1
|
Kubrusly RCC, da Rosa Valli T, Ferreira MNMR, de Moura P, Borges-Martins VPP, Martins RS, Ferreira DDP, Sathler MF, de Melo Reis RA, Ferreira GC, Manhães AC, Dos Santos Pereira M. Caffeine Improves GABA Transport in the Striatum of Spontaneously Hypertensive Rats (SHR). Neurotox Res 2021; 39:1946-1958. [PMID: 34637050 DOI: 10.1007/s12640-021-00423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
The spontaneously hypertensive rat (SHR) is an excellent animal model that mimics the behavioral and neurochemical phenotype of attention-deficit/hyperactivity disorder (ADHD). Here, we characterized the striatal GABA transport of SHR and investigated whether caffeine, a non-selective antagonist of adenosine receptors, could influence GABAergic circuitry. For this purpose, ex vivo striatal slices of SHR and Wistar (control strain) on the 35th postnatal day were dissected and incubated with [3H]-GABA to quantify the basal levels of uptake and release. SHR exhibited a reduced [3H]-GABA uptake and release, suggesting a defective striatal GABAergic transport system. GAT-1 appears to be the primary transporter for [3H]-GABA uptake in SHR striatum, as GAT-1 selective blocker, NO-711, completely abolished it. We also verified that acute exposure of striatal slices to caffeine improved [3H]-GABA uptake and release in SHR, whereas Wistar rats were not affected. GABA-uptake increase and cAMP accumulation promoted by caffeine was reverted by A1R activation with N6-cyclohexyl adenosine (CHA). As expected, the pharmacological blockade of cAMP-PKA signaling by H-89 also prevented caffeine-mediated [3H]-GABA uptake increment. Interestingly, a single caffeine exposure did not affect GAT-1 or A1R protein density in SHR, which was not different from Wistar protein levels, suggesting that the GAT-1-dependent transport in SHR has a defective functional activity rather than lower protein expression. The current data support that caffeine regulates GAT-1 function and improves striatal GABA transport via A1R-cAMP-PKA signaling, specifically in SHR. These results reinforce that caffeine may have therapeutic use in disorders where the GABA transport system is impaired.
Collapse
Affiliation(s)
| | | | | | - Pâmella de Moura
- Laboratório de Neurofarmacologia, Instituto Biomédico, Niterói, RJ, Brazil
| | | | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Niterói, RJ, Brazil
- Laboratório de Neurobiologia Celular E Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Ricardo Augusto de Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Neuroenergética E Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Dos Santos Pereira
- Laboratório de Neurofarmacologia, Instituto Biomédico, Niterói, RJ, Brazil.
- Laboratório de Neurofisiologia Molecular, Departamento de Biologia Básica E Oral, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Ramos AC, de Mattos Hungria F, Camerini BA, Suiama MA, Calzavara MB. Potential beneficial effects of caffeine administration in the neonatal period of an animal model of schizophrenia. Behav Brain Res 2020; 391:112674. [PMID: 32417274 DOI: 10.1016/j.bbr.2020.112674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
Obstetric complications, like maternal hypertension and neonatal hypoxia, disrupt brain development, leading to psychiatry disorders later in life, like schizophrenia. The exact mechanisms behind this risk are not yet well known. Spontaneously hypertensive rats (SHR) are a well-established model to study neurodevelopment of schizophrenia since they exhibit behavioral alterations mimicking schizophrenia that can be improved with antipsychotic drugs. SHR mothers are hypertensive, and the SHR offspring develop in preeclampsia-like conditions. Hypoxic conditions increase levels of adenosine, which play an important role in brain development. The enhanced levels of adenosine at birth could be related to the future development of schizophrenia. To investigate this hypothesis adenosine levels of brain neonatal Wistar rats and SHR were quantified. After that, caffeine, an antagonist of adenosinergic system, was administrated on PND (postnatal day) 7 (neurodevelopmental age similar to a human at delivery) and rats were observed at adolescent and adult ages. We also investigated the acute effects of caffeine at adolescent and adult ages. SHR control adolescent and adult groups presented behavioral deficits like hyperlocomotion, deficit in social interaction (SI), and contextual fear conditioning (CFC). In SHR, neonatal caffeine treatment on PND 7 normalized hyperlocomotion, improved SI, and CFC observed at adolescent period and adult ages, showing a beneficial effect on schizophrenia-like behaviors. Wistar rats neonatally treated with caffeine exhibited hyperlocomotion, deficit in SI and CFC when observed at adolescent and adult ages. Acutely caffeine treatment administrated at adolescent and adult ages increased locomotion and decreased SI time of Wistar rats and impair CFC in adult Wistars. No effects were observed in SHR. In conclusion, caffeine can be suggested as a useful drug to prevent behavioral deficits observed in this animal model of prenatal hypoxia-induced schizophrenia profile when specifically administered on PND 7.
Collapse
Affiliation(s)
- Aline Camargo Ramos
- Department of Psychiatry, Universidade Federal De São Paulo, São Paulo, SP, Brazil
| | | | | | - Mayra Akimi Suiama
- Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, SP, Brazil
| | - Mariana Bendlin Calzavara
- Department of Psychiatry, Universidade Federal De São Paulo, São Paulo, SP, Brazil; School of Medicine from Faculdade Israelita De Ciências Da Saúde Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Abstract
There are nineteen different receptor proteins for adenosine, adenine and uridine nucleotides, and nucleotide sugars, belonging to three families of G protein-coupled adenosine and P2Y receptors, and ionotropic P2X receptors. The majority are functionally expressed in blood vessels, as purinergic receptors in perivascular nerves, smooth muscle and endothelial cells, and roles in regulation of vascular contractility, immune function and growth have been identified. The endogenous ligands for purine receptors, ATP, ADP, UTP, UDP and adenosine, can be released from different cell types within the vasculature, as well as from circulating blood cells, including erythrocytes and platelets. Many purine receptors can be activated by two or more of the endogenous ligands. Further complexity arises because of interconversion between ligands, notably adenosine formation from the metabolism of ATP, leading to complex integrated responses through activation of different subtypes of purine receptors. The enzymes responsible for this conversion, ectonucleotidases, are present on the surface of smooth muscle and endothelial cells, and may be coreleased with neurotransmitters from nerves. What selectivity there is for the actions of purines/pyrimidines comes from differential expression of their receptors within the vasculature. P2X1 receptors mediate the vasocontractile actions of ATP released as a neurotransmitter with noradrenaline (NA) from sympathetic perivascular nerves, and are located on the vascular smooth muscle adjacent to the nerve varicosities, the sites of neurotransmitter release. The relative contribution of ATP and NA as functional cotransmitters varies with species, type and size of blood vessel, neuronal firing pattern, the tone/pressure of the blood vessel, and in ageing and disease. ATP is also a neurotransmitter in non-adrenergic non-cholinergic perivascular nerves and mediates vasorelaxation via smooth muscle P2Y-like receptors. ATP and adenosine can act as neuromodulators, with the most robust evidence being for prejunctional inhibition of neurotransmission via A1 adenosine receptors, but also prejunctional excitation and inhibition of neurotransmission via P2X and P2Y receptors, respectively. P2Y2, P2Y4 and P2Y6 receptors expressed on the vascular smooth muscle are coupled to vasocontraction, and may have a role in pathophysiological conditions, when purines are released from damaged cells, or when there is damage to the protective barrier that is the endothelium. Adenosine is released during hypoxia to increase blood flow via vasodilator A2A and A2B receptors expressed on the endothelium and smooth muscle. ATP is released from endothelial cells during hypoxia and shear stress and can act at P2Y and P2X4 receptors expressed on the endothelium to increase local blood flow. Activation of endothelial purine receptors leads to the release of nitric oxide, hyperpolarising factors and prostacyclin, which inhibits platelet aggregation and thus ensures patent blood flow. Vascular purine receptors also regulate endothelial and smooth muscle growth, and inflammation, and thus are involved in the underlying processes of a number of cardiovascular diseases.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | - William R Dunn
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
4
|
Santiago FE, Fior-Chadi DR, Carrettiero DC. Alpha2-adrenoceptor and adenosine A1 receptor within the nucleus tractus solitarii in hypertension development. Auton Neurosci 2014; 187:36-44. [PMID: 25466830 DOI: 10.1016/j.autneu.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/21/2014] [Accepted: 11/01/2014] [Indexed: 02/07/2023]
Abstract
Alpha2-adrenoceptor and A1 adenosine receptor systems within the nucleus tractus solitarii (NTS) play an important role in cardiovascular control. Deregulation of these systems may result in an elevated sympathetic tone, one of the root causes of neurogenic hypertension. The dorsomedial/dorsolateral and subpostremal NTS subnuclei of spontaneously hypertensive rats (SHR) show density changes in both receptors, even at 15 days of age, prior to the onset of hypertension. In addition, adenosine A1 receptors have been specifically reported to modulate alpha2-adrenoceptors in several brain regions, including the NTS, via a PLC-dependent pathway involving cross regulation between sympathetic neurons and astrocytes. The physiological cross talk between these receptor systems is also deregulated in SHR suggesting that alpha2-adrenoceptor and A1 adenosine receptor might be germane to the development of hypertension. In this review, we will focus on these systems within the NTS during development, pointing out some interesting modulations in processes, and chemical changes within specific subnuclei of NTS circuitry, that might have implications for neurogenic hypertension.
Collapse
Affiliation(s)
- Fernando E Santiago
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil
| | - Débora R Fior-Chadi
- Universidade de São Paulo (USP), Departamento de Fisiologia, Instituto de Biociências, São Paulo, SP, Brazil
| | - Daniel C Carrettiero
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil.
| |
Collapse
|
5
|
Sousa JB, Vieira-Rocha MS, Sá C, Ferreirinha F, Correia-de-Sá P, Fresco P, Diniz C. Lack of endogenous adenosine tonus on sympathetic neurotransmission in spontaneously hypertensive rat mesenteric artery. PLoS One 2014; 9:e105540. [PMID: 25158061 PMCID: PMC4144848 DOI: 10.1371/journal.pone.0105540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
Background Increased sympathetic activity has been implicated in hypertension. Adenosine has been shown to play a role in blood flow regulation. In the present study, the endogenous adenosine neuromodulatory role, in mesenteric arteries from normotensive and spontaneously hypertensive rats, was investigated. Methods and Results The role of endogenous adenosine in sympathetic neurotransmission was studied using electrically-evoked [3H]-noradrenaline release experiments. Purine content was determined by HPLC with fluorescence detection. Localization of adenosine A1 or A2A receptors in adventitia of mesenteric arteries was investigated by Laser Scanning Confocal Microscopy. Results indicate a higher electrically-evoked noradrenaline release from hypertensive mesenteric arteries. The tonic inhibitory modulation of noradrenaline release is mediated by adenosine A1 receptors and is lacking in arteries from hypertensive animals, despite their purine levels being higher comparatively to those determined in normotensive ones. Tonic facilitatory adenosine A2A receptor-mediated effects were absent in arteries from both strains. Immunohistochemistry revealed an adenosine A1 receptors redistribution from sympathetic fibers to Schwann cells, in adventitia of hypertensive mesenteric arteries which can explain, at least in part, the absence of effects observed for these receptors. Conclusion Data highlight the role of purines in hypertension revealing that an increase in sympathetic activity in hypertensive arteries is occurring due to a higher noradrenaline/ATP release from sympathetic nerves and the loss of endogenous adenosine inhibitory tonus. The observed nerve-to-glial redistribution of inhibitory adenosine A1 receptors in hypertensive arteries may explain the latter effect.
Collapse
Affiliation(s)
- Joana Beatriz Sousa
- REQUIMTE/FARMA, Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- MedInUP- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | - Maria Sofia Vieira-Rocha
- REQUIMTE/FARMA, Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- MedInUP- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | - Carlos Sá
- Centro de Materiais, Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- MedInUP- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Correia-de-Sá
- MedInUP- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paula Fresco
- REQUIMTE/FARMA, Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- MedInUP- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | - Carmen Diniz
- REQUIMTE/FARMA, Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- MedInUP- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
6
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
7
|
Rocha-Pereira C, Arribas SM, Fresco P, González MC, Gonçalves J, Diniz C. Impaired inhibitory function of presynaptic A1-adenosine receptors in SHR mesenteric arteries. J Pharmacol Sci 2014; 122:59-70. [PMID: 23782593 DOI: 10.1254/jphs.12266fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In hypertension, vascular reactivity alterations have been attributed to numerous factors, including higher sympathetic innervation/adenosine. This study examined the modulation of adenosine receptors on vascular sympathetic nerves and their putative contribution to higher noradrenaline spillover in hypertension. We assessed adenosine receptors distribution in the adventitia through confocal microscopy, histomorphometry, and their regulatory function on electrically-evoked [(3)H]-noradrenaline overflow, using selective agonists/antagonists. We found that: i) A1-adenosine receptor agonist (CPA: 100 nM) inhibited tritium overflow to a lower extent in SHR (25% ± 3%, n = 14) compared to WKY (38% ± 3%, n = 14) mesenteric arteries; ii) A2A-adenosine receptor agonist (CGS 21680: 100 nM) induced a slight increase of tritium overflow that was similar in SHR (22% ± 8%, n = 8) and WKY (24% ± 5%, n = 8) mesenteric arteries; iii) A2B- and A3-adenosine receptors did not alter tritium overflow in either strain; iv) all adenosine receptors were present on mesenteric artery sympathetic nerves and/or some adventitial cells of both strains; and v) A1-adenosine receptor staining fractional area was lower in SHR than in WKY mesenteric arteries. We conclude that there is an impaired inhibitory function of vascular presynaptic A1-adenosine receptors in SHR, likely related to a reduced presence of these receptors on sympathetic innervation, which might lead to higher levels of noradrenaline in the synaptic cleft and contribute to hypertension in this strain.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- REQUIMTE/FARMA, Department of Drug Science, Laboratory of Pharmacology, Faculty of Pharmacy, Universidade do Porto, Portugal
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
9
|
Rocha-Pereira C, Sousa JB, Vieira-Rocha MS, Fresco P, Gonçalves J, Diniz C. Differential inhibition of noradrenaline release mediated by inhibitory A₁-adenosine receptors in the mesenteric vein and artery from normotensive and hypertensive rats. Neurochem Int 2013; 62:399-405. [PMID: 23416044 DOI: 10.1016/j.neuint.2013.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/17/2013] [Accepted: 02/06/2013] [Indexed: 11/26/2022]
Abstract
Mesenteric arteries and veins are densely innervated by sympathetic nerves and are crucial in the regulation of peripheral resistance and capacitance, respectively, thus, in the control of blood pressure. Presynaptic adenosine receptors are involved in vascular tonus regulation, by modulating noradrenaline release from vascular postganglionic sympathetic nerve endings. Some studies also suggest that adenosine receptors (AR) may have a role in hypertension. We aim at investigating the role of presynaptic adenosine receptors in mesenteric vessels and establish a relationship between their effects (in mesenteric vessels) and hypertension, using the spontaneously hypertensive rats (SHR) as a model of hypertension. Adenosine receptor-mediated modulation of noradrenaline release was investigated through the effects of selective agonists and antagonists on electrically-evoked [(3)H]-noradrenaline overflow. CPA (A1AR selective agonist: 1-100 nM) inhibited tritium overflow, but the inhibition was lower in SHR mesenteric vessels. IB-MECA (A3AR selective agonist: 1-100 nM) also inhibited tritium overflow but only in WKY mesenteric veins. CGS 21680 (A2AAR selective agonist: up to 100 nM) failed to facilitate noradrenaline release in mesenteric veins, from both strains, but induced a similar facilitation in the mesenteric arteries. NECA (non-selective AR agonist: 1, 3 and 10μM), in the presence of A1 (DPCPX, 20 nM) and A3 (MRS 1523, 1 μM) AR selective antagonists, failed to change tritium overflow. In summary, the modulatory effects mediated by presynaptic adenosine receptors were characterized, for the first time, in mesenteric vessels: a major inhibition exerted by the A1 subtype in both vessels; a slight inhibition mediated by A3 receptors in mesenteric vein; a facilitation mediated by A2A receptors only in mesenteric artery (from both strains). The less efficient prejunctional adenosine receptor mediated inhibitory effects can contribute to an increase of noradrenaline in the synaptic cleft (both in arteries and veins), which might conduce to increased vascular reactivity.
Collapse
Affiliation(s)
- C Rocha-Pereira
- REQUIMTE/FARMA, Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
10
|
Pires VA, Pamplona FA, Pandolfo P, Prediger RD, Takahashi RN. Chronic caffeine treatment during prepubertal period confers long-term cognitive benefits in adult spontaneously hypertensive rats (SHR), an animal model of attention deficit hyperactivity disorder (ADHD). Behav Brain Res 2010; 215:39-44. [DOI: 10.1016/j.bbr.2010.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 02/03/2023]
|
11
|
Vas deferens – A model used to establish sympathetic cotransmission. Trends Pharmacol Sci 2010; 31:131-9. [DOI: 10.1016/j.tips.2009.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/27/2009] [Accepted: 12/07/2009] [Indexed: 11/18/2022]
|
12
|
Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder. Behav Pharmacol 2009; 20:134-45. [DOI: 10.1097/fbp.0b013e32832a80bf] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Carrettiero DC, Fior-Chadi DR. Age-dependent changes in adenosine A1 receptor distribution and density within the nucleus tractus solitarii of normotensive and hypertensive rats. J Neural Transm (Vienna) 2008; 115:1109-18. [PMID: 18463780 DOI: 10.1007/s00702-008-0055-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 04/20/2008] [Indexed: 01/22/2023]
Abstract
This study shows the distribution and density of adenosine A1 receptor (A1R) within the nucleus tractus solitarii (NTS) of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) from birth to adulthood (1, 15, 30 and 90 days old). The NTS shows heterogeneous distribution of A1R in dorsomedial/dorsolateral, subpostremal and medial/intermediate subnuclei. A1R decrease from rostral to caudal within dorsomedial/dorsolateral subnucleus in 15-, 30- and 90-day-old WKY and SHR. A1R increase from rostral to caudal subpostremal subnucleus in 30- and 90-day-old WKY, and in 15-, 30- and 90-day-old SHR. Furthermore, A1Rs are increased in SHR as compared with WKY within dorsomedial/dorsolateral in 30- and 90-day-old and within subpostremal of 15-, 30- and 90-day-old rats. Finally, A1Rs increase from 1- to 30-day-old rats. Medial/intermediate did not show any changes in A1R from rostral to caudal levels, age or strain. In summary, our result highlights the importance of A1 adenosine system regarding the neural control of blood pressure and the development of hypertension.
Collapse
Affiliation(s)
- D C Carrettiero
- Department of Physiology, Institute of Biosciences, University of Sao Paulo, Rua do Matão-Travessa 14, 321, 05508-900, Sao Paulo, SP, Brazil
| | | |
Collapse
|
14
|
Morato M, Sousa T, Albino-Teixeira A. Purinergic receptors in the splanchnic circulation. Purinergic Signal 2008; 4:267-85. [PMID: 18443747 DOI: 10.1007/s11302-008-9096-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/18/2008] [Indexed: 12/13/2022] Open
Abstract
There is considerable evidence that purines are vasoactive molecules involved in the regulation of blood flow. Adenosine is a well known vasodilator that also acts as a modulator of the response to other vasoactive substances. Adenosine exerts its effects by interacting with adenosine receptors. These are metabotropic G-protein coupled receptors and include four subtypes, A(1), A(2A), A(2B) and A(3). Adenosine triphosphate (ATP) is a co-transmitter in vascular neuroeffector junctions and is known to activate two distinct types of P2 receptors, P2X (ionotropic) and P2Y (metabotropic). ATP can exert either vasoconstrictive or vasorelaxant effects, depending on the P2 receptor subtype involved. Splanchnic vascular beds are of particular interest, as they receive a large fraction of the cardiac output. This review focus on purinergic receptors role in the splanchnic vasomotor control. Here, we give an overview on the distribution and diversity of effects of purinergic receptors in splanchnic vessels. Pre- and post-junctional receptormediated responses are summarized. Attention is also given to the interactions between purinergic receptors and other receptors in the splanchnic circulation.
Collapse
Affiliation(s)
- Manuela Morato
- Institute of Pharmacology and Therapeutics, Faculty of Medicine and IBMC, University of Porto, Porto, Portugal
| | | | | |
Collapse
|
15
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
16
|
Fuder H, Muscholl E. Heteroreceptor-mediated modulation of noradrenaline and acetylcholine release from peripheral nerves. Rev Physiol Biochem Pharmacol 2006; 126:265-412. [PMID: 7886380 DOI: 10.1007/bfb0049778] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H Fuder
- IKP-AKP, Professo Lücker GmbH, Grünstadt, Germany
| | | |
Collapse
|
17
|
Prediger RDS, Fernandes D, Takahashi RN. Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats. Behav Brain Res 2005; 159:197-205. [PMID: 15817183 DOI: 10.1016/j.bbr.2004.10.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 10/25/2004] [Accepted: 10/28/2004] [Indexed: 11/27/2022]
Abstract
Spontaneously hypertensive rats (SHR) exhibit impairment across several cognitive domains such as attention, short-term memory and spatial reference memory. These cognitive deficits have been variously attributed to disrupted dopaminergic, cholinergic and adenosinergic neurotransmitter function. However, social memory in SHR has not been investigated. In the present study, we therefore evaluated whether SHR exhibit altered short-term social memory abilities compared to normotensive Wistar rats (WIS) through two experimental paradigms (social recognition and habituation-dishabituation tests). We also compared the performance of SHR and WIS rats in the object recognition test. SHR exhibited significantly impaired performance in both models of social memory, but not in the object recognition test, demonstrating a selective deficit in the ability to recognize a juvenile rat after a short period of time. The administration of acute doses of the non-selective adenosine receptor antagonist caffeine (3.0 or 10.0 mg/kg, i.p.) and the adenosine A2A receptor antagonist 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-yl-amino]ethyl) phenol (ZM241385, 0.5 or 1.0 mg/kg, i.p.) but not the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1.0 or 3.0 mg/kg, i.p.) reversed this social memory impairment in SHR, but these treatments did not alter the hypertension state. These results demonstrate an impairment of short-term social memory in SHR and the involvement of the adenosine A2A receptors in this alteration.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Campus Trindade, 88049-900 Florianópolis, SC, Brazil
| | | | | |
Collapse
|
18
|
Rekik M, El-Mas MM, Mustafa JS, Abdel-Rahman AA. Role of endothelial adenosine receptor-mediated vasorelaxation in ethanol-induced hypotension in hypertensive rats. Eur J Pharmacol 2002; 452:205-14. [PMID: 12354571 DOI: 10.1016/s0014-2999(02)02304-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Our previous findings showed that chronic ethanol feeding lowers blood pressure in spontaneously hypertensive rats. The present study investigated the role of the adenosine receptor-endothelial nitric oxide (NO) pathway in the hypotensive response to ethanol. Changes in blood pressure were evaluated in radiotelemetered pair-fed rats receiving liquid diet with or without ethanol (2.5% or 5%, w/v) for 12 weeks. The vasorelaxant activity of the adenosine analogue 5'-N-ethylcarboxamidoadenosine (NECA) in isolated aortic rings obtained from ethanol and control rats were evaluated. Ethanol (2.5% and 5%) lowered blood pressure in a dose-dependent manner. The hypotension started at week 1, reached its maximum at week 4 and remained so thereafter. In aortas with intact endothelium, NECA (10(-10) to 10(-4) M) produced a concentration-dependent relaxation of the phenylephrine-precontracted aortas. Compared with control rats, ethanol (2.5% and 5%) caused significant and concentration-related increases in NECA responses. This effect of ethanol was attenuated by the adenosine receptor antagonist 8-sulfophenyltheophylline and the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA). Further, endothelium denudation abolished the ethanol-evoked enhancement of NECA responses. The vasorelaxant responses to acetylcholine or sodium nitroprusside in aortic rings were not influenced by ethanol. In conclusion, the present findings suggest that chronic ethanol enhances the NO-dependent vasorelaxant responses to adenosine receptor activation and this may explain, at least partly, the mechanism of the hypotensive effect of ethanol in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Moez Rekik
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | | | |
Collapse
|
19
|
Fresco P, Diniz C, Queiroz G, Gonçalves J. Release inhibitory receptors activation favours the A2A-adenosine receptor-mediated facilitation of noradrenaline release in isolated rat tail artery. Br J Pharmacol 2002; 136:230-6. [PMID: 12010771 PMCID: PMC1573336 DOI: 10.1038/sj.bjp.0704686] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Revised: 02/08/2002] [Accepted: 02/19/2002] [Indexed: 11/09/2022] Open
Abstract
1. Interactions between A(2A)-adenosine receptors and alpha(2)-, A(1)- and P2- release-inhibitory receptors, on the modulation of noradrenaline release were studied in isolated rat tail artery. Preparations were labelled with [(3)H]-noradrenaline, superfused with desipramine-containing medium, and stimulated electrically (100 pulses at 5 Hz or 20 pulses at 50 Hz). 2. Blockade of alpha(2)-autoreceptors with yohimbine (1 microM) increased tritium overflow elicited by 100 pulses at 5 Hz but not by 20 pulses at 50 Hz. 3. The selective A(2A)-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 1-100 nM) enhanced tritium overflow elicited by 100 pulses at 5 Hz. Yohimbine prevented the effect of CGS 21680, which was restored by the A(1)-receptor agonist N(6)-cyclopentyladenosine (CPA; 100 nM) or by the P2-receptor agonist 2-methylthioadenosine triphosphate (2-MeSATP; 80 microM). 4. CGS 21680 (100 nM) failed to increase tritium overflow elicited by 20 pulses at 50 Hz. The alpha(2)-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK 14304; 30 nM), the A(1)-receptor agonist CPA (100 nM) or the P2-receptor agonist 2-MeSATP (80 microM) reduced tritium overflow. In the presence of these agonists CGS 21680 elicited a facilitation of tritium overflow. 5. Blockade of potassium channels with tetraethylammonium (TEA; 5 mM) increased tritium overflow elicited by 100 pulses at 5 Hz to values similar to those obtained in the presence of yohimbine but did not prevent the effect of CGS 21680 (100 nM) on tritium overflow. 6. It is concluded that, in isolated rat tail artery, the facilitation of noradrenaline release mediated by A(2A)-adenosine receptors is favoured by activation of release inhibitory receptors.
Collapse
Affiliation(s)
- Paula Fresco
- Serviço de Farmacologia, Faculdade de Farmácia, Universidade do Porto Rua Aníbal Cunha, 164, 4050-047 Porto, Portugal
| | - Carmen Diniz
- Serviço de Farmacologia, Faculdade de Farmácia, Universidade do Porto Rua Aníbal Cunha, 164, 4050-047 Porto, Portugal
| | - Glória Queiroz
- Serviço de Farmacologia, Faculdade de Farmácia, Universidade do Porto Rua Aníbal Cunha, 164, 4050-047 Porto, Portugal
| | - Jorge Gonçalves
- Serviço de Farmacologia, Faculdade de Farmácia, Universidade do Porto Rua Aníbal Cunha, 164, 4050-047 Porto, Portugal
| |
Collapse
|
20
|
Sousa T, Morato M, Albino-Teixeira A. Angiotensin converting enzyme inhibition prevents trophic and hypertensive effects of an antagonist of adenosine receptors. Eur J Pharmacol 2002; 441:99-104. [PMID: 12007926 DOI: 10.1016/s0014-2999(02)01488-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The continuous infusion of 1,3-dipropyl-8-sulfophenylxanthine (DPSPX), a non-selective antagonist of adenosine receptors, causes hypertension and marked cardiovascular structural changes in Wistar rats. Adenosine inhibits noradrenaline and renin release. We investigated the effects of sympathetic denervation, evaluated renin activity and the influence of angiotensin converting enzyme inhibition in DPSPX-treated rats. Captopril was given (30 or 100 mg kg(-l) day(-l); p.o.) from day -l to day 28. On day 0, constant infusions of DPSPX (90 microg kg(-l) h(-l); i.p.) or vehicle were started. On day 28, fragments of the left ventricle, mesenteric and tail arteries were processed for morphological studies. Plasma renin activity was increased in DPSPX-treated animals. Sympathetic denervation delayed and partially prevented blood pressure rise. Angiotensin converting enzyme inhibition prevented DPSPX-induced hypertension and morphological changes. Our results, although pointing to the involvement of the sympathetic system, suggest that other mechanisms are involved. We could not differentiate between the trophic and anti-hypertensive effects of angiotensin converting enzyme inhibition.
Collapse
Affiliation(s)
- Teresa Sousa
- Institute of Pharmacology and Therapeutics, Faculty of Medicine of Porto and IBMC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
21
|
Fahim M, Mustafa SJ. Evidence for the presence of A(1) adenosine receptors in the aorta of spontaneously hypertensive rats. Br J Pharmacol 2001; 134:1760-6. [PMID: 11739253 PMCID: PMC1572910 DOI: 10.1038/sj.bjp.0704433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Isolated aortic rings (endothelium-intact and -denuded) from spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats were used in this study to examine the vasoactive effects of various adenosine analogues. 2. In phenylephrine contracted aortic rings, concentration-response curves were constructed by cumulative additions (10(-11) - 10(-5) M) of (2S)-N(6)-[2-endo-Norbornyl] adenosine (ENBA), N(6)-cyclopentyladenosine (CPA), R-N(6)-(2-phenylisopropyl) adenosine (R-PIA), 2-p-(-2-carboxyethyl) phenethylamino-5'-N-thylcarboxamido adenosine (CGS-21680). 3. A non-specific adenosine receptor agonist 2-chloroadenosine (CAD) resulted in biphasic response with a small contraction at lower concentrations (10(-9) - 10(-8) M) followed by a significant relaxation at higher concentration in endothelium-intact SHR tissues, suggesting presence of both A(1) and A(2) adenosine receptors in SHR aorta. However, only relaxation was observed in WKY. 4. Contractile response in SHR had the following rank order of potency: ENBA>CPA>R-PIA>CAD. The relaxation response in SHR and WKY had the following rank order of potency: CGS 21680>CAD>R-PIA>CPA>ENBA. 5. Removal of endothelium abolished the adenosine analogue induced contractions in SHR aorta and attenuated the vasorelaxation responses in the WKY and SHR. 6. The contractile response in SHR was abolished by A(1) adenosine receptor antagonist N(6)-endonorbornan-2-yl-9-methyladenine (N-0861). A(2) adenosine receptor antagonist, 3,7-dimethyl-1-proparglyxanthine (DMPX) did not affect the contraction response of adenosine analogues. 7. Endothelium-dependent contractions elicited by A(1) receptor agonists were blocked by indomethacin and by free radical scavengers. 8. These data suggest that the contractile response to adenosine analogues in SHR aorta is probably mediated by free radicals which are generated through the increased cyclo-oxygenase activity occurring in the vascular endothelium of SHR but not the WKY rats.
Collapse
Affiliation(s)
- M Fahim
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, North Carolina, NC 27858, USA.
| | | |
Collapse
|
22
|
Fahim M, Hussain T, Mustafa SJ. Role of endothelium in adenosine receptor-mediated vasorelaxation in hypertensive rats. Fundam Clin Pharmacol 2001; 15:325-34. [PMID: 11903501 DOI: 10.1046/j.1472-8206.2001.00042.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study was designed to investigate the role of endothelium derived relaxing factor nitric oxide (NO) in adenosine A2 receptor mediated vasorelaxation in normotensive (WKY) and hypertensive (SHR) rat aortic ring preparations. Adenosine analogues, 2-chloroadenosine (CAD) and 5-ethylcarboxamidoadenosine (NECA) produced concentration-dependent (10(-9)-10(-4) M) relaxation in phenylephrine (1 x 10(-6) M) precontracted vascular rings, which was significantly shifted to the right in SHR compared to WKY rats. Endothelium removal attenuated CAD and NECA relaxation responses in both SHR and WKY and abolished the difference in relaxation between SHR and WKY vascular tissues. The relaxation response to CAD was antagonised by adenosine A2 receptor antagonist, 8-sulfophenyltheophylline (8-SPT, 50 x 10(-6) M). The antagonism by 8-SPT was lower in SHR as compared to WKY tissues. L-monomethylarginine (L-LMMA) (30 x 10(-6) M) significantly shifted the CAD relaxation to the right, which was reversed by the addition of L-arginine (100 x 10(-6) M) in both SHR and WKY rats. However, the rightward shift by L-NMMA was smaller in SHR compared to WKY vascular tissues. Vasorelaxation response to acetylcholine (1 x 10(-6) M) was significantly inhibited (50%) in SHR rings compared to WKY. The relaxation produced by sodium nitroprusside (10(-9)-10(-5) M) in endothelium-intact and -denuded aortic rings showed no difference between SHR and WKY. Isoproterenol produced concentration-dependent (10-9-10-5 M) relaxation, which was shifted to the right in SHR compared to WKY rings with an intact endothelium, while the removal of endothelium abolished the difference in the response between SHR and WKY. The results suggest: (i) adenosine A2 receptors mediate vasorelaxation in part through endothelium possibly by releasing nitric oxide (NO); (ii) the impairment of endothelium may be one of the factors for the attenuation of adenosine receptor and receptor-mediated responses in SHR.
Collapse
Affiliation(s)
- M Fahim
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858, USA.
| | | | | |
Collapse
|
23
|
Ralevic V. Sympathoinhibition by adenosine A(1) receptors, but not P2 receptors, in the hamster mesenteric arterial bed. Eur J Pharmacol 2000; 387:287-93. [PMID: 10650174 DOI: 10.1016/s0014-2999(99)00810-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to determine whether there are prejunctional inhibitory P2 purine receptors on sympathetic nerves in the hamster isolated perfused mesenteric arterial bed. Adenosine 5'-O-(3-thiotriphosphate (ATPgammaS; 10 microM), adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS; 100 microM) and AMP (10 microM) had no significant effect on neurogenic contractions to electrical field stimulation. In contrast, P1 receptor agonists attenuated sympathetic vasoconstriction with a potency order of N(6)5'-(Nadenosine. The pEC(50) value for CPA was 7.5+/-0.1 (n=7). The concentration-inhibitory effect curve to CPA was shifted to the right by the adenosine A(1) receptor antagonist, 8-cyclopentyl-1, 3-dipropyl-xanthine (DPCPX; 10 nM; apparent pK(B) 9.6; n=6-7). In methoxamine raised-tone mesenteries CPA (0.001-10 microM) did not elicit vasorelaxation, and NECA and adenosine were only weak vasorelaxants. These results indicate that adenosine A(1) receptors, but not P2 receptors, inhibit prejunctionally sympathetic neurotransmission in the hamster mesenteric arterial bed.
Collapse
Affiliation(s)
- V Ralevic
- School of Biomedical Sciences, Queen's Medical Centre, The University of Nottingham Medical School, Nottingham, UK.
| |
Collapse
|
24
|
Suzuki H, Miura S, Mori M, Akiba Y, Nagahashi S, Zweifach BW, Ishii H, Schmid-Schönbein GW. Protective role of adrenal glucocorticoids for gastric mucosa in spontaneously hypertensive rats. J Gastroenterol Hepatol 1999; 14:376-83. [PMID: 10207789 DOI: 10.1046/j.1440-1746.1999.01861.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Spontaneously hypertensive rats (SHR) are a representative animal model for disturbance of the pituitary-adrenal axis, as well as disturbance of the autonomic nervous system. METHODS AND RESULTS In this study, we showed that adrenalectomy in SHR-induced spontaneous gastric ulcer formation. We further investigated how abnormal adrenal secretion is related to the attenuation of gastric ulcerogenesis, in terms of leucocyte infiltration and nitric oxide (NO) formation. Bilateral adrenalectomy, as well as a sham-operation, were carried out at 12 weeks in hypertensive SHR and Wistar-Kyoto rats (WKY) and observations were made three weeks later. The number of myeloperoxidase (MPO) positive cells, NADPH diaphorase histochemistry and NO synthase (NOS) activity were determined in gastric specimens. Only in adrenalectomized, but not sham-operated SHR, WKY and adrenalectomized WKY, could gastric ulcers be observed. Although the number of cells positive for MPO was significantly lower in hypertensive SHR than those in WKY, such cells were increased after adrenalectomy in SHR. In contrast, adrenalectomized WKY developed no increase in MPO-positive numbers. The number of NADPH diaphorase-positive cells increased after adrenalectomy in both strains, the extent of which was much greater in SHR than in WKY. Although NOS activity in SHR was lower than that in WKY, it was significantly increased after adrenalectomy. CONCLUSIONS Our data show that the development of a significant gastric ulceration may be associated with entrapment of activated leucocytes in the gastric mucosa, as well as with an excessive production of NO in adrenalectomized SHR. An enhanced adrenal glucocorticoid may be a key factor for protecting the gastric mucosa in SHR.
Collapse
Affiliation(s)
- H Suzuki
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE To characterize the adenosine receptor modulation of norepinephrine (NE) release from sympathetic neurons in the isolated rabbit iris/ciliary body. METHODS Iris/ciliary bodies were isolated from New Zealand White rabbits and incubated in the presence of 3H-NE. Norepinephrine release was elicited by field stimulation with varied frequencies from 5 to 30 Hz. The effects of adenosinergic and alpha 2 adrenergic compounds on NE release were determined and compared. RESULTS At a stimulation frequency of 5 Hz, the addition of the adenosine A1 agonist CHA did not significantly alter 3H-NE release. However, in the presence of the alpha 2 adrenergic antagonist yohimbine, the addition of CHA produced a dose-related reduction in 3H-NE release. The EC50 for this reduction was 14 nM. At a stimulus frequency of 20 Hz, the addition of CHA alone (10(-6) M) produced a significant reduction in 3H-NE release of 41%. The EC50s for the adenosine A1 agonists CHA- and R-PIA-induced suppression of 3H-NE release at 20 Hz were 32 and 24 nM, respectively. The adenosine A2 agonist CV-1808 did not alter 3H-NE release at stimulation frequencies of 5 or 20 Hz. Pretreatment of tissues with the adenosine A1 antagonist CPT or pertussis toxin reversed the suppression of 3H-NE release induced by CHA. Comparison of the inhibitory responses of CHA to the alpha 2 adrenergic agonist UK-14,304 at stimulus frequencies of 5 to 30 Hz demonstrated that this adenosine A1 agonist was effective only in suppressing NE release at frequencies of 20 Hz or greater. In contrast, the alpha 2 adrenergic agonist UK-14,304 was most effective in reducing NE release at 5 Hz. CONCLUSIONS These results provide evidence that adenosine agonists inhibit 3H-NE release in the iris/ciliary body via prejunctional adenosine A1 receptors linked to Gi/o-protein. However, the expression of this response was dependent on the frequency of neuronal stimulation. Hence, prejunctional adenosine A1 receptors may act to selectively limit high-frequency neurotransmission.
Collapse
Affiliation(s)
- C E Crosson
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| | | |
Collapse
|
26
|
Gonçalves J, Queiroz G. Purinoceptor modulation of noradrenaline release in rat tail artery: tonic modulation mediated by inhibitory P2Y- and facilitatory A2A-purinoceptors. Br J Pharmacol 1996; 117:156-60. [PMID: 8825357 PMCID: PMC1909367 DOI: 10.1111/j.1476-5381.1996.tb15168.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The effects of analogues of adenosine and ATP on noradrenaline release elicited by electrical stimulation (5 Hz, 2700 pulses) were studied in superfused preparations of rat tail artery. The effects of purinoceptor antagonists, of adenosine deaminase and of adenosine uptake blockade were also examined. Noradrenaline was measured by h.p.l.c. electrochemical detection. 2. The A1-adenosine receptor agonist, N6-cyclopentyladenosine (CPA; 0.1-100 nM) reduced, whereas the A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3-30 nM) increased evoked noradrenaline overflow. These effects were antagonized by the A1-adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 20 nM) and the A2-adenosine receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), respectively. The P2Y-purinoceptor agonist, 2-methylthio-ATP (1-100 microM) reduced noradrenaline overflow, an effect prevented by the P2-purinoceptor antagonist, cibacron blue 3GA (100 microM) and suramin (100 microM). 3. Adenosine deaminase (2 u ml-1), DMPX (100 nM) and inhibition of adenosine uptake with S-(p-nitrobenzyl)-6-thioinosine (NBTI; 50 nM) decreased evoked noradrenaline overflow. DPCPX alone did not change noradrenaline overflow but prevented the inhibition caused by NBTI. The P2Y-purinoceptor antagonist, cibacron blue 3GA (100 microM) increased evoked noradrenaline overflow as did suramin, a non-selective P2-antagonist. 4. It is concluded that, in rat tail artery, inhibitory (A1 and P2Y) and facilitatory (A2A) purinoceptors are present and modulate noradrenaline release evoked by electrical stimulation. Endogenous purines tonically modulate noradrenaline release through activation of inhibitory P2Y and facilitatory A2A purinoceptors, whereas a tonic activation of inhibitory A1 purinoceptors seems to be prevented by adenosine uptake.
Collapse
Affiliation(s)
- J Gonçalves
- Department of Pharmacology, University of Porto, Portugal
| | | |
Collapse
|
27
|
Bohmann C, Rump LC, Schaible U, von Kügelgen I. Alpha-adrenoceptor modulation of norepinephrine and ATP release in isolated kidneys of spontaneously hypertensive rats. Hypertension 1995; 25:1224-31. [PMID: 7768566 DOI: 10.1161/01.hyp.25.6.1224] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study investigates sympathetic cotransmission and its alpha-adrenoceptor-mediated modulation in kidneys of spontaneously hypertensive rats (SHR, 12 to 14 weeks) and age-matched normotensive Wistar-Kyoto rats (WKY). In the presence of cocaine and corticosterone, renal nerve stimulation at 1 Hz (30 seconds) induced a greater outflow of norepinephrine in SHR (4.2 +/- 0.2 pmol/g kidney) than in WKY (3.0 +/- 0.2 pmol/g kidney). The alpha 2-adrenoceptor antagonist rauwolscine (0.01 to 1 mumol/L) increased the stimulation-induced norepinephrine outflow to a greater extent in SHR than in WKY. In contrast, the alpha 1-adrenoceptor antagonist prazosin (0.03 to 3 mumol/L) increased the stimulation-induced norepinephrine outflow to a greater extent in WKY than in SHR. This difference was not observed in the presence of the P1-purinoceptor antagonist 8-(p-sulfophenyl)theophylline (100 mumol/L). Stimulation at 4 Hz (30 seconds) induced an outflow of ATP (SHR, 12.7 +/- 3.3 pmol/g kidney; WKY, 16.7 +/- 2.1 pmol/g kidney; perfusion solution without cocaine and corticosterone). Prazosin (0.03 mumol/L) markedly reduced pressor responses to stimulation and inhibited the induced ATP outflow by 60% to 70%. When prazosin (0.03 mumol/L) was present, rauwolscine (0.1 mumol/L) increased the induced outflow of norepinephrine and ATP and markedly enhanced prazosin-resistant pressor responses. These pressor responses were abolished by the P2-purinoceptor antagonist suramin (300 mumol/L). The results demonstrate an increased alpha 2-adrenoceptor-mediated automodulation of norepinephrine release in SHR kidneys caused by increased intrasynaptic norepinephrine levels.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Bohmann
- Medizinische Universitätsklinik Freiburg, Innere Medizin IV, Germany
| | | | | | | |
Collapse
|
28
|
Burnstock G, Ralevic V. New insights into the local regulation of blood flow by perivascular nerves and endothelium. BRITISH JOURNAL OF PLASTIC SURGERY 1994; 47:527-43. [PMID: 7697280 DOI: 10.1016/0007-1226(94)90136-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Blood flow, particularly in the skin, is essential for the success of plastic surgical operations. This review describes recent studies of the perivascular nerves and vascular endothelial cells which regulate blood flow. Perivascular nerves, once considered simply adrenergic or cholinergic, release many types of neurotransmitters, including peptides, purines and nitric oxide. Cotransmission (synthesis, storage and release of more than one transmitter by a single nerve) commonly takes place. Some afferent nerves have an efferent (motor) function and axon reflex control of vascular tone by these "sensory-motor" nerves is more widespread than once thought. Endothelial cells mediate both vasodilatation and vasoconstriction. The endothelial cells can store and release vasoactive substances such as acetylcholine (vasodilator) and endothelin (vasoconstrictor). The origins and functions of such vasoactive substances are discussed. Endothelial vasoactive substances may be of greater significance in the response of blood vessels to local changes while perivascular nerves may be concerned with integration of blood flow in the whole organism. The dual regulation of vascular tone by perivascular nerves and endothelial cells is altered by aging and conditions such as hypertension, as well as by trauma and surgery. Studies of vascular tone in disease and after denervation or mechanical injury suggest possible trophic interactions between perivascular nerves and endothelial cells. Such trophic interactions may be important for growth and development of the two control systems, particularly in the microvasculature where neural-endothelial separation is small.
Collapse
Affiliation(s)
- G Burnstock
- Department of Anatomy and Developmental Biology, University College, London, UK
| | | |
Collapse
|
29
|
Guimarães S, Paiva MQ, Moura D, Vaz-da-Silva MJ, Albino-Teixeira A. Long-term administration of 1,3-dipropyl-8-sulphophenylxanthine (DPSPX) alters alpha 2-adrenoceptor-mediated effects at the pre- but not at the postjunctional level. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1994; 350:692-5. [PMID: 7708127 DOI: 10.1007/bf00169376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present investigation was undertaken to see whether a long-term inhibition of adenosine receptors--leading to hypertension--interferes with alpha 2-adrenoceptor-mediated modulation of noradrenaline release. Rat tail arteries were removed from normal and from hypertensive animals obtained by chronic treatment with intraperitoneally infused DPSPX (1,3-dipropyl-8-sulphophenylxanthine) or orally administered L-NAME (NG-Nitro-L-arginine methyl ester). To study prejunctional effects, the influence of UK-14,304 (5-bromo-6(imidazoline-2-ylamino)-quinoxaline) and yohimbine on the overflow of tritium evoked by electrical stimulation (100 V; 1 Hz; 2 ms; 5 min) from tissues preloaded with 3H-noradrenaline was analysed. To study postjunctional effects, concentration-response curves to UK-14,304 were determined. In DPSPX-treated rats there was an enhancement of the prejunctional effects of UK-14,304: its Ec30% was reduced from 381 (250; 579) to 85 (73; 99) nmol.l-1 (n = 5; P < 0.05) and its maximal effect--expressed as percent reduction of tritium overflow-increased from 45 +/- 5% to 61 +/- 5% (n = 6; P < 0.05). In L-NAME-treated rats there was no change in either of these two parameters. At the postjunctional level, there was no change in the sensitivity to UK-14,304 in tissues from either DPSPX- or L-NAME-treated rats. Yohimbine (10-1000 nmol.l-1) caused a concentration-dependent increase of tritium overflow evoked by electrical stimulation in both control and hypertensive animals (either DPSPX- or L-NAME-treated).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Guimarães
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal
| | | | | | | | | |
Collapse
|
30
|
Fahim M, el-Mas MM, Abdel-Rahman AA, Mustafa SJ. Influence of aortic baroreceptor denervation on adenosine receptor-mediated relaxation of isolated rat aorta. Eur J Pharmacol 1994; 254:183-91. [PMID: 8206113 DOI: 10.1016/0014-2999(94)90386-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of aortic baroreceptor denervation on the vasorelaxant activity of the adenosine analogue, 5'-N-ethylcarboxamidoadenosine (NECA) was evaluated in the isolated thoracic aortic rings from rats. The responses were evaluated at 3 h after baroreceptor denervation when the blood pressure was significantly higher than that of control (149 +/- 3 vs. 112 +/- 2 mmHg) and at 48 h after aortic baroreceptor denervation when blood pressure returned to control level. Sham operation had no effect on blood pressure at either time interval. A concentration-dependent relaxation of rat aorta elicited by NECA was observed in all groups. However, the responsiveness to NECA was reduced in aortic baroreceptor-denervated rats. The nitric oxide (NO) synthase inhibitor, L-monomethyl-L-arginine (30 microM) shifted the dose-response curve for NECA to the right in all groups suggesting that the vascular response to NECA is partially mediated through the release of NO. Removal of the endothelium abolished the differences in the response to NECA in sham and aortic baroreceptor-denervated rats suggesting that the decrease in the responsiveness of aortic smooth muscle to NECA is dependent on the release of NO. Vasorelaxant responses to acetylcholine were not altered by aortic baroreceptor denervation. The ability of aortic baroreceptor denervation to attenuate vasorelaxant responses to NECA but not to acetylcholine indicated the possibility of functional changes involving adenosine receptor-mediated relaxation in endothelium rather than structural changes due to aortic baroreceptor denervation. These findings suggest that short-term elevation of blood pressure following aortic baroreceptor denervation modulates the endothelium-dependent release of NO mediated by adenosine receptor activation.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine-5'-(N-ethylcarboxamide)
- Animals
- Aorta, Thoracic/innervation
- Aorta, Thoracic/physiology
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Blood Pressure/drug effects
- Endothelium, Vascular/physiology
- Heart Rate/drug effects
- In Vitro Techniques
- Male
- Muscle Denervation
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/innervation
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/physiology
- Phenylephrine/pharmacology
- Pressoreceptors/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/physiology
- Theophylline/analogs & derivatives
- Theophylline/pharmacology
- omega-N-Methylarginine
Collapse
Affiliation(s)
- M Fahim
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | | | | | |
Collapse
|
31
|
Matias A, Zimmer FJ, Lorenzen A, Keil R, Schwabe U. Affinity of central adenosine A1 receptors is decreased in spontaneously hypertensive rats. Eur J Pharmacol 1993; 244:223-30. [PMID: 8458399 DOI: 10.1016/0922-4106(93)90147-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Functional defects in purinergic neurotransmission have been related to the development of arterial hypertension in spontaneously hypertensive rats. In order to elucidate the molecular basis of this perturbation, we have directly characterized adenosine A1 receptors using radioligand binding to rat brain membranes of Wistar Kyoto (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Saturation studies with [3H]1,3-dipropylcyclopentylxanthine ([3H]DPCPX) showed a lower affinity in both 5- and 48-week-old SHRSP in comparison with age-matched WKY. Similarly, competition experiments with [3H]DPCPX showed lower affinity of R-N6-phenylisopropyladenosine for the low-affinity binding site in 5- and 48-week-old SHRSP in comparison with WKY. In both studies, the difference in KD values was abolished by guanosine-5'-triphosphate in 5-week-old rats and mitigated in 48-week-old animals. No differences in Bmax values were observed in 5-week-old rats, whereas in 48-week-old SHRSP the number of receptors was significantly higher in comparison with age-matched WKY. Saturation experiments with the A1-selective agonist [3H]2-chloro-N6-cyclopentyladenosine ([3H]CCPA) demonstrated a higher affinity in 5-week-old SHRSP, whereas in 48-week-old hypertensive animals it was lower than in control WKY rats. No difference in receptor number was detected in comparison with age-matched WKY. In conclusion, our data demonstrated a diminished affinity of central adenosine A1 receptors for antagonists and for the low affinity state of the agonist binding site in genetically hypertensive rats. This might be due to structural changes of the receptor protein, to an altered G protein or defective receptor-G protein coupling in arterial hypertension.
Collapse
Affiliation(s)
- A Matias
- Pharmakologisches Institut der Universität Heidelberg, Germany
| | | | | | | | | |
Collapse
|
32
|
Ungerer M, Obermaier-Skrobranek B, Lohse MJ. Adenosine A1 receptor gene structure and regulation in normotensive and spontaneously hypertensive rats. Eur J Pharmacol 1992; 226:381-2. [PMID: 1397063 DOI: 10.1016/0922-4106(92)90058-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In spontaneously hypertensive rats (SHR), both the response to adenosine and the affinity of adenosine A1 receptors (A1R) are altered. We compared the coding sequences and the mRNA expression levels of A1R in SHR and normotensive Wistar rats (NWTR). Neither the nucleotide sequence nor the mRNA level of A1R are altered in SHR, so that gene mutations or an altered gene regulation of A1R cannot account for alterations in A1R function in SHR.
Collapse
Affiliation(s)
- M Ungerer
- Laboratorium für molekulare Biologie, Universität München, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
33
|
Affiliation(s)
- I Azevedo
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal
| | | |
Collapse
|
34
|
Matias A, Albino-Teixeira A, Polónia J, Azevedo I. Long-term administration of 1,3-dipropyl-8-sulfophenylxanthine causes arterial hypertension. Eur J Pharmacol 1991; 193:101-4. [PMID: 2050186 DOI: 10.1016/0014-2999(91)90206-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adenosine has been shown recently to be the main factor responsible for the trophic effects of sympathetic innervation. As sympathetic denervation causes hypertrophic and hyperplastic changes reminiscent of those occurring in blood vessels of spontaneously hypertensive rats, we decided to study the effect of a continuous blockade of adenosine receptors on both blood vessel structure and blood pressure. A continuous infusion of 1,3-dipropyl-8-sulfophenylxanthine (DPSPX; 30 micrograms/kg per h for 7 days) to Wistar rats caused hyperplastic changes in peritoneal fibroblasts and mesenteric arterioles, hypertrophic changes in the smooth muscle of the tail artery and significant increase in the size of left ventricle myocardial cell nuclei. Both diastolic and systolic blood pressure increased significantly above control values. The results confirmed the trophic effects of adenosine and showed that chronic blockade of adenosine receptors causes arterial hypertension.
Collapse
Affiliation(s)
- A Matias
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal
| | | | | | | |
Collapse
|