1
|
Wen YX, Fan LY, Yang AY, Zhang YC, Xu C, Wang ZH, Xie WJ, Lu Y, Zhang XY, Zhu JN, Sun A, Li L, Zhang QP. Oxytocinergic neurons, but not oxytocin, are crucial for male penile erection. Neuropharmacology 2023; 235:109576. [PMID: 37164226 DOI: 10.1016/j.neuropharm.2023.109576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
The cumulative evidence suggests that oxytocin is involved in the male sexual behaviors. However, no significant sexual impairments were observed in oxytocin gene knock-out (KO) mice, suggesting that oxytocin is not necessary for sexual behavior in male mice. To better understand the role of oxytocin in male erection, two types of oxytocin gene KO mice were created. In the first type, the oxytocin gene was deleted in the zygote, while in the second type, the oxytocin gene was mutated in adulthood by injecting the CRISPR/Cas9 AAVs. The results showed that disrupting the oxytocin gene at either the embryonic or adult stage did not affect erection, indicating that oxytocin is not necessary for penile erection. Pharmacologically, injecting oxytocin receptor agonist Carbetocin into the VTA of the oxytocin gene KO mice still evoked penile erection. By employing the Oxt-Ires-Cre mice, we found that specifically activating oxytocinergic neurons through chemogenetics strongly induced penile erection, while inhibiting these neurons blocked the erection responses. Furthermore, ablating PVN oxytocinergic neurons abolished the male erection response. In conclusion, although the neuropeptide oxytocin is not essential for male erection, the activity of oxytocinergic neurons is required. Our results might reflect the redundancy in the central nerve system in the sense that many signals contribute to the activation of oxytocinergic neurons to evoke penile erection during sexual behaviors.
Collapse
Affiliation(s)
- Yu-Xiang Wen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lin-Yao Fan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - An-Yong Yang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yan-Chufei Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chang Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zi-Hui Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Wen-Jiong Xie
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yang Lu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiao-Yang Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jing-Ning Zhu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Anyang Sun
- Laboratory of Neurodegenerative Diseases & Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| | - Liang Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Qi-Peng Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zimmermann-Peruzatto JM, Lazzari VM, de Moura AC, Almeida S, Giovenardi M. Examining the Role of Vasopressin in the Modulation of Parental and Sexual Behaviors. Front Psychiatry 2015; 6:130. [PMID: 26441691 PMCID: PMC4585274 DOI: 10.3389/fpsyt.2015.00130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/04/2015] [Indexed: 11/13/2022] Open
Abstract
Vasopressin (VP) and VP-like neuropeptides are evolutionarily stable peptides found in all vertebrate species. In non-mammalian vertebrates, vasotocin (VT) plays a role similar to mammalian VP, whereas mesotocin and isotocin are functionally similar to mammalian oxytocin (OT). Here, we review the involvement of VP in brain circuits, synaptic plasticity, evolution, and function, highlighting the role of VP in social behavior. In all studied species, VP is encoded on chromosome 20p13, and in mammals, VP is produced in specific hypothalamic nuclei and released by the posterior pituitary. The role of VP is mediated by the stimulation of the V1a, V1b, and V2 receptors as well as the oxytocinergic and purinergic receptors. VT and VP functions are usually related to osmotic and cardiovascular homeostasis when acting peripherally. However, these neuropeptides are also critically involved in the central modulation of social behavior displays, such as pairing recognition, pair-bonding, social memory, sexual behavior, parental care, and maternal and aggressive behavior. Evidence suggests that these effects are primarily mediated by V1a receptor in specific brain circuits that provide important information for the onset and control of social behaviors in normal and pathological conditions.
Collapse
Affiliation(s)
- Josi Maria Zimmermann-Peruzatto
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Virgínia Meneghini Lazzari
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Ana Carolina de Moura
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Silvana Almeida
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil ; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| |
Collapse
|
3
|
Argiolas A, Melis MR. Neuropeptides and central control of sexual behaviour from the past to the present: a review. Prog Neurobiol 2013; 108:80-107. [PMID: 23851261 DOI: 10.1016/j.pneurobio.2013.06.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 12/23/2022]
Abstract
Of the numerous neuropeptides identified in the central nervous system, only a few are involved in the control of sexual behaviour. Among these, the most studied are oxytocin, adrenocorticotropin, α-melanocyte stimulating hormone and opioid peptides. While opioid peptides inhibit sexual performance, the others facilitate sexual behaviour in most of the species studied so far (rats, mice, monkeys and humans). However, evidence for a sexual role of gonadotropin-releasing hormone, corticotropin releasing factor, neuropeptide Y, galanin and galanin-like peptide, cholecystokinin, substance P, vasoactive intestinal peptide, vasopressin, angiotensin II, hypocretins/orexins and VGF-derived peptides are also available. Corticotropin releasing factor, neuropeptide Y, cholecystokinin, vasopressin and angiotensin II inhibit, while substance P, vasoactive intestinal peptide, hypocretins/orexins and some VGF-derived peptide facilitate sexual behaviour. Neuropeptides influence sexual behaviour by acting mainly in the hypothalamic nuclei (i.e., lateral hypothalamus, paraventricular nucleus, ventromedial nucleus, arcuate nucleus), in the medial preoptic area and in the spinal cord. However, it is often unclear whether neuropeptides influence the anticipatory phase (sexual arousal and/or motivation) or the consummatory phase (performance) of sexual behaviour, except in a few cases (e.g., opioid peptides and oxytocin). Unfortunately, scarce information has been added in the last 15 years on the neural mechanisms by which neuropeptides influence sexual behaviour, most studied neuropeptides apart. This may be due to a decreased interest of researchers on neuropeptides and sexual behaviour or on sexual behaviour in general. Such a decrease may be related to the discovery of orally effective, locally acting type V phosphodiesterase inhibitors for the therapy of erectile dysfunction.
Collapse
Affiliation(s)
- Antonio Argiolas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | | |
Collapse
|
5
|
Goodson JL, Bass AH. Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:246-65. [PMID: 11423156 DOI: 10.1016/s0165-0173(01)00043-1] [Citation(s) in RCA: 435] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neuropeptide arginine vasotocin (AVT; non-mammals) and its mammalian homologue, arginine vasopressin (AVP) influence a variety of sex-typical and species-specific behaviors, and provide an integrational neural substrate for the dynamic modulation of those behaviors by endocrine and sensory stimuli. Although AVT/AVP behavioral functions and related anatomical features are increasingly well-known for individual species, ubiquitous species-specificity presents ever increasing challenges for identifying consistent structure-function patterns that are broadly meaningful. Towards this end, we provide a comprehensive review of the available literature on social behavior functions of AVT/AVP and related anatomical characteristics, inclusive of seasonal plasticity, sexual dimorphism, and steroid sensitivity. Based on this foundation, we then advance three major questions which are fundamental to a broad conceptualization of AVT/AVP social behavior functions: (1) Are there sufficient data to suggest that certain peptide functions or anatomical characteristics (neuron, fiber, and receptor distributions) are conserved across the vertebrate classes? (2) Are independently-evolved but similar behavior patterns (e.g. similar social structures) supported by convergent modifications of neuropeptide mechanisms, and if so, what mechanisms? (3) How does AVT/AVP influence behavior - by modulation of sensorimotor processes, motivational processes, or both? Hypotheses based upon these questions, rather than those based on individual organisms, should generate comparative data that will foster cross-class comparisons which are at present underrepresented in the available literature.
Collapse
Affiliation(s)
- J L Goodson
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
7
|
Boer GJ, van Esseveldt KE, van der Geest BA, Duindam H, Rietveld WJ. Vasopressin-deficient suprachiasmatic nucleus grafts re-instate circadian rhythmicity in suprachiasmatic nucleus-lesioned arrhythmic rats. Neuroscience 1999; 89:375-85. [PMID: 10077320 DOI: 10.1016/s0306-4522(98)00300-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It was investigated whether grafts of the suprachiasmatic nucleus could re-instate circadian rhythmicity in the absence of its endogenous vasopressin production and whether the restored rhythm would have the long period length of the donor. Grafts of 17-days-old vasopressin-deficient homozygous Brattleboro rat fetuses, homotopically placed in arrhythmic suprachiasmatic nucleus-lesioned Wistar rats, re-instated circadian drinking rhythm within 20-50 days similar as seen for grafts of heterozygous control fetuses. Period length of the recovered rhythm revealed a similar difference (average 24.3 vs. 23.8 h) as reported for the rhythm between the adult Brattleboro genotypes. In all transplants, also those of the two-third non-recovery rats, a surviving suprachiasmatic nucleus was visible as a vasoactive intestinal polypeptide-positive neuronal cell cluster, whereas heterozygous transplants also revealed the complementary vasopressinergic cell part. Explanation of the absence of recovery failed since no undisputable correlation emerged between recovery of rhythm and vasoactive intestinal polypeptide, vasopressin and/or somatostatin immunocytochemical characteristics of the suprachiasmatic nucleus of the transplant. Special focus on the somatostatinergic neurons revealed their presence only occasionally near or in between the vasoactive intestinal polypeptidergic and (in the case of heterozygous grafts) vasopressinergic cell cluster. However their aberrant cytoarchitectural position appeared not to have affected the possibility to restore drinking rhythm of the suprachiasmatic nucleus-lesioned arrhythmic rat. It was concluded that grafted Brattleboro fetal suprachiasmatic nucleus develop their intrinsic rhythm conform their genotype and that vasopressin is not a crucial component in the maintenance nor in the transfer of circadian activity of the biological clock for drinking activity. Vasopressin of the suprachiasmatic nucleus may instead serve modulation within the circadian system.
Collapse
Affiliation(s)
- G J Boer
- Graduate School of Neurosciences, Netherlands Institute of Brain Research, Amsterdam
| | | | | | | | | |
Collapse
|
8
|
Abstract
The purpose of this paper is to review existing behavioral and neuroendocrine perspectives on social attachment and love. Both love and social attachments function to facilitate reproduction, provide a sense of safety, and reduce anxiety or stress. Because social attachment is an essential component of love, understanding attachment formation is an important step toward identifying the neurobiological substrates of love. Studies of pair bonding in monogamous rodents, such as prairie voles, and maternal attachment in precocial ungulates offer the most accessible animal models for the study of mechanisms underlying selective social attachments and the propensity to develop social bonds. Parental behavior and sexual behavior, even in the absence of selective social behaviors, are associated with the concept of love; the analysis of reproductive behaviors, which is far more extensive than our understanding of social attachment, also suggests neuroendocrine substrates for love. A review of these literatures reveals a recurrent association between high levels of activity in the hypothalamic pituitary adrenal (HPA) axis and the subsequent expression of social behaviors and attachments. Positive social behaviors, including social bonds, may reduce HPA axis activity, while in some cases negative social interactions can have the opposite effect. Central neuropeptides, and especially oxytocin and vasopressin have been implicated both in social bonding and in the central control of the HPA axis. In prairie voles, which show clear evidence of pair bonds, oxytocin is capable of increasing positive social behaviors and both oxytocin and social interactions reduce activity in the HPA axis. Social interactions and attachment involve endocrine systems capable of decreasing HPA reactivity and modulating the autonomic nervous system, perhaps accounting for health benefits that are attributed to loving relationships.
Collapse
Affiliation(s)
- C S Carter
- Department of Biology, University of Maryland, College Park 20742, USA.
| |
Collapse
|
10
|
Boer GJ, Feenstra MG, Botterblom MJ, Korse V, Te Riele P. Early postnatal appearance of enhanced noradrenaline content in the brain of vasopressin-deficient Brattleboro rat; normal adrenoceptor densities and aberrant influences of vasopressin treatment. Int J Dev Neurosci 1995; 13:63-74. [PMID: 7639097 DOI: 10.1016/0736-5748(95)00023-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The course of postnatal development of noradrenaline (NA) and its unconjugated free metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG), as well as the influence on early chronic vasopressin treatment, were investigated in various brain regions of the hereditary vasopressin-deficient (homozygous di/di) Brattleboro rat. In addition, the densities of the adrenergic receptor subtypes were measured in adult brain. Brain NA levels of di/di pups appeared enhanced already at 7 days of age when compared with data of heterozygous (+/di) controls. This was also seen in areas not known to receive a vasopressinergic input, e.g. the frontal cortex. Levels of MHPG also differed between genotypes, but changes were slight and either a decrease or increase, depending on age and region tested. Saturation analyses of alpha 1-, alpha 2-, and beta-adrenoceptor binding on crude membrane preparations of some brain regions revealed no differences in adulthood. Chronic treatment with vasopressin between 6 and 13 days of age reduced the enhanced NA brain levels throughout the brain of the di/di Brattleboro pups. The known vasopressin-mediated enhancement of NA turnover in adult brain was also measurable in +/di pups of this neonatal period (MHPG/NA ratios), indicating the early maturation of the interaction of vasopressinergic and NAergic systems. However, the dose-response in the di/di Brattleboro rat was biphasic with a decrease at a low dose of vasopressin. Since changes were found throughout the brain, it was concluded that vasopressin deficiency had altered the maturation of NA neurons of the locus coeruleus which may be due to the absence of a presumed inhibitory control of vasopressin on synthesis and storage mechanisms at the perikaryal level.
Collapse
Affiliation(s)
- G J Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | | | | | | | |
Collapse
|
11
|
Boer GJ, Quak J, de Vries MC, Heinsbroek RP. Mild sustained effects of neonatal vasopressin and oxytocin treatment on brain growth and behavior of the rat. Peptides 1994; 15:229-36. [PMID: 8008627 DOI: 10.1016/0196-9781(94)90007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lasting effects of a 9-day neonatal exposure to vasopressin and oxytocin were examined in the rat to discover if peptide administration results in organizational effects. When tested in young adulthood, brain growth, not body growth, appeared to be impaired. Basal and challenge tests of urine production, carried out to see the development of the hormonal antidiuretic function of vasopressin, revealed no lasting changes, and therefore did not confirm earlier findings of an induced mild polyurea. Behavioral testing of learning by making use of a one-trail step-through paradigm with a 24-h retention trial--a test that is sensitive to vasopressin--did not show impairments. Open field tests, however, showed enhanced emotionality in the vasopressin-treated females, as well as an initially increased ambulation in the males, and increased grooming in both sexes, the latter also having been reported to be induced by vasopressin administration in the septal areas. Oxytocin treatment did not produce lasting changes. Our conclusion, therefore, is that peripherally circulating vasopressin can affect the organizational development of the rat brain. It remains to be established whether this is an effect obtained through changes in the general peripheral physiology or a reflection of plasticity phenomena at the level of central vasopressin neurotransmission.
Collapse
Affiliation(s)
- G J Boer
- Netherlands Institute for Brain Research, Amsterdam
| | | | | | | |
Collapse
|
12
|
Szot P, Myers KM, Dorsa DM. Effect of vasopressin administration and deficiency upon 3H-AVP binding sites in the CNS and periphery during development. Peptides 1992; 13:389-94. [PMID: 1409016 DOI: 10.1016/0196-9781(92)90126-n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Arginine8-vasopressin (AVP, 40 micrograms/100 g b.wt., SC) was administered to male Long-Evans (LE) pups from day 1 to 7 of life and the pups were sacrificed on day 8 or 60. 3H-AVP binding was performed on membranes prepared from the liver, kidney, and septum. No significant changes were observed in the kidney or septum of animals 8 or 60 days old. However, the chronic AVP treatment did result in a significant increase in the density of 3H-AVP binding sites in the liver when compared to control day 8 pups (control 44 +/- 2 vs. AVP 56 +/- 3 fmol/mg protein), with no change in affinity. This effect was maintained into adulthood, as the day 60 AVP-treated LE rats also showed a significant increase in liver 3H-AVP binding sites compared to control (control 186 +/- 9 vs. AVP 239 +/- 14 fmol/mg protein), with no change in affinity. A comparison of 3H-AVP binding sites in 8-day-old LE, heterozygous Brattleboro (HET-BB), and homozygous Brattleboro rats (HOM-BB) was performed to assess the effect of complete (HOM-BB) and partial (HET-BB) VP deficiency on binding sites in the CNS and periphery. The liver again was the only tissue in which a change in 3H-AVP binding characteristics was noted. The HOM-BB rat (Bmax 144 +/- 6 fmol/mg protein) displayed a significant increase in AVP binding sites from the LE rat (Bmax 100 +/- 7 fmol/mg protein), while the 3H-AVP binding sites in the HET-BB rat liver (Bmax 69.8 +/- 9 fmol/mg protein) were significantly lower than LE rats. Thus hepatic AVP receptors appear most sensitive to the presence or absence of vasopressin during the early postnatal period.
Collapse
Affiliation(s)
- P Szot
- Department of Medicine, University of Washington, Seattle 98195
| | | | | |
Collapse
|