations in glutamatergic neurotransmission. To test these hypotheses, we used an in vitro brainstem-spinal cord preparation and recorded C4 ventral root (C4 VR) nerve bursts from 0 to 4-day-old rats that were exposed to either nicotine (6mgkg(-1)day(-1)) or saline (control) in utero. Nicotine bitartrate, nAChR antagonists, NMDA and AMPA were applied to the brainstem compartment of a "split-bath" configuration, which physically separated the medulla from the spinal cord. Nicotine (0.2 or 0.5microM) increased peak C4 VR burst frequency by over 230% in control pups, but only 140% in PNE animals. The application of nAChR antagonists showed that these effects were mediated by the alpha4beta2 nAChR subtype with no effect on alpha7 nAChRs in either group. We also show that AMPA-mediated excitatory neurotransmission is enhanced by PNE, but NMDA-mediated neurotransmission is unaltered. These data and the work of others suggest that the PNE may functionally desensitize alpha4beta2 nAChRs located on the presynaptic terminals of glutamatergic neurons leading to less neurotransmitter release, which in turn up-regulates AMPA receptors on rhythm generating neurons.
Collapse
Affiliation(s)
- Jason Q Pilarski
- Department of Physiology, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
32
|
Govind AP, Vezina P, Green WN. Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 2009; 78:756-65. [PMID: 19540212 DOI: 10.1016/j.bcp.2009.06.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 02/05/2023]
Abstract
A major hurdle in defining the molecular biology of nicotine addiction has been characterizing the different nicotinic acetylcholine receptor (nAChR) subtypes in the brain and how nicotine alters their function. Mounting evidence suggests that the addictive effects of nicotine, like other drugs of abuse, occur through interactions with its receptors in the mesolimbic dopamine system, particularly ventral tegmental area (VTA) neurons, where nicotinic receptors act to modulate the release of dopamine. The molecular identity of the nicotinic receptors responsible for drug seeking behavior, their cellular and subcellular location and the mechanisms by which these receptors initiate and maintain addiction are poorly defined. In this commentary, we review how nicotinic acetylcholine receptors (nAChRs) are upregulated by nicotine exposure, the potential posttranslational events that appear to cause it and how upregulation is linked to nicotine addiction.
Collapse
Affiliation(s)
- Anitha P Govind
- Department of Neurobiology, University of Chicago, Abbot Hall 402-MC0926, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
33
|
D'hoedt D, Bertrand D. Nicotinic acetylcholine receptors: an overview on drug discovery. Expert Opin Ther Targets 2009; 13:395-411. [DOI: 10.1517/14728220902841045] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Abstract
While most cigarette smokers endorse a desire to quit smoking, only 14-49% will achieve abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking on brain function may result in improved pharmacological and behavioral interventions for this condition. Research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose of this chapter is to synthesize findings from such studies and present a coherent model of brain function in smokers. Responses to acute administration of nicotine/smoking include reduced global brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include decreased monoamine oxidase (MAO) A and B activity in the basal ganglia and a reduction in alpha4beta2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen (accompanied by an overall upregulation of these receptors). These findings indicate that smoking enhances neurotransmission through cortico-basal ganglia-thalamic circuits by direct stimulation of nAChRs, indirect stimulation via DA release or MAO inhibition, or a combination of these and possibly other factors. Activation of this circuitry may be responsible for the effects of smoking seen in tobacco-dependent smokers, such as improvements in attentional performance, mood, anxiety, and irritability.
Collapse
Affiliation(s)
- Anil Sharma
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Greater Los Angeles VA Healthcare System, 11301 Wilshire Blvd. Bldg 256 Suite 221, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
35
|
Brody AL. Functional brain imaging of tobacco use and dependence. J Psychiatr Res 2006; 40:404-18. [PMID: 15979645 PMCID: PMC2876087 DOI: 10.1016/j.jpsychires.2005.04.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 11/25/2022]
Abstract
While most cigarette smokers endorse a desire to quit smoking, only about 14% to 49% will achieve abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking on brain function may (in conjunction with other lines of research) result in improved pharmacological (and behavioral) interventions. Many research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose of this paper is to synthesize findings from such studies and present a coherent model of brain function in smokers. Responses to acute administration of nicotine/smoking include: a reduction in global brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include decreased monoamine oxidase (MAO) A and B activity in the basal ganglia and a reduction in alpha4beta2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen. Taken together, these findings indicate that smoking enhances neurotransmission through cortico-basal ganglia-thalamic circuits either by direct stimulation of nAChRs, indirect stimulation via DA release or MAO inhibition, or a combination of these factors. Activation of this circuitry may be responsible for the effects of smoking seen in tobacco dependent subjects, such as improvements in attentional performance, mood, anxiety, and irritability.
Collapse
Affiliation(s)
- Arthur L Brody
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, 300 UCLA Medical Plaza, Suite 2200, Los Angeles, CA 90095, United States.
| |
Collapse
|
36
|
Paul RH, Brickman AM, Cohen RA, Williams LM, Niaura R, Pogun S, Clark CR, Gunstad J, Gordon E. Cognitive status of young and older cigarette smokers: data from the international brain database. J Clin Neurosci 2006; 13:457-65. [PMID: 16678725 DOI: 10.1016/j.jocn.2005.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 04/05/2005] [Indexed: 10/24/2022]
Abstract
Previous studies that have examined the impact of cigarette smoking on cognition have revealed mixed results; some studies report no impact and others report detrimental effects, especially in older individuals. Few studies, however, have examined the effects of cigarette smoking on both young and old healthy individuals using highly robust and standardized methods of cognitive assessment. This study draws on an international database to contrast cognitive differences between younger and older individuals who regularly smoke cigarettes and non-smokers. Data were sampled from 1000 highly screened healthy individuals free of medical or psychiatric health complications. A cohort of 62 regular smokers (n = 45 < 45 years of age; n = 1745 years) with a Fagerstrom nicotine dependency score of 1 or more were identified and matched to a cohort of 62 healthy nonsmokers (n = 43 < 45 years; n = 1945 years) on demographic variables and estimated intelligence. Performances on cognitive measures of attention, reaction time, cognitive flexibility, psychomotor speed, and memory were considered for analysis. As a group, smokers performed more poorly than nonsmokers on one measure of executive function. A significant age and smoking status interaction was identified with older smokers performing more poorly than older nonsmokers and younger smokers on a measure of long-delayed recall of new information. Cigarette smoking is associated with isolated and subtle cognitive difficulties among very healthy individuals.
Collapse
Affiliation(s)
- Robert H Paul
- Centers for Behavioral and Preventive Medicine, Department of Psychiatry, Brown Medical School, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jo YH, Wiedl D, Role LW. Cholinergic modulation of appetite-related synapses in mouse lateral hypothalamic slice. J Neurosci 2006; 25:11133-44. [PMID: 16319313 PMCID: PMC2280035 DOI: 10.1523/jneurosci.3638-05.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotine administration reduces appetite and alters feeding patterns; a major deterrent to smoking cessation is hyperphagia and resultant weight gain. We demonstrate here that lateral hypothalamic (LH) circuits involving melanin-concentrating hormone (MCH) neurons are subject to cholinergic modulation that may be related to the effects of nicotine on appetite control. Cholinergic input to the perifornical LH area of the mouse is confirmed by examination of immunostaining for vesicular acetylcholine (ACh) transporter (VAT) in conjunction with antibodies to MCH and the vesicular GABA transporter (vGABAT). vAChT-positive neurons border the LH, and VAT-positive projections are detected throughout the perifornical area. MCH-positive dendrites appear studded with vGABAT-positive contacts, consistent with recordings of GABAergic inputs to LH/MCH neurons identified by their location, morphology, electrophysiological profile, and MCH expression. Activation of presynaptic nicotinic ACh receptors (nAChRs) enhances GABAergic transmission. GABAergic transmission is potentiated by (1) direct nicotine application, (2) increasing local ACh concentration, and (3) stimulation of cholinergic projections. Based on pharmacological studies and comparisons of wild-type versus alpha7 nAChR subunit mutant mice, we propose that alpha7*-nAChRs are required for the modulation of GABAergic inputs in LH. Prenatal exposure to nicotine elicits a persistent elevation of GABAergic transmission in the LH of postnatal pups. Furthermore, GABAergic inputs to LH of prenatal nicotine-exposed pups are insensitive to subsequent nicotine challenge. Our studies support the hypothesis that nicotine administration or elevated cholinergic tone enhance inhibition of perifonical LH/MCH neurons via activation of presynaptic alpha7*-nAChRs.
Collapse
Affiliation(s)
- Young-Hwan Jo
- Department of Anatomy and Cell Biology, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
38
|
Court JA, Johnson M, Religa D, Keverne J, Kalaria R, Jaros E, McKeith IG, Perry R, Naslund J, Perry EK. Attenuation of Abeta deposition in the entorhinal cortex of normal elderly individuals associated with tobacco smoking. Neuropathol Appl Neurobiol 2005; 31:522-35. [PMID: 16150123 DOI: 10.1111/j.1365-2990.2005.00674.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Investigating correlates of tobacco smoking provides the only currently available opportunity of examining effects of long-term exposure of nicotinic receptors on a specific nicotinic agonist in human. Alzheimer-type pathology (Abeta and abnormally phosphorylated tau assessed on the basis of AT8 immunoreactivity) together with vascular markers has been compared in age-matched groups of normal elderly smokers and non-smokers in the entorhinal cortex, an area of noted age-related pathology. The density of total Abeta and diffuse Abeta immunoreactivity, together with formic acid-extractable Abeta42 but not Abeta40, was reduced in smokers (n = 10-18) compared with non-smokers (n = 10-20) (P < 0.05). There was also a reduced percentage of cortical and leptomeningeal vessels with associated Abeta immunoreactivity in smokers (n = 13) compared with non-smokers (n = 14) (P < 0.005 and 0.05, respectively). There was a significant inverse correlation between formic acid-extractable Abeta42 and pack years (n = 34, r = -0.389, P = 0.025), with a similar trend for total Abeta immunoreactivity which did not reach statistical significance (n = 30, r = -0.323, P = 0.082). In contrast, there were no significant group differences for vascular markers (collagen IV, alpha-actin or glucose transporter 1), AT8 immunoreactivity or phosphate-buffered saline-soluble Abeta peptides, and no significant associations with gender for any of the measured parameters. These findings are consistent with previously reported reductions in histologically assessed amyloid plaques in aged human brain associated with tobacco use and dramatic lessening of Abeta deposits in APPsw mice after nicotine treatment. Development of nicotinic drugs to protect against beta-amyloidosis as one of the principal pathological hallmarks of brain ageing and Alzheimer's disease is indicated.
Collapse
Affiliation(s)
- J A Court
- MRC Building, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne, NE4 6BE, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Huang YH, Brown AR, Costy-Bennett S, Luo Z, Fregosi RF. Influence of prenatal nicotine exposure on postnatal development of breathing pattern. Respir Physiol Neurobiol 2004; 143:1-8. [PMID: 15477168 DOI: 10.1016/j.resp.2004.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
To determine if prenatal nicotine exposure alters the postnatal development of the ventilatory pattern and the frequency and duration of apneas, we recorded respiratory airflow with head-out body plethysmography in awake neonates on postnatal days 1, 2, 6, 10, 14, and 18. Data from 12 nicotine-exposed animals were compared with data from 12 saline-exposed animals. Nicotine (6 mg/kg of nicotine tartrate per day) or saline exposure was induced by osmotic minipumps that were implanted subdermally on the fifth day of gestation in Sprague-Dawley Dams. Although both saline- and nicotine-exposed pups gained weight at the same rate throughout the studies, there were subtle differences in ventilatory indices between the two groups. Nicotine-exposed animals had a significantly higher breathing frequency on day 10, and a lower tidal volume on days 14 and 18. Although ventilation tended to be lower in the nicotine-exposed animals, the difference was not significant. There was a significantly higher frequency of apneas in the nicotine-exposed compared with the saline-exposed animals on postnatal days 1 and 2, but the apnea duration did not differ between the groups. No apneas were observed in any of the animals after the sixth postnatal day. Prenatal nicotine exposure is associated with a greater incidence of apneas on the first two postnatal days, and then an altered breathing pattern that manifests at a later stage of development.
Collapse
Affiliation(s)
- Yu-Hsien Huang
- Department of Physiology, The University of Arizona, Tucson, AZ 85721-0093, USA
| | | | | | | | | |
Collapse
|
40
|
Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C, Whiteaker P, Marks MJ, Collins AC, Lester HA. Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 2004; 306:1029-32. [PMID: 15528443 DOI: 10.1126/science.1099420] [Citation(s) in RCA: 516] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The identity of nicotinic receptor subtypes sufficient to elicit both the acute and chronic effects of nicotine dependence is unknown. We engineered mutant mice with a4 nicotinic subunits containing a single point mutation, Leu9' --> Ala9' in the pore-forming M2 domain, rendering a4* receptors hypersensitive to nicotine. Selective activation of a4* nicotinic acetylcholine receptors with low doses of agonist recapitulates nicotine effects thought to be important in dependence, including reinforcement in response to acute nicotine administration, as well as tolerance and sensitization elicited by chronic nicotine administration. These data indicate that activation of a4* receptors is sufficient for nicotine-induced reward, tolerance, and sensitization.
Collapse
Affiliation(s)
- Andrew R Tapper
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a readily diagnosable disorder that responds to treatment. Smoking cessation can reduce symptoms and prevent progression of disease. Bronchodilator therapy is key in improvement of lung function. Three classes of bronchodilators-beta agonists, anticholinergics, and theophylline-are available and can be used individually or in combination. Inhaled glucocorticoids can also improve airflow and can be combined with bronchodilators. Inhaled glucocorticoids, in addition, might reduce exacerbation frequency and severity as might some bronchodilators. Effective use of pharmacotherapy in COPD needs integration with a rehabilitation programme and successful treatment of co-morbidities, including depression and anxiety. Treatment for stable COPD can improve the function and quality of life of many patients, could reduce admissions to hospital, and has been suggested to improve survival.
Collapse
Affiliation(s)
- Stephen I Rennard
- Pulmonary and Critical Care Medicine Section, University of Nebraska Medical Center, Omaha, NE 68198-5885, USA.
| |
Collapse
|
42
|
Nguyen HN, Rasmussen BA, Perry DC. Binding and functional activity of nicotinic cholinergic receptors in selected rat brain regions are increased following long-term but not short-term nicotine treatment. J Neurochem 2004; 90:40-9. [PMID: 15198665 DOI: 10.1111/j.1471-4159.2004.02482.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic nicotine exposure up-regulates neuronal nicotinic receptors, but the functional consequences for these receptors is less well understood. Following 2 weeks of nicotine or saline treatment by osmotic minipump, the functional activity of nicotinic receptors was measured by concentration-response curves for epibatidine-stimulated (86)Rb efflux. Nicotine-treated animals had a significantly higher maximal efflux in cerebral cortex and superior colliculus, but not in thalamus or interpeduncular nucleus plus medial habenula. This increase was confirmed in a separate experiment with stimulation by single concentrations of epibatidine (cortex, superior colliculus) or nicotine (cortex only). Chronic nicotine did not alter (86)Rb efflux stimulated by cytisine, an alpha3beta4-selective agonist, or by potassium chloride, in any region. Short-term (16 h) nicotine exposure caused no changes in either (86)Rb efflux or receptor binding measured with [(3)H]epibatidine. Binding was significantly increased after 2 weeks nicotine exposure in cortex, superior colliculus and thalamus, but not in interpeduncular nucleus plus medial habenula. The increases in epibatidine-stimulated (86)Rb efflux in the four regions tested was linearly correlated with the increases in [(3)H]epibatidine binding in these regions (R(2) = 0.91), suggesting that rat brain receptors up-regulated by chronic nicotine are active. These results have important consequences for understanding nicotinic receptor neurobiology in smokers and users of nicotine replacement therapy.
Collapse
Affiliation(s)
- Henry N Nguyen
- Department of Pharmacology and Physiology, and Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | | | | |
Collapse
|
43
|
Skok MV, Kalashnik EN, Koval LN, Tsetlin VI, Utkin YN, Changeux JP, Grailhe R. Functional nicotinic acetylcholine receptors are expressed in B lymphocyte-derived cell lines. Mol Pharmacol 2003; 64:885-9. [PMID: 14500745 DOI: 10.1124/mol.64.4.885] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotine has been shown to affect B lymphocyte immune response. In this study, we have explored the presence of nicotinic receptors in B lymphocyte-derived cell lines, myeloma X63-Ag8 and hybridoma 1D6. We found that myeloma expressed on average 10,170 +/- 1,100 [3H]epibatidine and 6,730 +/- 370 125I-alpha-bungarotoxin binding sites per cell, thus reflecting the presence of both homomeric and heteromeric nicotinic receptors. More specifically, the presence of alpha4- and alpha7-containing nicotinic receptor subunits was demonstrated in both myeloma and hybridoma cells with subunit-specific antibodies. It was significantly higher in dividing than in resting cells. Long-term exposure to nicotine, at physiological concentration found in smokers, resulted in up-regulation of both alpha4 and alpha7 subunits in hybridoma cells. Additionally, nicotine stimulated hybridoma cell proliferation, whereas it decreased antibody production. In contrast, alpha7-specific snake toxins inhibited cell proliferation but increased antibody production. It is concluded that myeloma and hybridoma cells express alpha4- and alpha7-containing nicotinic receptors, which participate in regulating cell proliferation and function.
Collapse
Affiliation(s)
- Marina V Skok
- Palladin Institute of Biochemistry, 9 Leontovicha Str., 01030 Kiev, Ukraine.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The use of recreational drugs of abuse has generated serious health concerns. There is a long-recognized relationship between addictive drugs and increased levels of infections. Studies of the mechanisms of actions of these drugs became more urgent with the advent of AIDS and its correlation with abused substances. The nature and mechanisms of immunomodulation by marijuana, opiates, cocaine, nicotine, and alcohol are described in this review. Recent studies of the effects of opiates or marijuana on the immune system have demonstrated that they are receptor mediated, occurring both directly via specific receptors on immune cells and indirectly through similar receptors on cells of the nervous system. Findings are also discussed that demonstrate that cocaine and nicotine have similar immunomodulatory effects, which are also apparently receptor mediated. Finally, the nature and mechanisms of immunomodulation by alcohol are described. Although no specific alcohol receptors have been identified, it is widely recognized that alcohol enhances susceptibility to opportunistic microbes. The review covers recent studies of the effects of these drugs on immunity and on increased susceptibility to infectious diseases, including AIDS.
Collapse
Affiliation(s)
- Herman Friedman
- Department of Medical Microbiology and Immunology, College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| | | | | |
Collapse
|
45
|
Abstract
In developed countries, tobacco use is estimated to be the largest single cause of premature death [Lancet 339 (1992) 1268]. Nicotine is the main addictive component of tobacco that motivates continued use despite the harmful effects. Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central nervous system (CNS), where they normally respond to acetylcholine (ACh) and modulate neuronal excitability and synaptic communication. Nicotinic receptors are structurally diverse and have varied roles. Presynaptic and preterminal nAChRs enhance neurotransmitter release. Postsynaptic and somal nAChRs mediate a small proportion of fast excitatory transmission and modulate cytoplasmic second messenger systems. Although the impact of nicotine obtained from tobacco is not completely understood, a portion of nicotine's addictive power is attributable to actions upon the dopaminergic systems, which normally help to reinforce rewarding behaviors. As obtained from tobacco, nicotine activates and desensitizes nAChRs, and both processes contribute to the cellular events that underlie nicotine addiction.
Collapse
Affiliation(s)
- J A Dani
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030-3498, USA
| | | |
Collapse
|
46
|
Almeida LE, Pereira EF, Alkondon M, Fawcett WP, Randall WR, Albuquerque EX. The opioid antagonist naltrexone inhibits activity and alters expression of alpha7 and alpha4beta2 nicotinic receptors in hippocampal neurons: implications for smoking cessation programs. Neuropharmacology 2000; 39:2740-55. [PMID: 11044744 DOI: 10.1016/s0028-3908(00)00157-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was designed to investigate whether naltrexone, an opioid antagonist that has been evaluated clinically as a co-adjuvant in smoking cessation programs, affects function and expression of neuronal nicotinic receptors (nAChRs). Whole-cell current recordings from rat hippocampal neurons in culture and in slices demonstrated that alpha7 nAChRs can be inhibited non-competitively by naltrexone (IC(50) approximately 25 microM). The voltage dependence of the effect suggested that naltrexone acts as an open-channel blocker of alpha7 nAChRs. Naltrexone also inhibited activation of alpha4beta2 nAChRs in hippocampal neurons; however its IC(50) was higher ( approximately 141 microM). At a concentration as high as 300 microM (which is sufficient to block by 100% and 70% the activity of alpha7 and alpha4beta2 nAChRs, respectively), naltrexone had no effect on kainate and AMPA receptors, blocked by no more than 20% the activity of NMDA and glycine receptors, and reduced by 35% the activity of GABA(A) receptors. A 3-day exposure of cultured hippocampal neurons to naltrexone (30 microM) or nicotine (10 microM, a concentration that fully desensitized alpha7 nAChRs) resulted in a 2-fold increase in the average amplitude of alpha7 nAChR-subserved currents. Naltrexone did not augment the maximal up-regulation of alpha7 nAChRs induced by nicotine, indicating that both drugs act via a common mechanism. In addition to increasing alpha7 nAChRs-mediated responses per neuron, nicotine increased the number of neurons expressing functional non-alpha7 nAChRs (probably alpha4beta2 nAChRs); this effect was blocked by naltrexone (0.3 and 30 microM). Therefore, naltrexone may affect dependence on cigarette smoking by differentially altering function and expression of alpha7 and alpha4beta2 nAChRs in the central nervous system.
Collapse
Affiliation(s)
- L E Almeida
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, MD 21201, Baltimore, USA
| | | | | | | | | | | |
Collapse
|
47
|
Chowdhury IG, Bromage TG. Effects of fetal exposure to nicotine on dental development of the laboratory rat. THE ANATOMICAL RECORD 2000; 258:397-405. [PMID: 10737858 DOI: 10.1002/(sici)1097-0185(20000401)258:4<397::aid-ar8>3.0.co;2-i] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nicotine is one of the most widely used toxins in the world today. Most addiction research relating to nicotine in particular, as well as opioids and alcohol, has concentrated on the cellular and molecular biology of the mammalian brain and on features of organ structure and physiology associated with substance abuse. Thus, while numerous studies have been conducted to examine nicotine's detrimental physiological effects in a variety of soft tissues, this investigation attempts to examine further the gross morphological consequences of this drug on a hard tissue, the first molar crown of the laboratory rat. It is hypothesised that by providing nicotine to rats during and after the fetal cycle, changes in dental structure will occur, owing to perturbations of development induced by this toxin. The dentitions of Fisher rats exposed to nicotine during and after the fetal cycle, and those of their non-treated controls, were examined. By carefully measuring the length, width and occlusal (chewing) areas of the first maxillary molars, it was possible to identify any gross morphological effects of nicotine on dental development. It was found that dental asymmetries (calculated as a size difference between a tooth and its antimere) were significantly increased while occlusal areas were significantly decreased in nicotine-exposed rats compared to control rats. In addition, significant differences were detected within the experimental group, females tending to exhibit the deleterious effects of nicotine more so than males. These results are in accordance with the predicted outcome; in similar studies of physiological systems and soft tissues, dental development is affected by the presence of nicotine.
Collapse
Affiliation(s)
- I G Chowdhury
- Hard Tissue Research Unit, Department of Anthropology, Hunter College, 695 Park Avenue, New York, New York 10021, USA
| | | |
Collapse
|
48
|
Musachio JL, Horti A, London ED, Dannals RF. Synthesis of a radioiodinated analog of epibatidine: (±)-exo-2-(2-iodo-5-pyridyl)-7-azabicyclo[2.2.1]heptane for in vitro and in vivo studies of nicotinic acetylcholine receptors. J Labelled Comp Radiopharm 1998. [DOI: 10.1002/(sici)1099-1344(199701)39:1<39::aid-jlcr945>3.0.co;2-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Court JA, Lloyd S, Thomas N, Piggott MA, Marshall EF, Morris CM, Lamb H, Perry RH, Johnson M, Perry EK. Dopamine and nicotinic receptor binding and the levels of dopamine and homovanillic acid in human brain related to tobacco use. Neuroscience 1998; 87:63-78. [PMID: 9722142 DOI: 10.1016/s0306-4522(98)00088-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reports of a reduction in the risk of developing Parkinson's disease and Alzheimer's disease in tobacco smokers, together with the loss of high-affinity nicotine binding in these diseases, suggest that consequences of nicotinic cholinergic transmission may be neuroprotective. Changes in brain dopaminergic parameters and nicotinic receptors in response to tobacco smoking have been assessed in this study of autopsy samples from normal elderly individuals with known smoking histories and apolipoprotein E genotype. The ratio of homovanillic acid to dopamine, an index of dopamine turnover, was reduced in elderly smokers compared with age matched non-smokers (P<0.05) in both the caudate and putamen. Dopamine levels were significantly elevated in the caudate of smokers compared with non-smokers (P<0.05). However there was no significant change in the numbers of dopamine (D1, D2 and D3) receptors or the dopamine transporter in the striatum, or for dopamine D1 and D2 receptors in the hippocampus in smokers compared with non-smokers or ex-smokers. The density of high-affinity nicotine binding was higher in smokers than non-smokers in the hippocampus, entorhinal cortex and cerebellum (elevated by 51-221%) and to a lesser extent in the striatum (25-55%). The density of high-affinity nicotine binding in ex-smokers was similar to that of the non-smokers in all the areas investigated. The differences in high-affinity nicotine binding between smokers and the non- and ex-smokers could not be explained by variation in apolipoprotein E genotype. There were no differences in alpha-bungarotoxin binding, measured in hippocampus and cerebellum, between any of the groups. These findings suggest that chronic cigarette smoking is associated with a reduction of the firing of nigrostriatal dopaminergic neurons in the absence of changes in the numbers of dopamine receptors and the dopamine transporter. Reduced dopamine turnover associated with increased numbers of high-affinity nicotine receptors is consistent with attenuated efficacy of these receptors in smokers. A decrease in striatal dopamine turnover may be a mechanism of neuroprotection in tobacco smokers that could delay basal ganglia pathology. The current findings are also important in the interpretation of measurements of nicotinic receptors and dopaminergic parameters in psychiatric conditions such as schizophrenia, in which there is a high prevalence of cigarette smoking.
Collapse
Affiliation(s)
- J A Court
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mathieu-Kia AM, Pages C, Besson MJ. Inducibility of c-Fos protein in visuo-motor system and limbic structures after acute and repeated administration of nicotine in the rat. Synapse 1998; 29:343-54. [PMID: 9661252 DOI: 10.1002/(sici)1098-2396(199808)29:4<343::aid-syn6>3.0.co;2-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To identify neuroanatomical substrates affected by nicotine, we have studied its effects after acute and repeated administration through the c-Fos protein inducibility in various brain structures. Ninety minutes after acute nicotine (0.35 mg/kg, s.c.) the number of c-Fos-like immunoreactive nuclei was consistently increased in visuo-motor structures such as the superior colliculus, the medial terminal nucleus of accessory optic tract, and the nucleus of the optic tract. The anteroventral and lateroposterior thalamic nuclei, connected with the retina and involved in limbic processing, showed a c-Fos induction. c-Fos was preferentially induced in terminal fields of neurons of the ventral tegmental area such as the nucleus accumbens, the central amygdala, the lateral habenula, the lateral septum, as well as the cingulate, medial prefrontal, orbital and piriform cortices. In chronically treated rats (0.35 mg/kg s.c., 3 x day for 14 days), the last nicotine injection given on the 15th day was still able to induce 90 minutes later c-Fos protein in visuo-motor, retino-limbic, subcortical, and cortical limbic structures. Moreover, this chronic treatment produced an additional recruitment of c-Fos-positive nuclei in the cingulate cortex, the core and the ventral shell of the nucleus accumbens. c-Fos induction after nicotine differs from that reported after other addictive drugs in terms of pattern and chronic inducibility, indicating that different mechanisms are involved for maintaining this transcription factor. In addition to a preferential sensitivity of mesolimbic dopaminergic neurons to nicotine, activation of visuo-limbic and limbic regions could be relevant for understanding some context-dependent and addictive behaviors produced by nicotine.
Collapse
Affiliation(s)
- A M Mathieu-Kia
- Laboratoire de Neurochimie-Anatomie, CNRS UMR 7624, Université Pierre et Marie Curie, Paris, France.
| | | | | |
Collapse
|