1
|
MDMA self-administration fails to alter the behavioral response to 5-HT(1A) and 5-HT(1B) agonists. Psychopharmacology (Berl) 2016; 233:1323-30. [PMID: 26856854 DOI: 10.1007/s00213-016-4226-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
RATIONALE Regular use of the street drug, ecstasy, produces a number of cognitive and behavioral deficits. One possible mechanism for these deficits is functional changes in serotonin (5-HT) receptors as a consequence of prolonged 3,4 methylenedioxymethamphetamine (MDMA)-produced 5-HT release. Of particular interest are the 5-HT(1A) and 5-HT(1B) receptor subtypes since they have been implicated in several of the behaviors that have been shown to be impacted in ecstasy users and in animals exposed to MDMA. OBJECTIVES This study aimed to determine the effect of extensive MDMA self-administration on behavioral responses to the 5-HT(1A) agonist, 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT), and the 5-HT(1B/1A) agonist, RU 24969. METHODS Male Sprague-Dawley rats self-administered a total of 350 mg/kg MDMA, or vehicle, over 20-58 daily self-administration sessions. Two days after the last self-administration session, the hyperactive response to 8-OH-DPAT (0.03-1.0 mg/kg) or the adipsic response to RU 24969 (0.3-3.0 mg/kg) were assessed. RESULTS 8-OH-DPAT dose dependently increased horizontal activity, but this response was not altered by MDMA self-administration. The dose-response curve for RU 24969-produced adipsia was also not altered by MDMA self-administration. CONCLUSIONS Cognitive and behavioral deficits produced by repeated exposure to MDMA self-administration are not likely due to alterations in 5-HT(1A) or 5-HT(1B) receptor mechanisms.
Collapse
|
2
|
Pet-1 deficiency alters the circadian clock and its temporal organization of behavior. PLoS One 2014; 9:e97412. [PMID: 24831114 PMCID: PMC4022518 DOI: 10.1371/journal.pone.0097412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/18/2014] [Indexed: 11/20/2022] Open
Abstract
The serotonin and circadian systems are two important interactive regulatory networks in the mammalian brain that regulate behavior and physiology in ways that are known to impact human mental health. Previous work on the interaction between these two systems suggests that serotonin modulates photic input to the central circadian clock (the suprachiasmatic nuclei; SCN) from the retina and serves as a signal for locomotor activity, novelty, and arousal to shift the SCN clock, but effects of disruption of serotonergic signaling from the raphe nuclei on circadian behavior and on SCN function are not fully characterized. In this study, we examined the effects on diurnal and circadian behavior, and on ex vivo molecular rhythms of the SCN, of genetic deficiency in Pet-1, an ETS transcription factor that is necessary to establish and maintain the serotonergic phenotype of raphe neurons. Pet-1−/− mice exhibit loss of rhythmic behavioral coherence and an extended daily activity duration, as well as changes in the molecular rhythms expressed by the clock, such that ex vivo SCN from Pet-1−/− mice exhibit period lengthening and sex-dependent changes in rhythmic amplitude. Together, our results indicate that Pet-1 regulation of raphe neuron serotonin phenotype contributes to the period, precision and light/dark partitioning of locomotor behavioral rhythms by the circadian clock through direct actions on the SCN clock itself, as well as through non-clock effects.
Collapse
|
3
|
Interactions of the serotonin and circadian systems: nature and nurture in rhythms and blues. Neuroscience 2011; 197:8-16. [PMID: 21963350 DOI: 10.1016/j.neuroscience.2011.09.036] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/08/2011] [Accepted: 09/16/2011] [Indexed: 01/31/2023]
Abstract
The serotonin and circadian systems are principal regulatory networks of the brain. Each consists of a unique set of neurons that make widespread neural connections and a defined gene network of transcriptional regulators and signaling genes that subserve serotonergic and circadian function at the genetic level. These master regulatory networks of the brain are extensively intertwined, with reciprocal circuit connections, expression of key genetic elements for serotonin signaling in clock neurons and expression of key clock genes in serotonergic neurons. The reciprocal connections of the serotonin and circadian systems likely have importance for neurobehavioral disorders, as suggested by their convergent contribution to a similar range of mood disorders including seasonal affective disorder (SAD), bipolar disorder, and major depression, and as suggested by their overlapping relationship with the developmental disorder, autism spectrum disorder. Here we review the neuroanatomical and genetic basis for serotonin-circadian interactions in the brain, their potential relationship with neurobehavioral disorders, and recent work examining the effects on the circadian system of genetic perturbation of the serotonergic system as well as the molecular and behavioral effects of developmental imprinting of the circadian system with perinatal seasonal light cycles.
Collapse
|
4
|
McDevitt RA, Neumaier JF. Regulation of dorsal raphe nucleus function by serotonin autoreceptors: a behavioral perspective. J Chem Neuroanat 2011; 41:234-46. [PMID: 21620956 DOI: 10.1016/j.jchemneu.2011.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/22/2011] [Accepted: 05/02/2011] [Indexed: 11/26/2022]
Abstract
Neurotransmission by serotonin (5-HT) is tightly regulated by several autoreceptors that fine-tune serotonergic neurotransmission through negative feedback inhibition at the cell bodies (predominantly 5-HT(1A)) or at the axon terminals (predominantly 5-HT(1B)); however, more subtle roles for 5-HT(1D) and 5-HT(2B) autoreceptors have also been detected. This review provides an overview of 5-HT autoreceptors, focusing on their contribution in animal behavioral models of stress and emotion. Experiments targeting 5-HT autoreceptors in awake, behaving animals have generally shown that increasing autoreceptor feedback is anxiolytic and rewarding, while enhanced 5-HT function is aversive and anxiogenic; however, the role of serotonergic activity in behavioral models of helplessness is more complex. The prevailing model suggests that 5-HT autoreceptors become desensitized in response to stress exposure and antidepressant administration, two seemingly opposite manipulations. Thus there are still unresolved questions regarding the role of these receptors-and serotonin in general-in normal and pathological states.
Collapse
Affiliation(s)
- Ross A McDevitt
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98104, USA
| | | |
Collapse
|
5
|
Ferdyn-Drosik M, Nowak P, Bojanek K, Bałasz M, Kasperski J, Skaba D, Muchacki R, Kostrzewa RM. Neonatal DSP-4 treatment impairs 5-HT1B receptor reactivity in adult rats. Behavioral and biochemical studies. Pharmacol Rep 2010; 62:608-20. [DOI: 10.1016/s1734-1140(10)70318-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 11/19/2009] [Indexed: 10/25/2022]
|
6
|
Nowak P, Bortel A, Dabrowska J, Oswiecimska J, Drosik M, Kwiecinski A, Opara J, Kostrzewa RM, Brus R. Amphetamine and mCPP effects on dopamine and serotonin striatal in vivo microdialysates in an animal model of hyperactivity. Neurotox Res 2007; 11:131-44. [PMID: 17449455 DOI: 10.1007/bf03033391] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the neonatally 6-hydroxydopamine (6-OHDA)-lesioned rat hyperlocomotor activity, first described in the 1970s, was subsequently found to be increased by an additional lesion with 5,7-dihydroxytryptamine (5,7-DHT) (i.c.v.) in adulthood. The latter animal model (i.e., 134 microg 6-OHDA at 3 d postbirth plus 71 microg 5,7-DHT at 10 weeks; desipramine pretreatments) was used in this study, in an attempt to attribute hyperlocomotor attenuation by D,L-amphetamine sulfate (AMPH) and m-chlorophenylpiperazine di HCl (mCPP), to specific changes in extraneuronal (i.e., in vivo microdialysate) levels of dopamine (DA) and/or serotonin (5-HT). Despite the 98-99% reduction in striatal tissue content of DA, the baseline striatal microdialysate level of DA was reduced by 50% or less at 14 weeks, versus the intact control group. When challenged with AMPH (0.5 mg/kg), the microdialysate level of DA went either unchanged or was slightly reduced over the next 180 min (i.e., 20 min sampling), while in the vehicle group and 5,7-DHT (alone) lesioned group, the microdialysate level was maximally elevated by approximately 225% and approximately 450%, respectively--and over a span of nearly 2 h. Acute challenge with mCPP (1 mg/kg salt form) had little effect on microdialysate levels of DA, DOPAC and 5-HT. Moreover, there was no consistent change in the microdialysate levels of DA, DOPAC, and 5-HT between intact, 5-HT-lesioned rats, and DA-lesioned rats which might reasonably account for an attenuation of hyperlocomotor activity. These findings indicate that there are other important neurochemical changes produced by AMPH- and mCPP-attenuated hyperlocomotor activity, or perhaps a different brain region or multiple brain regional effects are involved in AMPH and mCPP behavioral actions.
Collapse
Affiliation(s)
- Przemyslaw Nowak
- Department of Pharmacology, Medical University of Silesia, H. Jordana 38, 41-808 Zabrze, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
O'Dell LE, Manzardo AM, Polis I, Stouffer DG, Parsons LH. Biphasic alterations in Serotonin-1B (5-HT1B) receptor function during abstinence from extended cocaine self-administration. J Neurochem 2006; 99:1363-76. [PMID: 17074068 DOI: 10.1111/j.1471-4159.2006.04163.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alterations in 5-HT1B receptor function during cocaine abstinence were evaluated in rats given either limited- or extended access (LA and EA, respectively) to cocaine self-administration. The locomotor response to the 5-HT1B/1A agonist RU24969 was significantly reduced in cocaine-experienced animals relative to cocaine-naïve controls following 6 h of abstinence but became sensitized over the subsequent 14 days of abstinence. Both the early phase subsensitivity and later phase supersensivity to RU 24969-induced activity were greater in EA versus LA animals. Intra-nucleus accumbens administration of the 5-HT1B agonist CP 93, 129 produced significantly greater increases in dialysate dopamine levels in EA versus control animals following 14 days of abstinence. However, there was no difference between EA and cocaine-naïve control animals in the augmentation of cocaine-induced increases in nucleus accumbens DA produced by intra-VTA CP 93, 129. Collectively these findings demonstrate that 5-HT1B receptor function is persistently altered by cocaine self-administration.
Collapse
Affiliation(s)
- Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas, USA
| | | | | | | | | |
Collapse
|
8
|
Knoch ME, Gobes SMH, Pavlovska I, Su C, Mistlberger RE, Glass JD. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters. Eur J Neurosci 2004; 19:2779-90. [PMID: 15147311 DOI: 10.1111/j.0953-816x.2004.03371.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Behavioral (nonphotic) stimuli can shift circadian rhythms by serotonin (5-HT) and/or neuropeptide Y (NPY) inputs to the suprachiasmatic nucleus (SCN) circadian clock. Based on the idea that behavioral phase resetting is modulated by endogenous changes in postsynaptic sensitivity to such transmitters, hamsters were exposed to constant light (LL; approximately 250 lx) for 1-3 days, which suppresses locomotor activity and eliminates the daily rhythm of SCN 5-HT release measured by microdialysis. Groups subjected to brief LL or maintained under a light/dark cycle (LD) received phase-resetting treatments with the 5-HT(1A,7) agonist (+/-)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) or sleep deprivation (SD). Animals were released to constant darkness at the start of the treatments. Phase advances to 8-OH-DPAT and SD during the day were 11 and 3 h for LL vs. 2 and 1 h for LD, respectively. Phase delays during the night were -12 and -5 h for LL vs. no responses for LD, respectively. Phase-transition curves for both LL treatments had slopes approximating 0, indicative of Type 0 phase resetting. For all treatments, the degree of locomotor suppression by LL was not correlated with the phase shift magnitude. Re-establishing locomotor activity by overnight food deprivation did not prevent potentiated shifting to SD. However, re-establishing peak extracellular 5-HT levels by intra-SCN 5-HT reverse microdialysis perfusion in LL did significantly reduce potentiated 8-OH-DPAT phase advances. Constant light also enhanced intra-SCN NPY-induced phase advances during the day (6 vs. 2 h for LD). These results suggest that LL promotes Type 0 phase resetting by supersensitizing 5-HT and/or NPY postsynaptic responses and possibly by attenuating the amplitude of the circadian pacemaker, thus enhancing circadian clock resetting nonspecifically.
Collapse
Affiliation(s)
- Megan E Knoch
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | | | | | |
Collapse
|
9
|
Shimazoe T, Nakamura S, Kobayashi K, Watanabe S, Miyasaka K, Kono A, Funakoshi A. Role of 5-ht1b receptors in entrainment disorder of otsuka long evans tokushima fatty (oletf) rats. Neuroscience 2004; 123:201-5. [PMID: 14667454 DOI: 10.1016/j.neuroscience.2003.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of 5-HT1A and 5-HT1B receptors in entrainment function was studied in Otsuka Long Evans Tokushima fatty (OLETF) rats and control Long Evans Tokushima Otsuka (LETO) rats. Light-induced (100 lux, 30 min) Fos expression in the suprachiasmatic nucleus was studied. Light-induced Fos expression was significantly decreased in OLETF rats compared to that in LETO rats. The decrease of light-induced Fos expression in OLETF rats was significantly reversed by pretreatment with the 5-HT1B receptor antagonist, isamoltan (3 mg/kg, i.p.). Simultaneous administration of CGS12066B (5 mg/kg, i.p.), a 5-HT1B agonist, blocked the reversal effect of isamoltan on Fos expression. Fos expression was not changed in LETO rats by pretreatment with isamoltan (3 mg/kg, i.p.). The Fos expression in LETO and OLETF rats was significantly decreased by pretreatment with the 5-HT1A antagonist, WAY-100,635. Phase shifts in locomotor activity paralleled the Fos expression. Light-induced phase shifts of locomotor activity in OLETF rats were significantly smaller than those in LETO rats. The phase shifts were significantly increased by isamoltan (3 mg/kg, i.p.) in OLETF rats. These results suggest that 5-HT1B receptors are involved in the reduced entrainment function of OLETF rats.
Collapse
Affiliation(s)
- T Shimazoe
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Birthelmer A, Schweizer T, Jeltsch H, Jackisch R, Cassel JC. 5,7-Dihydroxytryptamine lesions enhance and serotonergic grafts normalize the evoked overflow of acetylcholine in rat hippocampal slices. Eur J Neurosci 2002; 16:1839-49. [PMID: 12453047 DOI: 10.1046/j.1460-9568.2002.02254.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult rats were subjected to intracerebroventricular injections of 5,7-dihydroxytryptamine (5,7-DHT; 150 micro g) and, 15 days later, to intrahippocampal grafts of fetal raphe cell suspensions. About 11 months later, we assessed baseline and electrically evoked release of tritium ([3H]) in hippocampal slices, preloaded with tritiated ([3H])choline or [3H]serotonin (5-HT), in the presence or absence of the 5-HT1B receptor agonist CP-93,129 and the 5-HT receptor antagonist methiothepine. HPLC determinations of monoamine concentrations were also performed. The lesions reduced the concentration of 5-HT (-90%) and the accumulation (-80%) as well as the evoked release (-90%) of [3H]5-HT. They also decreased the inhibitory effects of CP-93,129 on the evoked release of [3H]5-HT. Most interestingly, they facilitated the evoked release of [3H]acetylcholine (+20%). In slices from rats subjected to lesions and grafts, the responsiveness of the serotonergic autoreceptors (presumably located on the terminals of the grafted neurons) and the release of acetylcholine were close to normal. These results confirm that grafts rich in serotonergic neurons may partially compensate for the dramatic effects of 5,7-DHT lesions on serotonergic hippocampal functions. The lesion-induced reduction of the 5-HT1B autoreceptor-mediated inhibition of evoked 5-HT release may be an adaptation enhancing serotonergic transmission in the (few) remaining terminals. The facilitated release of acetylcholine is probably caused by a reduced serotonergic tone on the inhibitory 5-HT1B heteroreceptors of the cholinergic terminals. When related to data in the literature, this facilitation may be of particular interest in terms of transmitter-based strategies developed to tackle cognitive symptoms related to neurodegenerative diseases.
Collapse
Affiliation(s)
- Anja Birthelmer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Neuropharmakologisches Labor, Hansastrasse 9A, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Abstract
Serotonin (5-HT) has been strongly implicated in the regulation of the mammalian circadian clock located in the suprachiasmatic nuclei (SCN); however, its role in behavioral (nonphotic) circadian phase resetting remains elusive. Central to this issue are divergent lines of evidence that the SCN may, or may not, be a target for the phase-resetting effects of 5-HT. We have addressed this question using a novel reverse-microdialysis approach for timed perfusions of serotonergic and other agents to the Syrian hamster SCN with durations equivalent to the increases in in vivo 5-HT release during phase-resetting behavioral manipulations. We found that 3 hr perfusions of the SCN with either 5-HT or the 5-HT(1A,7) receptor agonist 2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydro-naphthalene (8-OH-DPAT) at midday advanced the phase of the free-running circadian rhythm of wheel-running assessed using an Aschoff type II procedure. Phase shifts induced by 8-OH-DPAT were enhanced more than threefold by pretreatment with the 5-HT synthesis inhibitor para-chlorophenylalanine. Phase advances induced by SCN 8-OH-DPAT perfusion were significantly inhibited by the 5-HT(2,7) receptor antagonist ritanserin and by the more selective 5-HT(7) receptor antagonist DR4004, implicating the 5-HT(7) receptor in mediating this phase resetting. Concurrent exposure to light during the 8-OH-DPAT perfusion abolished the phase advances. Furthermore, coperfusion of the SCN with TTX, which blocked in vivo 5-HT release, did not suppress intra-SCN 8-OH-DPAT-induced phase advances. These results indicate that 5-HT(7) receptor-mediated phase resetting in the SCN is markedly influenced by the degree of postsynaptic responsiveness to 5-HT and by photic stimulation. Finally, 5-HT may act directly on SCN clock cells to induce in vivo nonphotic phase resetting.
Collapse
|
12
|
Belenky MA, Pickard GE. Subcellular distribution of 5-HT(1B) and 5-HT(7) receptors in the mouse suprachiasmatic nucleus. J Comp Neurol 2001; 432:371-88. [PMID: 11246214 DOI: 10.1002/cne.1109] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The suprachiasmatic nucleus (SCN), a circadian oscillator, receives glutamatergic afferents from the retina and serotonergic (5-HT) afferents from the median raphe. 5-HT(1B) and 5-HT(7) receptor agonists inhibit the effects of light on SCN circadian activity. Electron microscopic (EM) immunocytochemical procedures were used to determine the subcellular localization of 5-HT(1B) and 5-HT(7) receptors in the SCN. 5-HT(1B) receptor immunostaining was associated with the plasma membrane of thin unmyelinated axons, preterminal axons, and terminals of optic and nonoptic origin. 5-HT(1B) receptor immunostaining in terminals was almost never observed at the synaptic active zone. To a much lesser extent, 5-HT(1B) immunoreaction product was noted in dendrites and somata of SCN neurons. 5-HT(7) receptor immunoreactivity in gamma-aminobutyric acid (GABA), vasoactive intestinal polypeptide (VIP), and vasopressin (VP) neuronal elements in the SCN was examined by using double-label procedures. 5-HT(7) receptor immunoreaction product was often observed in GABA-, VIP-, and VP-immunoreactive dendrites as postsynaptic receptors and in axonal terminals as presynaptic receptors. 5-HT(7) receptor immunoreactivity in terminals and dendrites was often associated with the plasma membrane but very seldom at the active zone. In GABA-, VIP-, and VP-immunoreactive perikarya, 5-HT(7) receptor immunoreaction product was distributed throughout the cytoplasm often in association with the endoplasmic reticulum and the Golgi complex. The distribution of 5-HT(1B) receptors in presynaptic afferent terminals and postsynaptic SCN processes, as well as the distribution of 5-HT(7) receptors in both pre- and postsynaptic GABA, VIP, and VP SCN processes, suggests that serotonin plays a significant role in the regulation of circadian rhythms by modulating SCN synaptic activity.
Collapse
Affiliation(s)
- M A Belenky
- Department of Cell and Animal Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
13
|
Kennaway DJ, Moyer RW, Voultsios A, Varcoe TJ. Serotonin, excitatory amino acids and the photic control of melatonin rhythms and SCN c-FOS in the rat. Brain Res 2001; 897:36-43. [PMID: 11282356 DOI: 10.1016/s0006-8993(01)02091-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is a growing acceptance that serotonergic pathways to the suprachiasmatic nucleus play an important role in the mediation and modulation of light entrainment of rhythms. In this study administration of the 5-HT(2A/2C) agonist (+/-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI, 0.5 mg/kg) at mid dark caused a phase shift in the onset of the urinary excretion of 6-sulphatoxymelatonin in rats that was sustained for at least 8 days and was blocked by the specific 5-HT(2C) antagonist SB-242084. Administration of DOI (2 mg/kg) across the night resulted in the appearance of c-FOS in the nucleus of cells in the suprachiasmatic nucleus during subjective darkness, but did not cause induction at the time of expected lights on (CT0). By contrast light exposure induced c-fos throughout the night including CT0. Administration of the NMDA receptor antagonist MK-801 (3 mg/kg) prior to light pulses had no effect on c-fos in the first part of the night, but towards the expected time of lights on, became progressively more potent, such that by CT0, light induction of c-fos was almost completely inhibited. These results provide further evidence that serotonin plays a role in the mediation of light effects on rhythms in the rat.
Collapse
Affiliation(s)
- D J Kennaway
- Department of Obstetrics and Gynaecology, Adelaide University, Medical School, Frome Road, South Australia, 5005, Adelaide, Australia.
| | | | | | | |
Collapse
|
14
|
Smith BN, Sollars PJ, Dudek FE, Pickard GE. Serotonergic modulation of retinal input to the mouse suprachiasmatic nucleus mediated by 5-HT1B and 5-HT7 receptors. J Biol Rhythms 2001; 16:25-38. [PMID: 11220775 DOI: 10.1177/074873040101600104] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT) and 5-HT receptor agonists can modify the response of the mammalian suprachiasmatic nucleus (SCN) to light. It remains uncertain which 5-HT receptor subtypes mediate these effects. The effects of 5-HT receptor activation on optic nerve-mediated input to SCN neurons were examined using whole-cell patch-clamp recordings in horizontal slices of ventral hypothalamus from the male mouse. The hypothesis that 5-HT reduces the effect of retinohypothalamic tract (RHT) input to the SCN by acting at 5-HT1B receptors was tested first. As previously described in the hamster, a mixed 5-HT(1A/1B) receptor agonist, 1-[3-(trifluoromethyl)phenyl]-piperazine hydrochloride (TFMPP), reduced the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) evoked by selectively stimulating the optic nerve of wild-type mice. The agonist was negligibly effective in a 5-HT1B receptor knockout mouse, suggesting minimal contribution of 5-HT1A receptors to the TFMPP-induced reduction in the amplitude of the optic nerve-evoked EPSC. We next tested the hypothesis that 5-HT also reduces RHT input to the SCN via activation of 5-HT7 receptors. The mixed 5-HT(1A/7) receptor agonist, R(+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT), reduced the evoked EPSC amplitude in both wild-type and 5-HT1B receptor knockout mice. This effect of 8-OH-DPAT was minimally attenuated by the selective 5-HT1A receptor antagonist WAY 100635 but was reversibly and significantly reduced in the presence of ritanserin, a mixed 5-HT(2/7) receptor antagonist. Taken together with the authors' previous ultrastructural studies of 5-HT1B receptors in the mouse SCN, these results indicate that in the mouse, 5-HT reduces RHT input to the SCN by acting at 5-HT1B receptors located on RHT terminals. Moreover, activation of 5-HT7 receptors in the mouse SCN, but not 5-HT1A receptors, also results in a reduction in the amplitude of the optic nerve-evoked EPSC. The findings indicate that 5-HT may modulate RHT glutamatergic input to the SCN through 2 or more 5-HT receptors. The likely mechanism of altered RHT glutamatergic input to SCN neurons is an alteration of photic effects on the SCN circadian oscillator.
Collapse
Affiliation(s)
- B N Smith
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523-1760, USA
| | | | | | | |
Collapse
|
15
|
Duncan MJ, Crafton CJ, Wheeler DL. Aging regulates 5-HT(1B) receptors and serotonin reuptake sites in the SCN. Brain Res 2000; 856:213-9. [PMID: 10677628 DOI: 10.1016/s0006-8993(99)02397-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Middle age is associated with changes in circadian rhythms (e.g., alterations in the timing of the circadian wheel running rhythm) which resemble changes induced by selective destruction of the serotonergic input to the suprachiasmatic nucleus (SCN), the principal mammalian circadian pacemaker. We hypothesized that serotonergic neurotransmission in the SCN is decreased in middle-aged hamsters, as compared to young adults. This hypothesis was tested indirectly by investigating the effect of aging on two markers of serotonin neurotransmission, 5-HT(1B) receptors and serotonin reuptake sites, which are regulated by serotonin. Previous studies have shown that experimentally induced decreases in serotonergic neurotransmission increase 5-HT(1B) receptors but decrease serotonin reuptake sites. Quantitative autoradiography was conducted using [125I]iodocyanopindolol ([125I]ICYP) and [3H]paroxetine, selective radioligands for the 5-HT(1B) receptors and the serotonin reuptake sites, respectively. Consistent with the hypothesis, specific ([125I]ICYP binding was significantly elevated in the SCN of middle-aged hamsters, as compared to young hamsters. The results also showed that serotonin reuptake sites in the SCN were significantly increased in both middle-aged and old hamsters, as compared to young controls. This result could not have been caused by decreased serotonin release. Alternatively, increased serotonin reuptake, which would reduce serotonin levels in the synaptic cleft, may cause or contribute to the increase in 5-HT(1B) receptor binding in the SCN in middle aged animals. These results show that the SCN exhibits changes in serotonergic function during middle age, which has been characterized by changes in the expression of circadian rhythms. Because these changes occur during middle age, they probably reflect the aging process, rather than senescence or disease.
Collapse
Affiliation(s)
- M J Duncan
- Department of Anatomy, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, USA.
| | | | | |
Collapse
|
16
|
Vergé D, Calas A. Serotoninergic neurons and serotonin receptors: gains from cytochemical approaches. J Chem Neuroanat 2000; 18:41-56. [PMID: 10708918 DOI: 10.1016/s0891-0618(99)00050-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Serotonergic systems, their phylogeny and ontogeny have been thoroughly described up to the ultrastructural level, thanks to the multiplicity of methodological approaches. They have often been referred to as a 'Rosetta stone', as several features first described for serotonin neurons or paraneurons have been then extended to other neurotransmitter systems: coexistence with neuropeptides or even a canonical neurotransmitter (GABA), volume transmission, regrowth after lesioning, and characterization of multiple receptor subtypes. This review deals with the contributions of neuroanatomical approaches for studying serotoninergic systems, and focuses on recent advances concerning the topological relationships between serotonergic innervation, receptors and target cells. This aspect is particularly important with regard to the possibility for serotonin to act through classical synaptic transmission and/or non-junctional transmission. Serotonin then can selectively regulate different neuronal systems through the activation of distinct receptor subtypes, which in turn can be linked to different transduction pathways. Neurocytochemical approaches constitute unique tools to analyse both anatomical and functional characteristics of complex neuronal systems.
Collapse
Affiliation(s)
- D Vergé
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Institut des Neurosciences, Université Pierre et Marie Curie, CNRS UMR 7624, 7 Quai Saint-Bernard, 75005, Paris, France.
| | | |
Collapse
|
17
|
Thomas H, Fink H, Sohr TR, Voits M. Lesion of the median raphe nucleus: a combined behavioral and microdialysis study in rats. Pharmacol Biochem Behav 2000; 65:15-21. [PMID: 10638630 DOI: 10.1016/s0091-3057(99)00119-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of the present study was to investigate the behavioral consequences and the neurochemical correlates of a 5,7-dihydroxytryptamine (5,7-DHT) lesion of the median raphe nucleus (MRN) in rats. Anxiety-related behavior was assessed in the elevated plus maze test on days 5, 14, and 21 after lesioning. In general, behavior of MRN-lesioned rats was unchanged when compared with sham-lesioned or untreated controls. Neurochemically, microinjection of 5,7-DHT into the MRN resulted in 87.5% depletion of hippocampal 5-HT content. Using the in vivo microdialysis technique, the exposure of 5,7-DHT-lesioned rats to the elevated plus-maze failed to increase extracellular 5-HT release (94%) in the hippocampus, as shown in sham-lesioned (150%) or untreated controls (194%). Moreover, application of fenfluramine (10 mg/kg, i.p.) evoked a 10-fold increase in hippocampal extracellular 5-HT levels in sham-lesioned animals, whereas in 5,7-DHT lesioned rats 5-HT was only slightly increased. The results demonstrate, that a marked reduction of 5-HT release from the MRN is not necessarily accompanied by anxiolytic-like behavior.
Collapse
Affiliation(s)
- H Thomas
- Institute of Pharmacology and Toxicology, Medical Faculty (Charité) of the Humboldt University at Berlin, Germany
| | | | | | | |
Collapse
|
18
|
Park S, Harrold JA, Widdowson PS, Williams G. Increased binding at 5-HT(1A), 5-HT(1B), and 5-HT(2A) receptors and 5-HT transporters in diet-induced obese rats. Brain Res 1999; 847:90-7. [PMID: 10564740 DOI: 10.1016/s0006-8993(99)02055-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
5-Hydroxytryptamine (5-HT, serotonin), synthesized in midbrain raphe nuclei and released in various hypothalamic sites, decreases food intake but the specific 5-HT receptor subtypes involved are controversial. Here, we have studied changes in the regional density of binding to 5-HT receptors and transporters and the levels of tryptophan hydroxylase, in rats with obesity induced by feeding a palatable high-energy diet for 7 weeks. We mapped binding at 5-HT receptor subtypes and transporters using quantitative autoradiography and determined tryptophan hydroxylase protein levels by Western blotting. In diet-induced obese (DiO) rats, specific binding to 5-HT(1A) receptors ([3H]8-OH-DPAT) was significantly increased in the dorsal and median raphe by 90% (P<0.01) and 132% (P<0.05), respectively, compared with chow-fed controls. 5-HT(1B) receptor binding sites ([125I]cyanopindolol) were significantly increased in the hypothalamic arcuate nucleus (ARC) of DiO rats (58%; P<0.05), as were 5-HT(2A) receptor binding sites ([3H]ketanserin) in both the ARC (44%; P<0.05) and lateral hypothalamic area (LHA) (121%; P<0.05). However, binding to 5-HT(2C) receptors ([3H]mesulgergine) in DiO rats was not significantly different from that in controls in any hypothalamic region. Binding to 5-HT transporters ([3H]paroxetine) was significantly increased (P<0.05) in both dorsal and median raphe, paraventricular nuclei (PVN), ventromedial nuclei (VMH), anterior hypothalamic area (AHA) and LHA of DiO rats, by 47%-165%. Tryptophan hydroxylase protein levels in the raphe nuclei were not significantly different between controls and DiO rats. In conclusion, we have demonstrated regionally specific changes in binding to certain 5-HT receptor subtypes in obesity induced by voluntary overeating of a palatable diet. Overall, these changes are consistent with reduced 5-HT release and decreased activity of the 5-HT neurons. Reduction in the hypophagic action of 5-HT, possibly acting at 5-HT(1A), 5-HT(1B) and 5-HT(2A) receptors, may contribute to increased appetite in rats presented with highly palatable diet.
Collapse
Affiliation(s)
- S Park
- Diabetes and Endocrinology Research Group, Department of Medicine, University of Liverpool, Duncan Building, Daulby Street, Liverpool, UK.
| | | | | | | |
Collapse
|
19
|
Manrique C, Héry F, Faudon M, François-Bellan AM. Indirect evidence for an association of 5-HT(1B) binding sites with retinal and geniculate axon terminals in the rat suprachiasmatic nucleus. Synapse 1999; 33:314-23. [PMID: 10421712 DOI: 10.1002/(sici)1098-2396(19990915)33:4<314::aid-syn8>3.0.co;2-v] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of the present study was to investigate the possible cellular location of 5-HT(1B) receptors on retinal and geniculate afferents in the rat suprachiasmatic nucleus (SCN). Biocular enucleation significantly decreased 5-HT(1B) binding site labeling (35%), specifically in the ventral part of the SCN, while monocular enucleation produced a decrease of smaller magnitude (12%), limited to the ventral part of the contralateral SCN, these results being consistent with the known distribution of retinal afferents in the nucleus. By contrast, bilateral geniculate lesion did not induce any significant variation of 5-HT(1B) binding site labeling in the SCN. Previously, we reported that serotonin (5-HT) synthesis inhibition by parachlorophenylalanine increases 5-HT(1B) binding site labeling in the SCN. Using saturation studies, we have now demonstrated that this upregulation reflected an increase in the total number of 5-HT(1B) binding sites (+41% in the dorsal and +67% in the ventral part of the SCN). Furthermore, we evaluated the effects of bilateral geniculate lesion after 5-HT stores depletion in order to overcome problems of technical resolution limits. The magnitude of upregulation was significantly decreased (27%) after bilateral geniculate lesion, suggesting that part of the 5-HT(1B) receptor population was located on geniculate axon terminals within the SCN. The possible involvement of 5-HT(1B) receptors, according to their cellular locations evidenced in the present study, in photic and nonphotic entrainment of the circadian clock is discussed.
Collapse
Affiliation(s)
- C Manrique
- Laboratoire des Interactions Fonctionnelles en Neuroendocrinologie, INSERM U501, Institut Fédératif Jean Roche, Faculté de Médecine Nord, Marseille, France
| | | | | | | |
Collapse
|
20
|
Abstract
The suprachiasmatic nucleus (SCN) receives glutamatergic afferents from the retina and serotonergic afferents from the midbrain, and serotonin (5-HT) can modify the response of the SCN circadian oscillator to light. 5-HT1B receptor-mediated presynaptic inhibition has been proposed as one mechanism by which 5-HT modifies retinal input to the SCN (Pickard et al., 1996). This hypothesis was tested by examining the subcellular localization of 5-HT1B receptors in the mouse SCN using electron microscopic immunocytochemical analysis with 5-HT1B receptor antibodies and whole-cell patch-clamp recordings from SCN neurons in hamster hypothalamic slices. 5-HT1B receptor immunostaining was observed associated with the plasma membrane of retinal terminals in the SCN. 1-[3-(Trifluoromethyl)phenyl]-piperazine HCl (TFMPP), a 5-HT1B receptor agonist, reduced in a dose-related manner the amplitude of glutamatergic EPSCs evoked by stimulating selectively the optic nerve. Selective 5-HT1A or 5-HT7 receptor antagonists did not block this effect. Moreover, in cells demonstrating an evoked EPSC in response to optic nerve stimulation, TFMPP had no effect on the amplitude of inward currents generated by local application of glutamate. The effect of TFMPP on light-induced phase shifts was also examined using 5-HT1B receptor knock-out mice. TFMPP inhibited behavioral responses to light in wild-type mice but was ineffective in inhibiting light-induced phase shifts in 5-HT1B receptor knock-out mice. The results indicate that 5-HT can reduce retinal input to the circadian system by acting at presynaptic 5-HT1B receptors located on retinal axons in the SCN.
Collapse
|
21
|
Abstract
Photic entrainment of circadian rhythms occurs as a consequence of daily, light-induced adjustments in the phase and period of the suprachiasmatic nuclei (SCN) circadian clock. Photic information is acquired by a unique population of retinal photoreceptors, processed by a distinct subset of retinal ganglion cells, and conveyed to the SCN through the retinohypothalamic tract (RHT). RHT neurotransmission is mediated by the release of the excitatory amino acid glutamate and appears to require the activation of both NMDA- and non-NMDA-type glutamate receptors, the expression of immediate early genes (IEGs), and the synthesis and release of nitric oxide. In addition, serotonin appears to regulate the response of the SCN circadian clock to light through postsynaptic 5-HT1A or 5-ht7 receptors, as well as presynaptic 5-HT1B heteroreceptors on RHT terminals.
Collapse
Affiliation(s)
- M A Rea
- Biological Rhythms and Integrative Neuroscience Institute, Air Force Research Laboratory, Brooks AFB, Texas, USA.
| |
Collapse
|
22
|
Compan V, Segu L, Buhot MC, Daszuta A. Selective increases in serotonin 5-HT1B/1D and 5-HT2A/2C binding sites in adult rat basal ganglia following lesions of serotonergic neurons. Brain Res 1998; 793:103-11. [PMID: 9630549 DOI: 10.1016/s0006-8993(98)00168-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantitative autoradiography was used to examine possible adaptive changes in serotonin 5-HT1B/1D and 5-HT2A/2C receptor binding sites in adult rat basal ganglia, after partial or severe lesions of serotonergic neurons produced by intraraphe injections of variable amounts of 5,7-dihydroxytryptamine. In controls, the 5-HT1B/1D sites labeled with S-CM-G[125I]TNH2 were evenly distributed in the core and the shell of the nucleus accumbens. The density of 5-HT1B/1D sites was higher in the ventral than dorsal part of the striatum and no regional differences were detected along the rostrocaudal axis of the structure. The 5-HT2A/2C sites labeled with [125I]DOI were preferentially distributed in the mediodorsal striatum and higher densities were detected in the shell than core of the nucleus accumbens. Following 5,7-dihydroxytryptamine injections, there were no changes in binding of either receptor subtype after partial lesions entailing 80-90% 5-HT depletions. After severe 5-HT depletions (over 95%), large increases in 5-HT1B/1D binding were observed in the substantia nigra (78%), but no changes took place in the globus pallidus. Increases in 5-HT1B/1D binding were also detected in the shell of the nucleus accumbens (27%). Similar sized increases in 5-HT2A/2C binding (22%) were restricted to the medial striatum. The present results suggest a preferential association between 5-HT1B/1D receptors and the striatonigral neurons containing substance P, as indicated by the striatal distribution of these receptors and their selective increases in the substantia nigra after severe 5-HT deprivation. We recently proposed a similar relationship between the 5-HT4 receptors and the striatopallidal neurons containing met-enkephalin. Moreover, the increases in 5-HT1B/1D binding in the substantia nigra and in the shell of the nucleus accumbens reinforce the view of an implication of this receptor subtype in motor functions. In contrast, the prominent increases in 5-HT2A/2C binding after severe 5-HT deprivation as restricted to the medial region of the striatum and suggest up-regulation of most probably 5-HT2C receptors in a region implicated in cognitive functions.
Collapse
MESH Headings
- 5,7-Dihydroxytryptamine/administration & dosage
- Animals
- Basal Ganglia/drug effects
- Basal Ganglia/metabolism
- Binding Sites/drug effects
- Female
- Indophenol/administration & dosage
- Indophenol/analogs & derivatives
- Indophenol/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1B
- Receptor, Serotonin, 5-HT1D
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/metabolism
- Serotonin/metabolism
- Serotonin Receptor Agonists/administration & dosage
- Serotonin Receptor Agonists/metabolism
Collapse
Affiliation(s)
- V Compan
- CNRS UPR 9013, 'Laboratoire de Neurobiologie Cellulaire et Fonctionnelle', Marseille, France
| | | | | | | |
Collapse
|
23
|
Manrique C, Bosler O, Becquet D, Héry F, Faudon M, François-Bellan AM. Post-lesion up-regulation of 5-HT1B binding sites in the suprachiasmatic nucleus may be reversed after spontaneous or graft-induced serotonin reinnervation. Brain Res 1998; 788:332-6. [PMID: 9555084 DOI: 10.1016/s0006-8993(98)00043-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously reported that selective axotomy of serotoninergic neurons produced by an intraventricular injection of 5, 7-dihydroxytryptamine is followed by an increase in 5-HT1B binding sites in the suprachiasmatic nucleus of the hypothalamus. This post-lesion up-regulation is shown here to be spontaneously reversed after long-term survival in spite of an incomplete reinnervation of the nucleus. Recovery may be accelerated by fetal raphe transplants that produce more rapid reinnervation.
Collapse
Affiliation(s)
- C Manrique
- Laboratoire de Neuroendocrinologie Expérimentale, INSERM U297, Institut Fédératif Jean Roche, Faculté de Médecine Nord, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
24
|
Revelis J, Thompson AM, Britton BH, Thompson GC. Effects of para-chlorophenylalanine (pCPA) on the bush baby auditory brainstem response. Hear Res 1998; 116:119-30. [PMID: 9508035 DOI: 10.1016/s0378-5955(97)00210-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Click-evoked auditory brainstem responses were recorded in a prosimian primate, the bush baby (Otolemur garnettii), before and after depletion of serotonin (by systemic injection of para-chlorophenylalanine; pCPA) and up to 20 days after discontinuing pCPA injections (during the recovery of serotonin). Biphasic 100 micros clicks were presented at five repetition rates (13.2, 33.2, 53.2, 73.2, and 93.2 clicks/s; RATE) and sound pressure levels (SPL) were varied in 10 dB steps from 120-60 dB SPL peak equivalent. Absolute latencies of vertex-positive peaks I, III, IV, and V were measured from click onset. The latencies from each wave were statistically analyzed with a two-way analysis of variance using either RATE or SPL (but not both) and TIME AFTER pCPA as independent variables. Prior to pCPA, brainstem response latencies increased as a function of both decreasing SPL and increasing RATE. After pCPA, these normal increases in wave latency increased even more, particularly in response to high click rates. After pCPA was discontinued, measurements taken at weekly intervals indicated that latencies decreased after 1 week, increased to the highest values recorded after 2 weeks, and returned to normal after 3 weeks. These dynamic changes were interpreted to be the result of postsynaptic receptor up-regulation during the 10 days of continuous pCPA administration. These results suggest that serotonin plays an important role in sensory processing at the cellular level and, tonically, facilitates the auditory brainstem response to sound.
Collapse
Affiliation(s)
- J Revelis
- Department of Otorhinolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City 73190-3048, USA
| | | | | | | |
Collapse
|
25
|
Abstract
In this manuscript, current knowledge about central nervous system serotonin (5-HT) receptors is discussed with an emphasis toward describing the functional significance of the multiple 5-HT receptors. Five characteristics of 5-HT receptors, which are hypothesized to contribute to this functional significance, are discussed: (a) 5-HT has varying affinity and potency for the different receptor subtypes; (b) multiple transduction pathways are used by the different receptor subtypes; (c) receptor subtypes differ in their susceptibility to agonist-mediated desensitization/downregulation; (d) receptor subtypes interact in mediating cellular responses to the neurotransmitter; and (e) receptor subtypes respond differently to changes in the physiological environment. It is hypothesized that these characteristics of the multiple neurotransmitter receptors provide the nervous system with a capacity for coding and decoding of 5-HT-mediated neuronal transmission that could not take place with a single neurotransmitter receptor. Serotonergic regulation of female reproduction and regulation of glucocorticoid release are used to illustrate the integrative potential deriving from the existence of multiple 5-HT receptors.
Collapse
Affiliation(s)
- L Uphouse
- Department of Biology, Texas Woman's University, Denton 76204, USA
| |
Collapse
|
26
|
Abstract
1. 5-Hydroxytryptamine-1B (5-HT 1B, formerly designated 5-HT 1D beta) and 5-hydroxy-tryptamine-1D (5-HT 1D, formerly designated 5-HT 1D alpha) receptors are distinct molecular entities that mediate serotonergic neurotransmission. Both are G-protein-coupled receptors without introns in their coding region, negatively coupled to adenylate cyclase; their precise function in human beings remains to be defined. In brain, they are highly enriched in the globus pallidus and the substantia nigra. 2. Presynaptic 5-HT 1B/D receptors take part in the control of the release not only of 5-HT itself, but also of other neurotransmitters-for example, acetylcholine, glutamate, dopamine, noradrenaline and gamma-aminobutyric acid. Selective blockade of central 5-HT 1B/D autoreceptors should facilitate 5-HT neurotransmission and may offer a novel approach to antidepressant therapy. Other 5-HT 1B/D receptors are located postsynaptically; those receptors may be supersensitive in the pathophysiology of obsessive-compulsive disorder and may be a potential target for its treatment. 3. Few if any ligands show selectivity for 5-HT 1B or 5-HT 1D receptors or both. Most pharmacological studies have been performed with nonselective antagonists-for example, metergoline, I-naphthylpiperazine, methiothepin, ketanserin and ritanserin. Recently, a novel series of benzanilides have been reported as the first examples of selective 5-HT 1B/D receptor antagonists. GR 127935, a representative compound of this series, displays mixed agonist-antagonist properties both in vitro and in vivo. It induces upon systemic administration in the guinea pig either an opposite (decrease) effect or a small increase (65%, 5 mg/kg) in the concentration of cortical extracellular 5-HT compared with fluoxetine (218%, 10 mg/kg). The importance of blockade of 5-HT 1B/D receptors in the raphé region, their possible interaction with 5-HT 1A receptors, and consequent inhibition of 5-HT release in terminal 5-HT 1B/D receptor-containing regions are discussed. 4. To find out whether the available so-called 5-HT 1B/D receptor antagonists are indeed antagonists and not partial agonists, efficacy was measured at recombinant human 5-HT 1B and 5-HT 1D receptor sites by using a [35S]-GTP gamma S binding assay to membrane preparations of stably transfected rat C6-glial cell lines. Metergoline and the selective 5-HT 1B/D receptor ligands GR 127935 as well as GR 125743 showed significant intrinsic activity (43% to 69%) at the 5-HT 1D receptor subtype, whereas the nonselective ligand 1-naphthylpiperazine yielded less (15% to 19%) intrinsic activity at both receptor subtypes. In contrast, the nonselective ligands methiothepin, ketanserin and ritanserin are inverse agonists because they displayed negative efficacy (-14% to -28%). Differential blockade of 5-HT 1B/D receptors by neutral antagonists and inverse agonists is discussed in relation to the 5-HT tone on 5-HT 1B/D receptors. 5. It can concluded that 5-HT 1B/D receptor ligands modulate 5-HT neurotransmission through a terminal 5-HT 1B/D receptor. Future work should be directed toward the identification of selective 5-HT 1B and 5-HT 1D receptor ligands that display either neutral antagonist or inverse agonist properties to evaluate the therapeutic potential of 5-HT 1B/D receptor blockade.
Collapse
Affiliation(s)
- P J Pauwels
- Centre de Recherche Pierre Fabre, Laboratory of Cellular and Molecular Neurobiology, Castres, France.
| |
Collapse
|
27
|
Pickard GE, Rea MA. TFMPP, a 5HT1B receptor agonist, inhibits light-induced phase shifts of the circadian activity rhythm and c-Fos expression in the mouse suprachiasmatic nucleus. Neurosci Lett 1997; 231:95-8. [PMID: 9291149 DOI: 10.1016/s0304-3940(97)00534-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) receives afferents from the retina and the midbrain raphe. The retinal innervation mediates photic entrainment of the SCN circadian oscillator whereas the serotonergic input arising from the midbrain raphe nuclei appears to modulate retinohypothalamic neurotransmission. We hypothesized that serotonergic innervation of the SCN may modulate retinal input by activation of 5HT1B presynaptic receptors on retinal axon terminals in the SCN. We tested this hypothesis using the 5HT1B receptor agonist, 1-[3-(trifluoromethyl)phenyl]-piperazine (TFMPP). Systemic administration of TFMPP prior to light stimulation significantly attenuated light-induced phase shifts of the circadian activity rhythm and Fos expression in the SCN. These results in the mouse support our earlier findings in the hamster [Pickard, G.E., Weber, E.T., Scott, P.A., Riberdy, A.F. and Rea, M.A., J. Neurosci., 16 (1996) 8208-8220] and are consistent with the interpretation that 5HT1B presynaptic receptors participate in the regulation of photic input to the SCN.
Collapse
Affiliation(s)
- G E Pickard
- Biological Rhythms and Integrative Neuroscience Institute, Armstrong Laboratory (CFTO), Brooks AFB, TX 78235-5104, USA
| | | |
Collapse
|
28
|
Fugelli A, Moret C, Fillion G. Autoradiographic localization of 5-HT1E and 5-HT1F binding sites in rat brain: effect of serotonergic lesioning. J Recept Signal Transduct Res 1997; 17:631-45. [PMID: 9220372 DOI: 10.3109/10799899709039154] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
5-carboxamidotryptamine (5-CT)-insensitive binding sites labelled by [3H]5-hydroxytryptamine (5-HT) in the presence of 100 nM 5-CT and 100 nM mesulergine, were examined by semi-quantitative autoradiography in rat brain. Under these conditions most of the labelled sites correspond to 5-HT1E and 5-HT1F sites. The 5-CT-insensitive binding is located mainly in cortical layer V, caudate-putamen, interpeduncular nucleus and claustrum. In cortex and caudate-putamen, a large proportion of 5-CT-insensitive sites is displaced by 250 nM sumatriptan and can be attributed to the presence of 5-HT1F receptors. A low, but significant, level of displacement by sumatriptan was observed in the choroid plexus. Lesions of serotonergic neurones by intracerebroventricular 5,7-dihydroxytryptamine injection does not significantly modify the densities of 5-HT1E or 5-HT1F binding sites. Our findings suggest that the 5-HT1F receptor has a limited distribution in rat brain, mainly located on non-serotonergic neurones.
Collapse
Affiliation(s)
- A Fugelli
- Unité de Pharmacologie N.I.E, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
29
|
5HT1B receptor agonists inhibit light-induced phase shifts of behavioral circadian rhythms and expression of the immediate-early gene c-fos in the suprachiasmatic nucleus. J Neurosci 1997. [PMID: 8987845 DOI: 10.1523/jneurosci.16-24-08208.1996] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) is a circadian oscillator and a critical component of the mammalian circadian system. It receives afferents from the retina and the mesencephalic raphe. Retinal afferents mediate photic entrainment of the SCN, whereas the serotonergic afferents originating from the midbrain modulate photic responses in the SCN; however, the serotonin (5HT) receptor subtypes in the SCN responsible for these modulatory effects are not well characterized. In this study, we tested the hypothesis that 5HT1B receptors are located presynaptically on retinal axon terminals in the SCN and that activation of these receptors inhibits retinal input. The 5HT1B receptor agonists TFMPP and CGS 12066A, administered systemically, inhibited light-induced phase shifts of the circadian activity rhythm in a dose-dependent manner at phase delay and phase advance time points. This inhibition was not affected by previous systemic application of either the selective 5HT1A receptor antagonist (+)WAY 100135 or by the 5HT2 receptor antagonist mesulergine, whereas pretreatment with the nonselective 5HT1 antagonist methiothepin significantly attenuated the effect of TFMPP. TFMPP also produced a dose-dependent reduction in light-stimulated Fos expression in the SCN, although a small subset of cells in the dorsolateral aspect of the caudal SCN were TFMPP-insensitive. TFMPP (1 mM) infused into the SCN produced complete inhibition of light-induced phase advances. Finally, bilateral orbital enucleation reduced the density of SCN 5HT1B receptors as determined using [125I]-iodocyanopindolol to define 5HT1B binding sites. These results are consistent with the interpretation that 5HT1B receptors are localized presynaptically on retinal terminals in the SCN and that activation of these receptors by 5HT1B agonists inhibits retinohypothalamic input.
Collapse
|
30
|
Compan V, Daszuta A, Salin P, Sebben M, Bockaert J, Dumuis A. Lesion study of the distribution of serotonin 5-HT4 receptors in rat basal ganglia and hippocampus. Eur J Neurosci 1996; 8:2591-8. [PMID: 8996808 DOI: 10.1111/j.1460-9568.1996.tb01553.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The regional distribution of 5-hydroxytryptamine (5-HT4) receptors labelled with [3H]GR113808 was examined in rat basal ganglia and hippocampus after specific lesions. Lesion of serotonin neurons induced by injections of 5,7-dihydroxytryptamine into the dorsal and medial raphe nuclei resulted in increased 5-HT4 receptor binding in most regions examined, compared with controls. More precisely, there was a 78% increase in the rostral but no change in the caudal part of caudate-putamen, and 83% and 54% increases in the shell and core of the nucleus accumbens respectively. In the substantia nigra, the increase in 5-HT4 binding was larger (72%) than that in the globus pallidus (32%). In the hippocampus, 63%, 30% and 28% increases were measured in CA2, CA1 and CA3 respectively. Following lesion of dopamine neurons by intranigral injection of 6-hydroxydopamine, increased 5-HT4 receptor binding was observed in the caudal (59%), but not the rostral part of caudate-putamen, as well as in the globus pallidus (93%). Since no decreases in 5-HT4 receptor density were detected after the dopamine lesion, it was concluded that these receptors are not expressed in dopamine neurons. Kainic acid lesions of the caudate-putamen were associated with dramatic local decreases in 5-HT4 receptor binding on the injected side (-89%), which suggested that striatal neurons express 5-HT4 receptors. Corresponding decreases of 72 and 20% in receptor density were detected in globus pallidus and substantia nigra, consistent with a presumed localization of 5-HT4 receptors on striatal GABA neurons projecting to these regions. In the substantia nigra, the decrease in [3H]GR113808 binding was localized to the pars lateralis, indicating that striatal neurons belonging to the cortico-striato-nigro-tectal pathway, and containing GABA and dynorphin, express 5-HT4 receptors.
Collapse
Affiliation(s)
- V Compan
- CNRS UPR 9013, Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, Marseille, France
| | | | | | | | | | | |
Collapse
|
31
|
Statnick MA, Dailey JW, Jobe PC, Browning RA. Abnormalities in 5-HT1A and 5-HT1B receptor binding in severe-seizure genetically epilepsy-prone rats (GEPR-9s). Neuropharmacology 1996; 35:111-8. [PMID: 8684590 DOI: 10.1016/0028-3908(95)00141-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study was designed to determine whether abnormalities in serotonin receptor binding co-exist with the presynaptic serotonergic deficits that have previously been identified in the genetically epilepsy-prone rat (GEPR) brain. In vitro binding of [3H]8-OH-DPAT (0.16-10.3 nM) to 5-HT1A receptor sites was found to be decreased in the hippocampus of severe seizure GEPRs (GEPR-9s) when compared to nonepileptic control rats, while no difference in [3H]8-OH-DPAT binding was observed in the GEPR-9 corpora quadrigemina or midbrain tegmentum. The decreased binding of [3H]8-OH-DPAT to hippocampal membranes was due to a decrease in Bmax (P < 0.001), rather than to a change in the Kd. Conversely, in vitro binding of [125I]cyanopindolol (2-400 pM) to 5-HT1B receptor sites was increased in the GEPR-9 hippocampus, corpora quadrigemina and midbrain tegmentum when compared to nonepileptic control rats. The increased binding of [125I]cyanopindolol in all three regions resulted from an increase in the Bmax (P < 0.05), rather than a change in the Kd. These finding suggest that in addition to the innate reduction in 5-HT presynaptic markers, GEPR-9s also exhibit abnormalities in the density of 5-HT1A and 5-HT1B receptors in some regions of the brain. Inasmuch as serotonin acts to attenuate audiogenic seizures in GEPRs, these abnormalities in 5-HT receptor binding may contribute to the seizure susceptibility exhibited by these animals.
Collapse
Affiliation(s)
- M A Statnick
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale 62901, USA
| | | | | | | |
Collapse
|
32
|
Li PP, Law G, Green M, Chambers JW, Coscina DV, Warsh JJ. Serotonin depletion by 5,7-dihydroxytryptamine does not affect G protein subunit levels in rat cortex. Neurosci Lett 1995; 194:153-6. [PMID: 7478226 DOI: 10.1016/0304-3940(95)11746-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To investigate the role of G proteins in denervation supersensitivity of the CNS serotonergic system, we examined the effect of lesioning serotonergic neurons on the abundance of cerebral cortical membrane G protein subunits in rats. Three weeks after intracisternal injection of 5,7-dihydroxytryptamine (5,7-DHT), which significantly reduced cortical 5-hydroxytryptamine (5-HT; -90%) and 5-hydroxyindoleacetic acid (approximately 98%) levels, no statistically significant differences were observed for G alpha s-1, G alpha s-s, G alpha i1, G alpha i2, G alpha q/11, G alpha 0, G beta 1 and G beta 2 immunoreactivity levels between sham-lesioned and 5,7-DHT lesioned rats. These data suggest that the functional supersensitivity of 5-HT neuronal system often observed following lesions of 5-HT fibers may not involve changes at the level of G proteins but may instead encompass other downstream elements of the 5-HT receptor signaling cascade.
Collapse
Affiliation(s)
- P P Li
- Section of Biochemical Psychiatry, Clarke Institute of Psychiatry, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Doucet E, Pohl M, Fattaccini CM, Adrien J, Mestikawy SE, Hamon M. In situ hybridization evidence for the synthesis of 5-HT1B receptor in serotoninergic neurons of anterior raphe nuclei in the rat brain. Synapse 1995; 19:18-28. [PMID: 7709340 DOI: 10.1002/syn.890190104] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The regional distribution of the mRNA encoding the serotonin 5-HT1B receptor was studied in the central nervous system of the rat by in situ hybridization histochemistry and Northern blot analysis. A 180 base pair probe, corresponding to a highly selective portion of the third intracellular loop of the rat 5-HT1B receptor, was used. In most regions, a single 5 kb message was found by Northern blot analysis. However, two additional bands (2.5 and 4 kb) were detected in the striatum. The rank order of 5-HT1B mRNA abundance was striatum >> septum = ventral tegmentum > or = colliculi = hypothalamus = hippocampus > brain stem > or = cerebellum > or = dorsal horn of the spinal cord > cerebral cortex > or = ventral horn of the spinal cord > olfactory tubercle. This distribution was confirmed by in situ hybridization, which further revealed that the 5-HT1B mRNA was present in dorsal root ganglia, the layer IV of the cerebral cortex, the Purkinje cell layer of the cerebellum, the pyramidal neurons in the CA1 area of the hippocampus, and the dorsal and median raphe nuclei. In situ hybridization was also performed in nomifensine (10 mg/kg/i.p.)-pretreated rats whose serotoninergic neurons were extensively and selectively lesioned by microinjection of 5,7-dihydroxytryptamine (8 micrograms/1 microliter) directly into the anteroventral vicinity of anterior raphe nuclei 3 weeks before sacrifice. In lesioned rats, 5-HT1B mRNA was present in the same areas and at the same levels as in control rats, except in the dorsal and median raphe nuclei, where a marked decrease (-75%) in its local concentration was observed. These data provide the first demonstration of the synthesis of 5-HT1B receptor within serotoninergic neurons, as expected of their presynaptic autoreceptor function at the level of serotoninergic terminals.
Collapse
Affiliation(s)
- E Doucet
- INSERM U288, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
34
|
Manrique C, François-Bellan AM, Segu L, Becquet D, Héry M, Faudon M, Héry F. Impairment of serotoninergic transmission is followed by adaptive changes in 5HT1B binding sites in the rat suprachiasmatic nucleus. Brain Res 1994; 663:93-100. [PMID: 7531598 DOI: 10.1016/0006-8993(94)90466-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Serotonin1B (5-HT1B) receptor binding in the suprachiasmatic nucleus (SCN) following impairment of serotoninergic transmission was studied by quantitative autoradiography. Serotonin (5-HT) denervation with 5,7-dihydroxytryptamine (5,7-DHT) caused a significant increase in the density of 5-HT1B receptors in both the ventral (62%) and dorsal (53%) parts of the SCN as early as 3 days after axotomy. The magnitude of this increase did not differ 3, 15 or 21 days post-lesion. An up-regulation of 5-HT1B receptors with similar magnitude was obtained in the two parts of the SCN after inhibition of 5-HT synthesis by chronic parachlorophenylalanine treatment. In this case, up-regulation was shown to be reversible after restoration of 5-HT synthesis with L-5-hydroxytryptophan. These results indicate that 5-HT1B receptor density in the SCN was inversely correlated with 5-HT levels. These plastic properties exhibited by 5-HT1B receptors in the SCN are discussed in relation to the mode of 5-HT transmission and possible localization of the receptors onto the main chemically defined cell populations of the nucleus.
Collapse
Affiliation(s)
- C Manrique
- Laboratoire de Neuroendocrinologie Expérimentale, INSERM U297, Institut Fédératif Jean Roche, Faculté de Médecine Nord, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Sawynok J, Reid A. Spinal supersensitivity to 5-HT1, 5-HT2 and 5-HT3 receptor agonists following 5,7-dihydroxytryptamine. Eur J Pharmacol 1994; 264:249-57. [PMID: 7698162 DOI: 10.1016/0014-2999(94)00465-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study examined functional supersensitivity to 5-hydroxytryptamine (5-HT) and 5-HT ligands selective for 5-HT1, 5-HT2 and 5-HT3 receptors in two tests for nociception following the spinal administration of 5,7-dihydroxytryptamine (5,7-DHT). Intrathecal pretreatment with 5,7-DHT 30-100 micrograms (following desipramine) produced a selective depletion of spinal cord 5-HT levels of > 80% and augmented the antinociceptive action of 5-HT in the tail flick and hot plate tests. The tail flick test was the more sensitive test for expression of this action. Supersensitivity was observed with the 5-HT1 receptor ligands CGS 12066B (7-trifluoromethyl-4-(4-methyl-1-piperazinyl-pyrrolo[1,2-a] quinoxalinedimaleate), RU 24969 (5-methoxy-3-(1,2,4,6-tetrahydro-4-pyridinyl)1H indole succinate), TFMPP (m-trifluoromethylphenyl-piperazine HCl), mCPP (1-(3-chlorophenyl)piperazine dihydrochloride) and 5-Me-ODMT (5-methoxy-N,N-dimethyltryptamine hydrogen oxalate) but not with the 5-HT2 receptor ligand DOI ((+/-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane HCl) or the 5-HT3 receptor ligand 2-Me-5-HT (2-methyl-5-hydroxytryptamine maleate) in the tail flick test. In the hot plate test, supersensitivity was observed only with 5-Me-ODMT. Intrathecal pretreatment with fluoxetine, a 5-HT uptake inhibitor, potentiated the action of 5-HT but not any of the other 5-HT1 receptor ligands examined. These results indicate that supersensitivity occurs with 5-HT and 5-HT1 receptor ligands but not with 5-HT2 or 5-HT3 receptor ligands. Both the loss of uptake sites and receptor upregulation may contribute to enhanced activity of 5-HT, but for other ligands, only the latter mechanism appears to occur.
Collapse
Affiliation(s)
- J Sawynok
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
36
|
Cataldi M, Magnan E, Guillaume V, Héry F, Dutour A, Rettori MC, Kamoun A, Oliver C. Effect of tianeptine on the hypothalamic somatotropic axis in the conscious sheep. Eur J Pharmacol 1994; 253:149-53. [PMID: 7912195 DOI: 10.1016/0014-2999(94)90769-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The action of serotonin on growth hormone (GH) secretion is controversial because of interspecies differences and lack of specificity of serotoninergic drugs. Serotonin (5-HT) appears to inhibit GH release in the sheep and in man. We have investigated the site of action of tianeptine, a 5-HT uptake enhancer, in sheep since it is possible to collect hypophysial portal blood for the simultaneous determination of growth hormone-releasing hormone (GHRH) and somatostatin in this species under conscious, unstressed conditions. Tianeptine injection (10 mg/kg i.v.) resulted in a significant, immediate and short-lasting (30 min) increase in peripheral GH (+750%; P < 0.01) and hypophysial portal GHRH (+180%; P < 0.01). No change in the secretion of somatostatin was recorded during the same time. These data suggest that serotoninergic inputs are inhibitory to GH secretion. Tianeptine acts centrally to stimulate GH secretion in the sheep and its effect is mediated through changes in GHRH but not somatostatin release into hypophysial portal blood.
Collapse
Affiliation(s)
- M Cataldi
- Laboratoire de Neuroendocrinologie Expérimentale, INSERM U 297, Institut Federatif Jean Roche, Faculté de Médecine Nord, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|