1
|
Shahcheraghi SH, Alimardani M, Lotfi M, Lotfi M, Uversky VN, Guetchueng ST, Palakurthi SS, Charbe NB, Hromić-Jahjefendić A, Aljabali AAA, Gadewar MM, Malik S, Goyal R, El-Tanani M, Mishra V, Mishra Y, Tambuwala MM. Advances in glioblastoma multiforme: Integrating therapy and pathology perspectives. Pathol Res Pract 2024; 257:155285. [PMID: 38653089 DOI: 10.1016/j.prp.2024.155285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Glioblastoma, a highly lethal form of brain cancer, is characterized by its aggressive growth and resistance to conventional treatments, often resulting in limited survival. The response to therapy is notably influenced by various patient-specific genetic factors, underscoring the disease's complexity. Despite the utilization of diverse treatment modalities such as surgery, radiation, and chemotherapy, many patients experience local relapse, emphasizing the critical need for improved therapeutic strategies to effectively target these formidable tumors. Recent years have witnessed a surge in interest in natural products derived from plants, particularly alkaloids, for their potential anticancer effects. Alkaloids have shown promise in cancer chemotherapy by selectively targeting crucial signaling pathways implicated in tumor progression and survival. Specifically, they modulate the NF-κB and MAPK pathways, resulting in reduced tumor growth and altered gene expression across various cancer types. Additionally, alkaloids exhibit the capacity to induce cell cycle arrest, further impeding tumor proliferation in several malignancies. This review aims to delineate recent advances in understanding the pathology of glioblastoma multiforme (GBM) and to explore the potential therapeutic implications of alkaloids in managing this deadly disease. By segregating discussions on GBM pathology from those on alkaloid-based therapies, we provide a structured overview of the current challenges in GBM treatment and the promising opportunities presented by alkaloid-based interventions. Furthermore, we briefly discuss potential future directions in GBM research and therapy beyond alkaloids, including emerging treatment modalities or areas of investigation that hold promise for improving patient outcomes. In conclusion, our efforts offer hope for enhanced outcomes and improved quality of life for GBM patients through alkaloid-based therapies. By integrating insights from pathology and therapeutic perspectives, we underscore the significance of a comprehensive approach in addressing this devastating disease.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Stephanie Tamdem Guetchueng
- Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovation, PO Box 6163, Yaoundé, Cameroon
| | - Sushesh Shrivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School Of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Manoj M Gadewar
- Department of Pharmacology, School of medical and allied sciences, K.R. Mangalam University, Gurgaon, Haryana 122103, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Murtaza M Tambuwala
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
2
|
Cox BM, Toll L. Contributions of the International Narcotics Research Conference to Opioid Research Over the Past 50 years. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10115. [PMID: 38390618 PMCID: PMC10880772 DOI: 10.3389/adar.2022.10115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 02/24/2024]
Abstract
The International Narcotics Research Conference (INRC), founded in 1969, has been a successful forum for research into the actions of opiates, with an annual conference since 1971. Every year, scientists from around the world have congregated to present the latest data on novel opiates, opiate receptors and endogenous ligands, mechanisms of analgesic activity and unwanted side effects, etc. All the important discoveries in the opiate field were discussed, often first, at the annual INRC meeting. With an apology to important events and participants not discussed, this review presents a short history of INRC with a discussion of groundbreaking discoveries in the opiate field and the researchers who presented from the first meeting up to the present.
Collapse
Affiliation(s)
- Brian M. Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
3
|
Rahman S, Rahman ZI, Ronan PJ, Lutfy K, Bell RL. Adolescent opioid abuse: Role of glial and neuroimmune mechanisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:147-165. [PMID: 34801168 DOI: 10.1016/bs.irn.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Opioids are widely prescribed for pain management, and prescription opioid misuse in adolescents has become a major epidemic in the United States and worldwide. Emerging data indicate that adolescence represents a critical period of brain development, and exposure to opioids during adolescence may increase the risk of addiction in adulthood. There is growing evidence that disruptions in brain glial function may be implicated in numerous chronic neuropathologies. Evidence suggests that glial mechanisms have an important role in the development and maintenance of opioid abuse and the risk for addiction. This review will describe glial and neuroimmune mechanisms involved in opioid use disorders during adolescence, which may increase substance use disorder liability later in life. Moreover, this review will identify some important neuro-glial targets, involved in opioid abuse and addiction, to develop future preventions and treatment strategies.
Collapse
Affiliation(s)
- S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States.
| | - Z I Rahman
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - P J Ronan
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - R L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Loth MK, Donaldson ZR. Oxytocin, Dopamine, and Opioid Interactions Underlying Pair Bonding: Highlighting a Potential Role for Microglia. Endocrinology 2021; 162:6046188. [PMID: 33367612 PMCID: PMC7787427 DOI: 10.1210/endocr/bqaa223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Pair bonds represent some of the strongest attachments we form as humans. These relationships positively modulate health and well-being. Conversely, the loss of a spouse is an emotionally painful event that leads to numerous deleterious physiological effects, including increased risk for cardiac dysfunction and mental illness. Much of our understanding of the neuroendocrine basis of pair bonding has come from studies of monogamous prairie voles (Microtus ochrogaster), laboratory-amenable rodents that, unlike laboratory mice and rats, form lifelong pair bonds. Specifically, research using prairie voles has delineated a role for multiple neuromodulatory and neuroendocrine systems in the formation and maintenance of pair bonds, including the oxytocinergic, dopaminergic, and opioidergic systems. However, while these studies have contributed to our understanding of selective attachment, few studies have examined how interactions among these 3 systems may be essential for expression of complex social behaviors, such as pair bonding. Therefore, in this review, we focus on how the social neuropeptide, oxytocin, interacts with classical reward system modulators, including dopamine and endogenous opioids, during bond formation and maintenance. We argue that an understanding of these interactions has important clinical implications and is required to understand the evolution and encoding of complex social behaviors more generally. Finally, we provide a brief consideration of future directions, including a discussion of the possible roles that glia, specifically microglia, may have in modulating social behavior by acting as a functional regulator of these 3 neuromodulatory systems.
Collapse
Affiliation(s)
- Meredith K Loth
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Correspondence: Zoe R. Donaldson, PhD, University of Colorado Boulder, 347 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
5
|
Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:311-370. [PMID: 33648673 DOI: 10.1016/bs.irn.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
6
|
Glial neuroimmune signaling in opioid reward. Brain Res Bull 2019; 155:102-111. [PMID: 31790721 DOI: 10.1016/j.brainresbull.2019.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
The opioid epidemic is a growing public concern affecting millions of people worldwide. Opioid-induced reward is the initial and key process leading to opioid abuse and addiction. Therefore, a better understanding of opioid reward may be helpful in developing a treatment for opioid addiction. Emerging evidence suggests that glial cells, particularly microglia and astrocytes, play an essential role in modulating opioid reward. Indeed, glial cells and their associated immune signaling actively regulate neural activity and plasticity, and directly modulate opioid-induced rewarding behaviors. In this review, we describe the neuroimmune mechanisms of how glial cells affect synaptic transmission and plasticity as well as how opioids can activate glial cells affecting the glial-neuronal interaction. Last, we summarize current attempts of applying glial modulators in treating opioid reward.
Collapse
|
7
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
8
|
Naloxone pretreatment prevents kidney injury after liver ischemia reperfusion injury. Int Urol Nephrol 2016; 48:1113-20. [PMID: 27055556 DOI: 10.1007/s11255-016-1280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/26/2016] [Indexed: 01/11/2023]
Abstract
PURPOSE The aim of this study was to assess the effects of naloxone, an opioid receptor antagonist, on the renal injury as a remote organ after hepatic ischemia reperfusion (IR) in rats. MATERIALS AND METHODS Forty male Wistar rats were randomly allocated into four groups as follows: sham, sham + naloxone, IR and IR + naloxone. In anesthetized rats, hepatic ischemia was applied for 30 min in IR and IR + naloxone groups. Sham + naloxone and IR + naloxone groups were given naloxone (3.0 mg/kg, iv) 30 min before ischemia. After 24 h, blood and tissue samples were obtained for histopathological, tissue malondialdehyde (MDA) and biochemical analyses. RESULTS Histopathological study of liver in IR group showed enlarged sinusoids, sinusoidal congestion, cellular degenerative changes and necrosis. The kidney of the rats with hepatic IR showed pathological changes in tubular cell swelling, tubular dilatation, moderate to severe necrosis, glomerular fibrosis and hemorrhage. Histological examination confirmed the extent of hepatic and renal changes in IR group was higher (P < 0.05) than in other groups. Rats that underwent hepatic IR exhibited significant increase in serum concentrations of urea and creatinine levels (P < 0.05). The serum alanine aminotransferase and aminotransferase values were significantly higher in IR group compared to the other groups (P < 0.05). Liver IR produced a significant increase in hepatic and renal tissue MDA levels, while pretreatment with naloxone was associated with a significantly lower MDA levels (P < 0.05). CONCLUSION The results of this study showed that naloxone pretreatment protected the renal injury from hepatic IR.
Collapse
|
9
|
Stefano GB, Kream RM. Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med Sci Monit 2015; 21:1478-84. [PMID: 25997954 PMCID: PMC4451716 DOI: 10.12659/msm.894437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammals and invertebrates, the activities of neuro- and immuno-competent cells, e.g., glia, which are present in nervous tissues, are deemed of critical importance to normative neuronal function. The responsiveness of invertebrate and vertebrate immuno-competent glia to a common set of signal molecules, such as nitric oxide and endogenous morphine, is functionally linked to physiologically driven innate immunological and neuronal activities. Importantly, the presence of a common, evolutionarily conserved, set of signal molecules in comparative animal groups strongly suggests an expansive intermediate metabolic profile dependent on high output mitochondrial ATP production and utilization. Normative bidirectional neural-immune communication across invertebrate and vertebrate species requires common anatomical and biochemical substrates and pathways involved in energy production and mitochondrial integrity. Within this closed-loop system, abnormal perturbation of the respective tissue functions will have profound ramifications in functionally altering associated nervous and vascular systems and it is highly likely that the initial trigger to the induction of a physiologically debilitating pro-inflammatory state is a micro-environmental hypoxic event. This is surmised by the need for an unwavering constant oxygen supply. In this case, temporal perturbations of normative oxygen tension may be tolerated for short, but not extended, periods and ischemic/hypoxic perturbations in oxygen delivery represent significant physiological challenges to overall cellular and multiple organ system viability. Hence, hypoxic triggering of multiple pro-inflammatory events, if not corrected, will promote pathophysiological amplification leading to a deleterious cascade of bio-senescent cellular and molecular signaling pathways, which converge to markedly impair mitochondrial energy utilization and ATP production.
Collapse
|
10
|
Giron SE, Griffis CA, Burkard JF. Chronic Pain and Decreased Opioid Efficacy: An Inflammatory Link. Pain Manag Nurs 2015; 16:819-31. [PMID: 25962543 DOI: 10.1016/j.pmn.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/16/2015] [Accepted: 04/02/2015] [Indexed: 01/08/2023]
Abstract
Chronic pain is a devastating amalgam of symptoms that affects millions of Americans at tremendous cost to our healthcare system and, more importantly, to patients' quality of life. Literature and research demonstrate that neuroimmune cells called glia are not only responsible for initiating and maintaining part of the chronic pain disease process, but also release inflammatory molecules responsible for decreasing the efficacy of one of the most prominent treatments for pain, opioid analgesia. This article describes chronic pain as a disease process that has ineffective treatment modalities, explores the mechanisms of glial cell activation and inflammatory responses that lead to chronic pain and decreased opioid treatment efficacy, and hypothesizes novel chronic pain treatment modalities based on the glial cell inactivation and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Sarah E Giron
- Department of Anesthesiology, University of Southern California Keck School of Medicine, Los Angeles, California.
| | - Charles A Griffis
- Department of Anesthesiology, University of California at Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Joseph F Burkard
- University of San Diego Hahn School of Nursing and Health Science, San Diego, California
| |
Collapse
|
11
|
Mattioli TA, Leduc-Pessah H, Skelhorne-Gross G, Nicol CJB, Milne B, Trang T, Cahill CM. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence. PLoS One 2014; 9:e97361. [PMID: 24824631 PMCID: PMC4019634 DOI: 10.1371/journal.pone.0097361] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/18/2014] [Indexed: 11/18/2022] Open
Abstract
The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4). Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal) were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (-) naloxone, an opioid receptor antagonist, and (+) naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.
Collapse
Affiliation(s)
| | - Heather Leduc-Pessah
- Departments of Comparative Biology & Experimental Medicine, Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Graham Skelhorne-Gross
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Christopher J. B. Nicol
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Brian Milne
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anaesthesiology & Perioperative Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Tuan Trang
- Departments of Comparative Biology & Experimental Medicine, Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M. Cahill
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Woller SA, Hook MA. Opioid administration following spinal cord injury: implications for pain and locomotor recovery. Exp Neurol 2013; 247:328-41. [PMID: 23501709 PMCID: PMC3742731 DOI: 10.1016/j.expneurol.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.
Collapse
Affiliation(s)
- Sarah A Woller
- Texas A&M Institute for Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | |
Collapse
|
13
|
Inhibition of LPS-Induced Retinal Microglia Activation by Naloxone Does Not Prevent Photoreceptor Death. Inflammation 2012; 36:42-52. [DOI: 10.1007/s10753-012-9518-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol 2011; 234:316-29. [PMID: 22001158 DOI: 10.1016/j.expneurol.2011.09.038] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/16/2022]
Abstract
Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed.
Collapse
Affiliation(s)
- Lauren Nicotra
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|
15
|
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 2011; 63:772-810. [PMID: 21752874 PMCID: PMC3141878 DOI: 10.1124/pr.110.004135] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Pharmacology, School of Medical Science, University of Adelaide, South Australia, Australia, 5005.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
17
|
Downregulation of constitutive and cytokine-induced complement 3 expression by morphine in rat astrocytes. CURRENT THERAPEUTIC RESEARCH 2011; 72:23-35. [PMID: 24648573 DOI: 10.1016/j.curtheres.2011.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND The effect of opioids on inflammation and immune responses is an important subject of investigation because immunoregulatory cytokines are produced in the central nervous system and opioid receptors are widespread in these cells. OBJECTIVES The aim of this study was to evaluate the immunomodulatory effect of morphine on the C3 expression (both constitutive and proinflammatory cytokine-induced C3 expression) in primary rat astrocytes. METHODS Primary rat astrocytes were untreated or treated with morphine in different concentrations (10(-6) to 10(-2) M) before incubation without or with 5 U/mL tumor necrosis factor-α (TNF-α), and C3 protein and mRNA expressions were measured. Similarly, astrocytes were treated with 10(-3) M morphine and stimulated with other proinflammatory cytokines, including 10 ng/mL interleukin-8 (IL-8) and 5 U/mL IL-1β. Astrocytes were exposed to 10(-5) M naloxone for 2 hours before adding morphine, and TNF-α and C3 protein was measured. Tumor growth factor-β (TGF-β) was measured from the supernatants of each proinflammatory cytokine. RESULTS All results are expressed as mean percentages of C3 production by normalizing C3 without morphine or any cytokine treatment as 100%. Constitutive C3 protein production was decreased at morphine 10(-3) M (57.2%) and 10(-2) M (30.1%). Pretreatment with morphine suppressed induction of C3 expression at both the protein and mRNA levels in astrocytes stimulated with TNF-α, IL-8, and IL-1β (P < 0.05) in a dose-dependent manner. The inhibition of C3 protein production by morphine (10(-3) M; 33%) was partially attenuated by naloxone (52.0%) (P < 0.05). The pretreatment of astrocytes with morphine (10(-3) M) before stimulation with TNF-α, IL-8, and IL-1β increased by 33% (P < 0.05), decreased by 15.2% (P < 0.05), and did not change the production of TGF-β protein, respectively. CONCLUSIONS Morphine downregulated both constitutive and proinflammatory cytokine-induced C3 expression of astrocytes at the transcriptional level, but not in a cytokine-specific manner.
Collapse
|
18
|
Mattioli TAM, Milne B, Cahill CM. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats. Mol Pain 2010; 6:22. [PMID: 20398374 PMCID: PMC2862024 DOI: 10.1186/1744-8069-6-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/16/2010] [Indexed: 01/23/2023] Open
Abstract
Background The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Results Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Conclusion Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone. This research provides further validation for using ultra-low dose opioid receptor antagonists in the treatment of various pain syndromes.
Collapse
|
19
|
Hutchinson MR, Lewis SS, Coats BD, Rezvani N, Zhang Y, Wieseler JL, Somogyi AA, Yin H, Maier SF, Rice KC, Watkins LR. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience 2010; 167:880-93. [PMID: 20178837 DOI: 10.1016/j.neuroscience.2010.02.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/18/2010] [Accepted: 02/06/2010] [Indexed: 01/22/2023]
Abstract
Opioid-induced glial activation and its proinflammatory consequences have been associated with both reduced acute opioid analgesia and the enhanced development of tolerance, hyperalgesia and allodynia following chronic opioid administration. Intriguingly, recent evidence demonstrates that these effects can result independently from the activation of classical, stereoselective opioid receptors. Here, a structurally disparate range of opioids cause activation of signaling by the innate immune receptor toll like receptor 4 (TLR4), resulting in proinflammatory glial activation. In the present series of studies, we demonstrate that the (+)-isomers of methadone and morphine, which bind with negligible affinity to classical opioid receptors, induced upregulation of proinflammatory cytokine and chemokine production in rat isolated dorsal spinal cord. Chronic intrathecal (+)-methadone produced hyperalgesia and allodynia, which were associated with significantly increased spinal glial activation (TLR4 mRNA and protein) and the expression of multiple chemokines and cytokines. Statistical analysis suggests that a cluster of cytokines and chemokines may contribute to these nociceptive behavioral changes. Acute intrathecal (+)-methadone and (+)-morphine were also found to induce microglial, interleukin-1 and TLR4/myeloid differentiation factor-2 (MD-2) dependent enhancement of pain responsivity. In silico docking analysis demonstrated (+)-naloxone sensitive docking of (+)-methadone and (+)-morphine to human MD-2. Collectively, these data provide the first evidence of the pro-nociceptive consequences of small molecule xenobiotic activation of spinal TLR4 signaling independent of classical opioid receptor involvement.
Collapse
Affiliation(s)
- M R Hutchinson
- Department of Psychology, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX, Slivka PF, Coats BD, Rezvani N, Wieseler J, Hughes TS, Landgraf KE, Chan S, Fong S, Phipps S, Falke JJ, Leinwand LA, Maier SF, Yin H, Rice KC, Watkins LR. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 2010; 24:83-95. [PMID: 19679181 PMCID: PMC2788078 DOI: 10.1016/j.bbi.2009.08.004] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022] Open
Abstract
Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.
Collapse
Affiliation(s)
- Mark R. Hutchinson
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
- Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Yingning Zhang
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Mitesh Shridhar
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - John H. Evans
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Madison M. Buchanan
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Tina X. Zhao
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Peter F. Slivka
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Benjamen D. Coats
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Niloofar Rezvani
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Julie Wieseler
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Travis S. Hughes
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kyle E. Landgraf
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Stefanie Chan
- Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephanie Fong
- Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Simon Phipps
- Centre for Asthma and Respiratory Diseases (CARD), Division of Biomedical Sciences, University of Newcastle, New South Wales, Australia
| | - Joseph J. Falke
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Leslie A. Leinwand
- Centre for Asthma and Respiratory Diseases (CARD), Division of Biomedical Sciences, University of Newcastle, New South Wales, Australia
| | - Steven F. Maier
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Hang Yin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| |
Collapse
|
21
|
Abstract
Angiogenesis is an important issue in cancer research and opioids are often used to treat pain in cancer patients. Therefore it is important to know if the use of opioids is associated with an aberrant stimulation of tumor growth triggered by the stimulation of angiogenesis in cancer patients. Some studies in the literature have suggested the presence of the μ3 opioid receptor, known as the receptor for many opioids, on endothelial cells, which are key players in the process of angiogenesis. In this study we used endothelial cells known to express the μ3 opioid receptor (MOR3), to evaluate the effects of morphine on angiogenesis. We first investigated the effect of morphine on the proliferation of endothelial cells. We showed that morphine is able to stimulate vascular endothelial cell proliferation in vitro. This effect of morphine is mediated by the mitogen-activated protein kinase (MAPK) pathway as pre-treatment with PD98059 inhibited this excessive proliferation. Because previous studies indicated nitric oxide (NO) as a downstream messenger we investigated the role of NO in the aberrant proliferation of endothelial cells. Our data could not confirm these findings using intracellular NO measurements and quantitative fluorescence microscopy. The potential use and pitfalls of opioids in cancer patients is discussed in light of these negative findings.
Collapse
Affiliation(s)
- Sandra Leo
- Pain and Neurology, CNS Department, Johnson and Johnson Pharmaceutical Research and Development, a division of Janssen Pharmaceutica N.V, Beerse, Belgium
| | | | | |
Collapse
|
22
|
Stefano GB, Cadet P, Kream RM, Zhu W. The presence of endogenous morphine signaling in animals. Neurochem Res 2008; 33:1933-9. [PMID: 18777209 DOI: 10.1007/s11064-008-9674-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/13/2008] [Indexed: 11/28/2022]
Abstract
Recent empirical findings have contributed valuable mechanistic information in support of a regulated de novo biosynthetic pathway for chemically authentic morphine and related morphinan alkaloids within animal cells. Importantly, we and others have established that endogenously expressed morphine represents a key regulatory molecule effecting local circuit autocrine/paracrine cellular signaling via a novel mu(3) opiate receptor coupled to constitutive nitric oxide production and release. The present report provides an integrated review of the biochemical, pharmacological, and molecular demonstration of mu(3) opiate receptors in historical linkage to the elucidation of mechanisms of endogenous morphine production by animal cells and organ systems. Ongoing research in this exciting area provides a rare window of opportunity to firmly establish essential biochemical linkages between dopamine, a morphine precursor, and animal biosynthetic pathways involved in morphine biosynthesis that have been conserved throughout evolution.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York-College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Astrocytes are a major cell type in the mammalian central nervous system (CNS). The ability to obtain virtually pure populations of these cells makes it possible to study their function as isolated cells or in mixed populations where they support the growth and survival of surrounding neurons. Unlike other mature CNS cells, mature astrocytes maintain the lifelong ability to reenter the cell cycle. The first isolation procedure described in this unit takes advantage of the proliferative ability of these cells, as does the second, except that no antibody or complement treatment is required. A procedure for detecting glial fibrillary acidic protein (GFAP), which is present in most astrocytes in vivo and virtually all astrocytes in vitro and is a useful marker for assessing the purity of cultures, is also presented.
Collapse
Affiliation(s)
- D E Weinstein
- Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
24
|
Stefano GB, Kream RM, Mantione KJ, Sheehan M, Cadet P, Zhu W, Bilfinger TV, Esch T. Endogenous morphine/nitric oxide-coupled regulation of cellular physiology and gene expression: implications for cancer biology. Semin Cancer Biol 2007; 18:199-210. [PMID: 18203618 DOI: 10.1016/j.semcancer.2007.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/05/2007] [Indexed: 12/19/2022]
Abstract
Cancer is a simplistic, yet complicated, process that promotes uncontrolled growth. In this regard, this unconstrained proliferation may represent primitive phenomena whereby cellular regulation is suspended or compromised. Given the new empirical evidence for a morphinergic presence and its profound modulatory actions on several cellular processes it is not an overstatement to hypothesize that morphine may represent a key chemical messenger in the process of modulating proliferation of diverse cells. This has been recently demonstrated by the finding of a novel opiate-alkaloid selective receptor subtype in human multilineage progenitor cells (MLPC). Adding to the significance of morphinergic signaling are the findings of its presence in plant, invertebrate and vertebrate cells, which also have been shown to synthesize this messenger as well. Interestingly, we and others have shown that some cancerous tissues contain morphine. Furthermore, in medullary histolytic reticulosis, which is exemplified by cells having hyperactivity, the mu3 (mu3) opiate select receptor was not present. Thus, it would appear that morphinergic signaling has inserted itself in many processes taking a long time to evolve, including those regulating the proliferation of cells across diverse phyla.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York - SUNY College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci 2007; 30:527-35. [PMID: 17904651 DOI: 10.1016/j.tins.2007.07.007] [Citation(s) in RCA: 502] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 01/23/2023]
Abstract
Microglia are the intrinsic immune cells of the brain and express chemokine and cytokine receptors that interact with the peripheral immune cells. Recent studies have indicated that microglia also respond to the brain's classical signalling substances, the neurotransmitters. Here, we review the evidence for the expression of neurotransmitter receptors on microglia and the consequences of this receptor activation for microglial behaviour. It is evident that neurotransmitters instruct microglia to perform distinct types of responses, such as triggering an inflammatory cascade or acquiring a neuroprotective phenotype. Understanding how microglia respond to different neurotransmitters will thus have important implications for controlling the reactivity of these cells in acute injury, as well as for treating chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Jennifer M Pocock
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, 1 Wakefield Street, London WC1N 1PJ, UK.
| | | |
Collapse
|
26
|
Affiliation(s)
- Ali R Mani
- Centre for Hepatology, Department of Medicine, Royal Free & University College Medical School, University College London, London, UK.
| | | | | | | |
Collapse
|
27
|
Wu HE, Thompson J, Sun HS, Terashvili M, Tseng LF. Antianalgesia: stereoselective action of dextro-morphine over levo-morphine on glia in the mouse spinal cord. J Pharmacol Exp Ther 2005; 314:1101-8. [PMID: 15901793 DOI: 10.1124/jpet.105.087130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that the naturally occurring levo-morphine at a subanalgesic picomolar dose pretreated i.t. induces antianalgesia against levo-morphine-produced antinociception. We now report that the synthetic stereo-enantiomer dextro-morphine, even at an extremely low femtomolar dose, induces antianalgesia against levo-morphine-produced antinociception using the tail-flick (TF) test in male CD-1 mice. Intrathecal pretreatment with dextro-morphine (33 fmol) time-dependently attenuated the i.t. levo-morphine-produced TF inhibition for 4 h and returned to the preinjection control level at 24 h. Intrathecal pretreatment with dextro-morphine (0.3-33 fmol), which injected alone did not affect the baseline TF latency, dose-dependently attenuated the TF inhibition produced by i.t.-administered levo-morphine (3.0 nmol). The ED(50) value for dextro-morphine to induce antianalgesia was estimated to be 1.07 fmol, which is 71,000-fold more potent than the ED(50) value of levo-morphine, indicating the high stereoselective action of dextro-morphine over levo-morphine for the induction of antianalgesia. Like levo-morphine, the dextro-morphine-induced antianalgesia against levo-morphine-produced TF inhibition was dose-dependently blocked by the nonopioid dextro-naloxone and its stereo-enantiomer levo-naloxone, a nonselective mu-opioid receptor antagonist. The antianalgesia induced by levo-morphine and dextro-morphine is reversed by the pretreatment with the glial inhibitor propentofylline (3.3-65 nmol), indicating that the antianalgesia is mediated by glial stimulation. The findings strongly indicate that the antianalgesia induced by levo-morphine and dextro-morphine is mediated by the stimulation of a novel nonopioid receptor on glial cells.
Collapse
Affiliation(s)
- Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | | | | | |
Collapse
|
28
|
Jaume M, Jacquet S, Cavaillès P, Macé G, Stephan L, Blanpied C, Demur C, Brousset P, Dietrich G. Opioid receptor blockade reduces Fas-induced hepatitis in mice. Hepatology 2004; 40:1136-43. [PMID: 15389866 DOI: 10.1002/hep.20428] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fas (CD95)-induced hepatocyte apoptosis and cytotoxic activity of neutrophils infiltrating the injured liver are two major events leading to hepatitis. Because it has been reported that opioids, via a direct interaction, sensitize splenocytes to Fas-mediated apoptosis by upregulating Fas messenger RNA (mRNA) and modulated neutrophil activity, we assumed that opioids may participate in the pathophysiology of hepatitis. Using the hepatitis model induced by agonistic anti-Fas antibody in mice, we showed that opioid receptor blockade reduced liver damage and consequently increased the survival rate of animals when the antagonist naltrexone was injected simultaneously or prior to antibody administration. Treatment of mice with morphine enhanced mortality. Naloxone methiodide-a selective peripheral opioid antagonist-had a protective effect, but the absence of opioid receptors in the liver, together with lack of morphine effect in Fas-induced apoptosis of primary cultured hepatocytes, ruled out a direct effect of opioids on hepatocytes. In addition, the neutralization of opioid activity by naltrexone did not modify Fas mRNA expression in the liver as assessed with real-time quantitative polymerase chain reaction. Injured livers were infiltrated by neutrophils, but granulocyte-depleted mice were not protected against the enhancing apoptotic effect of morphine. In conclusion, opioid receptor blockade improves the resistance of mice to Fas-induced hepatitis via a peripheral mechanism that does not involve a down-modulation of Fas mRNA in hepatocytes nor a decrease in proinflammatory activity of neutrophils.
Collapse
Affiliation(s)
- Martial Jaume
- INSERM U563, Institut Claude de Préval, IFR 30, Hôpital Purpan, Université Paul Sabatier Toulouse III, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kowalski J, Gabryel B, Łabuzek K, Herman ZS. Methionine-enkephalin and leucine-enkephalin increase interleukin-1 beta release in mixed glia cultures. Neuropeptides 2002; 36:401-6. [PMID: 12507434 DOI: 10.1016/s0143-4179(02)00109-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interleukin-1 beta (IL-1 beta) is synthesized in the brain in response to LPS. Excessive IL-1 beta expression is observed in neurodegenerative diseases. The aim of this study was to evaluate the effects of methionine-enkephalin (ME) and leucine-enkephalin (LE) on the baseline and LPS-activated release of IL-1 beta in rat mixed glia cultures. ME and LE increased LPS-induced IL-1 beta release, which was not blocked by naloxone. Both ME and LE increased the baseline release of IL-1 beta, which was completely blocked by naloxone pretreatment. Mixed glia cultures deprived of microglia (by shaking and incubating with L-leucine methyl ester) did not release IL-1 beta, which indicates microglia as a source of the changes in IL-1 beta release. The results of the study suggest that neurons may regulate glial activity through releasing enkephalins.
Collapse
Affiliation(s)
- Jan Kowalski
- Department of Clinical Pharmacology, Medical University of Silesia, Medyków, Poland.
| | | | | | | |
Collapse
|
30
|
Rattazzi MC, Dobrenis K. Treatment of GM2 gangliosidosis: past experiences, implications, and future prospects. ADVANCES IN GENETICS 2002; 44:317-39. [PMID: 11596993 DOI: 10.1016/s0065-2660(01)44089-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M C Rattazzi
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | | |
Collapse
|
31
|
Abstract
During the course of evolution, invertebrates and vertebrates have kept in common similar signaling molecules e.g. neuropeptides, opiates etc... Complete hormonal-enzymatic systems such as the opioid-opiate-cannabinoid systems have been found in both nervous central and immune systems of these animals. These signaling molecules can be found free in blood circulation and act as immunomodulators. The present review is focused on peptides derived from the opioid proopiomelanocortin precursor, the opiates and the endocannabinoids, which are very powerful immunosuppressors, and example models of the bidirectional communications between the endocrine and the immune systems. Parasites use these immunosuppressors with magnificence in their crosstalk with their host.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, UPRES-A CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59655 Cédex, Villeneuve d'Ascq, France.
| |
Collapse
|
32
|
Lu X, Bing G, Hagg T. Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats. Neuroscience 2000; 97:285-91. [PMID: 10799760 DOI: 10.1016/s0306-4522(00)00033-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Resident microglia are involved in immune responses of the central nervous system and may contribute to neuronal degeneration and death. Here, we tested in adult rats whether injection of bacterial lipopolysaccharide (which causes inflammation and microglial activation) just above the substantia nigra, results in the death of dopaminergic substantia nigra pars compacta neurons. Two weeks after lipopolysaccharide injection, microglial activation was evident throughout the nigra and the number of retrogradely-labeled substantia nigra neurons was reduced to 66% of normal. This suggests that inflammation and/or microglial activation can lead to neuronal cell death in a well-defined adult animal model. The opioid receptor antagonist naloxone reportedly reduces release of cytotoxic substances from microglia and protects cortical neurons in vitro. Here, a continuous two-week infusion of naloxone at a micromolar concentration close to the substantia nigra, prevented most of the neuronal death caused by lipopolysaccharide, i.e. 85% of the neurons survived. In addition, with systemic (subcutaneous) infusion of 0. 1mg/d naloxone, 94% of the neurons survived. Naloxone infusions did not obviously affect the morphological signs of microglial activation, suggesting that naloxone reduces the release of microglial-derived cytotoxic substances. Alternatively, microglia might not cause the neuronal loss, or naloxone might act by blocking opioid receptors on (dopaminergic or GABAergic) neurons.Thus, local inflammation induces and the opioid antagonist naloxone prevents the death of dopaminergic substantia nigra neurons in adult rats. This may be relevant to the understanding of the pathology and treatment of Parkinson's disease, where these neurons degenerate.
Collapse
Affiliation(s)
- X Lu
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Canada
| | | | | |
Collapse
|
33
|
Liu B, Du L, Kong LY, Hudson PM, Wilson BC, Chang RC, Abel HH, Hong JS. Reduction by naloxone of lipopolysaccharide-induced neurotoxicity in mouse cortical neuron-glia co-cultures. Neuroscience 2000; 97:749-56. [PMID: 10842020 DOI: 10.1016/s0306-4522(00)00057-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An inflammatory response in the CNS mediated by activation of microglia is a key event in the early stages of the development of neurodegenerative diseases. Using mouse cortical mixed glia cultures, we have previously demonstrated that the bacterial endotoxin lipopolysaccharide induces the activation of microglia and the production of proinflammatory factors. Naloxone, an opioid receptor antagonist, inhibits the lipopolysaccharide-induced activation of microglia and the production of proinflammatory factors. Using neuron-glia co-cultures, we extended our study to determine if naloxone has a neuroprotective effect against lipopolysaccharide-induced neuronal damage and analysed the underlying mechanism of action for its potential neuroprotective effect. Pretreatment of cultures with naloxone (1 microM) followed by treatment with lipopolysaccharide significantly inhibited the lipopolysaccharide-induced production of nitric oxide and the release of tumor necrosis factor-alpha, and significantly reduced the lipopolysaccharide-induced damage to neurons. More importantly, both naloxone and its opioid-receptor ineffective enantiomer (+)-naloxone were equally effective in inhibiting the lipopolysaccharide-induced generation of proinflammatory factors and the activation of microglia, as well as in the protection of neurons. These results indicate that the neuroprotective effect of naloxone is mediated by its inhibition of microglial activity and may be unrelated to its binding to the classical opioid receptors.
Collapse
Affiliation(s)
- B Liu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, NC 27709, Research Triangle Park, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Laurent V, Salzet B, Verger-Bocquet M, Bernet F, Salzet M. Morphine-like substance in leech ganglia. Evidence and immune modulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2354-61. [PMID: 10759861 DOI: 10.1046/j.1432-1327.2000.01239.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Binding experiments followed by measurement of nitric oxide release revealed an opiate alkaloid high affinity receptor with no affinity to opioids, representing a new mu-subtype receptor in the brain of the leech Theromyzon tessulatum. In addition, evidence of morphine-like substances was found in immunocytochemical studies and HPLC coupled to electrochemical detection (500 mV and 0.02 Hz). Based on previous evidence of the involvement of morphine as an immune response inhibitor, we demonstrate that in leech ganglia injection of lipopolysaccharide (LPS; a potent immunostimulatory agent derived from bacteria) provoked an increase in the level of ganglionic morphine-like substances after a prolonged latency period of 24 h (from 2.4 +/- 1.1 pmol per ganglion to 78 +/- 12.3 pmol per ganglion; P < 0.005; LPS injected 1 microg x mL-1); this effect is both concentration- and time-dependent. Finally, we have demonstrated that morphine, after binding to its own receptor, inhibits leech immunocyte activation through adenylate cyclase inhibition and nitric oxide release. This report confirms that morphine is an evolutionarily stable potent immunomodulator.
Collapse
Affiliation(s)
- V Laurent
- Laboratoire d'Endocrinologie des annélides, UPRESA 8017 CNRS, SN3, Université des Sciences et Technologie de Lille, France
| | | | | | | | | |
Collapse
|
35
|
Stefano GB, Goumon Y, Bilfinger TV, Welters ID, Cadet P. Basal nitric oxide limits immune, nervous and cardiovascular excitation: human endothelia express a mu opiate receptor. Prog Neurobiol 2000; 60:513-30. [PMID: 10739087 DOI: 10.1016/s0301-0082(99)00038-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is a major signaling molecule in the immune, cardiovascular and nervous systems. The synthesizing enzyme, nitric oxide synthase (NOS) occurs in three forms: endothelial (e), neuronal (n) and inducible (i) NOS. The first two are constitutively expressed. We surmise that in many tissues there is a basal level of NO and that the actions of several signaling molecules initiate increases in cNOS-derived NO to enhance momentary basal levels that exerts inhibitory cellular actions, via cellular conformational changes. It is our contention that much of the literature concerning the actions of NO really deal with i-NOS-derived NO. We make the case that cNOS is responsible for a basal or 'tonal' level of NO; that this NO keeps particular types of cells in a state of inhibition and that activation of these cells occurs through disinhibition. Furthermore, naturally occurring signaling molecules such as morphine, anandamide, interleukin-10 and 17-beta-estradiol appear to exert, in part, their beneficial physiological actions, i.e., immune and endothelial down regulation by the stimulation of cNOS. In regard to opiates, we demonstrate the presence of a human endothelial mu opiate receptor by RT-PCR and sequence determination, further substantiating the role of opiates in vascular coupling to NO release. Taken together, cNOS derived NO enhances basal NO actions, i.e., cellular activation state, and these actions are further enhanced by iNOS derived NO.
Collapse
Affiliation(s)
- G B Stefano
- Neuroscience Research Institute, State University of New York at Old Westbury, 11568-0210, USA.
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 1999; 94:809-19. [PMID: 10579572 DOI: 10.1016/s0306-4522(99)00383-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Despite intense investigation, the demonstration of morphological plasticity in the external zone of the median eminence concerning the gonadotropin-releasing hormone system has never been reported. In this study, we investigate whether dynamic transformations of the gonadotropin-releasing hormone nerve terminals and/or tanycytes in the external zone of the median eminence of the hypothalamus occurred during the rat estrous cycle, by following individual gonadotropin-releasing hormone-immunoreactive nerve terminals on serial ultrathin sections observed by electron microscopy. Female rats were killed at 16.00 diestrus II (n = 3), i.e. when estrogen levels are basal and gonadotropin-releasing hormone release is low, and at 16.00 proestrus (n = 4), i.e. when estrogen levels peak and the preovulatory gonadotropin-releasing hormone surge occurs. Our results show that, in the median eminence obtained from proestrus rats, 12+/-2% of the gonadotropin-releasing hormone nerve terminals were observed to make physical contact with the parenchymatous basal lamina, i.e. the pericapillary space. In the median eminence obtained from diestrus II rats, no contacts were observed. On proestrus, numerous physical contacts between gonadotropin-releasing hormone nerve terminals and the basal lamina occurred by evagination of the basal lamina and/or by emerging processes from gonadotropin-releasing hormone nerve terminals. The quantification of the evagination of the basal lamina revealed that the basal lamina was at least twofold more tortuous in appearance during proestrus. These results demonstrate for the first time the existence of dynamic plastic changes in the external zone of the median eminence, allowing gonadotropin-releasing hormone nerve terminals to contact the pericapillary space on the day of proestrus, thus facilitating the release of the neurohormone into the pituitary portal blood.
Collapse
Affiliation(s)
- V Prevot
- INSERM U 422, IFR 22, Neuroendocrinologie et physiopathologie neuronale, place de Verdun, Lille, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Dobrenis K. Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods 1998; 16:320-44. [PMID: 10071070 DOI: 10.1006/meth.1998.0688] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is host to a significant population of macrophage-like cells known as microglia. In addition to these cells which reside within the parenchyma, a diverse array of macrophages are present in meningeal, perivascular, and other peripheral locations. The role that microglia and other CNS macrophages play in disease and injury is under intensive investigation, and functions in development and in the normal adult are just beginning to be explored. At present the biology of these cells represents one of the most fertile areas of CNS research. This article describes methodology for the isolation and maintenance of microglia in cell cultures prepared from murine and feline animals. Various approaches to identify microglia are provided, using antibody, lectin, or scavenger receptor ligand. Assays to confirm macrophage-like functional activity, including phagocytosis, lysosomal enzyme activity, and motility, are described. Findings regarding the origin and development of microglia and results of transplantation studies are reviewed. Based on these data, a strategy is presented that proposes to use the microglial cell lineage to effectively deliver therapeutic compounds to the CNS from the peripheral circulation.
Collapse
Affiliation(s)
- K Dobrenis
- Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
39
|
Makman MH, Dobrenis K, Surratt CK. Properties of mu 3 opiate alkaloid receptors in macrophages, astrocytes, and HL-60 human promyelocytic leukemia cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 437:137-48. [PMID: 9666265 DOI: 10.1007/978-1-4615-5347-2_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An opiate alkaloid-selective receptor, designated mu(3), mediates inhibition by morphine of activation of human peripheral blood monocytes and granulocytes. The mu(3) receptor is present on several macrophage cell types including microglia, on cultured astrocytes, and in brain and retina. Murine macrophage cell lines and human HL-60 leukemia cells contain high concentrations of these receptors. Binding of 3H-morphine to the receptor is displaced by morphine, etorphine, naloxone, diprenorphine and morphine 6-glucuronide, but not by morphine 3-glucuronide, fentanyl, benzomorphans, enkephalins, dynorphin, beta-endorphin, endomorphin-1, other opioid peptides or nociceptin (orphanin FQ). The mu(3) receptor appears to be much more sensitive to inactivation by reduced glutathione than are classical mu, delta and kappa receptors. Evidence is also presented for G protein-coupling of these receptors. These and other data raise the possibility that the mu(3) receptor is a member of a chemokine or of another related receptor family, rather than the opioid receptor family. The affinity for morphine of mu(3) receptors of granulocytic-differentiated HL-60 cells is markedly enhanced in the presence of levorphanol and certain benzomorphans. In contrast, receptors of monocytes, macrophage cell lines, microglia, macrophage-differentiated HL-60 cells and astrocytes are not affected by levorphanol or benzomorphans. It is concluded that mu(3) receptors of granulocytic and promyelocytic cells differ from those of macrophage and astrocyte cell types, possibly due to differences in receptor subtype or to the presence of an additional component in the granulocytic and promyelocytic cells.
Collapse
Affiliation(s)
- M H Makman
- Department of Biochemistry, Albert Einstein College of Medicine New York, New York 10461, USA
| | | | | |
Collapse
|
40
|
Abstract
The astrocytoma cell line rat C6 glioma has been used as a model system to study the mechanism of various opioid actions. Nevertheless, the type of opioid receptor(s) involved has not been established. Here we demonstrate the presence of high-affinity U69,593, endomorphin-1, morphine, and beta-endorphin binding in desipramine (DMI)-treated C6 cell membranes by performing homologous and heterologous binding assays with [3H]U69,593, [3H]morphine, or 125I-beta-endorphin. Naive C6 cell membranes displayed U69,593 but neither endomorphin-1, morphine, nor beta-endorphin binding. Cross-linking of 125I-beta-endorphin to C6 membranes gave labeled bands characteristic of opioid receptors. Moreover, RT-PCR analysis of opioid receptor expression in control and DMI-treated C6 cells indicate that both kappa- and mu-opioid receptors are expressed. There does not appear to be a significant difference in the level of mu nor kappa receptor expression in naive versus C6 cells treated with DMI over a 20-h period. Collectively, the data indicate that kappa- and mu-opioid receptors are present in C6 glioma cells.
Collapse
Affiliation(s)
- L M Bohn
- E. A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, Missouri 63104, USA
| | | | | |
Collapse
|
41
|
Abstract
Fentanyl is a commonly used narcotic agent in anesthesia. It has strong analgesic properties which it shares with morphine. Unlike morphine, it does not possess the ability to bind to the mu3 receptor, and therefore does not have the ability to influence nitric oxide release as measured amperometrically. Cell adhesion also is not influenced. As a result, it also lacks the ability to downregulate the inflammatory response associated with surgery, especially cardiopulmonary bypass.
Collapse
Affiliation(s)
- T V Bilfinger
- Department of Surgery, University Hospital and Medical Center, State University of New York at Stony Brook, 11794, USA.
| | | | | |
Collapse
|
42
|
Stefano GB, Salzet M, Hughes TK, Bilfinger TV. Delta2 opioid receptor subtype on human vascular endothelium uncouples morphine stimulated nitric oxide release. Int J Cardiol 1998; 64 Suppl 1:S43-51. [PMID: 9687092 DOI: 10.1016/s0167-5273(98)00035-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We demonstrate the presence of both delta and mu opioid receptors on the endothelium of human saphenous vein and internal thoracic artery. Displacement analysis revealed that a variety of opioid peptides were found to be ineffective in displacing specifically bound 3H dihydromorphine and only delta2 ligands were effective in regard to 3H Ala2-met5 enkephalinamide (DAMA), indicating the presence of mu3 and delta2 opioid receptor sites, respectively. Confirming the presence of both mu and delta sites we demonstrated positive immunostaining with anti-delta and anti-mu receptor antibodies. Exposure of these vessels to DAMA significantly enhances granulocyte adherence (P<0.01) even in vessels 5 min later exposed to 10(-6) M morphine. Unlike morphine, DAMA did not stimulate nitric oxide from either blood vessel and human granulocytes. Additionally, DAMA preadministered before morphine exposure to the endothelium or granulocytes, inhibited the morphine-stimulated release of NO in a dose-dependent manner. The data indicate that opioid peptides and opiate alkaloids regulate endothelial function in an antagonistic manner thereby influencing the microvascular environment.
Collapse
Affiliation(s)
- G B Stefano
- Department of Surgery, Health Sciences Center, State University of New York at Stony Brook, 11794, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Opioids (exogenous opiates and endogenous opioid peptides) have a diversity of effects on the immune system. Although numerous studies have shown that opioid-induced immunosuppression can be mediated indirectly via the central nervous system (CNS) or through direct interactions with immunocytes, the precise cellular mechanisms underlying the immunomodulatory effects of opioids are largely unknown. In recent years, investigations from several laboratories have indicated that opioids can operate as cytokines, the principal communication signals of the immune system. All of the major properties of cytokines are shared by opioids, i.e., production by immune cells with paracrine, autocrine, and endocrine sites of action, functional redundancy, pleiotropy and effects that are both dose- and time-dependent. Studies of the effects of opioids on peripheral blood mononuclear cells (PBMC) or brain cells cocultured with HIV-infected cells suggest that some of the immunoregulatory actions of opioids are mediated by ultrahigh affinity receptors on PBMC and glial cells. Because the CNS is populated predominantly by astroglia and microglia which have properties of immune cells, it is possible that certain of the CNS effects of opioids involve cytokine-like interactions with glial cells. Although there is mounting evidence supporting the concept that opioids are members of the cytokine family, the relative contribution of the opioids to immunoregulation remains unclear. The importance of opiate addiction in the AIDS epidemic means that gaining a better understanding of the mechanisms of opioid-induced immunomodulation is of more than academic interest.
Collapse
Affiliation(s)
- P K Peterson
- Neuroimmunobiology and Host Defense Laboratory, Minneapolis Medical Research Foundation, MN 55404, USA.
| | | | | |
Collapse
|
44
|
Makman MH, Dvorkin B. Presence of nociceptin (orphanin FQ) receptors in rat retina: comparison with receptors in striatum. Eur J Pharmacol 1997; 338:171-6. [PMID: 9455999 DOI: 10.1016/s0014-2999(97)81945-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nociceptin (orphanin FQ), a heptadecapeptide with some sequence homology to dynorphin A, has been proposed as an endogenous ligand for a previously cloned orphan receptor with significant homology to opioid receptors. Utilizing [(125)I][Tyr14]nociceptin as ligand, saturable and high affinity nociceptin binding sites were detected and characterized in rat retina and striatum. For retina, Bmax = 44.0 +/- 4.5 fmol/mg and Kd = 32.4 +/- 2.7 pM; for striatum, Bmax = 51.6 +/- 7.7 fmol/mg and Kd = 98.6 +/- 11.3 pM. In competition studies, nociceptin bound with picomolar affinity, dynorphin A with nanomolar affinity, naloxone and dynorphan A-(1-8) with micromolar affinity, while [des-Tyr1]dynorphin (dynorphin A-(2-17)), several other opioids, morphine and benzomorphans failed to compete for binding at 1-10 microM. Gpp(NH)p plus NaCl markedly decreased binding, consistent with involvement of a G protein-linked receptor. It is concluded that rat retina contains nociceptin receptors similar in concentration to those present in striatum. Properties of both the retinal and the striatal receptors are similar to those previously found for rat hypothalamus.
Collapse
Affiliation(s)
- M H Makman
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
45
|
Makman MH, Lyman WD, Dvorkin B. Presence and characterization of nociceptin (orphanin FQ) receptor binding in adult rat and human fetal hypothalamus. Brain Res 1997; 762:247-50. [PMID: 9262184 DOI: 10.1016/s0006-8993(97)00503-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High affinity and saturable nociceptin (orphanin FQ) receptors were detected and characterized in adult rat and human fetal hypothalamic membranes, utilizing [125I]Tyr12-nociceptin as ligand. Nociceptin bound with picomolar affinity, dynorphin A with nanomolar affinity, naloxone and dynorphan A(1-8) with micromolar while des-Tyr1-dynorphin (dynorphin A(2-17)), several other opioids, morphine and benzomorphans failed to compete for binding at 1-10 microM. Gpp(NH)p together with sodium ion markedly decreased binding, consistent with involvement of a G protein-linked receptor.
Collapse
Affiliation(s)
- M H Makman
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
46
|
Sonetti D, Ottaviani E, Stefano GB. Opiate signaling regulates microglia activities in the invertebrate nervous system. GENERAL PHARMACOLOGY 1997; 29:39-47. [PMID: 9195191 DOI: 10.1016/s0306-3623(96)00523-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Evidence supporting the presence in the invertebrate nervous system of a class of glial cells resembling vertebrate microglia was obtained in the freshwater snail Planorbarius corneus. These cells are easily identified by their immunopositivity to anti-pro-opiomelanocortin (POMC)-derived peptide antibodies. 2. Invertebrate microglia, as in vertebrates, exhibit macrophage-like activity in vivo and in cell cultures. These cells respond to the trauma of ganglionic excision and their organotypic culture by leaving their location around neurons and moving to the lesion site from which they migrate in the culture dish. 3. In vitro, these microglia undergo conformational changes and show phagocytic properties in the presence of bacteria or lipopolysaccharide. The activated cells also express tumor necrosis factor-alpha-like material and an increase in nitric oxide synthase, as shown by immunocytochemistry. 4. The inhibitory effect of morphine on the mobility and phagocytic activity of invertebrate microglia provide additional functional evidence for a possible role of opiate-like compounds in downregulating immunoregulatory processes, as also observed in the circulating immunocytes.
Collapse
Affiliation(s)
- D Sonetti
- Dipartimento di Biologia Animale, Università di Modena, Italy.
| | | | | |
Collapse
|
47
|
Sowa G, Gekker G, Lipovsky MM, Hu S, Chao CC, Molitor TW, Peterson PK. Inhibition of swine microglial cell phagocytosis of Cryptococcus neoformans by femtomolar concentrations of morphine. Biochem Pharmacol 1997; 53:823-8. [PMID: 9113103 DOI: 10.1016/s0006-2952(97)00006-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microglia are important immune effector cells within the brain. The phagocytosis of nonopsonized Cryptococcus neoformans by swine microglia was used as an in vitro model for studies on cellular mechanisms of opiate-mediated immunomodulation in the brain. Morphine inhibited potently (IC50 approximately 10(-16) M) the phagocytosis of C. neoformans by primary cultures of neonatal pig microglia. The mu opioid agonist Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) also suppressed phagocytosis but with a much lower potency than morphine (IC50 approximately 10(-8) M). The inhibitory effects of morphine and DAMGO were blocked by equimolar concentrations of naloxone and by the selective mu opiate receptor antagonist beta-funaltrexamine. Pertussis toxin but not cholera toxin reversed the inhibitory effects of both morphine and DAMGO. Our data suggest that morphine inhibits phagocytosis of C. neoformans by swine microglia via a mechanism involving mu opiate receptors coupled to a pertussis toxin-sensitive Gi/G(o) protein signaling pathway.
Collapse
Affiliation(s)
- G Sowa
- Neuroimmunobiology and Host Defense Laboratory, Minneapolis Medical Research Foundation, MN, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Bilfinger TV, Kushnerik V, Bundz S, Liu Y, Stefano GB. Evidence for morphine downregulating immunocytes during cardiopulmonary bypass in a porcine model. Int J Cardiol 1996; 53 Suppl:S39-46. [PMID: 8793592 DOI: 10.1016/0167-5273(96)02574-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiopulmonary bypass is associated with both cellular immunosuppression and an inflammatory response. Previous studies have demonstrated that morphine, a naturally occurring substance, can downregulate granulocyte, monocyte and endothelial activity. It can even prevent the activation caused by exposing these cells to plasma obtained from patients undergoing cardiopulmonary bypass. The present study demonstrates that preadministering a high dose of morphine (3.3 mg/kg) to pigs prior to cardiopulmonary bypass also diminishes the activation levels of these cells. In animals not given morphine, monocyte activation levels were 45% compared to 14% exposed to the opiate. Granulocytes also exhibited the same statistically significant (P < 0.05) drop in cellular activation. Activation is determined by computer-assisted microscopic image analysis whereby cellular shape is indicative of the cells activity. Additionally, in animals pretreated with morphine, a twofold increase in the number of cells was obtained, indicating that the endothelium also was downregulated.
Collapse
Affiliation(s)
- T V Bilfinger
- Department of Surgery, State University of New York at Stony Brook, USA
| | | | | | | | | |
Collapse
|
49
|
Makman MH, Dobrenis K, Downie S, Lyman WD, Dvorkin B. Presence of opiate alkaloid-selective mu3 receptors in cultured astrocytes and in brain and retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 402:23-8. [PMID: 8787639 DOI: 10.1007/978-1-4613-0407-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M H Makman
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | |
Collapse
|
50
|
Stefano GB, Scharrer B, Bilfinger TV, Salzet M, Fricchione GL. A novel view of opiate tolerance. ADVANCES IN NEUROIMMUNOLOGY 1996; 6:265-77. [PMID: 8968426 DOI: 10.1016/s0960-5428(96)00022-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Opiate substances occur as natural compounds in various invertebrate and vertebrate neural tissues. Recently we have discovered a novel opiate alkaloid-selective and opioid peptide-insensitive receptor, designated mu 3, that provides further evidence of the existence of separate morphine processes. Interestingly morphine biosynthesis appears to be linked to the dopamine pathway. Based on studies documenting the presence of morphine after stress, e.g., trauma, it is noted that this signal substance emerges after a timely delay. From this we speculate that this molecule can serve a specific effect to downregulate physiological processes after stress. We conclude that tolerance represents a natural process that terminates its action. In this regard a morphine hypothesis may be essential to a complete picture of motive circuitry. A speculative view of the psychiatric implications in schizophrenia, depression, and autism are presented with this in mind.
Collapse
Affiliation(s)
- G B Stefano
- Multidisciplinary Center for the Study of Aging, Old Westbury Neuroscience Research Institute, State University of New York at Old Westbury, New York 11568, USA
| | | | | | | | | |
Collapse
|