1
|
Chen Y, Hou X, Pang J, Yang F, Li A, Lin S, Lin N, Lee TH, Liu H. The role of peptidyl-prolyl isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci 2022; 15:1006419. [PMID: 36304997 PMCID: PMC9592815 DOI: 10.3389/fnmol.2022.1006419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common symptom of many neurological disorders and can lead to neuronal damage that plays a major role in seizure-related disability. The peptidyl-prolyl isomerase Pin1 has wide-ranging influences on the occurrence and development of neurological diseases. It has also been suggested that Pin1 acts on epileptic inhibition, and the molecular mechanism has recently been reported. In this review, we primarily focus on research concerning the mechanisms and functions of Pin1 in neurons. In addition, we highlight the significance and potential applications of Pin1 in neuronal diseases, especially epilepsy. We also discuss the molecular mechanisms by which Pin1 controls synapses, ion channels and neuronal signaling pathways to modulate epileptic susceptibility. Since neurotransmitters and some neuronal signaling pathways, such as Notch1 and PI3K/Akt, are vital to the nervous system, the role of Pin1 in epilepsy is discussed in the context of the CaMKII-AMPA receptor axis, PSD-95-NMDA receptor axis, NL2/gephyrin-GABA receptor signaling, and Notch1 and PI3K/Akt pathways. The effect of Pin1 on the progression of epilepsy in animal models is discussed as well. This information will lead to a better understanding of Pin1 signaling pathways in epilepsy and may facilitate development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojun Hou
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Jiao Pang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Yang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Angcheng Li
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Suijin Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hekun Liu
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Hekun Liu,
| |
Collapse
|
2
|
Kia A, Ribeiro F, Nelson R, Gavrilovici C, Ferguson SSG, Poulter MO. Kindling alters neurosteroid-induced modulation of phasic and tonic GABAA receptor-mediated currents: role of phosphorylation. J Neurochem 2011; 116:1043-56. [DOI: 10.1111/j.1471-4159.2010.07156.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Curia G, Aracri P, Colombo E, Scalmani P, Mantegazza M, Avanzini G, Franceschetti S. Phosphorylation of sodium channels mediated by protein kinase-C modulates inhibition by topiramate of tetrodotoxin-sensitive transient sodium current. Br J Pharmacol 2007; 150:792-7. [PMID: 17279091 PMCID: PMC2013870 DOI: 10.1038/sj.bjp.0707144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Topiramate is a novel anticonvulsant known to modulate the activity of several ligand- and voltage-gated ion channels in neurons. The mechanism of action of topiramate, at a molecular level, is still unclear, but the phosphorylation state of the channel/receptor seems to be a factor that is able to influence its activity. We investigated the consequences of phosphorylation of the sodium channel on the effect of topiramate on tetrodotoxin (TTX)-sensitive transient Na(+) current (I(NaT)). EXPERIMENTAL APPROACH I(NaT) was recorded in dissociated neurons of rat sensorimotor cortex using whole-cell patch-clamp configuration. KEY RESULTS We found that topiramate (100 microM) significantly shifted the steady-state I(NaT) inactivation curve in a hyperpolarized direction. In neurons pre-treated with a PKC-activator, 1-oleoyl-2-acetyl-sn-glycerol (OAG; 2 microM), the net effect of topiramate on steady-state I(NaT) inactivation was significantly decreased. In addition, OAG also slightly shifted the I(NaT) activation curve in a hyperpolarized direction, while perfusion with topiramate had no effect on the parameters of I(NaT) activation. CONCLUSIONS AND IMPLICATIONS These data show that PKC-activation can modulate the effect of topiramate on I(NaT). This suggests that channel phosphorylation in physiological or pathological conditions (such as epiliepsy), can alter the action of topiramate on sodium currents.
Collapse
Affiliation(s)
- G Curia
- Department of Neurophysiology, Laboratory of Experimental Epileptology, C Besta National Neurological Institute, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
PURPOSE Diacylglycerol kinase epsilon (DGKepsilon) regulates seizure susceptibility and long-term potentiation through arachidonoyl-inositol lipid signaling. We studied the significance of arachidonoyl-diacylglycerol (20:4 DAG) in epileptogenesis in DGKepsilon-deficient mice undergoing rapid kindling epileptogenesis. METHODS Tripolar electrode units were implanted in right dorsal hippocampi of male DGKepsilon(+/+) and DGKepsilon(-/-) mice. Ten days after surgery, kindling was achieved by stimulating 6 times daily for 4 days with a subconvulsive electrical stimulation (10-s train of 50-Hz biphasic pulses, 75-200 muA amplitude) at 30-min intervals. After 1 week, mice were rekindled. EEGs were recorded and analyzed to characterize epileptogenic events as spikes, sharp waves, or abnormal amplitudes and rhythms. Right hippocampi were analyzed by histology [Timm's staining, neuropeptide Y (NPY) and glial fibrillary acidic protein immunoreactivity], and for DNA fragmentation (TUNEL). RESULTS DGKepsilon(-/-) mice had significantly fewer motor seizure and epileptic events compared with DGKepsilon(+/+) mice from the second day of stimulation. These differences were maintained during rekindling. DGKepsilon(-/-) mice also exhibited low-amplitude spike-wave complexes, short spreading depression, and predominant lower-frequency (1-4 Hz) bands throughout stimulation, whereas DGKepsilon(+/+) mice exhibited increased high-frequency bands (4-8 Hz; 8-15 Hz) from the second day of stimulation, as determined by power spectral analysis. DGKepsilon(-/-) mice displayed no sprouting in the supragranular area or NPY inmunoreactivity in the hilus and had weak astrocyte reactivation in all hippocampal areas. No TUNEL-positive cells were detected in any group of mice. CONCLUSIONS DGKepsilon modulates kindling epileptogenesis through inositol lipid signaling. Because arachidonate-containing diacylglycerol phosphorylation to phosphatidic acid is selectively blocked in DGKepsilon(-/-) mice, we postulate that the shortage of arachidonoyl-moiety inositol lipids and/or the messengers derived thereof is a key signaling event in epileptogenesis.
Collapse
Affiliation(s)
- Alberto Musto
- LSU Neuroscience Center of Excellence, Louisiana State University School of Medicine, Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, U.S.A
| | | |
Collapse
|
5
|
Okada M, Zhu G, Yoshida S, Hirose S, Kaneko S. Protein kinase associated with gating and closing transmission mechanisms in temporoammonic pathway. Neuropharmacology 2005; 47:485-504. [PMID: 15380368 DOI: 10.1016/j.neuropharm.2004.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 01/31/2004] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
Abstract
The entorhinal cortex (EC) is a major source of afferent input to the hippocampus via the perforant and temporoammonic pathways; however, the detailed transmission mechanism in the temporoammonic pathway remains to be clarified. Thus, we determined interaction among GABA(A), AMPA/glutamate receptors and protein kinases (PKA and PKC) in the exocytosis of GABA and glutamate using multiprobe microdialysis, as well as propagation of neuronal excitability using optical recording in the EC-Hippocampal formation. Multiprobe microdialysis demonstrated that EC-evoked GABA release in ventral CA1 was predominantly regulated by the PKC-related rather than PKA-related exocytosis mechanism and was augmented by the activation of glutamatergic transmission. Contrary to GABA release, EC-evoked glutamate release was predominantly regulated by PKA-related rather than PKC-related mechanisms and was suppressed by activation of GABAergic transmission. Optical recording demonstrated that there are two sub-pathways in the temporoammonic pathway; direct projects from EC layers (II-IV) to dendrites on pyramidal cells and GABAergic interneurons in ventral hippocampal CA1. PKC activation enhanced trisynaptic transmission, whether the GABA(A) receptor was functional or blocked, whereas PKC activation enhanced and inhibited temporoammonic transmission when the GABA(A) receptor was functional and blocked, respectively. Thus, GABAergic inhibition, which is regulated by PKC activity, in the temporoammonic pathway is more significant than that in the trisynaptic pathway.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Hirosaki University, Zaifu-cho 5, Hirosaki 036-8562, Japan.
| | | | | | | | | |
Collapse
|
6
|
Shannon HE, Peters SC, Kingston AE. Anticonvulsant effects of LY456236, a selective mGlu1 receptor antagonist. Neuropharmacology 2005; 49 Suppl 1:188-95. [PMID: 16011839 DOI: 10.1016/j.neuropharm.2005.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 05/12/2005] [Accepted: 05/13/2005] [Indexed: 11/24/2022]
Abstract
Several lines of evidence suggest that mGlu1 metabotropic glutamate receptors may be involved in seizure disorders such as epilepsy. For example, the mGlu1 agonist DHPG produces limbic seizures and group I antagonists such as 4C3HPG and 4CPG are anticonvulsant when administered intracerebrally. The purpose of the present experiments was to characterize the anticonvulsant effects of the selective mGlu1 receptor antagonist LY456236 in mice and rats. In male and female DBA/2 mice, LY456236 produced a dose-related inhibition of sound-induced clonic-tonic seizures. In male CF1 mice, LY456236 produced a dose-related inhibition of tonic extensor seizures in the threshold electroshock model, and limbic seizures in the 6-Hz focal seizure model. However, this antagonist did not inhibit clonic seizures produced by pentylenetetrazol. In amygdala-kindled male Sprague-Dawley rats, LY456236 produced dose-related decreases in behavioral and electrographic seizures at threshold stimulus intensity. In addition, LY456236 produced a dose-related increase in the stimulus intensity required to produce generalized seizures. Taken together, the present results support the conclusion that mGlu1 receptor antagonists such as LY456236 may have clinical utility in the treatment of epilepsy and other seizure disorders.
Collapse
Affiliation(s)
- Harlan E Shannon
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
7
|
Curia G, Aracri P, Sancini G, Mantegazza M, Avanzini G, Franceschetti S. Protein-kinase C-dependent phosphorylation inhibits the effect of the antiepileptic drug topiramate on the persistent fraction of sodium currents. Neuroscience 2004; 127:63-8. [PMID: 15219669 DOI: 10.1016/j.neuroscience.2004.04.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 04/15/2004] [Accepted: 04/19/2004] [Indexed: 10/26/2022]
Abstract
We investigated the interference of protein-kinase C (PKC)-dependent Na(+) channel phosphorylation on the inhibitory effect that the antiepileptic drug topiramate (TPM) has on persistent Na(+) currents (I(NaP)) by making whole cell patch-clamp and intracellular recordings of rat sensorimotor cortex neurons. The voltage-dependent activation of I(NaP) was significantly shifted in the hyperpolarizing direction when PKC was activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG). TPM reduced the peak amplitude of I(NaP), but it did not counteract the OAG-induced shift in I(NaP) activation. Firing property experiments showed that the firing threshold was lowered by OAG. TPM was unable to counteract this effect, which may be due to OAG-dependent enhancement of the contribution of subthreshold I(NaP). These data suggest that PKC activation may limit the effect of the anticonvulsant TPM on the persistent fraction of Na(+) currents. The channel phosphorylation that may occur in cortical neurons as a result of physiological or pathological (e.g. epileptic) events can modulate the action of TPM on Na(+) currents.
Collapse
Affiliation(s)
- G Curia
- Department of Neurophysiology, Laboratory of Experimental Epileptology, C. Besta National Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Gould TD, Quiroz JA, Singh J, Zarate CA, Manji HK. Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 2004; 9:734-55. [PMID: 15136794 DOI: 10.1038/sj.mp.4001518] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bipolar disorder afflicts approximately 1-3% of both men and women, and is coincident with major economic, societal, medical, and interpersonal consequences. Current mediations used for its treatment are associated with variable rates of efficacy and often intolerable side effects. While preclinical and clinical knowledge in the neurosciences has expanded at a tremendous rate, recent years have seen no major breakthroughs in the development of novel types of treatment for bipolar disorder. We review here approaches to develop novel treatments specifically for bipolar disorder. Deliberate (ie not by serendipity) treatments may come from one of two general mechanisms: (1) Understanding the mechanism of action of current medications and thereafter designing novel drugs that mimics these mechanism(s); (2) Basing medication development upon the hypothetical or proven underlying pathophysiology of bipolar disorder. In this review, we focus upon the first approach. Molecular and cellular targets of current mood stabilizers include lithium inhibitable enzymes where lithium competes for a magnesium binding site (inositol monophosphatase, inositol polyphosphate 1-phosphatase, glycogen synthase kinase-3 (GSK-3), fructose 1,6-bisphosphatase, bisphosphate nucleotidase, phosphoglucomutase), valproate inhibitable enzymes (succinate semialdehyde dehydrogenase, succinate semialdehyde reductase, histone deacetylase), targets of carbamazepine (sodium channels, adenosine receptors, adenylate cyclase), and signaling pathways regulated by multiple drugs of different classes (phosphoinositol/protein kinase C, cyclic AMP, arachidonic acid, neurotrophic pathways). While the task of developing novel medications for bipolar disorder is truly daunting, we are hopeful that understanding the mechanism of action of current mood stabilizers will ultimately lead clinical trials with more specific medications and thus better treatments those who suffer from this devastating illness.
Collapse
Affiliation(s)
- T D Gould
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
9
|
Moldrich RX, Chapman AG, De Sarro G, Meldrum BS. Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 2003; 476:3-16. [PMID: 12969743 DOI: 10.1016/s0014-2999(03)02149-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metabotropic glutamate (mGlu) receptors have multiple actions on neuronal excitability through G-protein-linked modifications of enzymes and ion channels. They act presynaptically to modify glutamatergic and gamma-aminobutyric acid (GABA)-ergic transmission and can contribute to long-term changes in synaptic function. The recent identification of subtype-selective agonists and antagonists has permitted evaluation of mGlu receptors as potential targets in the treatment of epilepsy. Agonists acting on group I mGlu receptors (mGlu1 and mGlu5) are convulsant. Antagonists acting on mGlu1 or mGlu5 receptors are anticonvulsant against 3,5-dihydroxyphenylglycine (DHPG)-induced seizures and in mouse models of generalized motor seizures and absence seizures. The competitive, phenylglycine mGlu1/5 receptor antagonists generally require intracerebroventricular administration for potent anticonvulsant efficacy but noncompetitive antagonists, e.g., (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydrocyclopenta[c]furan-1-on (BAY36-7620), 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), and 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) block generalized seizures with systemic administration. Agonists acting on group II mGlu receptors (mGlu2, mGlu3) to reduce glutamate release are anticonvulsant, e.g., 2R,4R-aminopyrrolidine-2,4-dicarboxylate [(2R,4R)-APDC], (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268). The classical agonists acting on group III mGlu receptors such as L-(+)-2-amino-4-phosphonobutyric acid, and L-serine-O-phosphate are acutely proconvulsant with some anticonvulsant activity. The more recently identified agonists (R,S)-4-phosphonophenylglycine [(R,S)-PPG] and (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG] and (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid [ACPT-1] are all anticonvulsant without proconvulsant effects. Studies in animal models of kindling reveal some efficacy of mGlu receptor ligands against fully kindled limbic seizures. In genetic mouse models, mGlu1/5 antagonists and mGlu2/3 agonists are effective against absence seizures. Thus, antagonists at group I mGlu receptors and agonists at groups II and III mGlu receptors are potential antiepileptic agents, but their clinical usefulness will depend on their acute and chronic side effects. Potential also exists for combining mGlu receptor ligands with other glutamatergic and non-glutamatergic agents to produce an enhanced anticonvulsant effect. This review also discusses what is known about mGlu receptor expression and function in rodent epilepsy models and human epileptic conditions.
Collapse
Affiliation(s)
- Randal X Moldrich
- Department of Pharmacology, Monash University, Melbourne 3800, Australia
| | | | | | | |
Collapse
|
10
|
Mirnajafi-Zadeh J, Mortazavi M, Fathollahi Y, Alasvand Zarasvand M, Reza Palizvan M. Effect of transient hippocampal inhibition on amygdaloid kindled seizures and amygdaloid kindling rate. Brain Res 2002; 954:220-6. [PMID: 12414105 DOI: 10.1016/s0006-8993(02)03292-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study the effect of transient inhibition of the CA1 region of the dorsal hippocampus by lidocaine on amygdala kindling rate and amygdaloid kindled seizures was investigated. In experiment 1, rats were divided into four groups. In group 1, animals were implanted only with a tripolar electrode into the amygdala but in groups 2-4, two guide cannulae were also implanted into the CA1 regions of the dorsal hippocampi. Animals were stimulated daily to be kindled. In groups 3 and 4, saline or 2% lidocaine (1 microl/2 min) was also injected respectively into the hippocampus, 5 min before each stimulation. Results obtained showed that amygdala kindling rate and the number of stimulations to receive from stage 4 to stage 5 seizure were significantly increased in group 4. In experiment 2, lidocaine (1% and 2%) was infused (1 microl/2 min) into the hippocampus of amygdala kindled rats bilaterally and animals were stimulated at 5, 15 and 30 min after drug injection. Twenty four h before lidocaine injection, saline was also infused (1 microl/2 min) into the hippocampus as control. Obtained results showed that afterdischarge duration was reduced 5 min after lidocaine (1% and 2%) injection. Stage 5 seizure duration was also decreased 5 and 15 min after 2% lidocaine. Thus, it may be suggested that in amygdala kindling, activation of the hippocampal CA1 region has a role in seizure acquisition and seizure severity so that inhibition of this region results in decreasing of seizure severity and retards amygdala kindling rate.
Collapse
Affiliation(s)
- Javad Mirnajafi-Zadeh
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran.
| | | | | | | | | |
Collapse
|
11
|
Alasvand Zarasvand M, Mirnajafi-Zadeh J, Fathollahi Y, Palizvan MR. Anticonvulsant effect of bilateral injection of N6-cyclohexyladenosine into the CA1 region of the hippocampus in amygdala-kindled rats. Epilepsy Res 2001; 47:141-9. [PMID: 11673028 DOI: 10.1016/s0920-1211(01)00300-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study the role of adenosine A(1) receptors of CA1 region of the hippocampus on amygdala-kindled seizures was investigated in rats. Results obtained showed that in kindled animals, bilateral injection of N(6)-cyclohexyladenosine (CHA), an adenosine A(1) receptor agonist, at doses of 0.1, 1 and 10 microM into the CA1 region of the hippocampus significantly decreased the afterdischarge duration and stage 5 seizure duration and increased the latency to stage 4 seizure, but there were no changes in seizure stage. Also, bilateral injection of 1,3-dimethyl-8-cyclopenthylxanthine (CPT), an adenosine A(1) receptor antagonist, at doses of 0.5 and 1 microM into the CA1 region of the hippocampus could not produce any changes in the seizure parameters. Intrahippocampal pretreatment of CPT (1 microM) before CHA (0.1 and 1 microM), reduced the effects of CHA on seizure parameters significantly. Thus, it may be suggested that CA1 region of the hippocampus plays an important role in spreading seizure spikes from the amygdala to other brain regions and activation of adenosine A(1) receptors in this region, participates in anticonvulsant effects of adenosine agonists.
Collapse
Affiliation(s)
- M Alasvand Zarasvand
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, PO Box 14115-111, Tehran, Iran
| | | | | | | |
Collapse
|
12
|
Matveeva EA, Whiteheart SW, Vanaman TC, Slevin JT. Phosphorylation of the N-ethylmaleimide-sensitive factor is associated with depolarization-dependent neurotransmitter release from synaptosomes. J Biol Chem 2001; 276:12174-81. [PMID: 11278345 DOI: 10.1074/jbc.m007394200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Critical to SNARE protein function in neurotransmission are the accessory proteins, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP), and NSF, that play a role in activation of the SNAREs for membrane fusion. In this report, we demonstrate the depolarization-induced, calcium-dependent phosphorylation of NSF in rat synaptosomes. Phosphorylation of NSF is coincident with neurotransmitter release and requires an influx of external calcium. Phosphoamino acid analysis of the radiolabeled NSF indicates a role for a serine/threonine-specific kinase. Synaptosomal phosphorylation of NSF is stimulated by phorbol esters and is inhibited by staurosporine, chelerythrine, bisindolylmaleimide I, calphostin C, and Ro31-8220 but not the calmodulin kinase II inhibitor, Kn-93, suggesting a role for protein kinase C (PKC). Indeed, NSF is phosphorylated by PKC in vitro at Ser-237 of the catalytic D1 domain. Mutation of this residue to glutamic acid or to alanine eliminates in vitro phosphorylation. Molecular modeling studies suggest that Ser-237 is adjacent to an inter-subunit interface at a position where its phosphorylation could affect NSF activity. Consistently, mutation of Ser-237 to Glu, to mimic phosphorylation, results in a hexameric form of NSF that does not bind to SNAP-SNARE complexes, whereas the S237A mutant does form complex. These data suggest a negative regulatory role for PKC phosphorylation of NSF.
Collapse
Affiliation(s)
- E A Matveeva
- Neurology Service, Department of Veterans Affairs Medical Center, Lexington, Kentucky 40511, USA
| | | | | | | |
Collapse
|
13
|
Franceschetti S, Taverna S, Sancini G, Panzica F, Lombardi R, Avanzini G. Protein kinase C-dependent modulation of Na+ currents increases the excitability of rat neocortical pyramidal neurones. J Physiol 2000; 528 Pt 2:291-304. [PMID: 11034619 PMCID: PMC2270127 DOI: 10.1111/j.1469-7793.2000.00291.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The effect of the protein kinase C (PKC) activator 1-oleoyl-2-acetyl-sn-glycerol (OAG) on TTX-sensitive Na+ currents in neocortical pyramidal neurones was evaluated using voltage-clamp and intracellular current-clamp recordings. In pyramid-shaped dissociated neurones, the addition of OAG to the superfusing medium consistently led to a 30% reduction in the maximal peak amplitude of the transient sodium current (I(Na,T)) evoked from a holding potential of -70 mV. We attributed this inhibitory effect to a significant negative shift of the voltage dependence of steady-state channel inactivation (of approximately 14 mV). The inhibitory effect was completely prevented by hyperpolarising prepulses to potentials that were more negative than -80 mV. A small but significant leftward shift of INa,T activation was also observed, resulting in a slight increase of the currents evoked by test pulses at potentials more negative then -35 mV. In the presence of OAG, the activation of the persistent fraction of the Na+ current (INa,P) evoked by means of slow ramp depolarisations was consistently shifted in the negative direction by 3.9+/-0.5 mV, while the peak amplitude of the current was unaffected. In slice experiments, the OAG perfusion enhanced a subthreshold depolarising rectification affecting the membrane response to the injection of positive current pulses, and thus led the neurones to fire in response to significantly lower depolarising stimuli than those needed under control conditions. This effect was attributed to an OAG-induced enhancement of INa,P, since it was observed in the same range of potentials over which I(Na,P) activates and was completely abolished by TTX. The qualitative firing characteristics of both the intrinsically bursting and regular spiking neurones were unaffected when OAG was added to the physiological perfusing medium, but their firing frequency increased in response to slight suprathreshold depolarisations. The obtained results suggest that physiopathological events working through PKC activation can increase neuronal excitability by directly amplifying the I(Na,P)-dependent subthreshold depolarisation, and that this facilitating effect may override the expected reduction in neuronal excitability deriving from OAG-induced inhibition of the maximal INa, T peak amplitude.
Collapse
Affiliation(s)
- S Franceschetti
- Department of Neurophysiology, Istituto Nazionale Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Omrani A, Fathollahi Y, Mohajerani HR, Semnanian S. Primed-burst potentiation occludes the potentiation phenomenon and enhances the epileptiform activity induced by transient pentylenetetrazol in the CA1 region of rat hippocampal slices. Brain Res 2000; 877:176-83. [PMID: 10986330 DOI: 10.1016/s0006-8993(00)02672-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of pentylenetetrazol (PTZ) following induction of long-term potentiation (LTP) on population spikes in CA1 of hippocampal slices were investigated. Population spikes were evoked by activation of Schaffer collaterals with a range of stimulation intensities. LTP was induced using θ-pattern primed burst tetanic stimulation. Changes in the population spike amplitude and number of population spikes were used as indices to quantify the effects of PTZ exposure in the control (non-tetanized) and LTP (tetanized) conditions. The amplitude of population spike was measured 20 min before, during 20 min chemical application (3 mM), and also after 30 or 60 min washout period. In non-tetanized slices, the population spike input-output curve was significantly increased 20 min after PTZ application and persisted at least for 60 min. Multiple population spikes or after potentials also appeared, but did not persist. When PTZ was applied on tetanized slices, 60 min after LTP induction, the amplitude increase produced by PTZ was smaller than the increase seen in the control condition. Also LTP induction preceding PTZ exposure increased the number of population spikes evoked by stimulation of Schaffer collaterals. It is concluded that a transient PTZ application produces a long-lasting increase in population spike amplitude. Primed burst LTP occludes PTZ-induced potentiation while also increasing the epileptogenic effect of PTZ.
Collapse
Affiliation(s)
- A Omrani
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, P.O. Box: 14115-111, Tehran, Iran
| | | | | | | |
Collapse
|
15
|
Mirnajafi-Zadeh J, Fathollahi Y, Pourgholami MH. Intraperitoneal and intraamygdala N(6)-cyclohexyladenosine suppress hippocampal kindled seizures in rats. Brain Res 2000; 858:48-54. [PMID: 10700595 DOI: 10.1016/s0006-8993(99)02425-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of intraperitoneal and intraamygdala N(6)-cyclohexyladenosine (CHA), a selective adenosine A(1) receptor agonist, and 1,3-dimethyl-8-cyclopentylxanthine (CPT), a selective adenosine A(1) receptor antagonist, were examined in fully hippocampal kindled rats. Intraperitoneal administration of CHA (0. 25, 0.5 and 1 mg/kg) decreased hippocampal secondary afterdischarge duration (SAD) and amygdala afterdischarge duration (ADD). Only the 1 mg/kg dose induced a significant increase in latency to stage 4. Intraperitoneal administration of CPT (0.25, 0.5 and 1 mg/kg) induced a significant increase in stage 5 duration, hippocampal SAD and ADD. Pretreatment of animals with CPT (1 mg/kg), antagonized effects of CHA on seizure parameters. Intraamygdala microinfusion (1 microl over 2 min) of CHA (5 nM-1 mM) significantly reduced hippocampal SAD and amygdala ADD. These effects were antagonized by intraamygdala CPT (1 microM). Results obtained suggest that in hippocampal kindled rats, amygdala may be regarded as a relay point for AD propagation specially in recruit activity of the hippocampus.
Collapse
Affiliation(s)
- J Mirnajafi-Zadeh
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, P.O. Box 14155-4838, Tehran, Iran.
| | | | | |
Collapse
|
16
|
Meldrum BS, Akbar MT, Chapman AG. Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 1999; 36:189-204. [PMID: 10515165 DOI: 10.1016/s0920-1211(99)00051-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate, the principal excitatory neurotransmitter in the brain, acts on three families of ionotropic receptor--AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid), kainate and NMDA (N-methyl-D-aspartate) receptors and three families of metabotropic receptor (Group I: mGlu1 and mGlu5; Group II: mGlu2 and mGlu3; Group III: mGlu4, mGlu6, mGlu7 and mGlu8). Glutamate is removed from the synaptic cleft and the extracellular space by Na+-dependent transporters (GLAST/EAAT1, GLT/EAAT2, EAAC/EAAT3, EAAT4, EAAT5). In rodents, genetic manipulations relating to the expression or function of glutamate receptor proteins can induce epilepsy syndromes or raise seizure threshold. Decreased expression of glutamate transporters (EAAC knockdown, GLT knockout) can lead to seizures. In acquired epilepsy syndromes, a wide variety of changes in receptors and transporters have been described. Electrically-induced kindling in the rat is associated with functional potentiation of NMDA receptor-mediated responses at various limbic sites. Group I metabotropic responses are enhanced in the amygdala. To date, no genetic epilepsy in man has been identified in which the primary genetic defect involves glutamate receptors or transporters. Changes are found in some acquired syndromes, including enhanced NMDA receptor responses in dentate granule cells in patients with hippocampal sclerosis.
Collapse
Affiliation(s)
- B S Meldrum
- Department of Clinical Neurosciences, Institute of Psychiatry, De Crespigny Park, London, UK.
| | | | | |
Collapse
|
17
|
Klapstein GJ, Meldrum BS, Mody I. Decreased sensitivity to Group III mGluR agonists in the lateral perforant path following kindling. Neuropharmacology 1999; 38:927-33. [PMID: 10428411 DOI: 10.1016/s0028-3908(99)00016-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of the selective Group III mGluR agonist L-serine-O-phosphate (L-SOP) to inhibit lateral perforant path (LPP) evoked responses in the dentate gyrus was tested in hippocampal slices from commissurally-kindled rats 1-2 days after the last seizure, implanted controls, and fully-kindled rats rested for 28 days without stimulated seizures (28 days post-seizure, 28 dps). L-SOP was more potent in controls than kindled or 28 dps animals, decreasing the fEPSP slope with IC50s of 2.4 microM, 18.7 microM and 10.5 microM, respectively. Paired pulse facilitation (PPF, 50 ms) was comparable in control and kindled rats, but was markedly reduced in 28 dps rats, indicating increased release probability. Inhibition of the field excitatory postsynaptic potentials (fEPSP) by L-SOP was correlated with enhanced PPF in all groups, affirming a presynaptic site of action. At moderate levels of L-SOP-induced inhibition (20-60%), PPF showed significantly greater enhancement in 28 dps than in the other two groups. These results are interpreted as showing a functional reduction of the presynaptic inhibitory Group III mGluR (probably mGluR8) response in the LPP after kindling. Furthermore, PPF changes indicate that the kindled state may be associated with a long-lasting increase in the probability of release from LPP terminals, which may be temporarily masked or counterbalanced by recent seizures.
Collapse
Affiliation(s)
- G J Klapstein
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-1769, USA
| | | | | |
Collapse
|
18
|
Keele NB, Neugebauer V, Shinnick-Gallagher P. Differential effects of metabotropic glutamate receptor antagonists on bursting activity in the amygdala. J Neurophysiol 1999; 81:2056-65. [PMID: 10322047 DOI: 10.1152/jn.1999.81.5.2056] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Differential effects of metabotropic glutamate receptor antagonists on bursting activity in the amygdala. Metabotropic glutamate receptors (mGluRs) are implicated in both the activation and inhibition of epileptiform bursting activity in seizure models. We examined the role of mGluR agonists and antagonists on bursting in vitro with whole cell recordings from neurons in the basolateral amygdala (BLA) of amygdala-kindled rats. The broad-spectrum mGluR agonist 1S,3R-1-aminocyclopentane dicarboxylate (1S,3R-ACPD, 100 microM) and the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG, 20 microM) evoked bursting in BLA neurons from amygdala-kindled rats but not in control neurons. Neither the group II agonist (2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine (L-CCG-I, 10 microM) nor the group III agonist L-2-amino-4-phosphonobutyrate (L-AP4, 100 microM) evoked bursting. The agonist-induced bursting was inhibited by the mGluR1 antagonists (+)-alpha-methyl-4-carboxyphenylglycine [(+)-MCPG, 500 microM] and (S)-4-carboxy-3-hydroxyphenylglycine [(S)-4C3HPG, 300 microM]. Kindling enhanced synaptic strength from the lateral amygdala (LA) to the BLA, resulting in synaptically driven bursts at low stimulus intensity. Bursting was abolished by (S)-4C3HPG. Further increasing stimulus intensity in the presence of (S)-4C3HPG (300 microM) evoked action potential firing similar to control neurons but did not induce epileptiform bursting. In kindled rats, the same threshold stimulation that evoked epileptiform bursting in the absence of drugs elicited excitatory postsynaptic potentials in (S)-4C3HPG. In contrast (+)-MCPG had no effect on afferent-evoked bursting in kindled neurons. Because (+)-MCPG is a mGluR2 antagonist, whereas (S)-4C3HPG is a mGluR2 agonist, the different effects of these compounds suggest that mGluR2 activation decreases excitability. Together these data suggest that group I mGluRs may facilitate and group II mGluRs may attenuate epileptiform bursting observed in kindled rats. The mixed agonist-antagonist (S)-4C3HPG restored synaptic transmission to control levels at the LA-BLA synapse in kindled animals. The different actions of (S)-4C3HPG and (+)-MCPG on LA-evoked bursting suggests that the mGluR1 antagonist-mGluR2 agonist properties may be the distinctive pharmacology necessary for future anticonvulsant compounds.
Collapse
Affiliation(s)
- N B Keele
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | |
Collapse
|
19
|
Depaulis A, Helfer V, Deransart C, Marescaux C. Anxiogenic-like consequences in animal models of complex partial seizures. Neurosci Biobehav Rev 1997; 21:767-74. [PMID: 9415901 DOI: 10.1016/s0149-7634(96)00060-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several kinds of psychiatric symptoms (anxiety, depression, schizophrenia) have been associated with epilepsies, and clinical data suggest that patients with seizures involving limbic structures are the most prone to develop behavioural disorders between the seizures (i.e. interictally). Studying the neurobiological mechanisms that underlie these symptoms is difficult in humans because of different interfering factors (e.g. psychosocial difficulties, pharmacological side-effects, lesions), which can be avoided in animal models. Using repetitive electrical stimulations (kindling) or local applications of a neuroexcitotoxin in limbic structures (mainly the amygdala and hippocampus), several authors have reported lasting changes of emotional reactivity in cats and rats. These changes appear as anxiety-related reactions expressed as a hyperdefensiveness in the cat, or a reduction of spontaneous exploration in tests predictive of anxiogenic effects in the rat. Some neuroplasticity processes known to develop during epileptogenesis (neuronal-hyperexcitability, modulation of GABA/benzodiazepine transmission) may participate in these lasting changes of behaviour, especially in structures involved in the control of fear-promoted reactions (amygdala, periaqueductal grey matter). In addition, endogenous control systems may also play a critical role in the occurrence of interictal behavioural disorders.
Collapse
Affiliation(s)
- A Depaulis
- INSERM Unité 398, Neurobiologie et Neuropharmacologie des Epilepsies Généralisées, Faculté de Médecine, Strasbourg, France.
| | | | | | | |
Collapse
|
20
|
Guglielmetti F, Rattray M, Baldessari S, Butelli E, Samanin R, Bendotti C. Selective up-regulation of protein kinase C epsilon in granule cells after kainic acid-induced seizures in rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:188-96. [PMID: 9387878 DOI: 10.1016/s0169-328x(97)00142-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Kainate-induced seizure activity causes persistent changes in the hippocampus that include synaptic reorganization and functional changes in the mossy fibers. Using in situ hybridization histochemistry, the expression of PKC alpha, PKC beta, PKC gamma, PKC delta and PKC epsilon mRNAs was investigated in the hippocampus of adult rats following seizures induced by a s.c. injection of kainic acid. In CA1 and CA3, we found a significant decrease in PKC gamma mRNA 1 day after kainic acid which persisted for a 2nd day in CA1. None of the other PKC isoform mRNAs were altered in CA1 or CA3. In granule cells, a significant up-regulation specific to PKC epsilon mRNA was observed. One week after kainic acid administration, a marked increase in PKC epsilon immunoreactivity was found that persisted 2 months after kainic acid administration. PKC epsilon immunoreactivity was found associated with mossy fibers projecting to the hilus of the dentate gyrus and to the stratum lucidum of the CA3 field and presumably with the newly sprouted mossy fibers projecting to the supragranular layer. These data provide the first evidence for a long-lasting increase of the PKC epsilon in the axons of granule cells caused by kainate-induced seizures and suggest that PKC epsilon may be involved in the functional and/or structural modifications of granule cells that occur after limbic seizures.
Collapse
Affiliation(s)
- F Guglielmetti
- Laboratory of Neuropharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Meldrum BS. First Alfred Meyer Memorial Lecture Epileptic brain damage: a consequence and a cause of seizures. Neuropathol Appl Neurobiol 1997. [DOI: 10.1111/j.1365-2990.1997.tb01201.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Pourgholami MH, Mirnajafi-Zadeh J, Behzadi J. Effect of intraperitoneal and intrahippocampal (CA1) 2-chloroadenosine in amygdaloid kindled rats. Brain Res 1997; 751:259-64. [PMID: 9099813 DOI: 10.1016/s0006-8993(96)01406-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Effects of intraperitoneal and intrahippocampal 2-chloroadenosine and caffeine were examined in fully kindled amygdaloid rats. Intraperitoneal administration of 2-chloroadenosine (5 and 10 mg/kg) decreased afterdischarge duration, stage 5 seizure duration and prolonged time taken to reach stage 4 seizure. Only the 10 mg/kg dose induced a significant reduction in seizure stage. Intraperitoneal administration of caffeine (50 mg/kg) increased both afterdischarge duration and stage 5 seizure duration but did not significantly alter other parameters. Intrahippocampal microinfusion of 2-chloroadenosine (1 mM) or caffeine (2 mM) did not alter any of the measured seizure parameters. Intraperitoneal but not intrahippocampal pretreatment of animals with caffeine (50 mg/kg and 2 mM, respectively) blocked the anticonvulsant effects induced by intraperitoneal administration of 2-chloroadenosine. It may therefore be concluded that the adenosine A1 receptors of the CA1 region of the hippocampus do not play a role in mediating the anticonvulsant effects of intraperitoneally administered 2-chloroadenosine in amygdaloid kindled rats.
Collapse
Affiliation(s)
- M H Pourgholami
- Department of Pharmacology, Faculty of Medicine, Shaheed-Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
23
|
Lerner-Natoli M, Ladrech S, Renard N, Puel JL, Eybalin M, Pujol R. Protein kinase C may be involved in synaptic repair of auditory neuron dendrites after AMPA injury in the cochlea. Brain Res 1997; 749:109-19. [PMID: 9070634 DOI: 10.1016/s0006-8993(96)01306-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A suitable model of sudden deafness occurring after acoustic trauma or ischemia, is obtained in guinea pigs by an acute intracochlear perfusion of 200 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), a glutamate analog. By overloading the AMPA/kainate receptors, located post-synaptically to inner hair cells (IHCs), it induces a massive swelling of primary auditory neuron dendrites, which disconnects the IHCs. This synaptic uncoupling and the resulting hearing loss are followed by a progressive regrowth of dendrites, which make new synapses with IHCs, leading to a functional recovery of auditory responses that is completed after 5 days. Knowing the role of protein kinase C in neuroplastic events, we studied the expression of its isoforms alpha,beta(I,II) and gamma, respectively pre- and post-synaptic, in auditory neurons at various times after AMPA administration. In untreated cochleas, we observed an expression of PKC alpha,beta(I,II) and gamma in cell bodies of primary auditory neurons. After the intracochlear administration of AMPA, both isozymes were transiently overexpressed, with a peak at 3-6 h, followed by a decrease after about 24 h. At this point in time immuno-electron microscopy revealed some regrowing dendrites immunoreactive for PKCgamma. Five days after AMPA, when the auditory responses were restored, PKCgamma levels were still elevated in ganglion cell bodies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Cochlear Diseases/chemically induced
- Cochlear Diseases/pathology
- Dendrites/physiology
- Dendrites/ultrastructure
- Evoked Potentials, Auditory, Brain Stem/physiology
- Excitatory Amino Acid Agonists/toxicity
- Female
- Guinea Pigs
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/ultrastructure
- Immunohistochemistry
- Isoenzymes/metabolism
- Isoenzymes/physiology
- Male
- Microscopy, Immunoelectron
- Neuronal Plasticity/physiology
- Neurons, Afferent/physiology
- Neurons, Afferent/ultrastructure
- Protein Kinase C/metabolism
- Protein Kinase C/physiology
- Synapses/physiology
- Synapses/ultrastructure
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/toxicity
Collapse
Affiliation(s)
- M Lerner-Natoli
- INSERM U254 and Université de Montpellier I, CHU Hôpital St Charles, France
| | | | | | | | | | | |
Collapse
|
24
|
Keele NB, Arvanov VL, Shinnick-Gallagher P. Quisqualate-preferring metabotropic glutamate receptor activates Na(+)-Ca2+ exchange in rat basolateral amygdala neurones. J Physiol 1997; 499 ( Pt 1):87-104. [PMID: 9061642 PMCID: PMC1159339 DOI: 10.1113/jphysiol.1997.sp021913] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Inward currents evoked by metabotropic glutamate receptor (mGlu) agonists quisqualate and 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) were characterized in the basolateral nucleus of the amygdala. Currents were recorded with whole-cell patch electrodes in the presence of D-2-amino-5-phosphonovaleric acid (D-APV, 50 microM), 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX, 30 microM) and tetrodotoxin (TTX, 1 microM). 2. When recording with K+ electrodes, quisqualate (10-50 microM) produced an inward current which was not associated with a significant change in membrane slope conductance (Gm) and was insensitive to Ba2+ (0.2 mM) and Cs+ (2 mM). The 1S,3R-ACPD (50-200 microM)-induced inward current was associated with a decreased Gm and reversed polarity around -95 mV. However, in Ba2+ and Cs+, the 1S,3R-ACPD inward current amplitude was enhanced and was not accompanied by a change in Gm, a response similar to that evoked by quisqualate. 3. Glutamate (1 mM) and the group I mGlu specific agonist (S)-3,5-dihydroxyphenylglycine (DHPG, 100 microM) also evoked currents not associated with a change in Gm. 4. When recorded with Cs+ electrodes in external Ba2+ and Cs+ solution, quisqualate activated an inward current more potently than 1S,3R-ACPD, suggesting that this current is preferentially activated by quisqualate. The mGlu agonist-induced inward current was not accompanied by a Gm change under these conditions. 5. Substitution of extracellular Na+ with Li+ (117 or 50 mM) or with 100 mM choline reduced the quisqualate- and 1S,3R-ACPD-induced inward currents, results consistent with mediation by Na(+)-Ca2+ exchange. 6. The quisqualate- and 1S,3R-ACPD-induced inward currents were reduced in Ca(2+)-free EGTA (1 mM) solution and prevented by including the Ca2+ chelating agent BAPTA (10 mM) in the recording electrode. In low-Ca2+ (100 microM)- and Cd2+ (200 microM)-containing solution to block voltage-gated Ca2+ currents, the quisqualate-induced current was not altered, but the 1S,3R-ACPD inward current was blocked. These data suggest that the quisqualate- and 1S,3R-ACPD-induced currents are mediated through a rise in intracellular Ca2+ and require extracellular Ca2+, but that the 1S,3R-ACPD current may depend on Ca2+ influx via voltage-gated Ca2+ channels. 7. The quisqualate current with no Gm change was inhibited by including the Na(+)-Ca2+ exchange inhibitory peptide (XIP; 10 microM) in the K+ recording electrode. XIP did not prevent the outward current evoked by baclofen (10 microM) or the 1S,3R-ACPD-induced inward current associated with decreased conductance. 8. These data are consistent with the hypothesis that quisqualate and 1S,3R-ACPD in Ba2+ and Cs+ solution activate a Na(+)-Ca2+ exchange current not associated with a conductance change. The quisqualate exchange current mediated through a group I mGlu may result from mobilization of Ca2+ from intracellular stores. The 1S,3R-ACPD exchange current requires extracellular Ca2+ passing through voltage-gated Ca2+ channels and may be mediated through a different receptor.
Collapse
Affiliation(s)
- N B Keele
- Department of Pharmacology, University of Texas Medical Branch, Galveston 77555-1031, USA
| | | | | |
Collapse
|
25
|
Steketee JD. Intra-ventral tegmental area administration of H7 delays, but does not prevent the development of cocaine-induced sensitization. Brain Res Bull 1997; 43:565-71. [PMID: 9254028 DOI: 10.1016/s0361-9230(97)00089-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have suggested that increased protein kinase C activity in the ventral tegmental area (VTA) may play a role in the acute and development of the sensitized behavioral responses to cocaine. The present study was conducted to further characterize the role of protein kinases in the development of sensitization. Animals received injections of saline or the nonspecific protein kinase inhibitor H7 into the VTA before each of their four daily systemic injections of saline or cocaine. Animals were tested for sensitization with a challenge injection of systemic cocaine after a withdrawal period of 24 h or 1 week. Tests for sensitization included monitoring cocaine-induced motor activity and/or dopamine concentrations in the nucleus accumbens, as measured by in vivo microdialysis. Pretreatment with H7 in the VTA attenuated the acute motor stimulant response to cocaine as well as the cocaine-induced increase in extracellular dopamine in the nucleus accumbens. In addition, the augmented increase in dopamine in the nucleus accumbens of cocaine-sensitized animals was prevented in animals pretreated with H7 before each of their daily cocaine injections, when tested after a 24 h withdrawal. However, when tested after a 1 week withdrawal, animals demonstrated sensitization to both the cocaine-induced increase in motor activity and the cocaine-induced increase in dopamine in the nucleus accumbens regardless of whether they received intra-VTA saline or H7 before each of their daily cocaine injections. These data suggest that injection of a protein kinase inhibitor into the VTA delays, but does not prevent the development of cocaine-induced behavioral sensitization.
Collapse
Affiliation(s)
- J D Steketee
- Department of Pharmacology and Therapeutics, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| |
Collapse
|
26
|
Fathollahi Y, Motamedi F, Semnanian S, Zardoshti M. Repeated administration of pentylenetetrazol alters susceptibility of rat hippocampus to primed-burst stimulation: evidence from in vitro study on CA1 of hippocampal slices. Brain Res 1996; 738:138-41. [PMID: 8949936 DOI: 10.1016/0006-8993(96)00955-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effectiveness of theta pattern primed-bursts (PBs) on development of primed-burst (PB) potentiation was investigated in hippocampal CA1 of pentylenetetrazol-kindled rats. Experiments were carried out in the hippocampal slices from control and kindled rats at two post-kindling periods, i.e., 48-144 h (early phase) and 30-33 days (long-lasting phase). Field potentials (population excitatory post-synaptic potential, pEPSP) were recorded at stratum radiatum following stimulation of the stratum fibers. theta pattern primed-bursts were delivered to stratum radiatum and PB potentiation was assessed. The results showed that 48-144 h after kindling, PB potentiation in CA1 of kindled slices is significantly greater than control slices. In contrast, 30, 33 days after kindling PB potentiation was not observed and the pEPSP slope was depressed after PBs delivery, which lasted at least 60 min. Our results suggest that shortly after kindling, PB potentiation can be more readily induced while one month later, it is more difficult ot elicit. These findings may help to explain the behavioral deficits seen with the kindling model of epilepsy.
Collapse
Affiliation(s)
- Y Fathollahi
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | | | | | | |
Collapse
|
27
|
Helfer V, Deransart C, Marescaux C, Depaulis A. Amygdala kindling in the rat: anxiogenic-like consequences. Neuroscience 1996; 73:971-8. [PMID: 8809816 DOI: 10.1016/0306-4522(96)00081-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Patients with complex partial seizures of temporal lobe origin may experience behavioural disorders like depressive, anxiety-related or schizophrenic-like symptoms between seizures, i.e. interictally. The neural mechanisms underlying these enduring interictal disorders remain to be investigated. The aim of the present study was to examine the behavioural consequences of kindling of the basolateral nuclei of the amygdala, an animal model of limbic complex partial seizures. Animals having experienced 15 stage 5 seizures were compared to non-kindled controls in different behavioural tests performed at least seven days after the last seizure. Kindled animals showed a significant reduction of exploration of open arms in the elevated plus-maze test. In the social interactions test, they showed a decrease of non-social behaviour and an increase of immobility. No modifications were observed in kindled animals when tested in the open field, the sucrose preference or the forced swimming test. The reduction of open arm exploration in the elevated plus-maze was reversed by a pretreatment with chlordiazepoxide (2 mg/kg i.p.), a benzodiazepine anxiolytic. Finally, a similar reduction of open arm exploration was observed when animals were kindled only until a stage 3 seizure occurred. These data, along with previous studies, suggest that kindling of the amygdala has anxiogenic consequences and provide an animal model to study the neuroplasticity phenomena underlying enduring interictal disorders in humans.
Collapse
Affiliation(s)
- V Helfer
- INSERM Unité 398, Neurobiologie et Neuropharmacologie des Epilepsies Généralisées, Faculté de Médecine, Strasbourg, France
| | | | | | | |
Collapse
|
28
|
Kamphuis W, Hendriksen E, Lopes da Silva FH. Isozyme specific changes in the expression of protein kinase C isozyme (alpha-zeta) genes in the hippocampus of rats induced by kindling epileptogenesis. Brain Res 1995; 702:94-100. [PMID: 8846101 DOI: 10.1016/0006-8993(95)01011-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transcript levels of the protein kinase C (PKC) isoform genes during the development of a kindled epileptogenic focus, elicited by stimulation of Schaffer collateral/commissural fibres in the CA1 area of the rat hippocampus, were compared with the expression levels in control animals using a semi-quantitative in situ hybridization approach. In the hippocampus of control animals, the levels of PKC-alpha-zeta transcripts showed a gene-specific expression pattern and significant differences in expression level were observed between the neurons of CA1, CA3 and fascia dentata. In the early stages of kindling epileptogenesis, i.e. following 6 and 14 afterdischarges, specific changes in the expression levels of PKC-beta, -epsilon, and -zeta but not of PKC-alpha, -gamma, and -delta were found. PKC-beta expression was decreased in CA1, while the PKC-epsilon and -zeta specific hybridization signals were increased in CA1, CA3 and fascia dentata. In fully kindled animals, that had experienced 10 generalized seizures, most expression levels tended to return to control values. One month after the last seizure no significant alterations were encountered. These results indicate an involvement of specific PKC-isoform gene expression in the induction of an epileptogenic focus, but not in the maintenance of the long-lasting kindled state.
Collapse
Affiliation(s)
- W Kamphuis
- Institute of Neurobiology, University of Amsterdam, Netherlands.
| | | | | |
Collapse
|