1
|
Abstract
Skeletal stem cells (SSCs) reside in the postnatal bone marrow and give rise to cartilage, bone, hematopoiesis-supportive stroma and marrow adipocytes in defined in vivo assays. These lineages emerge in a specific sequence during embryonic development and post natal growth, and together comprise a continuous anatomical system, the bone-bone marrow organ. SSCs conjoin skeletal and hematopoietic physiology, and are a tool for understanding and ameliorating skeletal and hematopoietic disorders. Here and in the accompanying poster, we concisely discuss the biology of SSCs in the context of the development and postnatal physiology of skeletal lineages, to which their use in medicine must remain anchored.
Collapse
Affiliation(s)
- Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Sweeney E, Roberts D, Lin A, Guldberg R, Jacenko O. Defective endochondral ossification-derived matrix and bone cells alter the lymphopoietic niche in collagen X mouse models. Stem Cells Dev 2013; 22:2581-95. [PMID: 23656481 DOI: 10.1089/scd.2012.0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders.
Collapse
Affiliation(s)
- Elizabeth Sweeney
- 1 Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
3
|
Chesnick IE, Centeno JA, Todorov TI, Koenig AE, Potter K. Spatial mapping of mineralization with manganese-enhanced magnetic resonance imaging. Bone 2011; 48:1194-201. [PMID: 21352960 PMCID: PMC3113632 DOI: 10.1016/j.bone.2011.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/03/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Paramagnetic manganese can be employed as a calcium surrogate to sensitize the magnetic resonance imaging (MRI) technique to the processing of calcium during the bone formation process. At low doses, after just 48h of exposure, osteoblasts take up sufficient quantities of manganese to cause marked reductions in the water proton T1 values compared with untreated cells. After just 24h of exposure, 25μM MnCl(2) had no significant effect on cell viability. However, for mineralization studies 100μM MnCl(2) was used to avoid issues of manganese depletion in calvarial organ cultures and a post-treatment delay of 48h was implemented to ensure that manganese ions taken up by osteoblasts is deposited as mineral. All specimens were identified by their days in vitro (DIV). Using inductively coupled plasma optical emission spectroscopy (ICP-OES), we confirmed that Mn-treated calvariae continued to deposit mineral in culture and that the mineral composition was similar to that of age-matched controls. Notably there was a significant decrease in the manganese content of DIV18 compared with DIV11 specimens, possibly relating to less manganese sequestration as a result of mineral maturation. More importantly, quantitative T1 maps of Mn-treated calvariae showed localized reductions in T1 values over the calvarial surface, indicative of local variations in the surface manganese content. This result was verified with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We also found that ΔR1 values, calculated by subtracting the relaxation rate of Mn-treated specimens from the relaxation rate of age-matched controls, were proportional to the surface manganese content and thus mineralizing activity. From this analysis, we established that mineralization of DIV4 and DIV11 specimens occurred in all tissue zones, but was reduced for DIV18 specimens because of mineral maturation with less manganese sequestration. In DIV25 specimens, active mineralization was observed for the expanding superficial surface and ΔR1 values were increased due to the mineralization of small, previously unmineralized areas. Our findings support the use of manganese-enhanced MRI (MEMRI) to study well-orchestrated mineralizing events that occur during embryonic development. In conclusion, MEMRI is more sensitive to the study of mineralization than traditional imaging approaches.
Collapse
Affiliation(s)
- Ingrid E. Chesnick
- Magnetic Resonance Microscopy Facility, Department of Biophysics, Armed Forces Institute of Pathology Annex, Rockville, MD, USA
| | - Jose A. Centeno
- Department of Environmental and Infectious Disease Sciences, Armed Forces Institute of Pathology, Washington, DC, USA
| | - Todor I. Todorov
- Crustal Imaging and Characterization Team, United States Geological Survey, Denver, CO, USA
| | - Alan E. Koenig
- Crustal Imaging and Characterization Team, United States Geological Survey, Denver, CO, USA
| | - Kimberlee Potter
- Magnetic Resonance Microscopy Facility, Department of Biophysics, Armed Forces Institute of Pathology Annex, Rockville, MD, USA
| |
Collapse
|
4
|
Chesnick IE, Todorov TI, Centeno JA, Newbury DE, Small JA, Potter K. Manganese-enhanced magnetic resonance microscopy of mineralization. Magn Reson Imaging 2007; 25:1095-104. [PMID: 17707172 DOI: 10.1016/j.mri.2006.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/16/2006] [Accepted: 11/17/2006] [Indexed: 11/19/2022]
Abstract
Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T(1), T(2) and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl(2) and 3 mM CaCl(2). A banding pattern of high and low T(2) values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone.
Collapse
Affiliation(s)
- Ingrid E Chesnick
- Magnetic Resonance Microscopy Facility, Department of Biophysics, Armed Forces Institute of Pathology Annex, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
5
|
Mello MA, Tuan RS. Effects of TGF-beta1 and triiodothyronine on cartilage maturation: in vitro analysis using long-term high-density micromass cultures of chick embryonic limb mesenchymal cells. J Orthop Res 2006; 24:2095-105. [PMID: 16955422 DOI: 10.1002/jor.20233] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endochondral ossification is initiated by differentiation of mesenchymal cells into chondrocytes, which produce a cartilaginous matrix, proliferate, mature, and undergo hypertrophy, followed by matrix calcification, and substitution of cartilage by bone. A number of hormones and growth factors have been implicated in this process. Using in vitro, long-term, high-density, micromass cultures of chick embryonic mesenchyme, that recapitulate the process of chondrogenesis, chondrocyte maturation, and hypertrophy, we have investigated the importance of a balance between proliferation and apoptosis in cartilage maturation, focusing specifically on the effects of transforming growth factor-beta1 (TGF-beta1) and the thyroid hormone, triiodothyronine (T3). Our results showed that TGF-beta1 stimulates proliferation, by week 2 of culture, and T3 inhibits proliferation by week 3. Cell size increases in cultures treated with T3. Collagen type X is expressed in all culture, and delay in matrix deposition is seen only in the cultures treated with TGF-beta1. T3 stimulates alkaline phosphatase activity, but not calcification. T3 enhances apoptosis, as seen by TUNEL staining, and internucleosomal DNA fragmentation. The results support the roles of T3 and TGF-beta in cartilage maturation, i.e., TGF-beta stimulates proliferation and suppresses hypertrophy, while T3 stimulates hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Maria A Mello
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Building 50, Room 1523, MSC 8022, Bethesda, Maryland 20892-8022, USA
| | | |
Collapse
|
6
|
Cole AG, Hall BK. Cartilage is a metazoan tissue; integrating data from nonvertebrate sources. ACTA ZOOL-STOCKHOLM 2004. [DOI: 10.1111/j.0001-7272.2004.00159.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ozçelik D, Turan T, Kabukcuoğlu F, Uğurlu K, Oztürk O, Başak M, Bankaoğlu M. Bone induction capacity of the periosteum and neonatal dura in the setting of the rat zygomatic arch fracture model. ARCHIVES OF FACIAL PLASTIC SURGERY 2003; 5:301-8. [PMID: 12873867 DOI: 10.1001/archfaci.5.4.301] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Osteogenic properties of the dura and periosteum are thought to contribute to the regenerative capacity of membranous bone tissue. The purpose of this investigation was to elucidate (1) whether dura without underlying neural tissues can induce osteogenesis, (2) to what extent the periosteum participates in membranous bone healing, and (3) the difference between dura-induced and periosteum-induced osteogenesis. METHODS A standardized 2-mm defect was created within the middle portion of each zygomatic arch in 30 Wistar albino rats. The rats were divided into 3 groups, 10 animals in each group. In group 1, the periosteum was removed and neonatal dura grafts were transplanted onto the zygomatic arch bone defect circumferentially. In group 2, the overlying periosteum was preserved. In group 3, the periosteum was removed. At 3 and 10 weeks, animals from each group were killed, and specimens were obtained. Data were collected from the 3-dimensional computed tomographic scans and histologic studies to compare the extent of bony repair. RESULTS Fracture sites demonstrated osteogenesis associated with chondrogenesis in groups 1 and 2 and only limited osteogenesis with no chondrogenesis in group 3. In some animals in group 3, cortical bone ends underwent resorption. In groups 1 and 2, bone defects were obliterated by the formation of the mature compact bone at 10 weeks postoperatively. The difference between bone regeneration in these groups was not significant (P =.16). In group 3, the defects failed to heal by bony union, and in most of the samples the fibrous union was observed instead. The difference between groups 1 and 3 was significant (P =.03). The difference between groups 2 and 3 was not significant (P =.09). CONCLUSIONS The trend toward significance is in agreement with the current clinical practice of preserving periosteum in the manipulations of the membranous bone defects. Newborn dura can exert a potentiating effect on osteogenesis.
Collapse
Affiliation(s)
- Derya Ozçelik
- Department of Plastic and Reconstructive Surgery, Sişli Etfal State Hospital, and Otorhinolaryngology, Istanbul University-Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
8
|
Lieberherr M, Cournot G, Robins SP. Guidelines for using in vitro methods to study the effects of phyto-oestrogens on bone. Br J Nutr 2003; 89 Suppl 1:S59-73. [PMID: 12725651 DOI: 10.1079/bjn2002797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
These guidelines review the relevant literature on the way plant phyto-oestrogens act on bone and the responsiveness of different bone cell systems to phyto-oestrogenic compounds. The primary emphasis is on the experimental conditions used, the markers available for assessing osteoblast and osteoclast function, and their expected sensitivity. Finally, we assess the published results to derive some general recommendations for in vitro experiments in this area of research.
Collapse
Affiliation(s)
- Michèle Lieberherr
- Laboratoire de Nutrition et de Sécurité Alimentaire, Institut National de la Recherche Agronomique, F-78350 Jouy-en-Josas, France.
| | | | | |
Collapse
|
9
|
Weston AD, Hoffman LM, Underhill TM. Revisiting the role of retinoid signaling in skeletal development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:156-73. [PMID: 12955859 DOI: 10.1002/bdrc.10010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several years ago, it was discovered that an imbalance of vitamin A during embryonic development has dramatic teratogenic effects. These effects have since been attributed to vitamin A's most active metabolite, retinoic acid (RA), which itself profoundly influences the development of multiple organs including the skeleton. After decades of study, researchers are still uncovering the molecular basis whereby retinoids regulate skeletal development. Retinoid signaling involves several components, from the enzymes that control the synthesis and degradation of RA, to the cytoplasmic RA-binding proteins, and the nuclear receptors that modulate gene transcription. As new functions for each component continue to be discovered, their developmental roles appear increasingly complex. Interestingly, each component has been implicated in skeletal development. Moreover, retinoid signaling comes into play at distinct stages throughout the developmental sequence of skeletogenesis, highlighting a fundamental role for this pathway in forming the adult skeleton. Consistent with these roles, manipulation of the retinoid signaling pathway significantly affects the expression of the skeletogenic master regulatory factors, Sox9 and Cbfa1. In addition to the fact that we now have a greater understanding of the retinoid signaling pathway on a molecular level, much more information is now available to begin placing retinoid signaling within the context of other factors that regulate skeletogenesis. Here we review these recent advances and describe our current understanding of how retinoid signaling functions to coordinate skeletal development. We also discuss future directions and clinical implications in this field.
Collapse
|
10
|
Nöth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 2002; 20:1060-9. [PMID: 12382974 DOI: 10.1016/s0736-0266(02)00018-9] [Citation(s) in RCA: 330] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Explant cultures of adult human trabecular bone fragments give rise to osteoblastic cells, that are known to express osteoblast-related genes and mineralize extracellular matrix. These osteoblastic cells have also been shown to undergo adipogenesis in vitro and chondrogenesis in vivo. Here we report the in vitro developmental potential of adult human osteoblastic cells (hOB) derived from explant cultures of collagenase-pretreated trabecular bone fragments. In addition to osteogenic and adipogenic differentiation, these cells are capable of chondrogenic differentiation in vitro in a manner similar to adult human bone marrow-derived mesenchymal progenitor cells. High-density pellet cultures of hOB maintained in chemically defined serum-free medium, supplemented with transforming growth factor-beta1, were composed of morphologically distinct, chondrocyte-like cells expressing mRNA transcripts of collagen types II, IX and X, and aggrecan. The cells within the high-density pellet cultures were surrounded by a sulfated proteoglycan-rich extracellular matrix that immunostained for collagen type II and proteoglycan link protein. Osteogenic differentiation of hOB was verified by an increased number of alkaline phosphatase-positive cells, that expressed osteoblast-related transcripts such as alkaline phosphatase, collagen type I, osteopontin and osteocalcin, and formed mineralized matrix in monolayer cultures treated with ascorbate, beta-glycerophosphate, and bone morphogenetic protein-2. Adipogenic differentiation of hOB was determined by the appearance of intracellular lipid droplets, and expression of adipocyte-specific genes, such as lipoprotein lipase and peroxisome proliferator-activated receptor gamma2, in monolayer cultures treated with dexamethasone, indomethacin, insulin and 3-isobutyl-1-methylxanthine. Taken together, these results show that cells derived from collagenase-treated adult human trabecular bone fragments have the potential to differentiate into multiple mesenchymal lineages in vitro, indicating their developmental plasticity and suggesting their mesenchymal progenitor nature.
Collapse
Affiliation(s)
- Ulrich Nöth
- Departmnent of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
11
|
Yamasaki A, Itabashi M, Sakai Y, Ito H, Ishiwari Y, Nagatsuka H, Nagai N. Expression of type I, type II, and type X collagen genes during altered endochondral ossification in the femoral epiphysis of osteosclerotic (oc/oc) mice. Calcif Tissue Int 2001; 68:53-60. [PMID: 12037624 DOI: 10.1007/bf02685003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2000] [Accepted: 08/15/2000] [Indexed: 10/22/2022]
Abstract
The osteosclerotic (oc/oc) mouse, a genetically distinct murine mutation that has a functional defect in its osteoclasts, also has rickets and shows an altered endochondral ossification in the epiphyseal growth plate. The disorder is morphologically characterized by an abnormal extension of hypertrophic cartilage at 10 days after birth, which is later (21 days after birth) incorporated into the metaphyseal woven bone without breakdown of the cartilage matrix following vascular invasion of chondrocyte lacunae. In situ hybridization revealed that the extending hypertrophic chondrocytes expressed type I and type II collagen mRNA, as well as that of type X collagen and that the osteoblasts in the metaphysis expressed type II and type X collagen mRNA, in addition to type I collagen mRNA. The topographic distribution of the signals suggests a possible co-expression of each collagen gene in the individual cells. Immunohistochemically, an overlapping deposition of type I, type II, and type X collagen was observed in both the extending cartilage and metaphyseal bony trabeculae. Such aberrant gene expression and synthesis of collagen indicate that pathologic ossification takes place in the epiphyseal/metaphyseal junction of oc/oc mouse femur in different way than in normal endochondral ossification. This abnormality is probably not due to a developmental disorder in the epiphyseal plate but to the failure in conversion of cartilage into bone, since the epiphyseal plate otherwise appeared normal, showing orderly stratified zones with a proper expression of cartilage-specific genes.
Collapse
Affiliation(s)
- A Yamasaki
- Department of Oral Pathology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The long bones of the developing skeleton, such as those of the limb, arise from the process of endochondral ossification, where cartilage serves as the initial anlage element and is later replaced by bone. One of the earliest events of embryonic limb development is cellular condensation, whereby pre-cartilage mesenchymal cells aggregate as a result of specific cell-cell interactions, a requisite step in the chondrogenic pathway. In this review an extensive examination of historical and recent literature pertaining to limb development and mesenchymal condensation has been undertaken. Topics reviewed include limb initiation and axial induction, mesenchymal condensation and its regulation by various adhesion molecules, and regulation of chondrocyte differentiation and limb patterning. The complexity of limb development is exemplified by the involvement of multiple growth factors and morphogens such as Wnts, transforming growth factor-beta and fibroblast growth factors, as well as condensation events mediated by both cell-cell (neural cadherin and neural cell adhesion molecule) and cell-matrix adhesion (fibronectin, proteoglycans and collagens), as well as numerous intracellular signaling pathways transduced by integrins, mitogen activated protein kinases, protein kinase C, lipid metabolites and cyclic adenosine monophosphate. Furthermore, information pertaining to limb patterning and the functional importance of Hox genes and various other signaling molecules such as radical fringe, engrailed, Sox-9, and the Hedgehog family is reviewed. The exquisite three-dimensional structure of the vertebrate limb represents the culmination of these highly orchestrated and strictly regulated events. Understanding the development of cartilage should provide insights into mechanisms underlying the biology of both normal and pathologic (e.g. osteoarthritis) adult cartilage.
Collapse
Affiliation(s)
- A M DeLise
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
13
|
Woodward WA, Tuan RS. N-Cadherin expression and signaling in limb mesenchymal chondrogenesis: stimulation by poly-L-lysine. DEVELOPMENTAL GENETICS 2000; 24:178-87. [PMID: 10079520 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<178::aid-dvg16>3.0.co;2-m] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cellular condensation is a requisite step in the initiation of mesenchymal chondrogenesis in the embryonic limb bud. We have previously shown that cellular condensation of limb chondroprogenitor mesenchymal cells is accompanied by elevated expression of N-cadherin during chondrogenesis both in vivo and in vitro. N-Cadherin-mediated cell-cell interaction is also functionally required for proper mesenchymal chondrogenesis both in vivo and in vitro. In this report, we have further analyzed the functional importance of N-cadherin in the cellular condensation-chondrogenesis pathway by examining N-cadherin expression and related activities in high density micromass cultures of chick limb mesenchymal cells in which chondrogenesis is being stimulated with the cationic polymer, poly-L-lysine (PL). The chondrogenesis-promoting action of PL is thought to involve the clustering of cells via ionic cross-linking, perhaps mimicking the action of an endogenous matrix component. Immunohistochemistry, immunoblotting, and Northern blot analysis all show that PL treatment results in a time-dependent increase in N-cadherin expression at both the protein and mRNA levels. In addition, inhibition of N-cadherin function with a neutralizing monoclonal antibody directed to its extracellular domain inhibits the chondrogenesis-stimulating effect of PL. PL treatment also alters the tyrosine-phosphorylation state of the N-cadherin associated signaling protein, beta-catenin. These results suggest that N-cadherin-mediated cell adhesion is a requisite regulatory component of the limb mesenchymal chondrogenic differentiation program, involving at least in part beta-catenin tyrosine phosphorylation as a signaling step.
Collapse
Affiliation(s)
- W A Woodward
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
14
|
Nah HD, Pacifici M, Gerstenfeld LC, Adams SL, Kirsch T. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development. J Bone Miner Res 2000; 15:522-33. [PMID: 10750567 DOI: 10.1359/jbmr.2000.15.3.522] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calvarial and facial bones form by intramembranous ossification, in which bone cells arise directly from mesenchyme without an intermediate cartilage anlage. However, a number of studies have reported the emergence of chondrocytes from in vitro calvarial cell or organ cultures and the expression of type II collagen, a cartilage-characteristic marker, in developing calvarial bones. Based on these findings we hypothesized that a covert chondrogenic phase may be an integral part of the normal intramembranous pathway. To test this hypothesis, we analyzed the temporal and spatial expression patterns of cartilage characteristic genes in normal membranous bones from chick embryos at various developmental stages (days 12, 15 and 19). Northern and RNAse protection analyses revealed that embryonic frontal bones expressed not only the type I collagen gene but also a subset of cartilage characteristic genes, types IIA and XI collagen and aggrecan, thus resembling a phenotype of prechondrogenic-condensing mesenchyme. The expression of cartilage-characteristic genes decreased with the progression of bone maturation. Immunohistochemical analyses of developing embryonic chick heads indicated that type II collagen and aggrecan were produced by alkaline phosphatase activity positive cells engaged in early stages of osteogenic differentiation, such as cells in preosteogenic-condensing mesenchyme, the cambium layer of periosteum, the advancing osteogenic front, and osteoid bone. Type IIB and X collagen messenger RNAs (mRNA), markers for mature chondrocytes, were also detected at low levels in calvarial bone but not until late embryonic stages (day 19), indicating that some calvarial cells may undergo overt chondrogenesis. On the basis of our findings, we propose that the normal intramembranous pathway in chicks includes a previously unrecognized transient chondrogenic phase similar to prechondrogenic mesenchyme, and that the cells in this phase retain chondrogenic potential that can be expressed in specific in vitro and in vivo microenvironments.
Collapse
Affiliation(s)
- H D Nah
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
15
|
Mello MA, Tuan RS. High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim 1999; 35:262-9. [PMID: 10475272 DOI: 10.1007/s11626-999-0070-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To study the mechanisms regulating endochondral skeletal development, we examined the characteristics of long-term, high density micromass cultures of embryonic chicken limb bud mesenchymal cells. By culture Day 3, these cells underwent distinct chondrogenesis, evidenced by cellular condensation to form large nodules exhibiting cartilage-like morphology and extracellular matrix. By Day 14, extensive cellular hypertrophy was seen in the core of the nodules, accompanied by increased alkaline phosphatase activity, and the limitation of cellular proliferation to the periphery of the nodules and to internodular areas. By Day 14, matrix calcification was detected by alizarin red staining, and calcium incorporation increased as a function of culture time up to 2 to 3 wk and then decreased. X-ray probe elemental analysis detected the presence of hydroxyapatite. Analogous to growth cartilage developing in vivo, these cultures also exhibited time-dependent apoptosis, on the basis of DNA fragmentation detected in situ by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), ultrastructural nuclear morphology, and the appearance of internucleosomal DNA degradation. These findings showed that cellular differentiation, maturation, hypertrophy, calcification, and apoptosis occurred sequentially in the embryonic limb mesenchyme micromass cultures and indicate their utility as a convenient in vitro model to investigate the regulatory mechanisms of endochondral ossification.
Collapse
Affiliation(s)
- M A Mello
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
16
|
Gerstenfeld LC, Toma CD, Schaffer JL, Landis WJ. Chondrogenic potential of skeletal cell populations: selective growth of chondrocytes and their morphogenesis and development in vitro. Microsc Res Tech 1998; 43:156-73. [PMID: 9823002 DOI: 10.1002/(sici)1097-0029(19981015)43:2<156::aid-jemt8>3.0.co;2-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Most vertebrate embryonic and post-embryonic skeletal tissue formation occurs through the endochondral process in which cartilage serves a transitory role as the anlage for the bone structure. The differentiation of chondrocytes during this process in vivo is characterized by progressive morphological changes associated with the hypertrophy of these cells and is defined by biochemical changes that result in the mineralization of the extracellular matrix. The mechanisms, which, like those in vivo, promote both chondrogenesis in presumptive skeletal cell populations and endochondral progression of chondrogenic cells, may be examined in vitro. The work presented here describes mechanisms by which cells within presumptive skeletal cell populations become restricted to a chondrogenic lineage as studied within cell populations derived from 12-day-old chicken embryo calvarial tissue. It is found that a major factor associated with selection of chondrogenic cells is the elimination of growth within serum-containing medium. Chondrogenesis within these cell populations appears to be the result of permissive conditions which select for chondrogenic proliferation over osteogenic cell proliferation. Data suggest that chondrocyte cultures produce autocrine factors that promote their own survival or proliferation. The conditions for promoting cell growth, hypertrophy, and extracellular matrix mineralization of embryonic chicken chondrocytes in vitro include ascorbic acid supplementation and the presence of an organic phosphate source. The differentiation of hypertrophic chondrocytes in vitro is associated with a 10-15-fold increase in alkaline phosphatase enzyme activity and deposition of mineral within the extracellular matrix. Temporal studies of the biochemical changes coincident with development of hypertrophy in vitro demonstrate that proteoglycan synthesis decreases 4-fold whereas type X collagen synthesis increases 10-fold within the same period. Ultrastructural examination reveals cellular and extracellular morphology similar to that of hypertrophic cells in vivo with chondrocytes embedded in a well formed extracellular matrix of randomly distributed collagen fibrils and proteoglycan. Mineral deposition is seen in the interterritorial regions of the matrix between the cells and is apatitic in nature. These characteristics of chondrogenic growth and development are very similar in vivo and in vitro and they suggest that studies of chondrogenesis in vitro may provide a valuable model for the process in vivo.
Collapse
Affiliation(s)
- L C Gerstenfeld
- Musculoskeletal Research Laboratory, Boston University Medical Center, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- N J Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
18
|
Toma CD, Schaffer JL, Meazzini MC, Zurakowski D, Nah HD, Gerstenfeld LC. Developmental restriction of embryonic calvarial cell populations as characterized by their in vitro potential for chondrogenic differentiation. J Bone Miner Res 1997; 12:2024-39. [PMID: 9421235 DOI: 10.1359/jbmr.1997.12.12.2024] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism(s) by which the cells within the calvaria tissue are restricted into the osteogenic versus the chondrogenic lineage during intramembranous bone formation were examined. Cells were obtained from 12-day chicken embryo calvariae after tissue condensation, but before extensive osteogenic differentiation, and from 17-day embryo calvariae when osteogenesis is well progressed. Only cell populations from the younger embryos showed chondrogenic differentiation as characterized by the expression of collagen type II. The chondrocytes underwent a temporal progression of maturation and endochondral development, demonstrated by the expression of collagen type II B transcript and expression of collagen type X mRNA. Cell populations from both ages of embryos showed progressive osteogenic differentiation, based on the expression of osteopontin, bone sialoprotein, and osteocalcin mRNAs. Analysis using lineage markers for either chondrocytes or osteoblasts demonstrated that when the younger embryonic cultures were grown in conditions that were permissive for chondrogenesis, the number of chondrogenic cells increased from approximately 15 to approximately 50% of the population, while the number of osteogenic cells remained almost constant at approximately 35-40%. Pulse labeling of the cultures with BrdU showed selective labeling of the chondrogenic cells in comparison with the osteogenic cells. These data indicate that the developmental restriction of skeletal cells of the calvaria is not a result of positive selection for osteogenic differentiation but a negative selection against the progressive growth of chondrogenic cells in the absence of a permissive or inductive environment. These results further demonstrate that while extrinsic environmental factors can modulate the lineage progression of skeletal cells within the calvariae, there is a progressive restriction during embryogenesis in the number of cells within the calvaria with a chondrogenic potential. Finally, these data suggest that the loss of cells with chondrogenic potential from the calvaria may be related to the progressive limitation of the reparative capacity of the cranial bones.
Collapse
Affiliation(s)
- C D Toma
- The Laboratory for the Study of Skeletal Disorders and Rehabilitation, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yu JC, McClintock JS, Gannon F, Gao XX, Mobasser JP, Sharawy M. Regional differences of dura osteoinduction: squamous dura induces osteogenesis, sutural dura induces chondrogenesis and osteogenesis. Plast Reconstr Surg 1997; 100:23-31. [PMID: 9207655 DOI: 10.1097/00006534-199707000-00005] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dura plays an important role in calvarial morphogenesis. However, precisely what that role is remains unclear. We present here in vivo evidence that dura without other central nervous system components induces both chondrogenesis and osteogenesis. The mechanism is, at least in part, by proximate tissue interaction. The objectives of this experiment were to answer the following: (1) Can dura actually induce osteogenesis without the influence of the underlying brain? (2) What are the requirements of this dura-induced heterotopic osteogenesis? (3) What are the differences between dura underlying sutures and dura underlying the squamous portions of the cranial bones? Dura underlying the metopic, sagittal, and lambdoidal sutures and dura underlying the flat portions of frontal and parietal bones were obtained from neonatal Lewis rats and transplanted into the posterior thoraces of adult Lewis recipients. In group I, dura underlying the metopic, sagittal, and lambdoidal sutures (n = 20) and dura underlying the flat portions of frontal and parietal bones (n = 20) were transplanted individually into separate epitheliomesenchymal pockets. Group II animals had dura underlying the metopic, sagittal, and lambdoidal sutures (n = 10) and dura underlying the flat portions of frontal and parietal bones (n = 10) transplanted individually into surgically created mesenchymal pockets by placing the dura grafts between panniculus carnosus and latissimus dorsi muscles. The animals were sacrificed at 2-week intervals. Light microscopy, special histochemical analysis, immunohistochemistry, and electron microscopy were performed. Bone formation was seen in 15 of the 18 animals (83 percent) in group I. No bone or cartilage formation was seen in group II. Chondrogenesis was seen in 4 animals receiving dura underlying the metopic, sagittal, and lambdoidal sutures in group I. Cellular hyperproliferation was seen at 2 weeks when dura was transplanted close to the hair follicles. These cells had a high nucleus-to-cytoplasm ratio and were positive for transforming growth factor beta. This hyperproliferation was followed by production and accumulation of Alcian blue-positive extracellular matrix that resisted digestion by hyaluronidase. Cellularly active cartilage was seen at 6 weeks. There was no chondrogenesis in animals receiving dura underlying the flat portions of frontal and parietal bones in group I. Electron microscopy demonstrated the presence of proteoglycan-like ground substance and type II collagen in the inner layer of sutural dura and the predominance of dense type I collagen in the squamous dura and the external layer of the sutural dura. The important findings of this experiment are that (1) heterotopically transplanted neonatal dura can induce osteogenesis, (2) this heterotopic osteoinduction by dura requires epitheliomesenchymal interaction, and (3) separating dura into sutural dura and squamous dura, chondrogenesis occasionally occurred in addition to osteogenesis with the former, while only membranous ossification occurred with the latter, indicating intrinsic differences within the dura mater. This dural heterogeneity is supported by direct ultrastructural data.
Collapse
Affiliation(s)
- J C Yu
- Division of Plastic Surgery, Medical College of Georgia, Augusta 30912-4080, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gerstenfeld L, Shapiro F. Expression of bone-specific genes by hypertrophic chondrocytes: Implications of the complex functions of the hypertrophic chondrocyte during endochondral bone development. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(199607)62:1<1::aid-jcb1>3.0.co;2-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Gerstenfeld LC, Shapiro FD. Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development. J Cell Biochem 1996; 62:1-9. [PMID: 8836870 DOI: 10.1002/(sici)1097-4644(199607)62:1%3c1::aid-jcb1%3e3.0.co;2-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endochondral bone formation is one of the most extensively examined developmental sequences within vertebrates. This process involves the coordinated temporal/spatial differentiation of three separate tissues (cartilage, bone, and the vasculature) into a variety of complex structures. The differentiation of chondrocytes during this process is characterized by a progressive morphological change associated with the eventual hypertrophy of these cells. These cellular morphological changes are coordinated with proliferation, a columnar orientation of the cells, and the expression of unique phenotypic properties including type X collagen, high levels of bone, liver, and kidney alkaline phosphatase, and mineralization of the cartilage matrix. Several studies indicate that hypertrophic chondrocytes also express osteocalcin, osteopontin, and bone sialoprotein, three proteins which until very recently were widely believed to be restricted in their expression to osteoblasts. Recent studies suggest that the hypertrophic chondrocytes are regulated by the calcitropic hormones, morphogenic steroids, and local tissue factors. These considerations are based on the regulation by 1,25 (OH)2D3 and retinoids of the cartilage specific genes as well as osteopontin and osteocalcin expression in hypertrophic chondrocytes. They are also based on the effects on growth plate development caused by 1) transgenic ablation of autocrine/paracrine regulators such as PTHrP and of the transcriptional regulator c-fos and 2) naturally occurring genetic mutations of the FGF receptor. These studies further suggest that specific transcriptional factors mediate exogenous regulatory signals in a coordinated manner with the development of bone. While it has been widely demonstrated that the majority of hypertrophic chondrocytes undergo apoptosis during terminal stages of the developmental sequence, their response to specific exogenous regulatory signals and their expression of bone-specific proteins give rise to questions about whether all growth chondrocytes have the same developmental fates and have identical functions. Furthermore, specific questions arise as to whether there are similar mechanisms of regulation for commonly expressed genes found in both cartilage and bone or whether these genes have unique regulatory mechanisms in these different tissues. These recent findings suggest that hypertrophic chondrocytes are functionally coupled during endochondral bone formation to the recruitment of osteoblasts, vascular cells, and osteoclasts.
Collapse
Affiliation(s)
- L C Gerstenfeld
- Department of Orthopaedic Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
22
|
Li SW, Prockop DJ, Helminen H, Fässler R, Lapveteläinen T, Kiraly K, Peltarri A, Arokoski J, Lui H, Arita M. Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes Dev 1995; 9:2821-30. [PMID: 7590256 DOI: 10.1101/gad.9.22.2821] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Homologous recombination in embryonic stem cells was used to prepare transgenic mice with an inactivated Col2a1 gene for collagen II, the major protein component of the extracellular matrix of cartilage. Heterozygous mice had a minimal phenotype. Homozygous mice developed into fetuses that were delivered vaginally but died either just before or shortly after birth. The cartilage in the mice consisted of highly disorganized chondrocytes with a complete lack of extracellular fibrils discernible by electron microscopy. There was no endochondrial bone or epiphyseal growth plate in long bones. However, many skeletal structures such as the cranium and ribs were normally developed and mineralized. The results demonstrate that a well-organized cartilage matrix is required as a primary tissue for development of some components of the vertebrate skeleton, but it is not essential for others.
Collapse
Affiliation(s)
- S W Li
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Denker AE, Nicoll SB, Tuan RS. Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation 1995; 59:25-34. [PMID: 7589892 DOI: 10.1046/j.1432-0436.1995.5910025.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Formation of cartilage during both embryonic development and repair processes involves the differentiation of multipotential mesenchymal cells. The mouse cell line, C3H10T1/2, has been shown to be multipotential and capable of differentiating into various phenotypes normally derived from embryonic mesoderm, including myocytes, adipocytes and chondrocytes. In this study, we have analyzed the induction of chrondrogenesis in C3H10T1/2 cells by transforming growth factor-beta (TGF-beta 1, human recombinant form). Treatment of high-density micromass cultures of C3H10T1/2 cells with TGF-beta 1 resulted in the formation of a three dimensional spheroid structure, which exhibited cartilage-like histology. Extracellular matrix components characteristic of cartilage, type II collagen and cartilage link protein, were demonstrated by immunohistochemistry. TGF-beta 1 treatment increased collagen synthesis, and immunoblot analysis showed the presence of type II collagen in TGF-beta 1-treated micromass cultures, but not in TGF-beta 1-treated monolayer cultures nor in untreated cultures. An increase in radioactive sulfate uptake relative to DNA synthesis was also seen in TGF-beta 1-treated micromass cultures forming spheroids, indicating the increased synthesis of sulfated proteoglycans. These observations indicated that the spheroids formed are of a cartilaginous nature, and that multipotential C3H10T1/2 cells, which do not spontaneously enter the chondrogenic pathway, can be induced to undergo cellular differentiation towards chondrogenesis in vitro through culture in a favorable environment.
Collapse
Affiliation(s)
- A E Denker
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
24
|
Devlin H, Hoyland J, Freemont AJ, Sloan P. Localization of pro-collagen type II mRNA and collagen type II in the healing tooth socket of the rat. Arch Oral Biol 1995; 40:181-5. [PMID: 7605246 DOI: 10.1016/0003-9969(95)98806-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sprague-Dawley rats (50 days old) were anaesthetized and the maxillary right molars extracted. The rats were killed at 2, 3, 6, 8 and 10 days after extraction. The maxillae were dissected and prepared for either routine histology, in situ hybridization for pro-collagen type II mRNA, or immunohistochemical detection of collagen type II. Pro-collagen type II mRNA was expressed maximally in the healing tooth socket at 8 days after the extractions, but the protein was not expressed at any time. This suggests that the translation of pro-collagen type II mRNA does not occur in osteoblasts following tooth extraction. Ossification was present in the socket at 6 days after the extractions, which is consistent with the suggestion that an early feature of osteoblastic differentiation may be the expression of type II pro-collagen mRNA.
Collapse
Affiliation(s)
- H Devlin
- Department of Restorative Dentistry, University Dental Hospital of Manchester, U.K
| | | | | | | |
Collapse
|
25
|
Cancedda R, Descalzi Cancedda F, Castagnola P. Chondrocyte differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 159:265-358. [PMID: 7737795 DOI: 10.1016/s0074-7696(08)62109-9] [Citation(s) in RCA: 286] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Data obtained while investigating growth plate chondrocyte differentiation during endochondral bone formation both in vivo and in vitro indicate that initial chondrogenesis depends on positional signaling mediated by selected homeobox-containing genes and soluble mediators. Continuation of the process strongly relies on interactions of the differentiating cells with the microenvironment, that is, other cells and extracellular matrix. Production of and response to different hormones and growth factors are observed at all times and autocrine and paracrine cell stimulations are key elements of the process. Particularly relevant is the role of the TGF-beta superfamily, and more specifically of the BMP subfamily. Other factors include retinoids, FGFs, GH, and IGFs, and perhaps transferrin. The influence of local microenvironment might also offer an acceptable settlement to the debate about whether hypertrophic chondrocytes convert to bone cells and live, or remain chondrocytes and die. We suggest that the ultimate fate of hypertrophic chondrocytes may be different at different microanatomical sites.
Collapse
Affiliation(s)
- R Cancedda
- Centro di Biotecnologie Avanzate, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | |
Collapse
|
26
|
Jacenko O, Tuan RS. Chondrogenic potential of chick embryonic calvaria: I. Low calcium permits cartilage differentiation. Dev Dyn 1995; 202:13-26. [PMID: 7703518 DOI: 10.1002/aja.1002020103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calvaria from day-14 calcium-deficient chick embryos produced by long-term maintenance in shell-less culture, exhibit a cartilage-like phenotype (Jacenko and Tuan [1986] Dev. Biol. 115:215-232), which is restored to an osteogenic phenotype upon calcium repletion to the embryo. The expression of cartilage markers in a typically osteogenic tissue under calcium deficiency implies the presence of chondrogenic cells, and questions the conditions associated with calcium deficiency which may cause their divergent pathway of differentiation. In the present study, by explanting normal and shell-less embryonic calvarial pairs in organ culture in vitro and experimentally regulating their calcium supply, the calcium status of the calvaria was modulated as a function of medium calcium. Histological and immunoblotting analyses demonstrated for the first time that calvaria possess cells which can form genuine cartilage. This chondrogenic potential is expressed only in a low-calcium environment, where cartilage forms in both normal and shell-less calvarial pairs; their calcium-supplemented counterparts, however, develop as fully osteogenic tissues. Furthermore, chondrogenesis in both normal and shell-less calvaria indicates that the chondrogenic cells must be endogenous constituents of the calvaria, rather than being derived elsewhere in response to systemic calcium deficiency. Finally, the correlation between matrix under-calcification and cartilage expression in the embryonic calvarium suggests that calcium, perhaps in the form of matrix mineral, may modulate cell differentiation during skeletogenesis.
Collapse
Affiliation(s)
- O Jacenko
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
27
|
Jacenko O, San Antonio JD, Tuan RS. Chondrogenic potential of chick embryonic calvaria: II. Matrix calcium may repress cartilage differentiation. Dev Dyn 1995; 202:27-41. [PMID: 7703519 DOI: 10.1002/aja.1002020104] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chick embryos cultured in the absence of their eggshell are rendered severely calcium-deficient, and develop a cartilage-like phenotype in the calvarium, a normally osteogenic tissue. In the preceding paper (Jacenko and Tuan [1995] Dev. Dyn. 202:13-26), experiments using organ cultured calvaria from day-12 normal and shell-less embryos showed that depletion of calcium alone may be responsible in promoting chondrogenic differentiation in calvaria. Here these findings were extended using an in vivo calvarial grafting technique, such that the extent of calvarial matrix calcification was a function of the calcium status of both the graft and the host. In these calvarial grafts, undermineralized regions again were shown to support chondrogenesis. To identify possible mechanisms which promote chondrogenesis in the calvaria, cells were enzymatically dissociated from the calvaria and cultured in media with varied levels of soluble calcium, under conditions which should modulate cell-to-cell interactions, including monolayer, micromass, agarose gels, and suspension cultures. Soluble calcium had no effect on calvarial cell differentiation, whereas conditions which enhanced cell-cell interactions, e.g., suspension culture, elicited cartilage expression. Based on these findings, we propose that the calcified matrix of the calvarium is repressive to chondrogenesis during normal development, but that the lack of mineral in a calcium-deficient calvarium creates a microenvironment permissive for cell-to-cell interactions which lead to chondrogenic differentiation.
Collapse
Affiliation(s)
- O Jacenko
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
28
|
Ekanayake S, Tuan RS. Chondrogenesis of neural crest cells: effect of poly-L-lysine and bone extract. Differentiation 1994; 58:19-27. [PMID: 7867893 DOI: 10.1046/j.1432-0436.1994.5810019.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mechanisms of chondrogenic differentiation are generally studied in vitro by analyzing the action of agents that promote or affect chondrogenesis in embryonic mesenchyme, such as cells of the embryonic limb bud. However, it is not known whether progenitor cells of the craniofacial skeleton, which are of a different embryonic origin and derived from the neural crest, are similarly responsive to such agents. To gain insight into the regulation of chondrogenic differentiation in cells derived from neural crest, we have treated chick embryonic neural crest explants in vitro with poly-L-lysine (PL, M(r) 380 kDa) or bovine bone extract (BBE), two agents known to enhance chondrogenesis of limb mesenchymal cells. Both cephalic (normally chondrogenic) and trunk (normally nonchondrogenic) neural crest cells were analyzed. Chondrogenic differentiation was determined by histological, immunohistochemical and autoradiographic methods. Our results indicate that both PL (380 kDa) and BBE significantly enhance chondrogenesis of cephalic neural crest cells, suggesting that the mechanism of chondrogenesis of these ectodermally derived cells is similar to that of mesodermally derived limb mesenchymal cells. However, trunk neural crest cells did not undergo chondrogenesis in response to PL or BBE. These data show that chondrogenesis can be enhanced in cranial ectodermal neural crest cells in a manner similar to that in the limb mesenchyme. However, since nonchondrogenic trunk neural crest cells are not responsive, an inherent potential for cartilaginous differentiation is necessary for exogenous stimulation of chondrogenesis.
Collapse
Affiliation(s)
- S Ekanayake
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107
| | | |
Collapse
|
29
|
Abstract
This study investigated the effect of estrogen deficiency on residual ridge remodeling after tooth extraction. Ovariectomy was performed on female Sprague-Dawley rats, and the plasma levels of estrogen and progesterone were monitored. The maxillary molars of the ovariectomized and control rats were extracted and the remodeling residual ridge tissues were harvested at 2, 4, and 8 weeks postextraction. The specimens were examined at the mesiodistal center point of the residual ridge by use of light and scanning electron microscopy. The surface of the residual ridge of the control animals showed a number of osteoclastic lacunae indicating bone resorption activity. In the ovariectomized animals, the surface of the residual alveolar bone was partially covered by a distinct calcified tissue. This tissue contained large cells and a mesh-like structure of thin calcified extracellular matrix consistent with the tissue characteristics of chondroid bone. The chondroid bone-like calcified tissue was found only in the ovariectomized animals throughout the experiment period. This study's data suggest that a systemic condition such as estrogen deficiency due to ovariectomy may alter the phenotypic expression of cells associated with the residual ridge and result in less osteoclastic activity and a different type of calcified tissue.
Collapse
Affiliation(s)
- X Li
- Harvard School of Dental Medicine, Boston, Mass
| | | |
Collapse
|
30
|
Watanabe K, Bruder SP, Caplan AI. Transient expression of type II collagen and tissue mobilization during development of the scleral ossicle, a membranous bone, in the chick embryo. Dev Dyn 1994; 200:212-26. [PMID: 7949369 DOI: 10.1002/aja.1002000304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Development of the chick scleral ossicle was studied with respect to expression of various collagen types, cartilage matrix molecules, and osteoblastic cell surface antigens. The extra-cellular matrix of the scleral ossicle primordium of stage 35.5 chick sclera and the mesenchyme beneath the conjunctival epithelium was immunoreactive with anti-type II collagen antibody, giving the impression that certain materials and/or cell clusters surrounded by reactive matrix were descending from the epithelial-mesenchymal interface to the scleral ossicle primordium. In stage 37 embryos, type II collagen immunoreactivity was restricted to the bone matrix of the scleral ossicles, and persisted through stage 39. However, at stage 41, virtually no type II collagen was detected. In contrast, strong immunostaining of type I collagen was first detected in the developing scleral ossicle at stage 37, coinciding with the formation of mineralized bone matrix. Following the extensive accumulation of type I collagen in bone matrix, type XII collagen was detected at the surface of the bone; both type I and type XII collagen immunostainings then remained. By stage 37, immunoreactivity with a pre-osteoblastic cell surface marker was detected on cells of the scleral ossicle, and typical osteocytes were subsequently identified by both morphological and specific immunostaining techniques. Antibodies other than for type II collagen, specific to chondrogenic mesenchyme or cartilage matrix, never reacted with the scleral ossicle and its primordium during development. Taken together, these observations indicate that the scleral ossicle is a membranous bone, whose development may not require overt chondrogenesis. Implications of type II collagen distribution during the positioning of scleral ossicles and their early bone matrix formation are discussed with respect to the origin and evolution of endoskeletons in vertebrate animals.
Collapse
Affiliation(s)
- K Watanabe
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
31
|
Reginato AM, Tuan RS, Ono T, Jimenez SA, Jacenko O. Effects of calcium deficiency on chondrocyte hypertrophy and type X collagen expression in chick embryonic sternum. Dev Dyn 1993; 198:284-95. [PMID: 8130376 DOI: 10.1002/aja.1001980406] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Maintenance of chick embryos in long-term culture without their calcareous egg-shell is a useful method for studying the relationship between calcium homeostasis and cell differentiation during skeletogenesis. Previously, we have shown that in shell-less (SL) embryos, calcium deficiency induces a cartilage-like phenotype in osteogenic tissues, such as calvaria (Jacenko and Tuan [1986] Dev. Biol. 115:215). In this investigation, we have studied the relationship between cartilage calcification and hypertrophy, and the expression of type X collagen, a specific product of hypertrophic chondrocytes. For this study, the cephalic (calcifying) and caudal (permanently cartilaginous) regions of sterna from day 18 and day 20 normal (NL) and SL embryos were metabolically labeled with [14C]-proline. Analysis of the biosynthetic products revealed significant differences in type X collagen expression in the cephalic region of sternal cartilage. In NL tissues, type X collagen production increased from 13.1% of total collagen at day 18 to 43.7% at day 20. In contrast, in SL embryos, type X collagen was not detectable until day 20, when it represented only 1% of total collagen. Comparison of the NL and SL embryos with respect to their serum calcium level and sternal calcium content and histology revealed a direct relationship between low systemic calcium and limited cartilage hypertrophy, undermineralization, and decreased type X collagen production in the sternal cephalic cartilage. Supplementation of CaCO3 to SL embryos increased their serum and sternal calcium, and restored cartilage hypertrophy, mineralization, and type X collagen synthesis in the cephalic portion of the sterna. These findings confirm that a critical relationship exists between calcium homeostasis, chondrocyte hypertrophy, mineralization, and type X collagen synthesis in the cephalic region of sternal cartilage. These results further demonstrate the importance of calcium in the morphogenetic events of endochondral ossification, in particular the transition from hyaline cartilage to hypertrophic cartilage, and eventually to bone.
Collapse
Affiliation(s)
- A M Reginato
- Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | |
Collapse
|
32
|
Ting K, Petropulos LA, Iwatsuki M, Nishimura I. Altered cartilage phenotype expressed during intramembranous bone formation. J Bone Miner Res 1993; 8:1377-87. [PMID: 8266829 DOI: 10.1002/jbmr.5650081112] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sequential phenotypic expression occurring during intramembranous bone formation was investigated using the tooth extraction socket created in rat alveolar bone in vivo. The differential expression of bone extracellular matrix genes, such as collagen I and osteocalcin, was confirmed by RNA transfer blot analysis and in situ hybridization during the active healing period of the bony socket. To clarify the possible involvement of the chondrogenic phenotype during the process of intramembranous bone formation, the expression of cartilage collagen II and IX was further examined in this model. It was found that both alpha 1(II) and alpha 1(IX) mRNAs were present, but the alpha 1(IX) mRNA was a transcript from the downstream start site/promoter, which is a different site in the alpha 1(IX) gene from that used in hyaline cartilage. In situ hybridization indicated that the alpha 1(IX) message was expressed by cells associated with bone matrix in the early formation stage. This finding led to the investigation of type IX collagen expression by osteogenic cells isolated from newborn rat calvariae, in which only the truncated form of alpha 1(IX) mRNA was indicated by RNA transfer analysis. The expression of collagen II and a truncated form of collagen IX may represent an early phenotypic feature of osteoblast differentiation.
Collapse
Affiliation(s)
- K Ting
- Department of Prosthetic Dentistry, Harvard School of Dental Medicine, Boston, Massachusetts
| | | | | | | |
Collapse
|
33
|
Plenz G, Gan Y, Raabe HM, Müller PK. Expression of vigilin in chicken cartilage and bone. Cell Tissue Res 1993; 273:381-9. [PMID: 8364975 DOI: 10.1007/bf00312841] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression of vigilin was followed during chick embryonal development by in situ hybridization. Vigilin mRNA is abundantly expressed in tissues of mesenchymal and ectomesenchymal origin. The mesenchymal primordial cells of cartilage and bone did not show any significant expression of vigilin. As tissue differentiation proceeded, vigilin mRNA levels increased in hyaline cartilage and in both endochondral as well as intramembranous bone. The results suggest that the expression of vigilin mRNA in cartilage- and bone-forming cells, chondrocytes and osteoblasts, is dependent on the stage of development and cellular differentiation, although not a unique process of bone formation. Most striking is the correlation of the maximum vigilin mRNA expression in osteoblasts and hypertrophic chondrocytes to periods when cell-specific genes were highly transcribed and substantially translated, e.g., synthesis of procollagen and formation of extracellular matrix in bone and cartilage.
Collapse
Affiliation(s)
- G Plenz
- Institut für Medizinische Molekularbiologie, Lübeck, Germany
| | | | | | | |
Collapse
|
34
|
Koide M, Smith CA, Miyahara T, Tuan RS. Alterations in cellular calcium handling as a result of systemic calcium deficiency in the developing chick embryo: I. Erythrocytes. J Cell Physiol 1992; 153:626-35. [PMID: 1447322 DOI: 10.1002/jcp.1041530325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chick embryos rendered calcium (Ca) deficient by shell-less (SL) culture develop hypertension and tachycardia. Since hypocalcemia is accompanied by hypernatremia systemically but not by lower cellular Ca (Koide and Tuan, 1989), we speculate that cellular Ca handling may be altered in the SL embryo, perhaps involving Na transport. Using erythrocytes (RBC) from day-14 SL and normal (NL) embryos as the experimental cell, cellular Ca handling was studied under varying extracellular osmotic and ionic conditions by analyzing 45Ca uptake and cell volume regulation. Two agents, p-chloromercuriphenylsulfonate (PCM), and inosine/iodoacetamide (INI) were used to treat the RBCs to modify plasma membrane ion permeability and to deplete cellular ATP, respectively. Other cellular functions and activities related to Ca homeostasis, including ATP content and Ca(2+)-ATPase activity, were also analyzed. These analyses showed: (1) in NaCl, Ca uptake was similar in NL and SL cells, except after INI treatment, which resulted in slower Ca uptake by the SL cells, (2) in choline and sucrose, Ca uptake by SL RBCs was higher, (3) Ca uptake by RBCs of both embryos changed depending on the osmotic agent (Na < K < or = choline < sucrose), (4) Ca(2+)-ATPase activity was higher in SL RBC, although there was no change in the size or charge of the enzyme, and (5) in any osmotic agent, cellular Na was significantly lower, whereas cellular K was higher, in SL RBC. Based on these results, three features of RBC Ca handling were apparent: (1) Na-Ca exchange was functional and was more active in SL RBCs, (2) Ca uptake was dependent on the total ionic electrochemical gradient but not on bulk H2O movement, and (3) Ca pumping out capacity was directly correlated with Ca(2+)-ATPase activity. Elevated Ca uptake in sucrose-treated SL RBC is therefore indicative of its greater ion permeability. Taken together, these findings indicate that cellular Ca handling of the RBCs of SL chick embryos is characterized by a more active Na-Ca exchange system, greater ion permeability, and higher Ca pumping out capacity, thereby suggesting an up-regulated Ca handling function in the SL RBCs. The abnormal cellular Ca handling may be a direct result of the systemic Ca deficiency of the SL chick embryo and may be functionally related to its hypertension and tachycardia.
Collapse
Affiliation(s)
- M Koide
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | |
Collapse
|
35
|
Hofmann C, Gropp R, von der Mark K. Expression of anchorin CII, a collagen-binding protein of the annexin family, in the developing chick embryo. Dev Biol 1992; 151:391-400. [PMID: 1318233 DOI: 10.1016/0012-1606(92)90179-k] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Expression of anchorin CII, a collagen-binding protein of the annexin family, was followed in the developing chick embryo using Northern and in situ hybridization and Western blotting. During chick somite development, anchorin CII mRNA was detected by Northern blotting as early as stage 11. At stage 24, anchorin mRNA accumulated in the anterior part of the somite sclerotome near the resegmentation line, as shown by in situ hybridization. The presence of anchorin CII protein during stages 11 to 20 was confirmed by Western blotting. In situ hybridization identified anchorin CII also in the otic vesicle adjacent to the site of contact with the statoacoustic ganglion and in the mandibular mesenchyme. The level of anchorin CII mRNA in differentiated hyaline cartilage, exemplified by sternal cartilage, was lower than that in differentiating somites or cultured chondrocytes. These findings are consistent with our notion that anchorin CII may be involved in cell-matrix interactions preceding chondrogenic differentiation events in the chick embryo. A significant level of anchorin CII mRNA and protein synthesis was also found in cultured myoblasts, but less than that in chondroblasts. This distribution pattern is different from that reported for a related protein, p34, or calpactin, the major protein substrate for tyrosine kinase phosphorylation in chick chondrocytes and fibroblasts. The results confirm suggestions from previous sequencing studies that anchorin CII and p34 are different proteins of the annexin/calpactin family.
Collapse
Affiliation(s)
- C Hofmann
- Max Planck Society, Clinical Research Unit for Rheumatology, University of Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
36
|
Funanage VL, Carango P, Shapiro IM, Tokuoka T, Tuan RS. Creatine kinase activity is required for mineral deposition and matrix synthesis in endochondral growth cartilage. BONE AND MINERAL 1992; 17:228-36. [PMID: 1611312 DOI: 10.1016/0169-6009(92)90742-v] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In earlier studies, we have drawn attention to the unique changes in energy metabolism that accompany the maturation of epiphyseal growth plate chondrocytes. The objective of this investigation was to examine the importance of the ATP generating enzyme creatine kinase (CK), in the development and mineralization of the growth plate. We inhibited CK function by administering beta-guanidinopropionic acid (beta-GPA) to rats in vivo and to cultured chick chondrocytes in vitro. We found that this agent inhibited normal development of cartilage. Disorganization of chondrocytes in the proliferative and hypertrophic zones, poor vascular invasion, and retention of calcified cartilage occurred in the long bones of beta-GPA-fed rats. beta-GPA caused a change in the electrophoretic mobility of type II and type X collagens. Inhibition of apatite formation in the bones of shell-less chick embryos was accompanied by a CK isoenzyme shift from a bone-specific phenotype to a CK isozyme profile similar to that of cartilage. The results of these studies indicate that CK activity is required for normal development of the growth plate and that interference with creatine phosphate metabolism results in profound changes in the synthesis of cartilage and the maturational activities of chondrocytes.
Collapse
Affiliation(s)
- V L Funanage
- Research Department, Alfred I. duPont Institute, Wilmington, DE
| | | | | | | | | |
Collapse
|
37
|
Hofstetter W, Guenther HL, Stutzer A, Schenk R, Fleisch H, Friis R. Establishment and characterization of two immortalized cell lines of the osteoblastic lineage. J Bone Miner Res 1991; 6:609-22. [PMID: 1887824 DOI: 10.1002/jbmr.5650060612] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Osteoblastic cells were cloned by culturing rat calvariae cells in agarose in the presence of TGF-beta and EGF. Two bone cell lines were established by immortalizing such an osteoblastic clonal cell population by the introduction of the avian v-mycOK10 gene in the form of a mouse ecotropic retrovirus. Although originating from the same clonal cell population, the two lines exhibited somewhat differing properties. IRC10/30-myc1 expressed alkaline phosphatase (AP), showed PTH- and PGE2-induced cAMP production, synthesized mainly collagen type I and a minor fraction of type III, and produced mRNA for the bone-specific protein osteocalcin. IRC10/30-myc3 did not express AP, showed no PTH responsiveness, and synthesized only about one-third as much collagen as IRC10/30-myc1 (4 versus 12% of total protein synthesis). However, the cell line IRC10/30-myc3 was induced to synthesize cAMP by PGE2 and produced osteocalcin mRNA. When cultured in vivo in diffusion chambers, both lines proved to be osteogenic. Besides bone, both lines also formed cartilage and fibrous tissue. Thus, by immortalizing a clonal cell population of the osteoblastic phenotype, cell lines expressing varying properties can emerge. Furthermore, the expression of alkaline phosphatase and PTH-inducible adenylate cyclase are not prerequisites for a cell to form bone in vivo. Finally, cells expressing the phenotype of differentiated osteoblasts, including osteocalcin synthesis, still have a multipotential differentiation capacity and form bone and cartilage in vivo.
Collapse
Affiliation(s)
- W Hofstetter
- Department of Pathophysiology, University of Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Kantomaa T, Hall BK. On the importance of cAMP and Ca++ in mandibular condylar growth and adaptation. Am J Orthod Dentofacial Orthop 1991; 99:418-26. [PMID: 1851390 DOI: 10.1016/s0889-5406(05)81575-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The origin of the mandibular condylar cartilage is not periosteal, like that of the other secondary cartilages; this cartilage originates in a cellular blastema of its own. Despite the fact that the development of secondary cartilages, in general, is dependent on mechanical irritation, that of the condylar cartilage is not. The low level of function experienced postnatally seems to favor growth, but because the proliferation cells of the condylar cartilage are multipotential, they switch their differentiation pathway in the direction of osteoblasts in the absence of function, and growth of the cartilage ceases. This regulation of differentiation is mediated by maturation of the cartilage cells. If function is not present, maturation advances rapidly, and the mature cartilage induces bone formation instead of cartilage. Cyclic AMP and Ca are important mediators in this process, because they affect the advancement of maturation.
Collapse
Affiliation(s)
- T Kantomaa
- Institute of Dentistry, University of Oulu, Finland
| | | |
Collapse
|
39
|
Ono T, Tuan RS. Vitamin D and chick embryonic yolk calcium mobilization: identification and regulation of expression of vitamin D-dependent Ca2(+)-binding protein, calbindin-D28K, in the yolk sac. Dev Biol 1991; 144:167-76. [PMID: 1995395 DOI: 10.1016/0012-1606(91)90488-o] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The developing chick embryo acquires calcium from two sources. Until about Day 10 of incubation, the yolk is the only source; thereafter, calcium is also mobilized from the eggshell. We have previously shown that during normal chick embryonic development, vitamin D is involved in regulating yolk calcium mobilization, whereas vitamin K is required for eggshell calcium translocation by the chorioallantoic membrane. We have studied here the biochemical action of 1,25-dihydroxy vitamin D3 in the yolk sac by examining the expression and regulation of the cytosolic vitamin D-dependent calcium-binding protein, calbindin-D28K. Two types of embryos are used for this study, normal embryos developing in ovo and embryos maintained in long-term shell-less culture ex ovo, the latter being dependent solely on the yolk as their calcium source. Our findings are (1) calbindin-D28K is expressed in the embryonic yolk sac, detectable at incubation Days 9 and 14; (2) the embryonic yolk sac calbindin-D28K resembles that of the adult duodenum in both molecular weight (Mr 28,000) and isoelectric point, as well as the presence of E-F hand Ca2(+)-binding structural domains; (3) systemic calcium deficiency caused by shell-less culture of chick embryos results in enhanced expression of calbindin-D28K in the yolk sac during late development; (4) yolk sac calbindin-D28K expression is inducible by 1,25-dihydroxy vitamin D3 treatment in vivo and in vitro; and (5) immunohistochemistry revealed that yolk sac calbindin-D28K is localized exclusively to the cytoplasm of the yolk sac endoderm. These findings indicate that the chick embryonic yolk sac is a genuine target tissue of 1,25-dihydroxy vitamin D3.
Collapse
Affiliation(s)
- T Ono
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
40
|
Gawande SR, Tuan RS. Characterization of bone-derived chondrogenesis-stimulating activity on embryonic limb mesenchymal cells in vitro. CELL AND TISSUE KINETICS 1990; 23:375-90. [PMID: 2245438 DOI: 10.1111/j.1365-2184.1990.tb01131.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Demineralized bone matrix contains factors which stimulate chondrogenesis and osteogenesis in vivo. A water-soluble extract of bone has been shown to stimulate chondrogenesis in vitro in embryonic limb mesenchymal cells (Syftestad, Lucas & Caplan, 1985). The aim of this study was to analyse the cellular mechanism of the bone-derived chondrogenesis-stimulating activity, with particular attention on how normal requirements for chondrogenesis may be altered. The effects of bovine bone extract (BBE) on chondrogenesis in vitro were studied using micromass cultures of chick limb bud mesenchyme isolated from embryos at Hamburger-Hamilton (HH) stage 23/24, an experimental system which is capable of undergoing chondrogenic differentiation. Bovine diaphyseal long bones were demineralized and extracted with guanidine-HCl to prepare BBE (Syftestad & Caplan, 1984). High-density mesenchyme cultures (30 x 10(6) cells/ml) were exposed to different doses of BBE (0.01-1.0 mg ml-1) and chondrogenesis was quantified based on cartilage nodule number and [35S]sulphate incorporation. BBE was tested on micromass cultures of varying plating densities (2-30 x 10(6) cells/ml), on cultures of 'young' limb bud cells (HH stage 17/18), and on cultures enriched with chondroprogenitor cells obtained from subridge mesoderm. Since poly-L-lysine (PL) has recently been shown (San Antonio & Tuan, 1986) to promote chondrogensis, PL and BBE were introduced together in different doses, in the culture medium, to determine if their actions were synergistic. Our results show that BBE stimulates chondrogenesis in a dose-dependent manner and by a specific, direct action on the chondroprogenitor cells but not in normally non-chondrogenic, low density or 'young' limb bud cell cultures. The effects of PL and BBE are additive and these agents appear to act by separate mechanisms to stimulate chondrogenesis; PL primarily enhances nodule formation, and BBE appears to promote nodule growth.
Collapse
Affiliation(s)
- S R Gawande
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
41
|
Beit-Or A, Nevo Z, Kalina M, Eilam Y. Decrease in the basal levels of cytosolic free calcium in chondrocytes during aging in culture: possible role as differentiation-signal. J Cell Physiol 1990; 144:197-203. [PMID: 2380250 DOI: 10.1002/jcp.1041440204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell- and matrix-related parameters, which characterize the aging and differentiation process of cartilage in vivo, were measured in cultured chick epiphyseal chondrocytes during maintenance in a suspension culture for 34 days. A gradual decrease in the rates of proliferation and an increase in the size of the cells were observed. Ultrastructural examination revealed increased vacuolization and appearance of glycogen-storing pools. The rate of proteoglycan synthesis gradually increased. Age-related changes in the composition of the proteoglycan consisted of an increase in the ratio of keratan sulfate/chondroitin sulfate. The results indicate that the process of aging in culture resembles maturation and differentiation of cartilage tissue in vivo. The levels of cytosolic free calcium ions ([Ca2+]i) were measured in fura-2-loaded cells during the course of aging in culture. A gradual decrease in [Ca2+]i was observed. In 5-day cultures, a value of 184 nM [Ca2+]i was measured; this value decreased to 61 nM in 34-day cultures. On the basis of the present data and the previous results, which showed that cartilage-derived growth factors caused a decrease in [Ca2+]i, concomitantly with enhancing differentiation, whereas factors which elevated [Ca2+]i caused an increase in proliferation and a decrease in proteoglycan synthesis, we suggest a model for control of chondrocyte differentiation and aging. The model suggests that the rate of differentiation may be paced by changes in steady-state levels of [Ca2+]i.
Collapse
Affiliation(s)
- A Beit-Or
- Department of Chemical Pathology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
42
|
Berry L, Shuttleworth CA. Expression of the chondrogenic phenotype by mineralizing cultures of embryonic chick calvarial bone cells. BONE AND MINERAL 1989; 7:31-45. [PMID: 2765713 DOI: 10.1016/0169-6009(89)90061-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cells released by sequential enzymatic digestion of 18-day chick calvariae were cultured over a 4-5 week period in Alpha modified Eagles medium. In some cultures the medium was supplemented with ascorbate and/or Na-beta-glycerophosphate. Microscopic examination of these cultures showed both polygonal and spindle-shaped cells. The biochemical nature of these cells was investigated by incubating the cultures with radiolabelled proline and subsequently analysing the medium and cell layer proteins by SDS/PAGE and fluorography. Osteoblast and chondrocyte-containing cultures were clearly distinguished in this way as the former cells secreted type I collagen while the latter secreted types II and X collagens as the major medium macromolecules. Type X collagen synthesis occurred after 14 days, but only in cultures supplemented with both ascorbate and Na-beta-glycerophosphate, and was maintained for the duration of the culture period. Unsupplemented cultures and those containing either ascorbate alone or Na-beta-glycerophosphate alone failed to synthesize type X collagen after 28 days. Isolated cells pulsed with radiolabelled proline at confluence and organ cultures of embryonic chick calvaria synthesized types I and V collagens only. These data demonstrate that the expression of phenotype by heterogeneous populations of bone cells could be modulated by a combination of culture conditions including the length of time in culture and conditions favourable for the formation of a mineralized matrix.
Collapse
Affiliation(s)
- L Berry
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Manchester University Medical School, England
| | | |
Collapse
|
43
|
McDonald SA, Tuan RS. Expression of collagen type transcripts in chick embryonic bone detected by in situ cDNA-mRNA hybridization. Dev Biol 1989; 133:221-34. [PMID: 2468543 DOI: 10.1016/0012-1606(89)90313-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of the chick embryonic calvarium, an intramembranous bone, is characterized by direct differentiation of cranial ectomesenchymal cells into osteoblasts without the formation of a cartilage anlage. Collagen biosynthesis remains predominantly as type I in the calvaria. However, in severely calcium-deficient chick embryos maintained in shell-less (SL) culture, cartilage-specific type II collagen is synthesized by the calvaria. Immunohistochemistry localized the cells expressing type II collagen to undermineralized regions of the SL bone. In this study, collagen gene expression in bones of normal (N) and calcium-deficient SL chick embryos was examined at Incubation Day 14 by in situ cDNA-mRNA hybridization. A critical step in the procedure, which used biotinylated cDNA probes, was the selection of fixation conditions which maximized RNA retention and maintenance of tissue morphology. Tissues fixed in modified Carnoy's fixative (58% ethanol, 30% choloroform, 10% acetic acid, 2% formaldehyde) for 2-4 hr at -20 degrees C sectioned well and retained their cell morphology and cytoplasmic RNA. Other treatments important for the procedure included demineralization in 0.25 M HCl and removal of matrix by hyaluronidase digestion. In situ hybridization with type-specific collagen cDNA probes revealed that type II collagen mRNA was present in cells throughout the SL calvaria. More importantly, cells with type II collagen mRNA were also present in N calvaria which do not synthesize the protein. The overall abundance of type II-positive cells in N calvaria was not significantly different from that in SL calvaria, but their distribution throughout the bones differed. In general, the regional distribution of type II cells was inversely correlated with the extent of matrix mineralization. In the N calvaria, cells containing collagen type II mRNA were absent in the extensively mineralized superior zone, but were found in the temporal zone which showed limited mineralization. On the other hand, in the SL calvaria, which were substantially undermineralized overall, cells with type II mRNA were found throughout the tissue. Interestingly, the overall ratio of type I cells to type II cells was approximately 50% higher in N calvaria. These findings suggest that collagen type mRNA expression in the chick embryonic calvarium is correlated with, and perhaps dependent on, the extent of tissue matrix mineralization.
Collapse
Affiliation(s)
- S A McDonald
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
44
|
Brown CC, McLaughlin RE, Balian G. Intramedullary bone repair and ingrowth into porous coated implants in the adult chicken: a histologic study and biochemical analysis of collagens. J Orthop Res 1989; 7:316-25. [PMID: 2703924 DOI: 10.1002/jor.1100070303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new model was developed to study the histologic and biochemical events during intramedullary bone repair and ingrowth into porous coated implants. Adult chickens were used because of the availability of specific antibody probes. Repair in the metaphysis and diaphysis were compared. Entering through a medial arthrotomy, the distal tibiotarsus was reamed and either implanted with a double-ended porous coated rod or allowed to heal without implantation of a rod. Specimens analyzed histologically at 7, 14, 21, and 70 days postoperatively revealed direct formation of bone by osteoblasts with no evidence of a cartilaginous phase. At 70 days bony ingrowth was observed deep within the porous surface. Analysis of collagens with sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the synthesis of type I collagen predominated. Biosynthetic data coupled with quantitative immunologic analyses using antibodies to type II and type X collagen showed that neither of these two collagen types, which are characteristic of cartilage undergoing endochondral ossification, were produced during intramedullary bone repair. These results establish that the adult chicken is capable of bony ingrowth into porous coated implants and that this process is through direct bone deposition by osteoblasts without a cartilaginous intermediate.
Collapse
Affiliation(s)
- C C Brown
- Department of Orthopaedics, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|
45
|
Marks SC, Popoff SN. Bone cell biology: the regulation of development, structure, and function in the skeleton. THE AMERICAN JOURNAL OF ANATOMY 1988; 183:1-44. [PMID: 3055928 DOI: 10.1002/aja.1001830102] [Citation(s) in RCA: 269] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bone cells compose a population of cells of heterogeneous origin but restricted function with respect to matrix formation, mineralization, and resorption. The local, mesenchymal origin of the cells which form the skeleton contrasts with their extraskeletal, hemopoietic relatives under which bone resorption takes place. However, the functions of these two diverse populations are remarkably related and interdependent. Bone cell regulation, presently in its infancy, is a complicated cascade involving a plethora of local and systemic factors, including some components of the skeletal matrices and other organ systems. Thus, any understanding of bone cell regulation is a key ingredient in understanding not only the development, maintenance, and repair of the skeleton but also the prevention and treatment of skeletal disorders.
Collapse
Affiliation(s)
- S C Marks
- Department of Anatomy, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
46
|
Abstract
We have developed an experimental system involving calcium-deficient chick embryos to examine the relationship between calcium homeostasis and cardiovascular activities. We have found that the calcium-deficient embryos, when compared with control animals, exhibit tachycardia and are significantly hypertensive. The effects are unlikely to be due to gross cardiac malformations or hypertrophy. The hypertensive condition appears to be a specific result of the systemic calcium deficiency since calcium supplementation to these embryos significantly restores the functions to normality.
Collapse
|
47
|
Abstract
To analyze the nature of cell-cell interactions in chondrogenesis, two cations that influence these interactions, calcium and poly-L-lysine (PL), were tested for their effects on chondrogenesis in vitro. High density cultures of chick limb bud mesenchyme (Hamilton-Hamburger stages 23/24), were exposed to culture media containing calcium (0.6-3.3 mM) or PL (1-10 micrograms/ml). Both cations stimulated chondrogenesis in a dose-dependent manner, and also promoted cartilage formation in normally non-chondrogenic, low cell density cultures. Chondrogenesis was assayed based on cartilage nodule number, [35S]sulfate incorporation, and expression of type II collagen as detected by immunohistochemistry. The calcium effect was not mimicked by other divalent cations (Cd, Co, Ni, Mg, Mn, and Sr). The effect of PL was dependent on its Mr (greater than or equal to 14K) and charge, and was mimicked by poly-D-lysine but not by lysine or other analogs of PL or lysine (epsilon-amino caproic acid, lysozyme, poly-L-arginine, and spermidine). Calcium and PL probably act by different mechanisms since their effects were additive, and required their presence on different days of culture: calcium acted on Day 1, and PL on Day 2. It is proposed that calcium may play a role in the cell aggregation phase of chondrogenesis whereas PL, or a naturally occurring polypeptide of similar nature, may promote chondrogenesis by crosslinking specific anionic components of the cell surface or extracellular matrix.
Collapse
|