1
|
Huenchuguala S, Segura-Aguilar J. Natural Compounds That Activate the KEAP1/Nrf2 Signaling Pathway as Potential New Drugs in the Treatment of Idiopathic Parkinson's Disease. Antioxidants (Basel) 2024; 13:1125. [PMID: 39334784 PMCID: PMC11428591 DOI: 10.3390/antiox13091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recently, a single-neuron degeneration model has been proposed to understand the development of idiopathic Parkinson's disease based on (i) the extremely slow development of the degenerative process before the onset of motor symptoms and during the progression of the disease and (ii) the fact that it is triggered by an endogenous neurotoxin that does not have an expansive character, limiting its neurotoxic effect to single neuromelanin-containing dopaminergic neurons. It has been proposed that aminochrome is the endogenous neurotoxin that triggers the neurodegenerative process in idiopathic Parkinson's disease by triggering mitochondrial dysfunction, oxidative stress, neuroinflammation, dysfunction of both lysosomal and proteasomal protein degradation, endoplasmic reticulum stress and formation of neurotoxic alpha-synuclein oligomers. Aminochrome is an endogenous neurotoxin that is rapidly reduced by flavoenzymes and/or forms adducts with proteins, which implies that it is impossible for it to have a propagative neurotoxic effect on neighboring neurons. Interestingly, the enzymes DT-diaphorase and glutathione transferase M2-2 prevent the neurotoxic effects of aminochrome. Natural compounds present in fruits, vegetables and other plant products have been shown to activate the KEAP1/Nrf2 signaling pathway by increasing the expression of antioxidant enzymes including DT-diaphorase and glutathione transferase. This review analyzes the possibility of searching for natural compounds that increase the expression of DT-diaphorase and glutathione transferase through activation of the KEAP1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
2
|
Huenchuguala S, Segura-Aguilar J. Targets to Search for New Pharmacological Treatment in Idiopathic Parkinson's Disease According to the Single-Neuron Degeneration Model. Biomolecules 2024; 14:673. [PMID: 38927076 PMCID: PMC11201619 DOI: 10.3390/biom14060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
One of the biggest problems in the treatment of idiopathic Parkinson's disease is the lack of new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease, although it induces severe side effects. The failure of clinical studies with new drugs depends on the use of preclinical models based on neurotoxins that do not represent what happens in the disease since they induce rapid and expansive neurodegeneration. We have recently proposed a single-neuron degeneration model for idiopathic Parkinson's disease that requires years to accumulate enough lost neurons for the onset of motor symptoms. This single-neuron degeneration model is based on the excessive formation of aminochrome during neuromelanin synthesis that surpass the neuroprotective action of the enzymes DT-diaphorase and glutathione transferase M2-2, which prevent the neurotoxic effects of aminochrome. Although the neurotoxic effects of aminochrome do not have an expansive effect, a stereotaxic injection of this endogenous neurotoxin cannot be used to generate a preclinical model in an animal. Therefore, the aim of this review is to evaluate the strategies for pharmacologically increasing the expression of DT diaphorase and GSTM2-2 and molecules that induce the expression of vesicular monoamine transporter 2, such as pramipexole.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| |
Collapse
|
3
|
Xu B, Chen ZX, Zhou WJ, Su J, Zhou Q. Associations between blood manganese levels and sarcopenia in adults: insights from the National Health and Nutrition Examination Survey. Front Public Health 2024; 12:1351479. [PMID: 38803810 PMCID: PMC11128573 DOI: 10.3389/fpubh.2024.1351479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024] Open
Abstract
Background While increasing concerns arise about the health effects of environmental pollutants, the relationship between blood manganese (Mn) and sarcopenia has yet to be fully explored in the general population. Objective This study aims to investigate the association between blood manganese (Mn) levels and sarcopenia in adults. Methods In our study, we evaluated 8,135 individuals aged 18-59 years, utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning 2011 to 2018. We employed generalized additive model (GAM) to discern potential non-linear relationships and utilized the two-piecewise linear regression model to probe the association between blood Mn levels and sarcopenia. Results After adjusting for potential confounders, we identified non-linear association between blood Mn levels and sarcopenia, with an inflection point at 13.45 μg/L. The effect sizes and the confidence intervals on the left and right sides of the inflection point were 1.006 (0.996 to 1.048) and 1.082 (1.043 to 1.122), respectively. Subgroup analysis showed that the effect sizes of blood Mn on sarcopenia have significant differences in gender and different BMI groups. Conclusion Our results showed that a reverse U-shaped curve between blood Mn levels and sarcopenia, with an identified the inflection point at blood Mn level of 13.45 μg/L.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Zhou
- Department of Orthopedic Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Huenchuguala S, Segura-Aguilar J. Single-neuron neurodegeneration as a degenerative model for Parkinson's disease. Neural Regen Res 2024; 19:529-535. [PMID: 37721280 PMCID: PMC10581573 DOI: 10.4103/1673-5374.380878] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
The positive effect of levodopa in the treatment of Parkinson's disease, although it is limited in time and has severe side effects, has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons. Successful preclinical studies with coenzyme Q10, mitoquinone, isradipine, nilotinib, TCH346, neurturin, zonisamide, deferiprone, prasinezumab, and cinpanemab prompted clinical trials. However, these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease, despite its severe side effects after 4-6 years of chronic treatment. The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson's disease treatment is a big problem. In our opinion, the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine, that induce a very fast, massive and expansive neurodegenerative process, which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons. The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's patients is due to (i) a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron, (ii) a neurotoxic event that is not expansive and (iii) the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons. The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome, since it (i) is generated within neuromelanin-containing dopaminergic neurons, (ii) does not cause an expansive neurotoxic effect and (iii) triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's disease. In conclusion, based on the hypothesis that the neurodegenerative process of idiopathic Parkinson's disease corresponds to a single-neuron neurodegeneration model, we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2. It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras, Osorno, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Instituto de Ciencias Biomedicas (ICBM), Faculty of medicine, University of Chile, Independencia, Santiago, Chile
| |
Collapse
|
5
|
López de Felipe F. Revised Aspects into the Molecular Bases of Hydroxycinnamic Acid Metabolism in Lactobacilli. Antioxidants (Basel) 2023; 12:1294. [PMID: 37372024 DOI: 10.3390/antiox12061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Hydroxycinnamic acids (HCAs) are phenolic compounds produced by the secondary metabolism of edible plants and are the most abundant phenolic acids in our diet. The antimicrobial capacity of HCAs is an important function attributed to these phenolic acids in the defense of plants against microbiological threats, and bacteria have developed diverse mechanisms to counter the antimicrobial stress imposed by these compounds, including their metabolism into different microbial derivatives. The metabolism of HCAs has been intensively studied in Lactobacillus spp., as the metabolic transformation of HCAs by these bacteria contributes to the biological activity of these acids in plant and human habitats or to improve the nutritional quality of fermented foods. The main mechanisms known to date used by Lactobacillus spp. to metabolize HCAs are enzymatic decarboxylation and/or reduction. Here, recent advances in the knowledge regarding the enzymes that contribute to these two enzymatic conversions, the genes involved, their regulation and the physiological significance to lactobacilli are reviewed and critically discussed.
Collapse
Affiliation(s)
- Félix López de Felipe
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, 28040 Madrid, Spain
| |
Collapse
|
6
|
De Araújo FM, Frota AF, de Jesus LB, Macedo TC, Cuenca-Bermejo L, Sanchez-Rodrigo C, Ferreira KMS, de Oliveira JVR, de Fatima Dias Costa M, Segura-Aguilar J, Costa SL, Herrero MT, Silva VDA. Aminochrome Induces Neuroinflammation and Dopaminergic Neuronal Loss: A New Preclinical Model to Find Anti-inflammatory and Neuroprotective Drugs for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:265-281. [PMID: 34988761 PMCID: PMC11415180 DOI: 10.1007/s10571-021-01173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
Studies have suggested aminochrome as an endogenous neurotoxin responsible for the dopaminergic neuron degeneration in Parkinson's disease (PD). However, neuroinflammation, an important alteration in PD pathogenesis, has been strictly induced in vitro by aminochrome. The aim of this study was to characterize the neuroinflammation induced in vivo by aminochrome. Wistar rats (male, 250-270 g) received a unilateral single dose by stereotaxic injection of saline into three sites in the striatum in the negative control group, or 32 nmol 6-hydroxydopamine (6-OHDA) in the positive control, or 6 nmol aminochrome. After 14 days, histological and molecular analyses were performed. We observed by immunofluorescence that aminochrome, as well as 6-OHDA, induced an increase in the number of Iba-1+ cells and in the number of activated (Iba-1+/ CD68+) microglia. An increase in the number of S100b+ cells and in the GFAP expression were also evidenced in the striatum and the SNpc of animals from aminochrome and positive control group. Dopaminergic neuronal loss was marked by reduction of TH+ cells and confirmed with reduction in the number of Nissl-stained neurons in the SNpc of rats from aminochrome and positive control groups. In addition, we observed by qPCR that aminocrhome induced an increase in the levels of IL-1β, TNF-α, NLRP3, CCL5 and CCR2 mRNA in the SNpc. This work provides the first evidence of microgliosis, astrogliosis and neuroinflammation induced by aminochrome in an in vivo model. Since aminochrome is an endogenous molecule derived from dopamine oxidation present in the targeted neurons in PD, these results reinforce the potential of aminochrome as a useful preclinical model to find anti-inflammatory and neuroprotective drugs for PD. Aminochrome induced dopaminergic neuronal loss, microglial activation, astroglial activation and neuroinflammation marked by an increase in NLRP3, IL1β, TNF-α, CCL2, CCL5 and CCR2.
Collapse
Affiliation(s)
- Fillipe Mendes De Araújo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
- Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Annyta Fernandes Frota
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Lívia Bacelar de Jesus
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ticiane Caribe Macedo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Lorena Cuenca-Bermejo
- Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Consuelo Sanchez-Rodrigo
- Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Kariny Maria Silva Ferreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valéria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Maria de Fatima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Maria Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain.
| | - Victor Diógenes Amaral Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
7
|
Hényková E, Kaleta M, Klíčová K, Gonzalez G, Novák O, Strnad M, Kaňovský P. Quantitative Determination of Endogenous Tetrahydroisoquinolines, Potential Parkinson's Disease Biomarkers, in Mammals. ACS Chem Neurosci 2022; 13:3230-3246. [PMID: 36375023 DOI: 10.1021/acschemneuro.2c00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current diagnostic options for Parkinson's disease are very limited and primarily based on characteristic clinical symptoms. Thus, there are urgent needs for reliable biomarkers that enable us to diagnose the disease in the early stages, differentiate it from other atypical Parkinsonian syndromes, monitor its progression, increase knowledge of its pathogenesis, and improve the development of potent therapies. A promising group of potential biomarkers are endogenous tetrahydroisoquinoline metabolites, which are thought to contribute to the multifactorial etiology of Parkinson's disease. The aim of this critical review is to highlight trends and limitations of available traditional and modern analytical techniques for sample pretreatment (extraction and derivatization procedures) and quantitative determination of tetrahydroisoquinoline derivatives in various types of mammalian fluids and tissues (urine, plasma, cerebrospinal fluid, brain tissue, liver tissue). Particular attention is paid to the most sensitive and specific analytical techniques, involving immunochemistry and gas or liquid chromatography coupled with mass spectrometric, fluorescence, or electrochemical detection. The review also includes a discussion of other relevant agents proposed and tested in Parkinson's disease.
Collapse
Affiliation(s)
- Eva Hényková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Michal Kaleta
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Gabriel Gonzalez
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic.,Department of Experimental Biology, Faculty of Science, Palacky University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| |
Collapse
|
8
|
Marwah PK, Paik G, Issa CJ, Jemison CC, Qureshi MB, Hanna TM, Palomino E, Maddipati KR, Njus D. Manganese-stimulated redox cycling of dopamine derivatives: Implications for manganism. Neurotoxicology 2022; 90:10-18. [PMID: 35217070 DOI: 10.1016/j.neuro.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
Manganism, the condition caused by chronic exposure to high levels of manganese, selectively targets the dopamine-rich basal ganglia causing a movement disorder with symptoms similar to Parkinson's disease. While the basis for this specific targeting is unknown, we hypothesize that it may involve complexation of Mn by dopamine derivatives. At micromolar concentrations, MnCl2 accelerates the two-equivalent redox cycling of a dopamine-derived benzothiazine (dopathiazine) by an order of magnitude. In the process, O2 is reduced to superoxide and hydrogen peroxide. This effect is unique to Mn and is not shared by Fe, Cu, Zn, Co, Ca or Mg. Notably, the effect of Mn requires the presence of inorganic phosphate, suggesting that phosphate may stabilize a Mn/catecholate complex, which reacts readily with O2. This or similar endogenous dopamine derivatives may exacerbate Mn-dependent oxidative stress accounting for the neurological selectivity of manganism.
Collapse
Affiliation(s)
- Praneet Kaur Marwah
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Gijong Paik
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Christopher J Issa
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Muhammad B Qureshi
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Tareq M Hanna
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Eduardo Palomino
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Walker Cancer Research Institute, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne State Univ. School of Medicine, Detroit, MI 48201, USA
| | - David Njus
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
9
|
Segura-Aguilar J, Paris I. Mechanisms of Dopamine Oxidation and Parkinson’s Disease. HANDBOOK OF NEUROTOXICITY 2022:1433-1468. [DOI: 10.1007/978-3-031-15080-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Inukai S, Hara S, Ichinose H. Tyrosine hydroxylase activity is regulated through the modification of the 176th cysteine residue. Biochem Biophys Res Commun 2021; 589:209-214. [PMID: 34922205 DOI: 10.1016/j.bbrc.2021.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthesis of dopamine (DA), and the regulation of its activity is important for DA homeostasis. In this study, we focused on the modification of TH through a cysteine residue. We found that incubation with N-ethylmaleimide (NEM), a cysteine modification reagent, inactivated TH. The responsible cysteine was identified as Cys176 of human TH with recombinant mutant proteins. We further examined how NEM modification was affected by the states of TH. DA binding, a feedback inhibition mechanism of TH, delayed the modification and inactivation of TH by NEM. In contrast, the S40E mutant, which mimics the phosphorylation of Ser40 that suppresses DA binding and is thus considered as an active state of TH, did not affect modification and inactivation. These results suggest that the modification of Cys176 can inhibit even phosphorylated active TH. In addition, we found that DA oxides, which are generated by oxidative stress in dopaminergic neurons, reacted with TH through Cys176 and inhibited its activity, similar to NEM. These results suggest that the modification of Cys176 of TH could be involved in the mechanisms of neurotoxicity caused by DA oxides.
Collapse
Affiliation(s)
- Shunya Inukai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
11
|
Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021; 41:101950. [PMID: 33774477 PMCID: PMC8027776 DOI: 10.1016/j.redox.2021.101950] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we summarize the multiple functions of NQO1, its established roles in redox processes and potential roles in redox control that are currently emerging. NQO1 has attracted interest due to its roles in cell defense and marked inducibility during cellular stress. Exogenous substrates for NQO1 include many xenobiotic quinones. Since NQO1 is highly expressed in many solid tumors, including via upregulation of Nrf2, the design of compounds activated by NQO1 and NQO1-targeted drug delivery have been active areas of research. Endogenous substrates have also been proposed and of relevance to redox stress are ubiquinone and vitamin E quinone, components of the plasma membrane redox system. Established roles for NQO1 include a superoxide reductase activity, NAD+ generation, interaction with proteins and their stabilization against proteasomal degradation, binding and regulation of mRNA translation and binding to microtubules including the mitotic spindles. We also summarize potential roles for NQO1 in regulation of glucose and insulin metabolism with relevance to diabetes and the metabolic syndrome, in Alzheimer's disease and in aging. The conformation and molecular interactions of NQO1 can be modulated by changes in the pyridine nucleotide redox balance suggesting that NQO1 may function as a redox-dependent molecular switch.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
12
|
Zhang Y, Guo J, Han G, Bai Y, Ge Q, Ma J, Lau CH, Shao L. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. SCIENCE ADVANCES 2021; 7:eabe8706. [PMID: 33762342 PMCID: PMC7990329 DOI: 10.1126/sciadv.abe8706] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 05/25/2023]
Abstract
The weak interlamellar interaction of covalent organic framework (COF) nanocrystals inhibit the construction of highly efficient ion/molecular sieving membranes owing to the inferior contaminant selectivity induced by defects in stacked COF membranes and stability issues. Here, a facile in situ molecularly soldered strategy was developed to fabricate defect-free ultrathin COF membranes with precise sieving abilities using the typical chemical environment for COF condensation polymerization and dopamine self-polymerization. The experimental data and density functional theory simulations proved that the reactive oxygen species generated during dopamine polymerization catalyze the nucleophilic reactions of the COF, thus facilitating the counter-diffusion growth of thin COF layers. Notably, dopamine can eliminate the defects in the stacked COF by soldering the COF crystals, fortifying the mechanical properties of the ultrathin COF membranes. The COF membranes exhibited ultrafast precision sieving for molecular separation and ion removal in both aqueous and organic solvents, which surpasses that of state-of-the-art membranes.
Collapse
Affiliation(s)
- Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Jing Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongping Bai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qingchun Ge
- College of Environment and Resources, Fuzhou University, No. 2 Xueyuan Road, Fujian 350116, China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
13
|
Valdes R, Armijo A, Muñoz P, Hultenby K, Hagg A, Inzunza J, Nalvarte I, Varshney M, Mannervik B, Segura-Aguilar J. Cellular Trafficking of Glutathione Transferase M2-2 Between U373MG and SHSY-S7 Cells is Mediated by Exosomes. Neurotox Res 2021; 39:182-190. [PMID: 33555546 DOI: 10.1007/s12640-020-00327-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Abstract
The enzyme glutathione transferase M2-2, expressed in human astrocytes, increases its expression in the presence of aminochrome and catalyzes the conjugation of aminochrome, preventing its toxic effects. Secretion of the enzyme glutathione transferase M2-2 from U373MG cells, used as a cellular model for astrocytes, has been reported, and the enzyme is taken up by neuroblastoma SYSH-S7 cells and provide protection against aminochrome. The present study provides evidence that glutathione transferase M2-2 is released in exosomes from U373MG cells, thereby providing a means for intercellular transport of the enzyme. With particular relevance to Parkinson disease and other degenerative conditions, we propose a new mechanism by which astrocytes may protect dopaminergic neurons against the endogenous neurotoxin aminochrome.
Collapse
Affiliation(s)
- Raúl Valdes
- Molecular and Clinical Pharmacology ICBM Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alicia Armijo
- Molecular and Clinical Pharmacology ICBM Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricia Muñoz
- Nucleo de Química Y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Kjell Hultenby
- Department of Laboratory Medicine, Division of Clinical Research Center, Karolinska Institutet, Huddinge, Sweden
| | - Andres Hagg
- Department of Laboratory Medicine, Division of Clinical Research Center, Karolinska Institutet, Huddinge, Sweden
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology ICBM Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
14
|
Go J, Ryu YK, Park HY, Choi DH, Choi YK, Hwang DY, Lee CH, Kim KS. NQO1 regulates pharmaco-behavioral effects of d-amphetamine in striatal dopaminergic system in mice. Neuropharmacology 2020; 170:108039. [PMID: 32165217 DOI: 10.1016/j.neuropharm.2020.108039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 11/18/2022]
Abstract
The NAD(P)H:quinone oxidoreductase 1 (NQO1) gene encodes a cytosolic flavoenzyme that catalyzes the two-electron reduction of quinones to hydroquinones. A polymorphic form of NQO1 is associated with mood disorders such as schizophrenia. However, the role of NQO1 in dopaminergic system has not yet been elucidated. To determine the role of NQO1 in the dopaminergic system, we investigated pharmaco-behavioral effects of d-amphetamine using NQO1-deficienct mice. According to our comparative study involving NQO1+/+ and NQO1-/- mice, NQO1 deficiency increased d-amphetamine-induced psychomotor activity and psychological dependency compared to wild-type mice. Basal and d-amphetamine-induced dopamine levels were also enhanced by NQO1 deficiency. In NQO1-/- mice, neural activation induced by d-amphetamine was higher in dorsolateral striatum, but not in dorsomedial and ventral striata. Although protein level of CaMKIIα, which is a key player in amphetamine-induced dopamine efflux, was decreased in striata of NQO1-/- mice, phosphorylation of CaMKIIα was markedly enhanced in NQO1-/- mice compared to wild-type mice. Interestingly, experiments with pharmacological antagonist showed that D2 antagonist-induced suppression of locomotion required activation of NQO1. Moreover, the rewarding effect in response to D1 agonist was increased by NQO1 deficiency. These results suggest that striatal NQO1 is of considerable interest to understand the mechanism of dopaminergic regulation of psychiatric disorders.
Collapse
Affiliation(s)
- Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; College of Biosciences & Biotechnology, Chung-Nam National University, Daejeon, 34134, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Miyajima T, Melangath G, Zhu S, Deshpande N, Vasanth S, Mondal B, Kumar V, Chen Y, Price MO, Price FW, Rogan EG, Zahid M, Jurkunas UV. Loss of NQO1 generates genotoxic estrogen-DNA adducts in Fuchs Endothelial Corneal Dystrophy. Free Radic Biol Med 2020; 147:69-79. [PMID: 31857234 PMCID: PMC6939626 DOI: 10.1016/j.freeradbiomed.2019.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Fuchs Endothelial Corneal Dystrophy (FECD) is an age-related genetically complex disease characterized by increased oxidative DNA damage and progressive degeneration of corneal endothelial cells (HCEnCs). FECD has a greater incidence and advanced phenotype in women, suggesting a possible role of hormones in the sex-driven differences seen in the disease pathogenesis. In this study, catechol estrogen (4-OHE2), the byproduct of estrogen metabolism, induced genotoxic estrogen-DNA adducts formation, macromolecular DNA damage, and apoptotic cell death in HCEnCs; these findings were potentiated by menadione (MN)-mediated reactive oxygen species (ROS). Expression of NQO1, a key enzyme that neutralizes reactive estrogen metabolites, was downregulated in FECD, indicating HCEnC susceptibility to reactive estrogen metabolism in FECD. NQO1 deficiency in vitro exacerbated the estrogen-DNA adduct formation and loss of cell viability, which was rescued by the supplementation of N-acetylcysteine, a ROS scavenger. Notably, overexpression of NQO1 in HCEnCs treated with MN and 4-OHE2 quenched the ROS formation, thereby reducing the DNA damage and endothelial cell loss. This study signifies a pivotal role for NQO1 in mitigating the macromolecular oxidative DNA damage arising from the interplay between intracellular ROS and impaired endogenous estrogen metabolism in post-mitotic ocular tissue cells. A dysfunctional Nrf2-NQO1 axis in FECD renders HCEnCs susceptible to catechol estrogens and estrogen-DNA adducts formation. This novel study highlights the potential role of NQO1-mediated estrogen metabolite genotoxicity in explaining the higher incidence of FECD in females.
Collapse
Affiliation(s)
- Taiga Miyajima
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Dokkyo Medical University, Tochigi, 321-0293, Japan
| | - Geetha Melangath
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shan Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Neha Deshpande
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shivakumar Vasanth
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Bodhisattwa Mondal
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Varun Kumar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Yuming Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Marianne O Price
- Price Vision Group and Cornea Research Foundation of America, Indianapolis, IN, USA
| | - Francis W Price
- Price Vision Group and Cornea Research Foundation of America, Indianapolis, IN, USA
| | - Eleanor G Rogan
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ula V Jurkunas
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Chumarina M, Russ K, Azevedo C, Heuer A, Pihl M, Collin A, Frostner EÅ, Elmer E, Hyttel P, Cappelletti G, Zini M, Goldwurm S, Roybon L. Cellular alterations identified in pluripotent stem cell-derived midbrain spheroids generated from a female patient with progressive external ophthalmoplegia and parkinsonism who carries a novel variation (p.Q811R) in the POLG1 gene. Acta Neuropathol Commun 2019; 7:208. [PMID: 31843010 PMCID: PMC6916051 DOI: 10.1186/s40478-019-0863-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Variations in the POLG1 gene encoding the catalytic subunit of the mitochondrial DNA polymerase gamma, have recently been associated with Parkinson's disease (PD), especially in patients diagnosed with progressive external ophthalmoplegia (PEO). However, the majority of the studies reporting this association mainly focused on the genetic identification of the variation in POLG1 in PD patient primary cells, and determination of mitochondrial DNA copy number, providing little information about the cellular alterations existing in patient brain cells, in particular dopaminergic neurons. Therefore, through the use of induced pluripotent stem cells (iPSCs), we assessed cellular alterations in novel p.Q811R POLG1 (POLG1Q811R) variant midbrain dopaminergic neuron-containing spheroids (MDNS) from a female patient who developed early-onset PD, and compared them to cultures derived from a healthy control of the same gender. Both POLG1 variant and control MDNS contained functional midbrain regionalized TH/FOXA2-positive dopaminergic neurons, capable of releasing dopamine. Western blot analysis identified the presence of high molecular weight oligomeric alpha-synuclein in POLG1Q811R MDNS compared to control cultures. In order to assess POLG1Q811R-related cellular alterations within the MDNS, we applied mass-spectrometry based quantitative proteomic analysis. In total, 6749 proteins were identified, with 61 significantly differentially expressed between POLG1Q811R and control samples. Pro- and anti-inflammatory signaling and pathways involved in energy metabolism were altered. Notably, increased glycolysis in POLG1Q811R MDNS was suggested by the increase in PFKM and LDHA levels and confirmed using functional analysis of glycolytic rate and oxygen consumption levels. Our results validate the use of iPSCs to assess cellular alterations in relation to PD pathogenesis, in a unique PD patient carrying a novel p.Q811R variation in POLG1, and identify several altered pathways that may be relevant to PD pathogenesis.
Collapse
|
17
|
Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4609702. [PMID: 31687080 PMCID: PMC6803728 DOI: 10.1155/2019/4609702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
The etiology of Parkinson's disease (PD) is linked with cellular inclusions in the substantia nigra pars compacta region of the brain that are enriched in the misfolded presynaptic protein α-synuclein (αS) and death of the dopaminergic neurons. Brain iron homeostasis governs both neurotransmission and neurodegeneration; hence, the role of iron in PD progression and neuronal health is apparent. Elevated iron deposits become prevalent in the cerebral region upon aging and even more so in the PD brain. Structural as well as oxidative modifications can result from coordination of αS with redox active iron, which could have functional and/or pathological implications. In this review, we will discuss iron-mediated αS aggregation, alterations in iron metabolism, and the role of the iron-dopamine couple. Moreover, iron interactions with N-terminally acetylated αS, the physiologically relevant form of the human protein, will be addressed to shed light on the current understanding of protein dynamics and the physiological environment in the disease state. Oxidative pathways and biochemical alterations resulting from aberrant iron-induced chemistry are the principal focus of this review in order to highlight the plethora of research that has uncovered this emerging dichotomy of iron playing both functional and disruptive roles in PD pathology.
Collapse
|
18
|
Pereyra CE, Dantas RF, Ferreira SB, Gomes LP, Silva-Jr FP. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int 2019; 19:207. [PMID: 31388334 PMCID: PMC6679553 DOI: 10.1186/s12935-019-0925-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death around the world and although the different clinical approaches have helped to increase survival rates, incidence is still high and so its mortality. Chemotherapy is the only approach which is systemic, reaching cancer cells in all body tissues and the search for new potent and selective drugs is still an attractive field within cancer research. Naphthoquinones, natural and synthetic, have garnered much attention in the scientific community due to their pharmacological properties, among them anticancer action, and potential therapeutic significance. Many mechanisms of action have been reported which also depend on structural differences among them. Here, we describe some of the most relevant mechanisms of action reported so far for naphthoquinones and highlight novel targets which are being described in the literature. Furthermore, we gather some of the most impressive efforts done by researchers to harness the anticancer properties of these compounds through specifically designed structural modifications.
Collapse
Affiliation(s)
- Carolina Escardó Pereyra
- 1Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, Rio de Janeiro 21040-900 Brazil
| | - Rafael Ferreira Dantas
- 1Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, Rio de Janeiro 21040-900 Brazil
| | - Sabrina Baptista Ferreira
- 2Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21949-900 Brazil
| | - Luciano Pinho Gomes
- 1Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, Rio de Janeiro 21040-900 Brazil
| | - Floriano Paes Silva-Jr
- 1Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, Rio de Janeiro 21040-900 Brazil
| |
Collapse
|
19
|
Beaver SK, Mesa-Torres N, Pey AL, Timson DJ. NQO1: A target for the treatment of cancer and neurological diseases, and a model to understand loss of function disease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:663-676. [PMID: 31091472 DOI: 10.1016/j.bbapap.2019.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
NAD(P)H quinone oxidoreductase 1 (NQO1) is a multi-functional protein that catalyses the reduction of quinones (and other molecules), thus playing roles in xenobiotic detoxification and redox balance, and also has roles in stabilising apoptosis regulators such as p53. The structure and enzymology of NQO1 is well-characterised, showing a substituted enzyme mechanism in which NAD(P)H binds first and reduces an FAD cofactor in the active site, assisted by a charge relay system involving Tyr-155 and His-161. Protein dynamics play important role in physio-pathological aspects of this protein. NQO1 is a good target to treat cancer due to its overexpression in cancer cells. A polymorphic form of NQO1 (p.P187S) is associated with increased cancer risk and certain neurological disorders (such as multiple sclerosis and Alzheimer´s disease), possibly due to its roles in the antioxidant defence. p.P187S has greatly reduced FAD affinity and stability, due to destabilization of the flavin binding site and the C-terminal domain, which leading to reduced activity and enhanced degradation. Suppressor mutations partially restore the activity of p.P187S by local stabilization of these regions, and showing long-range allosteric communication within the protein. Consequently, the correction of NQO1 misfolding by pharmacological chaperones is a viable strategy, which may be useful to treat cancer and some neurological conditions, targeting structural spots linked to specific disease-mechanisms. Thus, NQO1 emerges as a good model to investigate loss of function mechanisms in genetic diseases as well as to improve strategies to discriminate between neutral and pathogenic variants in genome-wide sequencing studies.
Collapse
Affiliation(s)
- Sarah K Beaver
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Noel Mesa-Torres
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain.
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
20
|
Segura-Aguilar J. The importance of choosing a preclinical model that reflects what happens in Parkinson's disease. Neurochem Int 2019; 126:203-209. [PMID: 30922924 DOI: 10.1016/j.neuint.2019.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
One of the major problems in the translation of successful preclinical results to clinical studies and new therapies in Parkinson's disease is the use of preclinical models based on exogenous neurotoxins that do not replicate what happens in the disease. The loss of dopaminergic neurons containing neuromelanin in Parkinson´s disease takes years, contrasting the very rapid degeneration induced by exogenous neurotoxins. We discuss the role of endogenous neurotoxins generated during dopamine oxidation and its possible use as new preclinical models for Parkinson´s disease.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8350453, Independencia, Santiago, Chile.
| |
Collapse
|
21
|
Zhang S, Wang R, Wang G. Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration. ACS Chem Neurosci 2019; 10:945-953. [PMID: 30592597 DOI: 10.1021/acschemneuro.8b00454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The characteristic feature of PD is the progressive degeneration of the dopaminergic (DAergic) neurons in the substantia nigra (SN). DAergic neurons in the SN accumulate black and insoluble membrane structures known as neuromelanin during aging. The oxidation of dopamine (DA) to form neuromelanin generates many o-quinones, including DA o-quinones, aminochrome, and 5,6-indolequinone. The focus of this review is to discuss the role of DA oxidation in association with PD. The oxidation of DA produces oxidative products, inducing mitochondrial dysfunction, impaired protein degradation, α-synuclein aggregation into neurotoxic oligomers, and oxidative stress, in vitro. Recent studies have demonstrated that the DA content is critical for both DJ-1 knockout and A53T α-synuclein transgenic mice to develop PD pathological features, providing evidence for DA action in PD pathogenesis in vivo. The effects of L-DOPA, as the most effective anti-PD drug, are also briefly discussed.
Collapse
Affiliation(s)
- Shun Zhang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
22
|
Espitia-Pérez L, da Silva J, Brango H, Espitia-Pérez P, Pastor-Sierra K, Salcedo-Arteaga S, de Souza CT, Dias JF, Hoyos-Giraldo LS, Gómez-Pérez M, Salcedo-Restrepo D, Henriques JA. Genetic damage in environmentally exposed populations to open-pit coal mining residues: Analysis of buccal micronucleus cytome (BMN-cyt) assay and alkaline, Endo III and FPG high-throughput comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:24-35. [DOI: 10.1016/j.mrgentox.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 04/25/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
23
|
Venkataramani V, Doeppner TR, Willkommen D, Cahill CM, Xin Y, Ye G, Liu Y, Southon A, Aron A, Au-Yeung HY, Huang X, Lahiri DK, Wang F, Bush AI, Wulf GG, Ströbel P, Michalke B, Rogers JT. Manganese causes neurotoxic iron accumulation via translational repression of amyloid precursor protein and H-Ferritin. J Neurochem 2018; 147:831-848. [PMID: 30152072 PMCID: PMC6310653 DOI: 10.1111/jnc.14580] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022]
Abstract
For more than 150 years, it is known that occupational overexposure of manganese (Mn) causes movement disorders resembling Parkinson's disease (PD) and PD-like syndromes. However, the mechanisms of Mn toxicity are still poorly understood. Here, we demonstrate that Mn dose- and time-dependently blocks the protein translation of amyloid precursor protein (APP) and heavy-chain Ferritin (H-Ferritin), both iron homeostatic proteins with neuroprotective features. APP and H-Ferritin are post-transcriptionally regulated by iron responsive proteins, which bind to homologous iron responsive elements (IREs) located in the 5'-untranslated regions (5'-UTRs) within their mRNA transcripts. Using reporter assays, we demonstrate that Mn exposure repressed the 5'-UTR-activity of APP and H-Ferritin, presumably via increased iron responsive proteins-iron responsive elements binding, ultimately blocking their protein translation. Using two specific Fe2+ -specific probes (RhoNox-1 and IP-1) and ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS), we show that loss of the protective axis of APP and H-Ferritin resulted in unchecked accumulation of redox-active ferrous iron (Fe2+ ) fueling neurotoxic oxidative stress. Enforced APP expression partially attenuated Mn-induced generation of cellular and lipid reactive oxygen species and neurotoxicity. Lastly, we could validate the Mn-mediated suppression of APP and H-Ferritin in two rodent in vivo models (C57BL6/N mice and RjHan:SD rats) mimicking acute and chronic Mn exposure. Together, these results suggest that Mn-induced neurotoxicity is partly attributable to the translational inhibition of APP and H-Ferritin resulting in impaired iron metabolism and exacerbated neurotoxic oxidative stress. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Institute of Pathology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Desiree Willkommen
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg
| | - Catherine M. Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yongjuan Xin
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guilin Ye
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanyan Liu
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Adam Southon
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville Vic, Australia 3052
| | - Allegra Aron
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana Alzheimer Disease Center, Stark Neurosciences Research Institute, Indiana University School of Medicine
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ashley I. Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville Vic, Australia 3052
| | - Gerald G. Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Bernhard Michalke
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
24
|
Sun Y, Pham AN, Hare DJ, Waite TD. Kinetic Modeling of pH-Dependent Oxidation of Dopamine by Iron and Its Relevance to Parkinson's Disease. Front Neurosci 2018; 12:859. [PMID: 30534046 PMCID: PMC6275323 DOI: 10.3389/fnins.2018.00859] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/02/2018] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease. While age is the most significant risk factor, the exact cause of this disease and the most effective approaches to mitigation remain unclear. It has long been proposed that dopamine may play a role in the pathology of Parkinson's disease in view of its ability to generate both protein-modifying quinones such as aminochrome and reactive oxygen species, especially in the presence of pathological iron accumulation in the primary site of neuron loss. Given the clinically measured acidosis of post-mortem Parkinson's disease brain tissue, the interaction between dopamine and iron was investigated over a pH range of 7.4 to 6.5 with emphasis on the accumulation of toxic quinones and generation of reactive oxygen species. Our results show that the presence of iron accelerates the formation of aminochrome with ferrous iron (Fe[II]) being more efficient in this regard than ferric iron (Fe[III]). Our results further suggest that a reduced aminochrome rearrangement rate coupled with an enhanced turnover rate of Fe[II] as a result of brain tissue acidosis could result in aminochrome accumulation within cells. Additionally, under these conditions, the enhanced redox cycling of iron in the presence of dopamine aggravates oxidative stress as a result of the production of damaging reactive species, including hydroxyl radicals.
Collapse
Affiliation(s)
- Yingying Sun
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - A Ninh Pham
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Dominic J Hare
- Atomic Pathology Laboratory, Melbourne Dementia Research Centre at the Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
DT-Diaphorase Prevents Aminochrome-Induced Lysosome Dysfunction in SH-SY5Y Cells. Neurotox Res 2018; 35:255-259. [DOI: 10.1007/s12640-018-9953-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/10/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022]
|
26
|
Sun Y, Pham AN, Waite TD. Mechanism Underlying the Effectiveness of Deferiprone in Alleviating Parkinson's Disease Symptoms. ACS Chem Neurosci 2018; 9:1118-1127. [PMID: 29381045 DOI: 10.1021/acschemneuro.7b00478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Elevation in iron content as well as severe depletion of dopamine (DA) as a result of iron-induced loss of dopaminergic neurons has been recognized to accompany the progression of Parkinson's disease (PD). To better understand the mechanism of the mitigating effect of the iron chelator deferiprone (DFP) on PD, the interplay between iron and DFP was investigated both in the absence and presence of DA. The results show that DFP was extremely efficient in scavenging both aqueous iron and iron that was loosely bound to DA with the entrapment of iron in Fe-DFP complexed form critical to halting the iron catalyzed degradation of DA and associated generation of toxic metabolites. The DFP related scavenging of dopamine semiquinone (DA•-) and superoxide (O2•-) may also contribute to its positive effects in the treatment of PD.
Collapse
Affiliation(s)
- Yingying Sun
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - An Ninh Pham
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - T. David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
de Araújo FM, Ferreira RS, Souza CS, Dos Santos CC, Rodrigues TLRS, E Silva JHC, Gasparotto J, Gelain DP, El-Bachá RS, D Costa MDF, Fonseca JCM, Segura-Aguilar J, Costa SL, Silva VDA. Aminochrome decreases NGF, GDNF and induces neuroinflammation in organotypic midbrain slice cultures. Neurotoxicology 2018; 66:98-106. [PMID: 29588162 DOI: 10.1016/j.neuro.2018.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 01/19/2023]
Abstract
Recent evidence shows that aminochrome induces glial activation related to neuroinflammation. This dopamine derived molecule induces formation and stabilization of alpha-synuclein oligomers, mitochondria dysfunction, oxidative stress, dysfunction of proteasomal and lysosomal systems, endoplasmic reticulum stress and disruption of the microtubule network, but until now there has been no evidence of effects on production of cytokines and neurotrophic factors, that are mechanisms involved in neuronal loss in Parkinson's disease (PD). This study examines the potential role of aminochrome on the regulation of NGF, GDNF, TNF-α and IL-1β production and microglial activation in organotypic midbrain slice cultures from P8 - P9 Wistar rats. We demonstrated aminochrome (25 μM, for 24 h) induced reduction of GFAP expression, reduction of NGF and GDNF mRNA levels, morphological changes in Iba1+ cells, and increase of both TNF-α, IL-1β mRNA and protein levels. Moreover, aminochrome (25 μM, for 48 h) induced morphological changes in the edge of slices and reduction of TH expression. These results demonstrate neuroinflammation, as well as negative regulation of neurotrophic factors (GDNF and NGF), may be involved in aminochrome-induced neurodegeneration, and they contribute to a better understanding of PD pathogenesis.
Collapse
Affiliation(s)
- Fillipe M de Araújo
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Rafael S Ferreira
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Cleide S Souza
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Tácio L R S Rodrigues
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Juliana Helena C E Silva
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Juciano Gasparotto
- Centro de estudos em Estresse oxidativo, Departamento de Bioquimica, PPG Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Centro de estudos em Estresse oxidativo, Departamento de Bioquimica, PPG Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ramon S El-Bachá
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Maria de Fátima D Costa
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - José Claudio M Fonseca
- Centro de estudos em Estresse oxidativo, Departamento de Bioquimica, PPG Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Silvia L Costa
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Victor Diogenes A Silva
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
28
|
Segura-Aguilar J. Neurotoxins as Preclinical Models for Parkinson's Disease. Neurotox Res 2018; 34:870-877. [PMID: 29313219 DOI: 10.1007/s12640-017-9856-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Translational medicine is one of the major concerns in this century. While significant advances have been made with scientific knowledge, the translation of their promising results has not led to any new therapies. In Parkinson's disease, a long list of clinical studies, based on preclinical models with exogenous neurotoxins, has failed. Therefore, the aim of this opinion paper is to open discussion about preclinical models for Parkinson's disease based on neurotoxins.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Department of Molecular and Clinical Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
29
|
Lin C, Chen L, Tanner EEL, Compton RG. Electroanalytical study of dopamine oxidation on carbon electrodes: from the macro- to the micro-scale. Phys Chem Chem Phys 2018; 20:148-157. [DOI: 10.1039/c7cp07450f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of dopamine in strongly acidic (pH = 0) solution is investigated using microdisc, microcylinder and macro-electrodes together with a range of voltage scan rates.
Collapse
Affiliation(s)
- Chuhong Lin
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford OX1 3QZ
- UK
| | - Lifu Chen
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford OX1 3QZ
- UK
| | - Eden E. L. Tanner
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford OX1 3QZ
- UK
| | - Richard G. Compton
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford OX1 3QZ
- UK
| |
Collapse
|
30
|
Huenchuguala S, Muñoz P, Segura-Aguilar J. The Importance of Mitophagy in Maintaining Mitochondrial Function in U373MG Cells. Bafilomycin A1 Restores Aminochrome-Induced Mitochondrial Damage. ACS Chem Neurosci 2017; 8:2247-2253. [PMID: 28763613 DOI: 10.1021/acschemneuro.7b00152] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aminochrome, an orthoquinone formed during the dopamine oxidation of neuromelanin, is neurotoxic because it induces mitochondria dysfunction, protein degradation dysfunction (both autophagy and proteasomal systems), α-synuclein aggregation to neurotoxic oligomers, neuroinflammation, and oxidative and endoplasmic reticulum stress. In this study, we investigated the relationship between aminochrome-induced autophagy/lysosome dysfunction and mitochondrial dysfunction in U373MGsiGST6 cells. Aminochrome (75 μM) induces mitochondrial dysfunction as determined by (i) a significant decrease in ATP levels (70%; P < 0.001) and (ii) a significant decrease in mitochondrial membrane potential (P < 0.001). Interestingly, the pretreatment of U373MGsiGST6 cells with 100 nM bafilomycin-A1, an inhibitor of lysosomal vacuolar-type H+-ATPase, restores ATP levels, mitochondrial membrane potential, and mitophagy, and decreases cell death. These results reveal (i) the importance of macroautophagy/the lysosomal degradation system for the normal functioning of mitochondria and for cell survival, and (ii) aminochrome-induced lysosomal dysfunction depends on the aminochrome-dependent inactivation of the vacuolar-type H+-ATPase, which pumps protons into the lysosomes. This study also supports the proposed protective role of glutathione transferase mu2-2 (GSTM2) in astrocytes against aminochrome toxicity, mediated by mitochondrial and lysosomal dysfunction.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricia Muñoz
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
31
|
Santos CC, Araújo FM, Ferreira RS, Silva VB, Silva JH, Grangeiro MS, Soares ÉN, Pereira ÉPL, Souza CS, Costa SL, Segura-Aguilar J, Silva VDA. Aminochrome induces microglia and astrocyte activation. Toxicol In Vitro 2017; 42:54-60. [DOI: 10.1016/j.tiv.2017.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 11/16/2022]
|
32
|
Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol 2017; 155:96-119. [PMID: 26455458 PMCID: PMC4826627 DOI: 10.1016/j.pneurobio.2015.09.012] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration.
Collapse
Affiliation(s)
- Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Emanuele Ferrari
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Patricia Muñoz
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Irmgard Paris
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Sciences, Santo Tomás University, Viña del Mar, Chile
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
33
|
Catalytic Performance of Oligonucleotide-Templated Pt Nanozyme Evaluated by Laccase Substrates. Catal Letters 2017. [DOI: 10.1007/s10562-017-2106-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease? ACS Chem Neurosci 2017; 8:702-711. [PMID: 28233992 DOI: 10.1021/acschemneuro.7b00034] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 1967, L-dopa was introduced as part of the pharmacological therapy of Parkinson's disease (PD) and, in spite of extensive research, no additional effective drugs have been discovered to treat PD. This brings forward the question: why have no new drugs been developed? We consider that one of the problems preventing the discovery of new drugs is that we still have no information on the pathophysiology of the neurodegeneration of the neuromelanin-containing nigrostriatal dopaminergic neurons. Currently, it is widely accepted that the degeneration of dopaminergic neurons, i.e., in the substantia nigra pars compacta, involves mitochondrial dysfunction, the formation of neurotoxic oligomers of alpha-synuclein, the dysfunction of protein degradation systems, neuroinflammation, and oxidative and endoplasmic reticulum stress. However, the initial trigger of these mechanisms in the nigrostriatal system is still unknown. It has been reported that aminochrome induces the majority of these mechanisms involved in the neurodegeneration process. Aminochrome is formed within the cytoplasm of neuromelanin-containing dopaminergic neurons during the oxidation of dopamine to neuromelanin. The oxidation of dopamine to neuromelanin is a normal and harmless process, because healthy individuals have intact neuromelanin-containing dopaminergic neurons. Interestingly, aminochrome-induced neurotoxicity is prevented by two enzymes: DT-diaphorase and glutathione transferase M2-2, which explains why melanin-containing dopaminergic neurons are intact in healthy human brains.
Collapse
Affiliation(s)
- Andrea Herrera
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Patricia Muñoz
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Harry W. M. Steinbusch
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
35
|
On the Role of DT-Diaphorase Inhibition in Aminochrome-Induced Neurotoxicity In Vivo. Neurotox Res 2017; 32:134-140. [DOI: 10.1007/s12640-017-9719-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
|
36
|
Ratner MH, Fitzgerald E. Understanding of the role of manganese in parkinsonism and Parkinson disease. Neurology 2016; 88:338-339. [DOI: 10.1212/wnl.0000000000003543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Herrera A, Muñoz P, Paris I, Díaz-Veliz G, Mora S, Inzunza J, Hultenby K, Cardenas C, Jaña F, Raisman-Vozari R, Gysling K, Abarca J, Steinbusch HWM, Segura-Aguilar J. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease. Cell Mol Life Sci 2016; 73:3583-97. [PMID: 27001668 PMCID: PMC11108377 DOI: 10.1007/s00018-016-2182-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/14/2022]
Abstract
L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease.
Collapse
Affiliation(s)
- Andrea Herrera
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
- Department of Translational Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Patricia Muñoz
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Irmgard Paris
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
- Departamento de Ciencias Básicas, Universidad Santo Tomas, Viña del Mar, Chile
| | - Gabriela Díaz-Veliz
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Sergio Mora
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesar Cardenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Geroscience Center for Brain Health and Metabolism, , Santiago, Chile
| | - Fabián Jaña
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Geroscience Center for Brain Health and Metabolism, , Santiago, Chile
| | | | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jorge Abarca
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Harry W M Steinbusch
- Department of Translational Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile.
| |
Collapse
|
38
|
Baez S, Segura-Aguilar J. Formation of reactive oxygen species during one-electron reduction of noradrenochrome catalyzed by NADPH-cytochrome P-450 reductase. Redox Rep 2016; 1:65-70. [DOI: 10.1080/13510002.1994.11746958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
39
|
Touchette JC, Breckenridge JM, Wilken GH, Macarthur H. Direct intranigral injection of dopaminochrome causes degeneration of dopamine neurons. Neurosci Lett 2015; 612:178-184. [PMID: 26704434 DOI: 10.1016/j.neulet.2015.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive neurodegeneration of nigrastriatal dopaminergic neurons leading to clinical motor dysfunctions. Many animal models of PD have been developed using exogenous neurotoxins and pesticides. Evidence strongly indicates that the dopaminergic neurons of the substantia nigra pars compacta (SNpc) are highly susceptible to neurodegeneration due to a number of factors including oxidative stress and mitochondrial dysfunction. Oxidation of DA to a potential endogenous neurotoxin, dopaminochrome (DAC), may be a potential contributor to the vulnerability of the nigrostriatal tract to oxidative insult. In this study, we show that DAC causes slow and progressive degeneration of dopaminergic neurons in contrast to 1-methyl-4-phenylpyridinium (MPP(+)), which induces rapid lesions of the region. The DAC model may be more reflective of early stresses that initiate the progressive neurodegenerative process of PD, and may prove a useful model for future neurodegenerative studies.
Collapse
Affiliation(s)
- Jillienne C Touchette
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Julie M Breckenridge
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Gerald H Wilken
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Heather Macarthur
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States.
| |
Collapse
|
40
|
Leung KKK, Shilton BH. Binding of DNA-Intercalating Agents to Oxidized and Reduced Quinone Reductase 2. Biochemistry 2015; 54:7438-48. [DOI: 10.1021/acs.biochem.5b00884] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin K. K. Leung
- Department of Biochemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5C1
| | - Brian H. Shilton
- Department of Biochemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5C1
| |
Collapse
|
41
|
Briceño A, Muñoz P, Brito P, Huenchuguala S, Segura-Aguilar J, Paris IB. Aminochrome Toxicity is Mediated by Inhibition of Microtubules Polymerization Through the Formation of Adducts with Tubulin. Neurotox Res 2015; 29:381-93. [PMID: 26345577 DOI: 10.1007/s12640-015-9560-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
In this study, we investigated the role of adducts formation between aminochrome and tubulin and its interference in microtubules assembly and stability in aminochrome-induced toxicity in SH-SY5Y cells. We also investigated whether changes in the microtubules structures are an early event that could affect tubulin expression. We demonstrated in vitro that aminochrome tubulin adducts inhibit tubulin polymerization and that aminochrome induces microtubules disassembly. Moreover, when the SH-SY5Y cells were incubated with aminochrome, we observed an increase in soluble tubulin, indicating depolymerization of microtubules. Aminochrome generates disruption of the microtubules network, leading to changes in the morphology of the cells inducing cell death, in a dose- and time-dependent manner. Interestingly, these changes preceded cell death and were partly inhibited by paclitaxel, a microtubule-stabilizing agent. Furthermore, we observed that aminochrome increased early tubulin expression before significant cell death occurred. Consequently, all these antecedents suggest that aminochrome toxicity is mediated by early disruption of microtubules network, where the adduct formation between aminochrome and tubulin could be responsible for the inhibition in the assembly microtubules and the loss of microtubules stability. Possibly, the early changes in tubulin expression could correspond to compensatory mechanisms against the toxic effects of aminochrome.
Collapse
Affiliation(s)
- Andrea Briceño
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Patricia Muñoz
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Patricia Brito
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Limonares 190, 2561780, Viña del Mar, Chile
| | - Sandro Huenchuguala
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Irmgard B Paris
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile. .,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Limonares 190, 2561780, Viña del Mar, Chile.
| |
Collapse
|
42
|
Pavlidi N, Tseliou V, Riga M, Nauen R, Van Leeuwen T, Labrou NE, Vontas J. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:53-60. [PMID: 26047112 DOI: 10.1016/j.pestbp.2015.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 05/13/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most important agricultural pests world-wide. It is extremely polyphagous and develops resistance to acaricides. The overexpression of several glutathione S-transferases (GSTs) has been associated with insecticide resistance. Here, we functionally expressed and characterized three GSTs, two of the delta class (TuGSTd10, TuGSTd14) and one of the mu class (TuGSTm09), which had been previously associated with striking resistance phenotypes against abamectin and other acaricides/insecticides, by transcriptional studies. Functional analysis showed that all three GSTs were capable of catalyzing the conjugation of both 1-chloro-2,4 dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene(DCNB) to glutathione (GSH), as well as exhibiting GSH-dependent peroxidase activity toward Cumene hydroperoxide (CumOOH). The steady-state kinetics of the T. urticae GSTs for the GSH/CDNB conjugation reaction were determined and compared with other GSTs. The interaction of the three recombinant proteins with several acaricides and insecticides was also investigated. TuGSTd14 showed the highest affinity toward abamectin and a competitive type of inhibition, which suggests that the insecticide may bind to the H-site of the enzyme. The three-dimensional structure of the TuGSTd14 was predicted based on X-ray structures of delta class GSTs using molecular modeling. Structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of TuGSTd14.
Collapse
Affiliation(s)
- Nena Pavlidi
- Department of Biology, University of Crete, Heraklion 71409, Greece
| | - Vasilis Tseliou
- Department of Biology, University of Crete, Heraklion 71409, Greece
| | - Maria Riga
- Department of Biology, University of Crete, Heraklion 71409, Greece
| | - Ralf Nauen
- BayerCropScience AG, RD-SMR Pest Control Biology, Alfred Nobel Str. 50, Monheim D-40789, Germany
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 IeraOdos Street, Athens GR-11855, Greece
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, Heraklion Crete GR-700 13, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 IeraOdos Street, Athens GR-11855, Greece.
| |
Collapse
|
43
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
44
|
Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J. DT-Diaphorase Prevents Aminochrome-Induced Alpha-Synuclein Oligomer Formation and Neurotoxicity. Toxicol Sci 2015; 145:37-47. [PMID: 25634539 DOI: 10.1093/toxsci/kfv016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It was reported that aminochrome induces the formation of alpha synuclein (SNCA) oligomers during dopamine oxidation. We found that DT-diaphorase (NQO1) prevents the formation of SNCA oligomers in the presence of aminochrome determined by Western blot, transmission electron microscopy, circular dichroism, and thioflavin T fluorescence, suggesting a protective role of NQO1 by preventing the formation of SNCA oligomers in dopaminergic neurons. In order to test NQO1 protective role in SNCA neurotoxicity in cellular model, we overexpressed SNCA in both RCSN-3 cells (wild-type) and RCSN-3Nq7 cells, which have constitutive expression of a siRNA against NQO1. The expression of SNCA in RCSN-3SNCA and RCSN-3Nq7SNCA cells increased 4.2- and 4.4-fold, respectively. The overexpression of SNCA in RCSN-3Nq7SNCA cells induces a significant increase in cell death of 2.8- and 3.2-fold when they were incubated with 50 and 70 µM aminochrome, respectively. The cell death was found to be of apoptotic character determined by annexin/propidium iodide technique with flow cytometry and DNA laddering. A Western blot demonstrated that SNCA in RCSN-3SNCA is only found in monomer form both in the presence of 20 µM aminochrome or cell culture medium contrasting with RCSN-3Nq7SNCA cells where the majority SNCA is found as oligomer. The antioligomer compound scyllo-inositol induced a significant decrease in aminochrome-induced cell death in RCSN-3Nq7SNCA cells in comparison to cells incubated in the absence of scyllo-inositol. Our results suggest that NQO1 seems to play an important role in the prevention of aminochrome-induced SNCA oligomer formation and SNCA oligomers neurotoxicity in dopaminergic neurons.
Collapse
Affiliation(s)
- Patricia Muñoz
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Sergio Cardenas
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Sandro Huenchuguala
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Andrea Briceño
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Eduardo Couve
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Irmgard Paris
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Juan Segura-Aguilar
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| |
Collapse
|
45
|
von Otter M, Bergström P, Quattrone A, De Marco EV, Annesi G, Söderkvist P, Wettinger SB, Drozdzik M, Bialecka M, Nissbrandt H, Klein C, Nilsson M, Hammarsten O, Nilsson S, Zetterberg H. Genetic associations of Nrf2-encoding NFE2L2 variants with Parkinson's disease - a multicenter study. BMC MEDICAL GENETICS 2014; 15:131. [PMID: 25496089 PMCID: PMC4335439 DOI: 10.1186/s12881-014-0131-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The transcription factor Nrf2, encoded by the NFE2L2 gene, is an important regulator of the cellular protection against oxidative stress. Parkinson's disease is a neurodegenerative disease highly associated with oxidative stress. In a previously published study, we reported associations of NFE2L2 haplotypes with risk and age at onset of idiopathic Parkinson's disease in a Swedish discovery material and a Polish replication material. Here, we have extended the replication study and performed meta-analyses including the Polish material and four new independent European patient-control materials. Furthermore, all SNPs included in the haplotype windows were investigated individually for associations with Parkinson's disease in meta-analyses including all six materials. METHODS Totally 1038 patients and 1600 control subjects were studied. Based on previous NFE2L2 haplotype associations with Parkinson's disease, five NFE2L2 tag SNPs were genotyped by allelic discrimination and three functional NFE2L2 promoter SNPs were genotyped by sequencing. The impact of individual SNPs and haplotypes on risk and age at onset of Parkinson's disease were investigated in each material individually and in meta-analyses of the obtained results. RESULTS Meta-analyses of NFE2L2 haplotypes showed association of haplotype GAGCAAAA, including the fully functional promoter haplotype AGC, with decreased risk (OR = 0.8 per allele, p = 0.012) and delayed onset (+1.1 years per allele, p = 0.048) of Parkinson's disease. These results support the previously observed protective effect of this haplotype in the first study. Further, meta-analyses of the SNPs included in the haplotypes revealed four NFE2L2 SNPs associated with age at onset of Parkinson's disease (rs7557529 G > A, -1.0 years per allele, p = 0.042; rs35652124 A > G, -1.1 years per allele, p = 0.045; rs2886161 A > G, -1.2 years per allele, p = 0.021; rs1806649 G > A, +1.2 years per allele, p = 0.029). One of these (rs35652124) is a functional SNP located in the NFE2L2 promoter. No individual SNP was associated with risk of Parkinson's disease. CONCLUSION Our results support the hypothesis that variation in the NFE2L2 gene, encoding a central protein in the cellular protection against oxidative stress, may contribute to the pathogenesis of Parkinson's disease. Functional studies are now needed to explore these results further.
Collapse
|
46
|
Cuevas C, Huenchuguala S, Muñoz P, Villa M, Paris I, Mannervik B, Segura-Aguilar J. Glutathione transferase-M2-2 secreted from glioblastoma cell protects SH-SY5Y cells from aminochrome neurotoxicity. Neurotox Res 2014; 27:217-28. [PMID: 25403520 DOI: 10.1007/s12640-014-9500-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
U373MG cells are able to take up aminochrome that induces glutathione transferase M2-2 (GSTM2) expression in a concentration-dependent manner where 100 µM aminochrome increases GSTM2 expression by 2.1-fold (P < 0.001) at 3 h. The uptake of (3)H-aminochrome into U373MG cells was significantly reduced in the presence of 2 µM nomifensine (P < 0.001) 100 µM imipramine (P < 0.001) and 50 mM dopamine (P < 0.001). Interestingly, U373MG cells excrete GSTM2 into the conditioned medium and the excretion was significantly increased (2.7-fold; P < 0.001) when the cells were pretreated with 50 µM aminochrome for 3 h. The U373MG-conditioned medium containing GSTM2 protects SH-SY5Y cells incubated with 10 µM aminochrome. The significant protection provided by U373MG-conditioned medium in SH-SY5Y cells incubated with aminochrome was dependent on GSTM2 internalization into SH-SY5Y cells as evidenced by (i) uptake of (14)C-GSTM2 released from U373MG cells into SH-SY5Y cells, a process inhibited by anti-GSTM2 antiserum; (ii) lack of protection of U373MG-conditioned medium in the presence of anti-GSTM2 antiserum on SH-SY5Y cells treated with aminochrome; and (iii) lack of protection of conditioned medium from U373MGsiGST6 that expresses an siRNA directed against GSTM2 on SH-SY5Y cells treated with aminochrome. In conclusion, our results demonstrated that U373MG cells protect SH-SY5Y cells against aminochrome neurotoxicity by releasing GSTM2 into the conditioned medium and subsequent internalization of GSTM2 into SH-SY5Y cells. These results suggest a new mechanism of protection of dopaminergic neurons mediated by astrocytes by releasing GSTM2 into the intersynaptic space and subsequent internalization into dopaminergic neuron in order to protect these cells against aminochrome neurotoxicity.
Collapse
Affiliation(s)
- Carlos Cuevas
- Molecular and Clinical Pharmacology ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
47
|
Pham AN, Waite TD. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: Mechanism and kinetics. J Inorg Biochem 2014; 137:74-84. [DOI: 10.1016/j.jinorgbio.2014.03.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 11/30/2022]
|
48
|
Cardioprotective effects of an aminothiazole compound on isoproterenol-induced myocardial injury in mice. Cell Biochem Biophys 2014; 67:287-95. [PMID: 21948074 DOI: 10.1007/s12013-011-9296-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Dendrodoine analogue (DA), an aminothiazole compound derived from dendrodoine, present in a marine tunicate, has been shown to possess many beneficial properties. This study was aimed to evaluate its cardioprotective effect against isoproterenol (ISO)-induced myocardial damage in mice. Swiss mice were pretreated with DA for 7 days and then treated with ISO (5 mg/kg BW, for 2 consecutive days). Biochemical assessment of myocardial injury was carried out by measuring marker enzymes, antioxidant enzymes and levels of lipid peroxidation. Histological studies of hearts were also carried out. ISO administration increased the activities of creatine kinase-MB, lactate dehydrogenase and aspartate aminotranferase (AST) in serum. Prior administration of DA restored the levels of these enzymes and the heart coefficient close to normal levels. DA at a concentration of 5 mg/kg BW was most effective in reducing AST, and this concentration was used for further studies. DA also gave significant protection against lipid peroxidation in the heart besides restoring histopathological alterations. DA showed significant reactivity towards superoxide radicals. In conclusion our study indicates that DA can protect mouse myocardium against damage and one of the possible reasons behind this protective effect can be attributed to its antioxidant property.
Collapse
|
49
|
Feng S, Zhang L, Adilijiang G, Liu J, Luo M, Deng H. Substrate Profiling of Glutathione S‐transferase with Engineered Enzymes and Matched Glutathione Analogues. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shan Feng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Renhuan Building 301, Tsinghua University, 100084 Beijing (China)
| | - Lei Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Renhuan Building 301, Tsinghua University, 100084 Beijing (China)
| | - Gulishana Adilijiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Renhuan Building 301, Tsinghua University, 100084 Beijing (China)
| | - Jieyuan Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Renhuan Building 301, Tsinghua University, 100084 Beijing (China)
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan‐Kettering Cancer Center, New York, 10065 NY (USA)
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Renhuan Building 301, Tsinghua University, 100084 Beijing (China)
| |
Collapse
|
50
|
Feng S, Zhang L, Adilijiang G, Liu J, Luo M, Deng H. Substrate profiling of glutathione S-transferase with engineered enzymes and matched glutathione analogues. Angew Chem Int Ed Engl 2014; 53:7149-53. [PMID: 24889263 DOI: 10.1002/anie.201402000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/30/2014] [Indexed: 11/08/2022]
Abstract
The identification of specific substrates of glutathione S-transferases (GSTs) is important for understanding drug metabolism. A method termed bioorthogonal identification of GST substrates (BIGS) was developed, in which a reduced glutathione (GSH) analogue was developed for recognition by a rationally engineered GST to label the substrates of the corresponding native GST. A K44G-W40A-R41A mutant (GST-KWR) of the mu-class glutathione S-transferases GSTM1 was shown to be active with a clickable GSH analogue (GSH-R1) as the cosubstrate. The GSH-R1 conjugation products can react with an azido-based biotin probe for ready enrichment and MS identification. Proof-of-principle studies were carried to detect the products of GSH-R1 conjugation to 1-chloro-2,4-dinitrobenzene (CDNB) and dopamine quinone. The BIGS technology was then used to identify GSTM1 substrates in the Chinese herbal medicine Ganmaocongji.
Collapse
Affiliation(s)
- Shan Feng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Renhuan Building 301, Tsinghua University, 100084 Beijing (China)
| | | | | | | | | | | |
Collapse
|