1
|
Jeffryes JG, Lerma-Ortiz C, Liu F, Golubev A, Niehaus TD, Elbadawi-Sidhu M, Fiehn O, Hanson AD, Tyo KE, Henry CS. Chemical-damage MINE: A database of curated and predicted spontaneous metabolic reactions. Metab Eng 2021; 69:302-312. [PMID: 34958914 DOI: 10.1016/j.ymben.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Spontaneous reactions between metabolites are often neglected in favor of emphasizing enzyme-catalyzed chemistry because spontaneous reaction rates are assumed to be insignificant under physiological conditions. However, synthetic biology and engineering efforts can raise natural metabolites' levels or introduce unnatural ones, so that previously innocuous or nonexistent spontaneous reactions become an issue. Problems arise when spontaneous reaction rates exceed the capacity of a platform organism to dispose of toxic or chemically active reaction products. While various reliable sources list competing or toxic enzymatic pathways' side-reactions, no corresponding compilation of spontaneous side-reactions exists, nor is it possible to predict their occurrence. We addressed this deficiency by creating the Chemical Damage (CD)-MINE resource. First, we used literature data to construct a comprehensive database of metabolite reactions that occur spontaneously in physiological conditions. We then leveraged this data to construct 148 reaction rules describing the known spontaneous chemistry in a substrate-generic way. We applied these rules to all compounds in the ModelSEED database, predicting 180,891 spontaneous reactions. The resulting (CD)-MINE is available at https://minedatabase.mcs.anl.gov/cdmine/#/home and through developer tools. We also demonstrate how damage-prone intermediates and end products are widely distributed among metabolic pathways, and how predicting spontaneous chemical damage helps rationalize toxicity and carbon loss using examples from published pathways to commercial products. We explain how analyzing damage-prone areas in metabolism helps design effective engineering strategies. Finally, we use the CD-MINE toolset to predict the formation of the novel damage product N-carbamoyl proline, and present mass spectrometric evidence for its presence in Escherichia coli.
Collapse
Affiliation(s)
- James G Jeffryes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Claudia Lerma-Ortiz
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA; Department of Data Science and Learning, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Filipe Liu
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA; Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Alexey Golubev
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, 197758, Russia
| | - Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA; Plant and Microbial Biology Department, University of Minnesota, Saint Paul, MN, 55108, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Keith Ej Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA; Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Meadows SM, Conti MM, Gross L, Chambers NE, Avnor Y, Ostock CY, Lanza K, Bishop C. Diverse serotonin actions of vilazodone reduce l-3,4-dihidroxyphenylalanine-induced dyskinesia in hemi-parkinsonian rats. Mov Disord 2019; 33:1740-1749. [PMID: 30485908 DOI: 10.1002/mds.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The serotonergic system is a well-established modulator of l-dopa-induced dyskinesia. To date, targeting serotonin transporters or serotonin receptor subtype 1A (5-HT1A ) reduces l-dopa-induced dyskinesia in animal models; however, these strategies have failed to translate clinically. Ideally, a compound acting at both known antidyskinetic sites could optimize serotonin-mediated approaches. Vilazodone is a selective serotonin reuptake inhibitor and a partial 5-HT1A agonist approved by the U.S. Food and Drug Administration, situating Vilazodone in a unique position to reduce l-dopa-induced dyskinesia without compromising l-dopa-mediated motor improvements. OBJECTIVES The goal of the present study was to characterize Vilazodone's effects on l-dopa-induced behaviors, neurochemistry and gene expression in unilateral 6-hydroxydopamine-lesioned hemi-parkinsonian rats. METHODS In experiments 1 and 2, l-dopa-naïve and l-dopa-primed animals were coadministered Vilazodone and l-dopa daily for 3 weeks to model subchronic use, and behavioral, neurochemical, and messenger RNA (mRNA) expression changes were measured. In experiment 3, dyskinetic behavior was assessed following 5-HT1A or serotonin receptor subtype 1B blockade prior to Vilazodone-l-dopa coadministration. RESULTS Vilazodone significantly suppressed developing and established l-dopa-induced dyskinesia without compromising the promotor effects of l-dopa therapy. In the dopamine-depleted striatum, Vilazodone-l-dopa cotreatment increased dopamine content, suggesting a normalization of dopamine kinetics in dyskinetic brain, and reduced l-dopa-induced c-Fos and preprodynorphin mRNA overexpression, indicative of attenuated dopamine D1 receptor-mediated direct pathway overactivity. Only 5-HT1A antagonism partially attenuated Vilazodone's antidyskinetic efficacy, suggesting both serotonin transporter-dependent effects and 5-HT1A receptors in Vilazodone's actions. CONCLUSIONS Our findings show Vilazodone has a serotonin-dependent effect on rodent l-dopa-induced dyskinesia and implicate the potential for repositioning Vilazodone against l-dopa-induced dyskinesia development and expression in Parkinson's disease patients. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Samantha M Meadows
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Libby Gross
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Nicole E Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Yarden Avnor
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Corinne Y Ostock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Kathryn Lanza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
3
|
Ren LQ, Wienecke J, Hultborn H, Zhang M. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury. J Neurotrauma 2016; 33:1150-60. [PMID: 26830512 DOI: 10.1089/neu.2015.4037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Li-Qun Ren
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,2 Laboratory of Spinal Injury and Rehabilitation, Chengde Medical University , Chengde, China
| | - Jacob Wienecke
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,3 Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen, Denmark
| | - Hans Hultborn
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,2 Laboratory of Spinal Injury and Rehabilitation, Chengde Medical University , Chengde, China
| | - Mengliang Zhang
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,4 Neuronano Research Center, Department of Experimental Medical Sciences, Lund University , Lund, Sweden
| |
Collapse
|
4
|
Effects of l-tryptophan on l-DOPA-induced dyskinesia in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque model of Parkinson's disease. Neurosci Lett 2014; 566:72-6. [DOI: 10.1016/j.neulet.2014.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 12/23/2022]
|
5
|
Bhide N, Lindenbach D, Surrena MA, Goldenberg AA, Bishop C, Berger SP, Paquette MA. The effects of BMY-14802 against L-DOPA- and dopamine agonist-induced dyskinesia in the hemiparkinsonian rat. Psychopharmacology (Berl) 2013; 227:533-44. [PMID: 23389756 PMCID: PMC3657017 DOI: 10.1007/s00213-013-3001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/11/2013] [Indexed: 12/18/2022]
Abstract
RATIONALE L-DOPA continues to be the primary treatment for patients with Parkinson's disease; however, the benefits of long-term treatment are often accompanied by debilitating side effects known as dyskinesias. In recent years, several 5-HT1A receptor agonists have been found to reduce dyskinesia in clinical and experimental models of PD. The purported sigma-1 antagonist, BMY-14802 has been previously demonstrated to reduce L-DOPA induced dyskinesia in a 5-HT1A receptor dependent manner. OBJECTIVE In the present study, we extend these findings by examining the anti-dyskinetic potential of BMY-14802 against L-DOPA, the D1 receptor agonist SKF81297 and the D2 receptor agonist, quinpirole, in the hemi-parkinsonian rat model. In addition, the receptor specificity of BMY-14802's effects was evaluated using WAY-100635, a 5-HT1A receptor antagonist. RESULTS Results confirmed the dose-dependent (20 > 10 > 5 mg/kg) anti-dyskinetic effects of BMY-14802 against L-DOPA with preservation of anti-parkinsonian efficacy at 10 mg/kg. BMY-14802 at 10 and 20 mg/kg also reduced dyskinesia induced by both D1 and D2 receptor agonists. Additionally, BMY-14802's anti-dyskinetic effects against L-DOPA, but not SKF81297 or quinpirole, were reversed by WAY-100635 (0.5 mg/kg). CONCLUSION Collectively, these findings demonstrate that BMY-14802 provides anti-dyskinetic relief against L-DOPA and direct DA agonist in a preclinical model of PD, acting via multiple receptor systems and supports the utility of such compounds for the improved treatment of PD.
Collapse
Affiliation(s)
- Nirmal Bhide
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Margaret A. Surrena
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Adam A. Goldenberg
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - S. Paul Berger
- Department of Veterans Affairs Medical Center, Portland, OR 97239
| | | |
Collapse
|
6
|
l-DOPA modifies the antidepressant-like effects of reboxetine and fluoxetine in rats. Neuropharmacology 2013; 67:349-58. [DOI: 10.1016/j.neuropharm.2012.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 01/06/2023]
|
7
|
|
8
|
Eskow KL, Dupre KB, Barnum CJ, Dickinson SO, Park JY, Bishop C. The role of the dorsal raphe nucleus in the development, expression, and treatment of L-dopa-induced dyskinesia in hemiparkinsonian rats. Synapse 2009; 63:610-20. [PMID: 19309758 DOI: 10.1002/syn.20630] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Convergent evidence indicates that in later stages of Parkinson's disease raphestriatal serotonin neurons compensate for the loss of nigrostriatal dopamine neurons by converting and releasing dopamine derived from exogenous administration of the pharmacotherapeutic L-3,4-dihydroxyphenyl-L-alanine (L-dopa). Because the serotonin system is not equipped with dopamine autoregulatory mechanisms, it has been postulated that raphe-mediated striatal dopamine release may fluctuate dramatically. These fluctuations may portend the development of abnormal involuntary movements called L-dopa-induced dyskinesia (LID). As such, it has been hypothesized that reducing the activity of raphestriatal neurons could dampen supraphysiological stimulation of striatal dopamine receptors thereby alleviating LID. To directly address this, the current study employed the rodent model of LID to investigate the contribution of the rostral raphe nuclei (RRN) in the development, expression and treatment of LID. In the first study, dual serotonin/dopamine selective lesions of the RRN and medial forebrain bundle, respectively, verified that the RRN are essential for the development of LID. In a direct investigation into the neuroanatomical specificity of these effects, microinfusions of +/-8-OH-DPAT into the intact dorsal raphe nucleus dose-dependently attenuated the expression of LID without affecting the antiparkinsonian efficacy of L-dopa. These current findings reveal the integral contribution of the RRN in the development and expression of LID and implicate a prominent role for dorsal raphe 5-HT1AR in the efficacious properties of 5-HT1AR agonists.
Collapse
Affiliation(s)
- Karen L Eskow
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, New York 13902-6000, USA
| | | | | | | | | | | |
Collapse
|
9
|
Marin C, Aguilar E, Rodríguez-Oroz MC, Bartoszyk GD, Obeso JA. Local administration of sarizotan into the subthalamic nucleus attenuates levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Psychopharmacology (Berl) 2009; 204:241-50. [PMID: 19159919 DOI: 10.1007/s00213-008-1452-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 12/21/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE Dyskinesia affects the majority of levodopa-treated parkinsonian patients within 5-10 years of treatment with levodopa. Clinical and preclinical observations suggest that an increase in serotoninergic transmission can contribute to the appearance of dyskinesias. It is thus conceivable that a modulation of synaptic dopamine (DA) levels induced by the inhibition of serotonin (5-HT) release, as a consequence of 5-HT(1A) agonists administration, might alleviate dyskinesias. OBJECTIVE Since 5-HT(1A) receptors are expressed in the subthalamic nucleus (STN), the aim of the present study was to assess the effect of the intrasubthalamic administration of sarizotan, a compound with full 5-HT(1A) agonist properties, on levodopa-induced dyskinesias in the 6-hydroxydopamine (6-OHDA) model of parkinsonism. MATERIALS AND METHODS Male Sprague-Dawley rats received a unilateral 6-OHDA administration in the nigrostriatal pathway. A test of apomorphine was performed to evaluate dopamine depletion. One week later, a cannula was implanted in the STN. Animals were treated with levodopa (6 mg/kg, i.p., twice at day) for 22 consecutive days. On day 23, several doses (1 ng, 10 ng, or 1 microg) of sarizotan were administered through the cannula to the STN. The higher doses of sarizotan effectively attenuated all levodopa-induced dyskinesias including axial, limb, and orolingual subtypes. CONCLUSIONS These results suggest that the STN is a target structure for the antidyskinetic action of sarizotan and indicate that drug-mediated modulation of STN activity may be an alternative option for the treatment of levodopa-induced dyskinesias in Parkinson's disease.
Collapse
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
10
|
Dupre KB, Eskow KL, Steiniger A, Klioueva A, Negron GE, Lormand L, Park JY, Bishop C. Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on L-DOPA-induced dyskinesia and rotational behaviors in the hemi-parkinsonian rat. Psychopharmacology (Berl) 2008; 199:99-108. [PMID: 18545986 DOI: 10.1007/s00213-008-1135-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 03/01/2008] [Indexed: 11/27/2022]
Abstract
RATIONALE Serotonin 1A receptor (5-HT1AR) agonists reduce L-DOPA-induced dyskinesia and enhance motor function in experimental and clinical investigations of Parkinson's disease (PD). While the mechanism(s) by which these effects occur are unclear, recent research suggests that modulation of glutamate neurotransmission contributes. OBJECTIVE To further delineate the relationship between 5-HT1A receptors and glutamate, the current study examined the effects of the 5-HT1AR agonist, +/-8-OH-DPAT and the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, MK-801, on L-DOPA-induced motor behavior. MATERIALS AND METHODS Unilateral 6-hydroxydopamine lesioned male Sprague-Dawley rats were rendered dyskinetic with 1 week of daily L-DOPA (12 mg/kg, i.p.) + benserazide (15 mg/kg, i.p.). On test days, one group of rats received pretreatments of: +/-8-OH-DPAT (0, 0.03, 0.1, 0.3 mg/kg, i.p.) or MK-801 (0, 0.03, 0.1, 0.3 mg/kg, i.p.). A second group was administered combined +/-8-OH-DPAT (0, 0.03 or 0.1 mg/kg, i.p.) + MK-801 (0, 0.1 mg/kg, i.p.). Pretreatments were followed by L-DOPA administration, after which, abnormal involuntary movements (AIMs) and rotations were monitored. To investigate effects on motor performance, subthreshold doses of +/-8-OH-DPAT (0.03 mg/kg, i.p.) + MK-801 (0.1 mg/kg, i.p.) were administered to L-DOPA-naïve hemiparkinsonian rats before the forepaw adjusting steps test. RESULTS Individually, both +/-8-OH-DPAT and MK-801 dose-dependently decreased L-DOPA-induced AIMs without affecting rotations. Combined subthreshold doses of +/-8-OH-DPAT+MK-801 reduced L-DOPA-induced AIMs and potently enhanced contralateral rotations without altering L-DOPA-induced motor improvements. CONCLUSIONS The current results indicate a functional interaction between 5-HT1AR and NMDAR that may improve pharmacological treatment of PD patients.
Collapse
Affiliation(s)
- Kristin B Dupre
- Department of Psychology, Behavioral Neuroscience Program, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yamada H, Aimi Y, Nagatsu I, Taki K, Kudo M, Arai R. Immunohistochemical detection of L-DOPA-derived dopamine within serotonergic fibers in the striatum and the substantia nigra pars reticulata in Parkinsonian model rats. Neurosci Res 2007; 59:1-7. [PMID: 17586078 DOI: 10.1016/j.neures.2007.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 05/09/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
On the basis of our previous studies in the normal rat [Arai, R., Karasawa, N., Geffard, M., Nagatsu, I., 1995. L-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci. Lett. 195, 195-198; Arai, R., Karasawa, N., Nagatsu, I., 1996a. Aromatic L-amino acid decarboxylase is present in serotonergic fibers of the striatum of the rat. A double-labeling immunofluorescence study. Brain Res. 706, 177-179; Arai, R., Karasawa, N., Nagatsu, I., 1996b. Dopamine produced from L-DOPA is degraded by endogenous monoamine oxidase in neurons of the dorsal raphe nucleus of the rat: an immunohistochemical study. Brain Res. 722, 181-184] we have assumed that exogenously administered L-dihydroxyphenylalanine (L-DOPA) is converted into dopamine (DA) in serotonergic (5-HT) fibers within the striatum (ST) and the substantia nigra pars reticulata (SNR). In the present study, an attempt was made to confirm the assumptions in Parkinsonian rats, which were produced by unilateral injections of 6-hydroxydopamine (6-OHDA) into the substantia nigra pars compacta (SNC). The rats exhibiting more than 150 total controversial circles were regarded as satisfactory models of Parkinson disease (PD). Using a dual immunofluorescence histochemistry, we examined DA-immunoreactivity in the 5-HT fibers within the ST and the SNR of the PD model rats after L-DOPA was injected intraperitoneally. In experimental cases with the L-DOPA administration, DA-immunoreactivity was detected in 5-HT fibers in both the ST and the SNR on the 6-OHDA injection side; no DA-immunoreactivity was found in 5-HT fibers in the ST or the SNR in control cases without the L-DOPA administration. The results support the assumption that exogenously administered L-DOPA may be converted into DA within the 5-HT fibers in the ST and SNR of the PD model rats.
Collapse
Affiliation(s)
- Hiromasa Yamada
- Department of Anatomy, Shiga University of Medical Science Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Dupre KB, Eskow KL, Negron G, Bishop C. The differential effects of 5-HT(1A) receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Res 2007; 1158:135-43. [PMID: 17553470 DOI: 10.1016/j.brainres.2007.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 11/26/2022]
Abstract
Serotonin 1A receptor (5-HT(1A)R) agonists have emerged as valuable supplements to l-DOPA therapy, demonstrating that they can decrease side effects and enhance motor function in animal models of Parkinson's disease (PD) and human PD patients. The precise mechanism by which these receptors act remains unknown and there is limited information on how 5-HT(1A)R stimulation impacts striatal dopamine (DA) D1 receptor (D1R) and D2 receptor (D2R) function. The current study examined the effects of 5-HT(1A)R stimulation on DA receptor-mediated behaviors. Male Sprague-Dawley rats were rendered hemiparkinsonian by unilateral 6-OHDA lesions and primed with the D1R agonist SKF81297 (0.8 mg/kg, i.p.) in order to sensitize DA receptors. Using a randomized within subjects design, rats received a first injection of: Vehicle (dH(2)O) or the 5-HT(1A)R agonist +/-8-OH-DPAT (0.1 or 1.0 mg/kg, i.p.), followed by a second injection of: Vehicle (dimethyl sulfoxide), the D1R agonist SKF81297 (0.8 mg/kg, i.p.), the D2R agonist quinpirole (0.2 mg/kg, i.p.), or l-DOPA (12 mg/kg+benserazide, 15 mg/kg, i.p.). On test days, rats were monitored over a 2-h period immediately following the second injection for abnormal involuntary movements (AIMs), analogous to dyskinesia observed in PD patients, and contralateral rotations. The present findings indicate that 5-HT(1A)R stimulation reduces AIMs induced by D1R, D2R and l-DOPA administration while its effects on DA agonist-induced rotations were receptor-dependent, suggesting that direct 5-HT(1A)R and DA receptor interactions may contribute to the unique profile of 5-HT(1A)R agonists for the improvement of PD treatment.
Collapse
Affiliation(s)
- Kristin B Dupre
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | | | | | | |
Collapse
|
13
|
Kishimoto Y, Geffard M, Arai R. Catecholamine degradation by monoamine oxidase in locus coeruleus neurons of the rat. An immunohistochemical study. Brain Res 2000; 859:373-7. [PMID: 10719089 DOI: 10.1016/s0006-8993(00)02004-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examined by immunohistochemistry the effects of monoamine oxidase (MAO) inhibition on the content of dopamine (DA) and noradrenaline (NA) in locus coeruleus (LC) neurons of the rat. In normal rats, clusters of DA- and NA-immunopositive neurons were identified in the LC. Rats treated with intraperitoneal injections of pargyline, an MAO inhibitor, showed significantly stronger DA- and NA-staining intensities in LC neurons compared to normal rats. In LC noradrenergic neurons, it is believed that DA is formed in the cytoplasm and then transported into the storage vesicles where it is converted to NA, and the secreted NA is recycled by a reuptake mechanism and transported back into storage vesicles via the cytoplasm. Furthermore, LC neurons of the rat have been shown to contain DA- and NA-degrading MAO activities on the outer membranes of the mitochondria. Therefore, our findings suggest that endogenous MAO degrades not only part of the DA formed in the cytoplasm of LC neurons, but also part of the secreted NA that has been transported back into the cytoplasm.
Collapse
Affiliation(s)
- Y Kishimoto
- Department of Anatomy, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | |
Collapse
|
14
|
Maeda T, Kannari K, Suda T, Matsunaga M. Loss of regulation by presynaptic dopamine D2 receptors of exogenous L-DOPA-derived dopamine release in the dopaminergic denervated striatum. Brain Res 1999; 817:185-91. [PMID: 9889362 DOI: 10.1016/s0006-8993(98)01248-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To determine whether dopamine release derived from exogenous l-DOPA is under inhibitory control of presynaptic dopamine D2 receptors in the dopaminergic denervated striatum, extracellular dopamine levels were measured in the striatum of 6-hydroxydopamine-lesioned rats using in vivo brain microdialysis. Quinpirole, a D2 agonist, dose-dependently (0.01-3 mg/kg s.c.) inhibited endogenous dopamine release both in the intact and dopaminergic denervated striatum. The dose-response curve obtained from the denervated striatum showed a shift to the right. Administration of l-DOPA (30 mg/kg i.p.) with carbidopa (25 mg/kg i.p.) increased dopamine release to 130% of basal levels in the intact striatum and 770% of basal levels in the denervated striatum. In the intact striatum, dopamine release was continuously inhibited by quinpirole pretreatment (1 mg/kg s.c.) even after l-DOPA administration. In the denervated striatum, l-DOPA-derived dopamine release was not affected by quinpirole pretreatment. These results suggest that, in the striatum with dopaminergic denervation, regulation by presynaptic D2 receptors is still operative on endogenous dopamine release but it does not work on dopamine release derived from exogenously administered l-DOPA.
Collapse
Affiliation(s)
- T Maeda
- Department of Neurology, Institute of Neurological Diseases, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8216, Japan
| | | | | | | |
Collapse
|
15
|
Arai R, Kimura H, Nagatsu I, Maeda T. Preferential localization of monoamine oxidase type A activity in neurons of the locus coeruleus and type B activity in neurons of the dorsal raphe nucleus of the rat: a detailed enzyme histochemical study. Brain Res 1997; 745:352-6. [PMID: 9037433 DOI: 10.1016/s0006-8993(96)01239-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using enzyme histochemistry for monoamine oxidase (MAO) activity, we have examined whether MAO type A or type B or both are localized in neurons of the locus coeruleus (LC) and dorsal raphe nucleus (DR) of the rat. After pretreatment with various concentrations of the MAO type A inhibitor clorgyline or the type B inhibitor deprenyl, non-fixed frozen sections of the brain were histochemically stained for MAO activity with tyramine as a common substrate for the two types. MAO activity of the stained neuron was determined by measuring optical density of the staining. Percentage inhibition of the control MAO activity was plotted against increasing concentrations of the inhibitors. MAO activity of LC neurons was inhibited by low concentrations of clorgyline with a monophasic dose-response curve but not with a biphasic curve. Higher concentrations of deprenyl were needed to inhibit of LC neurons. MAO activity of DR neurons was inhibited by low concentrations of deprenyl with a monophasic dose-response curve. Clorgyline inhibited the MAO activity of DR neurons at only higher concentrations. When the sections without inhibitor pretreatment were incubated with the type A preferential substrate serotonin, the MAO activity was strongly stained in LC neurons but very weakly in DR neurons. With the type B preferential substrate beta-phenylethylamine, the staining was intense in DR neurons while very faint in LC neurons. These findings suggest that (i) almost all the MAO activity in LC neurons is of type A, and (ii) the MAO activity in DR neurons is predominantly of type B.
Collapse
Affiliation(s)
- R Arai
- Department of Anatomy, Fujita Health University, School of Medicine, Aichi, Japan
| | | | | | | |
Collapse
|