1
|
Ten Barge JA, van den Bosch GE, Slater R, van den Hoogen NJ, Reiss IKM, Simons SHP. Visceral Pain in Preterm Infants with Necrotizing Enterocolitis: Underlying Mechanisms and Implications for Treatment. Paediatr Drugs 2025; 27:201-220. [PMID: 39752054 PMCID: PMC11829917 DOI: 10.1007/s40272-024-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a relatively rare but very severe gastrointestinal disease primarily affecting very preterm infants. NEC is characterized by excessive inflammation and ischemia in the intestines, and is associated with prolonged, severe visceral pain. Despite its recognition as a highly painful disease, current pain management for NEC is often inadequate, and research on optimal analgesic therapy for these patients is lacking. Insight into the mechanisms underlying intestinal pain in infants with NEC-visceral pain-could help identify the most effective analgesics for these vulnerable patients. Therefore, this comprehensive review aims to provide an overview of visceral nociception, including transduction, transmission, modulation, and experience, and discuss the implications for analgesic therapy in preterm infants with NEC. The transmission of visceral pain differs from that of somatic pain, contributing to the diffuse nature of visceral pain. Studies evaluating the effectiveness of analgesics for treating visceral pain in infants are scarce. However, research in visceral pain models highlights agents that may be particularly effective for treating visceral pain based on their mechanisms of action. Further research is necessary to determine whether agents that have shown promise for treating visceral pain in preclinical studies and adults are effective in infants with NEC as well.
Collapse
Affiliation(s)
- Judith A Ten Barge
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Gerbrich E van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - Irwin K M Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sinno H P Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Harris L, Regan MC, Myers SJ, Nocilla KA, Akins NS, Tahirovic YA, Wilson LJ, Dingledine R, Furukawa H, Traynelis SF, Liotta DC. Novel GluN2B-Selective NMDA Receptor Negative Allosteric Modulator Possesses Intrinsic Analgesic Properties and Enhances Analgesia of Morphine in a Rodent Tail Flick Pain Model. ACS Chem Neurosci 2023; 14:917-935. [PMID: 36779874 PMCID: PMC9983021 DOI: 10.1021/acschemneuro.2c00779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 02/14/2023] Open
Abstract
Many cases of accidental death associated with drug overdose are due to chronic opioid use, tolerance, and addiction. Analgesic tolerance is characterized by a decreased response to the analgesic effects of opioids, requiring increasingly higher doses to maintain the desired level of pain relief. Overactivation of GluN2B-containing N-methyl-d-Aspartate receptors is thought to play a key role in mechanisms underlying cellular adaptation that takes place in the development of analgesic tolerance. Herein, we describe a novel GluN2B-selective negative allosteric modulator, EU93-108, that shows high potency and brain penetrance. We describe the structural basis for binding at atomic resolution. This compound possesses intrinsic analgesic properties in the rodent tail immersion test. EU93-108 has an acute and significant anodyne effect, whereby morphine when combined with EU93-108 produces a higher tail flick latency compared to that of morphine alone. These data suggest that engagement of GluN2B as a target has utility in the treatment of pain, and EU93-108 could serve as an appropriate tool compound to interrogate this hypothesis. Future structure-activity relationship work around this scaffold could give rise to compounds that can be co-administered with opioids to diminish the onset of tolerance due to chronic opioid use, thereby modifying their utility.
Collapse
Affiliation(s)
- Lynnea
D. Harris
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Michael C. Regan
- W.M.
Keck Structural Biology Laboratory, Cold
Spring Harbor Laboratory, New York, New York11724, United States
- RADD
Pharmaceuticals, Westport, Connecticut06880, United States
| | - Scott J. Myers
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Kelsey A. Nocilla
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Nicholas S. Akins
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Yesim A. Tahirovic
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Lawrence J. Wilson
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Ray Dingledine
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Hiro Furukawa
- W.M.
Keck Structural Biology Laboratory, Cold
Spring Harbor Laboratory, New York, New York11724, United States
| | - Stephen F. Traynelis
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Dennis C. Liotta
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
3
|
Karlov DS, Temnyakova NS, Vasilenko DA, Barygin OI, Dron MY, Zhigulin AS, Averina EB, Grishin YK, Grigoriev VV, Gabrel'yan AV, Aniol VA, Gulyaeva NV, Osipenko SV, Kostyukevich YI, Palyulin VA, Popov PA, Fedorov MV. Biphenyl scaffold for the design of NMDA-receptor negative modulators: molecular modeling, synthesis, and biological activity. RSC Med Chem 2022; 13:822-830. [PMID: 35923717 PMCID: PMC9298482 DOI: 10.1039/d2md00001f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/03/2022] [Indexed: 11/15/2023] Open
Abstract
NMDA (N-methyl-d-aspartate) receptor antagonists are promising tools for the treatment of a wide variety of central nervous system impairments including major depressive disorder. We present here the activity optimization process of a biphenyl-based NMDA negative allosteric modulator (NAM) guided by free energy calculations, which led to a 100 times activity improvement (IC50 = 50 nM) compared to a hit compound identified in virtual screening. Preliminary calculation results suggest a low affinity for the human ether-a-go-go-related gene ion channel (hERG), a high affinity for which was earlier one of the main obstacles for the development of first-generation NMDA-receptor negative allosteric modulators. The docking study and the molecular dynamics calculations suggest a completely different binding mode (ifenprodil-like) compared to another biaryl-based NMDA NAM EVT-101.
Collapse
Affiliation(s)
- Dmitry S Karlov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center 143026 Moscow Russian Federation
| | - Nadezhda S Temnyakova
- Department of Chemistry, Lomonosov Moscow State University 119991 Moscow Russian Federation
| | - Dmitry A Vasilenko
- Department of Chemistry, Lomonosov Moscow State University 119991 Moscow Russian Federation
| | - Oleg I Barygin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences 194223 St. Petersburg Russian Federation
| | - Mikhail Y Dron
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences 194223 St. Petersburg Russian Federation
| | - Arseniy S Zhigulin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences 194223 St. Petersburg Russian Federation
| | - Elena B Averina
- Department of Chemistry, Lomonosov Moscow State University 119991 Moscow Russian Federation
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University 119991 Moscow Russian Federation
| | - Vladimir V Grigoriev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences 142432 Chernogolovka Moscow Region Russian Federation
| | - Alexey V Gabrel'yan
- Institute of Physiologically Active Compounds, Russian Academy of Sciences 142432 Chernogolovka Moscow Region Russian Federation
| | - Viktor A Aniol
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences 117485 Moscow Russian Federation
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences 117485 Moscow Russian Federation
| | - Sergey V Osipenko
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center 143026 Moscow Russian Federation
| | - Yury I Kostyukevich
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center 143026 Moscow Russian Federation
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University 119991 Moscow Russian Federation
| | - Petr A Popov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center 143026 Moscow Russian Federation
| | - Maxim V Fedorov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center 143026 Moscow Russian Federation
- Sirius University of Science and Technology 1 Olympic ave 354340 Sochi Russian Federation
| |
Collapse
|
4
|
Alijanpour S, Zarrindast MR. Potentiation of morphine-induced antinociception by harmaline: involvement of μ-opioid and ventral tegmental area NMDA receptors. Psychopharmacology (Berl) 2020; 237:557-570. [PMID: 31740992 DOI: 10.1007/s00213-019-05389-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
RATIONAL Morphine is one of the most well-known and potent analgesic agents; however, it can also induce various side effects. Thus, finding drugs and mechanisms which can potentiate the analgesic effects of low doses of morphine will be a good strategy for pain management. OBJECTIVE The involvement of μ-opioid receptors and ventral tegmental area (VTA) glutamatergic system in harmaline and morphine combination on the nociceptive response were investigated. Also, we examined reward efficacy and tolerance expression following the drugs. METHODS Animals were bilaterally cannulated in the VTA by stereotaxic instrument. A tail-flick (TF) apparatus and conditioned place preference (CPP) paradigm were used to measure nociceptive response and rewarding effects in male NMRI mice respectively. RESULTS Morphine (2 mg/kg, i.p.) had no effect in TF test. Also, harmaline (1.25 and 5 mg/kg, i.p.) could not change pain threshold. Combination of a non-effective dose of harmaline (5 mg/kg) and morphine (2 mg/kg) produced antinociception and also prevented morphine tolerance but had no effect on the acquisition of CPP. Systemic administration of naloxone (0.5 and 1 mg/kg) and intra-VTA microinjection of NMDA (0.06 and 0.1 μg/mouse) before harmaline (5 mg/kg) plus morphine (2 mg/kg) prevented antinociception induced by the drugs. D-AP5 (0.5 and 1 μg/mouse, intra-VTA) potentiated the effect of low-dose harmaline (1.25 mg/kg) and morphine (2 mg/kg) and induced antinociception. Microinjection of the same doses of NMDA or D-AP5 into the VTA alone had no effect on pain threshold. CONCLUSION The findings showed that harmaline potentiated the analgesic effect of morphine and reduced morphine tolerance. Glutamatergic and μ-opioidergic system interactions in the VTA seem to have a modulatory role in harmaline plus morphine-induced analgesia.
Collapse
Affiliation(s)
- Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, P. O. Box 163, Gonbad Kavous, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ostadhadi S, Norouzi-Javidan A, Chamanara M, Akbarian R, Imran-Khan M, Ghasemi M, Dehpour AR. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test. Brain Res Bull 2017; 134:136-141. [DOI: 10.1016/j.brainresbull.2017.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023]
|
6
|
GluN2B N-methyl-D-aspartate receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after 7 days of morphine administration in rats: implication for opiate-induced hyperalgesia. Pain 2016; 157:147-158. [PMID: 26335908 DOI: 10.1097/j.pain.0000000000000342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The contribution of the peripheral nervous system to opiate-induced hyperalgesia (OIH) is not well understood. In this study, we determined the changes in excitability of primary sensory neurons after sustained morphine administration for 7 days. Changes in the expression of glutamate receptors and glutamate transporters after morphine administration were ascertained in dorsal root ganglions. Patch clamp recordings from intact dorsal root ganglions (ex vivo preparation) of morphine-treated rats showed increased excitability of small diameter (≤30 μm) neurons with respect to rheobase and membrane threshold, whereas the excitability of large diameter (>30 μm) neurons remained unchanged. Small diameter neurons also displayed increased responses to glutamate, which were mediated mainly by GluN2B containing N-methyl-D-aspartate (NMDA) receptors, and to a lesser degree by the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1. Coadministration in vivo of the GluN2B selective antagonist Ro 25-6981 with morphine for 7 days prevented the appearance of OIH and increased morphine-induced analgesia. Administration of morphine for 7 days led to an increased expression of GluN2B and excitatory amino acid transporter 3/excitatory amino acid carrier 1, but not of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate, kainate, or group I metabotropic glutamate receptors, or of the vesicular glutamate transporter 2. These results suggest that peripheral glutamatergic neurotransmission contributes to OIH and that GluN2B subunit of NMDA receptors in the periphery may be a target for therapy.
Collapse
|
7
|
Chen YF, Lee MM, Fang HL, Yang JG, Chen YC, Tsai HY. Paeoniflorin inhibits excitatory amino acid agonist-and high-dose morphine-induced nociceptive behavior in mice via modulation of N-methyl-D-aspartate receptors. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:240. [PMID: 27457480 PMCID: PMC4960895 DOI: 10.1186/s12906-016-1230-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 07/19/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Pain, the most common reasons for physician consultation, is a major symptom in many medical conditions that can significantly interfere with a person's life quality and general functioning. Almost all painkillers have its untoward effects. Therefore, seeking for a safe medication for pain relieve is notable nowadays. Paeonia lactiflora is a well-known traditional Chinese medicine. Paeoniflorin is an active component found in Paeonia lactiflora, which has been reported to inhibit formalin-induced nociceptive behavior in mice. Aims of this present study were to investigate effects of paeoniflorin on excitatory amino acid agonist- or high-dose morphine-induced nociceptive behaviors in mice. RESULTS Paeoniflorin (100, 200, 500 nmol, i.c.v.) alone and combined with glutamatergic antagonists (MK-801 14.8 pmol, or NBQX 5 nmol, i.t.) inhibited nociception. Those agents also inhibited the clonic seizure-like excitation induced by high-dose morphine (250 nmol, i.t) in mice. Antisense oligodeoxynucleotides of NMDA receptor subunits NR1, NR2A, NR2B significantly enhanced the inhibition of paeoniflorin on excitatory amino acid-and high-dose morphine-induced nociception. Docking energy data revealed that paeoniflorin had stronger binding activity in NR2A and NR2B than NR2C of NMDA receptors. CONCLUSIONS Results of this study indicate that paeoniflorin-induced inhibition of excitatory amino acid agonist- and high-dose morphine-induced nociceptive behaviors might be due to modulation of NMDA receptors, specifically the NR2B subunit.
Collapse
Affiliation(s)
- Yuh-Fung Chen
- Department of Pharmacology, China Medical University, No 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Department of Pharmacy, China Medical University Hospital, No 2, Yu-Der Road, Taichung, 40431, Taiwan.
| | - Ming-Ming Lee
- Department of Health and Nutrition Biotechnology, Asia University, No 500 Lioufeng Road, Wufeng District, Taichung, 41354, Taiwan
| | - Hsun-Lang Fang
- Department of Pharmacology, China Medical University, No 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Jhao-Guei Yang
- Laboratory of Computational and System Biology, China Medical University, Taichung, No 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Yu-Chien Chen
- Department of Biomedical Informatics, Asia University, No 500 Lioufeng Road, Wufeng District, Taichung, 41354, Taiwan
| | - Huei-Yann Tsai
- Department of Pharmacy, China Medical University Hospital, No 2, Yu-Der Road, Taichung, 40431, Taiwan
| |
Collapse
|
8
|
North WG, Liu F, Tian R, Abbasi H, Akerman B. NMDA receptors are expressed in human ovarian cancer tissues and human ovarian cancer cell lines. Clin Pharmacol 2015; 7:111-7. [PMID: 26566373 PMCID: PMC4627399 DOI: 10.2147/cpaa.s90367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have earlier demonstrated that breast cancer and small-cell lung cancer express functional NMDA receptors that can be targeted to promote cancer cell death. Human ovarian cancer tissues and human ovarian cancer cell lines (SKOV3, A2008, and A2780) have now been shown to also express NMDA-receptor subunit 1 (GluN1) and subunit 2B (GluN2B). Seventeen ovarian cancers in two arrays were screened by immunohistochemistry using polyclonal antibodies that recognize an extracellular moiety on GluN1 and on GluN2B. These specimens comprised malignant tissue with pathology diagnoses of serous papillary cystadenocarcinoma, endometrioid adenocarcinoma, and clear-cell carcinoma. Additionally, archival tissues defined as ovarian adenocarcinoma from ten patients treated at this institute were also evaluated. All of the cancerous tissues demonstrated positive staining patterns with the NMDA-receptor antibodies, while no staining was found for tumor-adjacent normal tissues or sections of normal ovarian tissue. Human ovarian adenocarcinoma cell lines (A2008, A2780, SKOV3) were demonstrated to express GluN1 by Western blotting, but displayed different levels of expression. Through immunocytochemistry utilizing GluN1 antibodies and imaging using a confocal microscope, we were able to demonstrate that GluN1 protein is expressed on the surface of these cells. In addition to these findings, GluN2B protein was demonstrated to be expressed using polyclonal antibodies against this protein. Treatment of all ovarian cell lines with antibodies against GluN1 was found to result in decreased cell viability (P<0.001), with decreases to 10%–25% that of untreated cells. Treatment of control HEK293 cells with various dilutions of GluN1 antibodies had no effect on cell viability. The GluN1 antagonist MK-801 (dizocilpine maleate) and the GluN2B antagonist ifenprodil, like antibodies, dramatically decreased the viability of A2780 ovarian tumor cells (P<0.01). Treatment of A2780 tumor xenografts with ifenprodil (2.5 mg/kg body weight/day) significantly reduced tumor growth in nu/nu mice. Our findings suggest that both GluN1 and GluN2B proteins as membrane components could be readily available targets for the treatment of most ovarian cancers.
Collapse
Affiliation(s)
- William G North
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Fuli Liu
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Ruiyang Tian
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Hamza Abbasi
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Bonnie Akerman
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
9
|
Haj-Mirzaian A, Ostadhadi S, Kordjazy N, Dehpour AR, Ejtemaei Mehr S. Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test. Eur J Pharmacol 2014; 735:26-31. [DOI: 10.1016/j.ejphar.2014.03.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/15/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
|
10
|
|
11
|
Jeon HJ, Han SR, Lim KH, Won KA, Bae YC, Ahn DK. Intracisternal administration of NR2 subunit antagonists attenuates the nociceptive behavior and p-p38 MAPK expression produced by compression of the trigeminal nerve root. Mol Pain 2011; 7:46. [PMID: 21651766 PMCID: PMC3123587 DOI: 10.1186/1744-8069-7-46] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/08/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We investigated the role of the central NMDA receptor NR2 subunits in the modulation of nociceptive behavior and p-p38 MAPK expression in a rat model with compression of the trigeminal nerve root. To address this possibility, changes in air-puff thresholds and pin-prick scores were determined following an intracisternal administration of NR2 subunit antagonists. We also examined effects of NR2 subunit antagonists on the p-p38 MAPK expression. RESULTS Experiments were carried out using male Sprague-Dawley rats weighing (200-230 g). Compression of the trigeminal nerve root was performed under pentobarbital sodium (40 mg/kg) anesthesia. Compression of the trigeminal nerve root produced distinct nociceptive behavior such as mechanical allodynia and hyperalgesia. Intracisternal administration of 10 or 20 μg of D-AP5 significantly increased the air-puff threshold and decreased the pin-prick scores in a dose-dependent manner. The intracisternal administration of PPPA (1, 10 μg), or PPDA (5, 10 μg) increased the air-puff threshold and decreased the pin-prick scores ipsilateral as well as contralateral to the compression of the trigeminal root. Compression of the trigeminal nerve root upregulated the expression of p-p38 MAPK in the ipsilateral medullary dorsal horn which was diminished by D-AP5, PPPA, PPDA, but not Ro25-6981. CONCLUSIONS Our findings suggest that central NMDA receptor NR2 subunits play an important role in the central processing of trigeminal neuralgia-like nociception in rats with compression of the trigeminal nerve root. Our data further indicate that the targeted blockade of NR2 subunits is a potentially important new treatments strategy for trigeminal neuralgia-like nociception.
Collapse
Affiliation(s)
- Hye J Jeon
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea.
| | | | | | | | | | | |
Collapse
|
12
|
1,2-Ethane bis-1-amino-4-benzamidine is active against several brain insult and seizure challenges through anti-NMDA mechanisms targeting the 3H-TCP binding site and antioxidant action. Eur J Med Chem 2010; 45:3101-10. [DOI: 10.1016/j.ejmech.2010.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/24/2010] [Accepted: 03/29/2010] [Indexed: 01/11/2023]
|
13
|
Gu X, Zhang J, Ma Z, Wang J, Zhou X, Jin Y, Xia X, Gao Q, Mei F. The role of N-methyl-D-aspartate receptor subunit NR2B in spinal cord in cancer pain. Eur J Pain 2009; 14:496-502. [PMID: 19815434 DOI: 10.1016/j.ejpain.2009.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/24/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
Cancer pain is one kind of the most common and severe kinds of chronic pain. No breakthrough regarding the mechanisms and therapeutics of cancer pains has yet been achieved. Based on the well established involvement of the NMDA (N-methyl-D-aspartate) receptor containing NR2B in inflammatory pain and neuropathic pain and the effective pain relief obtained with ketamine in cancer patients with intractable pain, we supposed that NR2B in the spinal cord was an important factor for cancer pain. In this study, we investigated the possible role of NR2B in the spinal cord using a murine model of bone cancer pain. C3H/HeJ mice were inoculated into the intramedullary space of the right femur with Osteosarcoma NCTC 2472 cells to induce ongoing bone cancer-related pain behaviors. At day 14 after operation, the expression of NR2B mRNA and NR2B protein in the spinal cord were higher in tumor-bearing mice compared to the sham mice. Intrathecal administration of 5 and 10 microg of NR2B subunit-specific NMDA receptor antagonist ifenprodil attenuated cancer-evoked spontaneous pain, thermal hyperalgesia and mechanical allodynia. These results suggest that NR2B in the spinal cord may participate in bone cancer pain in mice, and ifenprodil may be a useful alternative or adjunct therapy for bone cancer pain. The findings may lead to novel strategies for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- XiaoPing Gu
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008 Jiangsu Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qu XX, Cai J, Li MJ, Chi YN, Liao FF, Liu FY, Wan Y, Han JS, Xing GG. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol 2008; 215:298-307. [PMID: 19046970 DOI: 10.1016/j.expneurol.2008.10.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 12/27/2022]
Abstract
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain. Our study showed that intrathecal (i.t.) injection of Ro 25-6981, a selective NMDA-2B receptor antagonist, had a dose-dependent anti-allodynic effect without causing motor dysfunction. Furthermore, i.t. application of another NMDA-2B receptor antagonist ifenprodil prior to SNL also significantly inhibited the mechanical allodynia but not the thermal hyperalgesia. These data suggest that NMDA-2B receptors at the spinal cord level play an important role in the development of neuropathic pain, especially at the early stage following nerve injury. In addition, spinal administration of Ro 25-6981 not only had a dose-dependent inhibitory effect on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in both normal and SNL rats, but also significantly inhibited the long-term potentiation (LTP) in the C-fiber responses of WDR neurons induced by high-frequency stimulation (HFS) applied to the sciatic nerve. These results indicate that activation of the dorsal horn NMDA-2B receptors may be crucial for the spinal nociceptive synaptic transmission and for the development of long-lasting spinal hyperexcitability following nerve injury. In conclusion, the spinal cord NMDA-2B receptors play a role in the development of central sensitization and neuropathic pain via the induction of LTP in dorsal horn nociceptive synaptic transmission. Therefore, the spinal cord NMDA-2B receptor is likely to be a target for clinical pain therapy.
Collapse
Affiliation(s)
- Xiao-Xiu Qu
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ko SW, Wu LJ, Shum F, Quan J, Zhuo M. Cingulate NMDA NR2B receptors contribute to morphine-induced analgesic tolerance. Mol Brain 2008; 1:2. [PMID: 18803856 PMCID: PMC2546399 DOI: 10.1186/1756-6606-1-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/17/2008] [Indexed: 11/10/2022] Open
Abstract
Morphine is widely used to treat chronic pain, however its utility is hindered by the development of tolerance to its analgesic effects. While N-methyl-D-aspartate (NMDA) receptors are known to play roles in morphine tolerance and dependence, less is known about the roles of individual NMDA receptor subtypes. In this study, Ro 256981, an antagonist of the NMDA receptor subunit NR2B, was used to reduce the expression of analgesic tolerance to morphine. The mechanisms altered with chronic drug use share similarities with those underlying the establishment of long-tem potentiation (LTP) and behavioral memory. Since NMDA NR2B receptors in the anterior cingulate cortex (ACC) play roles in the establishment of LTP and fear memory, we explored their role in changes that occur in this region after chronic morphine. Both systemic and intra-ACC inhibition of NR2B in morphine-tolerant animals inhibited the expression of analgesic tolerance. Electrophysiological recordings revealed a significant increase in the NR2B component of NMDA receptor mediated excitatory postsynaptic currents (EPSCs), at both synaptic and extra-synaptic sites. However, there was no change in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor mediated EPSCs. This study suggests that selective inhibition of NMDA NR2B receptors may prove useful in combating the development of analgesic tolerance to morphine and proposes a novel role for the ACC in opioid tolerance and morphine induced changes in synaptic plasticity.
Collapse
Affiliation(s)
- Shanelle W Ko
- Department of Physiology, University of Toronto, University of Toronto Centre for the Study of Pain, Canada.
| | | | | | | | | |
Collapse
|
16
|
Quintero GC, Erzurumlu RS, Vaccarino AL. Evaluation of morphine analgesia and motor coordination in mice following cortex-specific knockout of the N-methyl-D-aspartate NR1-subunit. Neurosci Lett 2008; 437:55-8. [PMID: 18423864 PMCID: PMC2497425 DOI: 10.1016/j.neulet.2008.03.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 11/20/2022]
Abstract
Studies have shown that N-methyl-D-aspartate (NMDA) receptors play a critical role in morphine analgesia and motoric processes at different levels of the central nervous system. In this study, we used cortex-specific NR1 knockout (KO) mice (C57BL/6 strain) to elucidate the role of cortical NMDA receptors in morphine analgesia and motor coordination. On post-natal day 20, mice (CTL and KO) received vehicle (saline) or morphine (10 mg/kg) and paw withdrawal latency (PWL) to a noxious thermal stimulus was measured. On post-natal day 21, motor coordination was measured using the rotating pole test. No differences in KO mice were found with respect to PWL following administration of saline or morphine (p>0.05). However, sex-dependent differences were found in motor coordination, with male KO mice showing a greater motor impairment in the rotating pole test than female KO mice (p<0.05). The present results demonstrate that NMDA receptors are involved in both the analgesic effects of morphine and motor coordination, with the existence of sex-related differences in motor coordination.
Collapse
Affiliation(s)
- Gabriel C Quintero
- Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
17
|
Pedersen LM, Gjerstad J. Spinal cord long-term potentiation is attenuated by the NMDA-2B receptor antagonist Ro 25-6981. Acta Physiol (Oxf) 2008; 192:421-7. [PMID: 17970830 DOI: 10.1111/j.1748-1716.2007.01756.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM The NR2B-containing N-methyl-d-aspartate (NMDA) receptors may be involved in a variety of phenomena including synaptic plasticity, memory formation and pain perception. Here we used the NMDA-2B receptor antagonist Ro 25-6981 to investigate the role of the NR2B-containing NMDA receptors in spinal nociception. METHODS Extracellular single unit recordings were performed from dorsal horn wide dynamic range (WDR) neurones in intact urethane-anaesthetized Sprague-Dawley rats. The responses of the WDR neurones evoked by C-fibre activation after sciatic nerve stimulation were defined according to latencies. To block the dorsal horn NMDA-2B receptors, the antagonist Ro 25-6981 was applied topically onto the spinal cord. High-frequency stimulation (HFS) of the sciatic nerve was used to induce spinal long-term potentiation (LTP). RESULTS Spinal administration of the NMDA-2B receptor antagonist Ro 25-6981 had a clear antinociceptive effect at the spinal level (P < 0.05, C-fibre evoked responses after 4 mm Ro 25-6981 vs. C-fibre evoked responses in baseline). Moreover, spinal administration of this antagonist clearly attenuated the magnitude of spinal cord LTP after HFS conditioning (P < 0.05, C-fibre evoked responses after HFS vs. C-fibre evoked responses after 8 mm Ro 25-6981 + HFS). CONCLUSION The present study indicates that expression of full LTP in dorsal horn neurones obtained by HFS conditioning may be dependent on the NMDA receptors containing the NR2B subunit. This suggests that activation of dorsal horn NR2B-containing NMDA receptors may be involved in use-dependent sensitization at the spinal level.
Collapse
Affiliation(s)
- L M Pedersen
- National Institute of Occupational Health, Oslo, Norway
| | | |
Collapse
|
18
|
Xu T, Jiang W, Du D, Xu Y, Hu Q, Shen Q. Role of spinal metabotropic glutamate receptor subtype 5 in the development of tolerance to morphine-induced antinociception in rat. Neurosci Lett 2007; 420:155-9. [PMID: 17512115 DOI: 10.1016/j.neulet.2007.04.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/26/2007] [Accepted: 04/29/2007] [Indexed: 12/13/2022]
Abstract
Prolonged intrathecal (i.t.) administration of morphine results in tolerance to morphine-induced antinociception. We found that co-administration of selective metabotropic glutamate receptor subtype 5 antagonist MPEP with morphine could suppress the loss of morphine-induced antinociception and inhibit the development of tolerance to morphine-induced antinociceptive effect. Whereas, the specific metabotropic glutamate receptor subtype 5 agonist CHPG does the opposite. As the activation of NMDA receptor after chronic morphine administration has been verified, we suppose there is an enhanced activation of mGluR5 during the development of tolerance to morphine-induced antinociception. Activation of mGluR5 may mobilize the release of intracellular Ca(2+) and activate PKC, leading to morphine-induced antinociception suppression. We conclude that mGluR5 contributes to the development of tolerance to morphine-induced antinociception after chronic morphine exposure.
Collapse
Affiliation(s)
- Tao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | | | | | | | | | | |
Collapse
|
19
|
Yoshikawa M, Ito K, Maeda M, Akahori K, Takahashi S, Jin XL, Matsuda M, Suzuki T, Oka T, Kobayashi H, Hashimoto A. Activation of supraspinal NMDA receptors by both D-serine alone or in combination with morphine leads to the potentiation of antinociception in tail-flick test of rats. Eur J Pharmacol 2007; 565:89-97. [PMID: 17383634 DOI: 10.1016/j.ejphar.2007.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 11/28/2022]
Abstract
Although there is a variety of information concerning the effects of the N-methyl-D-aspartate (NMDA) receptor on opioid-induced antinociception at the spinal level, little is known about the effects at the supraspinal level. To clarify the role of the NMDA receptor on the morphine-induced antinociception at the supraspinal level, we investigated the effects of the intracerebroventricular (i.c.v.) administration of D-serine, a selective agonist for the glycine site of the NMDA receptors, alone or in combination with morphine using the tail-flick test. The i.c.v. administration of D-serine, but not L-serine, alone produced a dose-dependent antinociception in the tail-flick response. D-Serine also dose-dependently potentiated the antinociceptive effect induced by the i.c.v. administration of morphine and the simultaneous administration produced an additive effect. The potentiation of the antinociception produced by both D-serine alone or in combination with morphine was dose-dependently attenuated by the i.c.v. administration of L-701,324, a selective antagonist for the glycine site of the NMDA receptors. In addition, the potentiation of the D-serine-induced antinociception was antagonized by the i.c.v. administration of naloxone, a nonselective opioid receptor antagonist. These observations, together with the fact that D-serine is an endogenous and selective co-agonist for the glycine site of the NMDA receptors, strongly suggested that the activation of the supraspinal NMDA receptors by D-serine leads to the potentiation of the antinociception in the tail-flick test and that endogenous D-serine could modulate the mu-opioid receptor mediated antinociception via the glycine site of the NMDA receptors at the supraspinal level.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Estebe JPC, Legay F, Gentili M, Wodey E, Leduc C, Ecoffey C, Moulinoux JP. An Evaluation of a Polyamine-Deficient Diet for the Treatment of Inflammatory Pain. Anesth Analg 2006; 102:1781-8. [PMID: 16717326 DOI: 10.1213/01.ane.0000205755.43562.2b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Polyamines are thought to be involved in the regulation of numerous metabolic and electrophysiological processes in the nervous system. In this study we evaluated the effect of a synthetic polyamine-deficient diet on pain in a carrageenan (Car)-induced inflammatory rat model. Inflammation was induced with a unilateral subcutaneous injection of Car in a plantar hindpaw in rats fed without (control group) or with (deficiency group) a polyamine-deficient diet. Ipsilateral and contralateral hyperalgesia was evaluated using the Randall-Sellito pressure test. Heart rate changes were also recorded under general anesthesia. Then, the effects of a bupivacaine sciatic nerve block and subcutaneous injection of naloxone or ketamine were evaluated for Car-induced hyperalgesia. Data were analyzed using analysis of variance followed by unpaired Student's t-test (significance P < 0.05). Before Car injection, no significant difference was observed in response to mechanical stimuli between the control and the deficiency groups (n = 114 in pooled data). Car injection induced significant ipsilateral and contralateral hyperalgesia in the control groups, whereas a significant analgesic effect appeared in the deficient groups on both the ipsilateral and contralateral hindpaws. This analgesic effect was confirmed by the electrocardiogram recording that showed a significant increase in heart rate in the control group after Car injection compared with the deficiency group that showed a decrease in heart rate under general anesthesia. Bupivacaine sciatic nerve block had no significant effect on hypoalgesia phenomena induced by polyamine deficiency. Naloxone administration had no effect in the control group but reversed the analgesic effect in the deficiency group. Ketamine administration induced a significant analgesic effect in the control group and partly reversed the analgesic effect in the deficiency group. In conclusion, a synthetic polyamine-deficient diet had a significant general analgesic effect on Car-induced mechanical hyperalgesia. The mechanism of analgesic action remains to be elucidated.
Collapse
Affiliation(s)
- Jean-Pierre Ch Estebe
- Department of Anesthesia, Intensive Care and Pain Clinic II, Faculty of Medicine, University of Rennes, Rennes Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Sevostianova N, Danysz W, Bespalov AY. Analgesic effects of morphine and loperamide in the rat formalin test: interactions with NMDA receptor antagonists. Eur J Pharmacol 2005; 525:83-90. [PMID: 16297905 DOI: 10.1016/j.ejphar.2005.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/27/2005] [Accepted: 10/07/2005] [Indexed: 11/26/2022]
Abstract
To reveal peripheral components of opiate analgesia, effects of loperamide, opioid agonist which does not penetrate the blood-brain barrier, were examined in formalin and acute thermal pain tests in comparison with morphine. Formalin administration induces pain behaviour such licking/biting of injected paw expressed as two phases. The first phase is caused by C-fibre activation due to peripheral stimulation, the second phase attributed to ongoing input from peripheral site, leading to spinal hyperexcitability, which is dependent on N-methyl-D-aspartate (NMDA) receptor activation. Loperamide (3-10 mg/kg) and morphine (6 mg/kg) reduced formalin-induced nociceptive behaviours and these effects were reversed by naloxone methiodide (0.03-10 mg/kg), opioid receptor antagonist which poorly penetrates the blood-brain barrier. Loperamide action was enhanced only by centrally active NMDA receptor antagonists memantine (3 mg/kg) and CGP 37849 (3 mg/kg), but not by NMDA/glycineB receptor antagonists showing weak or no central nervous system (CNS) activity. Present results suggest that central NMDA receptor blockade may be necessary to enhance analgesia induced through peripheral opioid mechanisms in formalin-evoked nociception.
Collapse
Affiliation(s)
- Natalja Sevostianova
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | | | | |
Collapse
|
22
|
Zhang X, Wu J, Lei Y, Fang L, Willis WD. Protein phosphatase modulates the phosphorylation of spinal cord NMDA receptors in rats following intradermal injection of capsaicin. ACTA ACUST UNITED AC 2005; 138:264-72. [PMID: 15919130 DOI: 10.1016/j.molbrainres.2005.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 04/07/2005] [Accepted: 05/01/2005] [Indexed: 11/21/2022]
Abstract
The present study investigates the role of serine/threonine protein phosphatase 2A (PP2A) in the modulation of the phosphorylation of the NR1 and NR2B subunits of NMDA receptors in the spinal cord of rats following intradermal injection of capsaicin. The effects of a specific inhibitor of PP2A, fostriecin, on the expression of NR1, phospho-NR1, NR2B, and phospho-NR2B subunits of the NMDA receptor in the spinal cord of rats following noxious stimulation were examined. After continually perfusing with ACSF or fostriecin (3 microM) through a previously implanted microdialysis fiber for 30 min, central sensitization was initiated by injection of capsaicin into the plantar surface of the left paw of rats. The spinal cord was removed at different time points (30, 60, 90, 120, 180 min) after intradermal injection of capsaicin. Western blots were performed to examine the expression of NMDA subunits in spinal cord tissue by using specific antibodies. We found that the upregulated phosphorylation of both NR1 and NR2B subunits induced by capsaicin injection was significantly potentiated by the PP2A inhibitor without affecting the NR1 and NR2B protein itself. These results suggest that PP2A may have a regulatory effect on central sensitization induced by noxious stimuli in the periphery by regulating the phosphorylation state of NMDA receptors.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | | | | | | | |
Collapse
|
23
|
Jang Y, Kim ES, Park SS, Lee J, Moon DE. The suppressive effects of oxcarbazepine on mechanical and cold allodynia in a rat model of neuropathic pain. Anesth Analg 2005; 101:800-806. [PMID: 16115994 DOI: 10.1213/01.ane.0000167283.80463.d7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oxcarbazepine (OCBZ) is a keto analog of carbamazepine (CBZ) and may have similar analgesic properties to CBZ, but studies on its effects in neuropathic pain conditions are rare. In this study, we evaluated the analgesic effects of OCBZ in a rat neuropathic pain model. Male Sprague-Dawley rats were prepared by tightly ligating the left L5 and L6 spinal nerves to produce neuropathic pain. Sixty neuropathic rats were randomly assigned into six groups, and normal saline, a vehicle (polyethylene glycol 400), and OCBZ (10 mg/kg, 20 mg/kg, 30 mg/kg, and 50 mg/kg) were intraperitoneally administered to these individual groups. Mechanical and cold allodynia were observed at preadministration and 15, 30, 60, 90, 120, 150, and 180 min after drug administration and were quantified by measuring withdrawal frequencies to stimuli with von Frey filaments and 100% acetone, respectively. Rotarod performance was measured to detect drug-induced adverse motor effects. In the OCBZ-treated groups, withdrawal frequencies to mechanical and cold stimuli were significantly reduced in a dose-dependent manner (P < 0.05). Only at the largest dose did OCBZ reduce rotarod performance time. These results suggest that OCBZ may be a possible therapeutic consideration in neuropathic pain conditions associated with allodynia and hyperalgesia.
Collapse
Affiliation(s)
- Yeon Jang
- Department of Anesthesiology and Pain Medicine, Catholic University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Peana AT, De Montis MG, Nieddu E, Spano MT, D'Aquila PS, Pippia P. Profile of spinal and supra-spinal antinociception of (-)-linalool. Eur J Pharmacol 2004; 485:165-74. [PMID: 14757137 DOI: 10.1016/j.ejphar.2003.11.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously reported that administration of (-)-linalool, the naturally occurring enantiomer in essential oils, induced a significant reduction in carrageenin-induced oedema and in acetic acid-induced writhing. The latter effect was completely antagonised by the muscarinic receptor antagonist atropine and by the opioid receptor antagonist naloxone. To further characterise the antinociceptive profile of (-)-linalool, we studied its effect in the hot plate and the formalin in tests. In addition, to determine the possible involvement of the cholinergic, opioidergic and dopaminergic systems, we tested the effects of atropine, pirenzepine, a muscarinic M1 receptor antagonist, naloxone, sulpiride, a dopamine D2 receptor antagonist and (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH-23390), a dopamine D1 receptor antagonist on (-)-linalool-induced antinociception. Moreover, since K(+) channels seem to play an important role in the mechanisms of pain modulation, we examined the effect of glibenclamide, an ATP-sensitive K(+) channel inhibitor on (-)-linalool-induced antinociception. The administration of (-)-linalool (100 and 150 mg/kg, s.c.) increased the reaction time in the hot-plate test. Moreover, (-)-linalool (50 and 100 mg/kg) produced a significant reduction in the early acute phase of the formalin model, but not in the late tonic phase. The highest dose (150 mg/kg) caused a significant antinociceptive effect on both phases. The antinociceptive effects of (-)-linalool were decreased by pre-treatment with atropine, naloxone, sulpiride and glibenclamide but not by pirenzepine and SCH-23390. These results are in agreement with the demonstrated pharmacological properties of linalool, mainly its cholinergic, local anaesthetic activity and its ability to block NMDA receptors. Furthermore, a key role seems to be played by K(+) channels, whose opening might be the consequence of a stimulation of muscarinic M2, opioid or dopamine D2 receptors.
Collapse
Affiliation(s)
- Alessandra T Peana
- Dipartimento di Scienze del Farmaco, Università degli Studi di Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Nemmani KVS, Grisel JE, Stowe JR, Smith-Carliss R, Mogil JS. Modulation of morphine analgesia by site-specific N-methyl-D-aspartate receptor antagonists: dependence on sex, site of antagonism, morphine dose, and time. Pain 2004; 109:274-283. [PMID: 15157688 DOI: 10.1016/j.pain.2004.01.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 12/18/2003] [Accepted: 01/12/2004] [Indexed: 11/28/2022]
Abstract
Pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors can modulate morphine analgesia in experimental animals and humans. However, this literature is highly inconsistent, with NMDA receptor antagonists variously shown to potentiate, attenuate or produce no effect on morphine analgesic magnitude. A number of factors influencing this modulation have been proposed, but no one has examined such factors simultaneously, and all existing studies in mice were conducted exclusively in male subjects. Thus, the influence of systemic administration of site-specific NMDA receptor antagonists-including dextromethorphan, dextrorphan, MK-801, LY235959, L-701,324, and Ro 25-6981-on morphine analgesia (15-45 mg/kg; 15, 30 and 60 min post-injection) was studied in male and female mice using the 49 degrees C tail-withdrawal test. We found that oral and intraperitoneal dextromethorphan, a low-affinity non-competitive antagonist, dose-dependently potentiated low-dose morphine analgesia but attenuated high-dose morphine analgesia. Dextrorphan and MK-801 were found to potentiate low- but not high-dose morphine analgesia. The competitive glutamate-site antagonist, LY235959, and glycine-site antagonist, L-701,324, potentiated morphine analgesia at all doses. In contrast, the polyamine (NR2B) site antagonist, Ro 25-6981, attenuated morphine analgesia at all doses. Strikingly, the non-competitive antagonists produced no modulation of morphine analgesia whatsoever in female mice, whereas no sex differences were observed using competitive or NR2B antagonists. These findings indicate that NMDA modulation of morphine analgesia is critically influenced by sex, site of antagonism, morphine dose and time after injection. Our data suggest that NMDA antagonism via competitive or glycine site antagonism might result in more reliable clinical effects on morphine analgesia in both sexes.
Collapse
Affiliation(s)
- Kumar V S Nemmani
- Department of Psychology and Centre for Research on Pain, McGill University, 1205 Dr Penfield Ave., Montreal, QC, Canada H3A 1B1 Department of Psychology, Furman University, Greenville, SC 29613, USA Endo Pharmaceuticals Inc., Chadds Ford, PA 19317, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Mixed research findings have led to a debate regarding the effect of N-methyl-D-aspartate (NMDA) receptor antagonists on opiate analgesia. NMDA antagonists have been found in various studies to enhance, to inhibit, or to have no effect on opiate analgesia. The present research used a single protocol to explore the effects of six NMDA receptor antagonists on acute morphine (3.0 mg/kg s.c.) and fentanyl (0.05 mg/kg s.c.) analgesia in adult male Sprague-Dawley rats. NMDA receptor antagonists were selected based on their abilities to block various sites on the NMDA receptor complex, including the noncompetitive antagonists MK-801 (0.1 and 0.3 mg/kg i.p.), dextromethorphan (10.0 and 30.0 mg/kg i.p.), and memantine (3.0 and 10.0 mg/kg i.p.), a glycine site antagonist, (+)-HA-966 (10.0 and 30.0 mg/kg i.p.), a competitive antagonist, LY235959 (1.0 and 3.0 mg/kg i.p.), and a polyamine site antagonist, ifenprodil (1.0 and 3.0 mg/kg i.p.). Analgesia was assessed using the tail-flick test. A single dose of each opiate was used. The low doses of the antagonists, which are known to produce significant neural and behavioral actions at NMDA receptors, had no effect on morphine or fentanyl analgesia. At the higher doses, morphine analgesia was significantly enhanced by LY235959 (3.0 mg/kg), and fentanyl analgesia was significantly enhanced by LY235959 (3.0 mg/kg), dextromethorphan (30.0 mg/kg), and (+)-HA-966 (30.0 mg/kg). Enhancement of analgesia occurred without any apparent adverse side effects. None of the NMDA antagonists affected tail-flick responses on their own, except the higher dose of LY235959 (3.0 mg/kg), which produced a mild analgesic effect. Because no consistent effects were observed, the data suggest that NMDA receptors are not involved in acute mu-opioid analgesia. The mechanisms underlying the enhancement of opiate analgesia by selected NMDA antagonists, such as LY235959, dextromethorphan, and (+)-HA-966, remain to be determined.
Collapse
Affiliation(s)
- Karen E Redwine
- Department of Psychology, California State University, San Marcos, 333 S Twin Oaks Valley Road, San Marcos, CA 92096-0001, USA
| | | |
Collapse
|
28
|
Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg 2003; 97:1108-1116. [PMID: 14500166 DOI: 10.1213/01.ane.0000081061.12235.55] [Citation(s) in RCA: 447] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is accumulating evidence to implicate the importance of N-methyl-D-aspartate (NMDA) receptors to the induction and maintenance of central sensitization during pain states. However, NMDA receptors may also mediate peripheral sensitization and visceral pain. NMDA receptors are composed of NR1, NR2 (A, B, C, and D), and NR3 (A and B) subunits, which determine the functional properties of native NMDA receptors. Among NMDA receptor subtypes, the NR2B subunit-containing receptors appear particularly important for nociception, thus leading to the possibility that NR2B-selective antagonists may be useful in the treatment of chronic pain.
Collapse
Affiliation(s)
- Andrei B Petrenko
- From the Department of Anesthesiology, Niigata University School of Medicine, Asahimachi 1-757, Niigata 951-8510, Japan
| | | | | | | |
Collapse
|
29
|
|
30
|
Chizh BA, Headley PM, Tzschentke TM. NMDA receptor antagonists as analgesics: focus on the NR2B subtype. Trends Pharmacol Sci 2001; 22:636-42. [PMID: 11730974 DOI: 10.1016/s0165-6147(00)01863-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ifenprodil and a group of related compounds are selective antagonists of NR2B-containing NMDA receptors. These compounds are antinociceptive in a variety of preclinical pain models and have a much lower side-effect profile compared with other NMDA receptor antagonists. It remains unclear whether the improved safety of these compounds is due to their subtype selectivity or to a unique mode of inhibition of the receptor. Human trials have so far confirmed the good tolerability of these subtype-selective NMDA receptor antagonists; however, whether they are as effective as other NMDA receptor antagonists in pain patients remains to be demonstrated.
Collapse
Affiliation(s)
- B A Chizh
- Dept of Pharmacology, Grünenthal GmbH Research & Development, Zieglerstr. 6, 52078, Aachen, Germany.
| | | | | |
Collapse
|
31
|
Wainai T, Takeuchi T, Seo N, Mishina M. Regulation of acute nociceptive responses by the NMDA receptor GluRepsilon2 subunit. Neuroreport 2001; 12:3169-72. [PMID: 11711849 DOI: 10.1097/00001756-200110290-00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterozygous mice mutant for the NMDA-type glutamate receptor (GluR) epsilon2 subunit with a highly homogeneous genetic background showed exaggerated responses to various acute noxious stimuli in the footshock, tail-flick, hot-plate and tail-pinch tests. Because the noxious stimuli in these behavioral tests were electrical, thermal and mechanical, the reduction of GluRepsilon2 proteins exerted stimulatory effects on acute nociceptive responses across modalities. Previous studies showed that GluRepsilon1 and GluRepsilon4 subunit mutant mice exhibited no alteration in the responses to acute noxious stimuli. Thus, among NMDA receptor subunits, the GluRepsilon2 subunit specifically plays an important role in the regulation of the acute nociceptive responses.
Collapse
Affiliation(s)
- T Wainai
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
32
|
Ichikawa K, Koyama N, Kiguchi S, Kojima M, Yokota T. Inhibitory effect of oxcarbazepine on high-frequency firing in peripheral nerve fibers. Eur J Pharmacol 2001; 420:119-22. [PMID: 11408033 DOI: 10.1016/s0014-2999(01)01007-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We assessed the effects of oxcarbazepine, an antiepileptic derivative of carbamazepine, on discharges in single cutaneous afferent fibers produced by repetitive high-frequency stimulation (mimicking the abnormal excitation of peripheral nerves in neuropathic pain and paresthesia). After intravenous administration of oxcarbazepine, the later responses in the train dropped out without the earlier ones being affected and, thus, the total number of spikes decreased. The latency of the responses to an individual pulse was unchanged. These results, which indicate that oxcarbazepine inhibits the generation of high-frequency firing without affecting impulse conduction, suggest that this drug may be useful against neuropathic pain and paresthesia.
Collapse
Affiliation(s)
- K Ichikawa
- Pharmacology Research R&D, Kissei Pharmaceutical Co. Ltd., 4365-1 Kashiwabara, Hotaka, Minamiazumi, 399-8304, Nagano, Japan.
| | | | | | | | | |
Collapse
|
33
|
Chizh BA, Reissmüller E, Schlütz H, Scheede M, Haase G, Englberger W. Supraspinal vs spinal sites of the antinociceptive action of the subtype-selective NMDA antagonist ifenprodil. Neuropharmacology 2001; 40:212-20. [PMID: 11114400 DOI: 10.1016/s0028-3908(00)00148-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The N-methyl-D-aspartate (NMDA) antagonist ifenprodil and several structurally related compounds are highly selective for the NR2B-containing receptor subtype. This selectivity could provide an explanation for the reported difference of the analgesic and side-effect profile of ifenprodil-like compounds from other NMDA antagonists. In this work, we have queried if the ifenprodil-induced antinociception can be attributed to the block of NMDA receptors in the spinal cord. Ifenprodil and some other NMDA antagonists (MK-801, memantine) were tested in a model of inflammatory pain (Randall-Selitto) in rats. The in vivo NMDA antagonism was assessed in anaesthetised rats on responses of spinal dorsal horn (DH) neurones to iontophoretic NMDA and in the model of single motor unit (SMU) wind-up. Ifenprodil, MK-801 and memantine dose-dependently increased nociceptive thresholds in the Randall-Selitto model. Antinociceptive doses of the channel blockers selectively antagonised NMDA responses of DH neurones and inhibited wind-up. In contrast, antinociceptive doses of ifenprodil did not show any NMDA antagonism in electrophysiological tests. Although ifenprodil did not inhibit the SMU responses to noxious stimuli in spinalised rats, it markedly and dose-dependently inhibited nociceptive SMU responses in sham-spinalised rats. These results argue against the spinal cord being the principal site of antinociceptive action of ifenprodil; supraspinal structures seem to be involved in this effect.
Collapse
Affiliation(s)
- B A Chizh
- Grünenthal GmbH Research and Development, Zieglerstrasse 6, D-52078 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Evidence from the last several decades indicates that the excitatory amino acid glutamate plays a significant role in nociceptive processing. Glutamate and glutamate receptors are located in areas of the brain, spinal cord and periphery that are involved in pain sensation and transmission. Glutamate acts at several types of receptors, including ionotropic (directly coupled to ion channels) and metabotropic (directly coupled to intracellular second messengers). Ionotropic receptors include those selectively activated by N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate. Metabotropic glutamate receptors are classified into 3 groups based on sequence homology, signal transduction mechanisms and receptor pharmacology. Glutamate also interacts with the opioid system, and intrathecal or systemic coadministration of glutamate receptor antagonists with opioids may enhance analgesia while reducing the development of opioid tolerance and dependence. The actions of glutamate in the brain seem to be more complex. Activation of glutamate receptors in some brain areas seems to be pronociceptive (e.g. thalamus, trigeminal nucleus), although activation of glutamate receptors in other brain areas seems to be antinociceptive (e.g. periaqueductal grey, ventrolateral medulla). Application of glutamate, or agonists selective for one of the several types of glutamate receptor, to the spinal cord or periphery induces nociceptive behaviours. Inhibition of glutamate release, or of glutamate receptors, in the spinal cord or periphery attenuates both acute and chronic pain in animal models. Similar benefits have been seen in studies involving humans (both patients and volunteers); however, results have been inconsistent. More research is needed to clearly define the role of existing treatment options and explore the possibilities for future drug development.
Collapse
Affiliation(s)
- M E Fundytus
- Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
35
|
Catelli M, Monassier L, Feldman J, Tibiriçá E. Cardiovascular effects of chronic ifenprodil in a model of central sympathetic stimulation. Fundam Clin Pharmacol 2000; 14:587-92. [PMID: 11206709 DOI: 10.1111/j.1472-8206.2000.tb00444.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study we investigated the effects of a long-term treatment (14 days) with ifenprodil on the excitatory haemodynamic responses induced by central pharmacological stimulation in anaesthetised rabbits. The intracerebroventricular injection of L-glutamate (3 mg/kg) induced important rises in dP/dtmax (32.9%), mean arterial pressure (42.6%) and in the myocardial oxygen consumption index: the triple product (84.2%). Ifenprodil (1.5, 3 and 6 mg/kg/day, i.p.) reduced the increases in myocardial oxygen demand induced by intracerebral L-glutamate in a dose-related manner. Interestingly, ifenprodil also reduced in a dose-dependent manner the maximum values of the oxygen demand indices reached during the central nervous system stimulation. These results indicate that the long-term treatment with ifenprodil can reduce the myocardial oxygen consumption induced by central nervous system stimulation without significant depression of the resting cardiac function. This favourable effect of ifenprodil is in fact a consequence of the association of mild inhibitory effects on the three parameters taken into account in the triple product index of myocardial oxygen consumption.
Collapse
Affiliation(s)
- M Catelli
- Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
36
|
Kergozien S, Delcros JG, Desury D, Moulinoux JP. Polyamine deprivation alters formalin-induced hyperalgesia and decreases morphine efficacy. Life Sci 1999; 65:2175-83. [PMID: 10576589 DOI: 10.1016/s0024-3205(99)00482-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although the exact functions of polyamines in the nervous system remain still unclear, they are thought to have a physiological role in intracellular signal processing and neurotransmission. Polyamine deprivation which consists in the reduction of both the endogenous and exogenous sources of polyamines is a promising treatment for cancer. In a previous study we have shown that this treatment provokes an analgesic effect in rats submitted to brief phasic nociceptive tests. The present study examined the effect of polyamine deprivation on pain-related behaviors and spinal c-fos expression evoked in the formalin test presumed to better reflect clinical pain, using morphine as analgesia control. Polyamine deprivation per se altered the characteristic pain-related behaviors, reducing the interphase depression of pain, without inducing changes in the spinal Fos staining. In addition this treatment prevented the antinociceptive effect of morphine both on behavioral responses and on spinal c-fos expression. In polyamine-deprived rats, despite morphine injection, nociceptive scores remained dramatically high during the intermediate and the late phases of the response and the number of Fos immunoreactive neurons remained largely higher in deeper layers than in morphine control rats. Altogether these data support a modulatory role of polyamines both on the neuronal circuitry mediating sensory information, and on mechanisms underlying morphine analgesia.
Collapse
Affiliation(s)
- S Kergozien
- CNRS-ESA 6027, Groupe de Recherche en Thérapeutique AntiCancéreuse, Faculté de Médecine 2, Rennes, France
| | | | | | | |
Collapse
|
37
|
Mao J. NMDA and opioid receptors: their interactions in antinociception, tolerance and neuroplasticity. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:289-304. [PMID: 10567729 DOI: 10.1016/s0165-0173(99)00020-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the last several years, significant progress has been made in our understanding of interactions between the N-methyl-D-aspartate (NMDA) and opioid receptors. Such interactions have been demonstrated at two distinct sites: (1) modulation of NMDA receptor-mediated electrophysiological events by opioids; and (2) intracellular events involving interactions between NMDA and opioid receptors. Furthermore, a considerable number of studies have shown the involvement of such interactions in neural mechanisms of nociceptive transmission, antinociception in acute and chronic pain states, opioid tolerance/dependence, and neuroplasticity. Importantly, emerging evidence indicates that activation of NMDA receptors may differentially modulate functions mediated by distinct opioid receptor subtypes, namely mu, delta, and kappa receptors. These studies have greatly enriched our knowledge regarding both NMDA and opioid receptor systems and have shed light on neurobiology of both acute and chronic pain. The advancement of such knowledge also promotes new strategies for better clinical management of pain patients.
Collapse
Affiliation(s)
- J Mao
- MGH Pain Center, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, Suite WAC-324, Boston, MA, USA
| |
Collapse
|
38
|
Bespalov A, Kudryashova M, Zvartau E. Prolongation of morphine analgesia by competitive NMDA receptor antagonist D-CPPene (SDZ EAA 494) in rats. Eur J Pharmacol 1998; 351:299-305. [PMID: 9721021 DOI: 10.1016/s0014-2999(98)00324-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A possible future clinical application of NMDA receptor antagonists is the control of the development of opiate analgesic tolerance. Therefore, the ability of NMDA receptor antagonists to modify the acute analgesic effects of opiates becomes increasingly important. The present study sought to evaluate the analgesic potency of combined administration of morphine (5-20 mg/kg) and a competitive NMDA receptor antagonist D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid; 0.3-5.6 mg/kg) in the tail-flick and tail-pinch tests with rats. It was found that D-CPPene significantly increased the duration of morphine analgesia, but there was hardly any evidence for potentiation of morphine analgesia shortly after morphine administration. This effect could only in part be attributed to the D-CPPene-induced disruption of the development of 'learned hyperresponsiveness' (i.e., acquisition of decreased latencies to escape from repeated exposures to noxious stimulation). In addition, the plasma concentration of morphine was not affected by concurrent treatment with D-CPPene.
Collapse
Affiliation(s)
- A Bespalov
- Department of Psychopharmacology, Institute of Pharmacology, Pavlov Medical University, St.-Petersburg, Russia.
| | | | | |
Collapse
|
39
|
González P, Cabello P, Germany A, Norris B, Contreras E. Decrease of tolerance to, and physical dependence on morphine by, glutamate receptor antagonists. Eur J Pharmacol 1997; 332:257-62. [PMID: 9300257 DOI: 10.1016/s0014-2999(97)01099-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of the non-competitive antagonists of the glutamate complex receptor, dizocilpine (MK 801) and ketamine and of the competitive antagonist CGP 39551 were examined on the induction of tolerance to morphine, the development of physical dependence and the expression of the abstinence syndrome to the opiate in mice. Morphine was administered in a single dose (300 mg/kg) of a slow release preparation. Dizocilpine (0.005 or 0.01 mg/kg given at 3, 12 and 24 h after the priming dose of morphine), ketamine (2, 4 or 8 mg/kg, 30 min before and 3, 6, 9 and 24 h after the priming dose) and DL-(E)-2-amino-4-methyl-5-phosphonopentanoate carboxy-ethylester (CGP 39551) (1.5 or 3 mg/kg, but not 6 or 12 mg/kg 30 min before and 12 and 24 h after the priming dose) reduced the intensity of tolerance to, and physical dependence on morphine. The drugs also reduced the intensity of the abstinence behaviour when given in a single dose, 30 min before (s.c.) naloxone (4 mg/kg)-precipitated withdrawal syndrome in mice chronically treated with morphine. Thus, the results of this study indicate that competitive and non-competitive NMDA receptor antagonists prevent morphine tolerance and decrease the development of physical dependence on the opiate in mice.
Collapse
Affiliation(s)
- P González
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Chile
| | | | | | | | | |
Collapse
|
40
|
Eisenach J. Update on spinal cord pharmacology in pain. ACTA ANAESTHESIOLOGICA SCANDINAVICA. SUPPLEMENTUM 1997; 110:124-6. [PMID: 9248560 DOI: 10.1111/j.1399-6576.1997.tb05528.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
MESH Headings
- Acute Disease
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Agonists/therapeutic use
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Cell- and Tissue-Based Therapy
- Cholinesterase Inhibitors/pharmacology
- Cholinesterase Inhibitors/therapeutic use
- Chromaffin Cells/transplantation
- Chronic Disease
- Delayed-Action Preparations
- Humans
- Muscarinic Agonists/pharmacology
- Muscarinic Agonists/therapeutic use
- N-Methylaspartate/antagonists & inhibitors
- Nerve Fibers/drug effects
- Neurotransmitter Agents/physiology
- Nitric Oxide Synthase/physiology
- Nociceptors/drug effects
- Nociceptors/physiology
- Norepinephrine/physiology
- Pain/drug therapy
- Pain/physiopathology
- Rats
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/physiology
- Receptors, Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Opioid/drug effects
- Receptors, Tachykinin/physiology
- Spinal Cord/drug effects
Collapse
Affiliation(s)
- J Eisenach
- Department of Anesthesia, Bowman Gray School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
41
|
Fraser CM, Cooke MJ, Fisher A, Thompson ID, Stone TW. Interactions between ifenprodil and dizocilpine on mouse behaviour in models of anxiety and working memory. Eur Neuropsychopharmacol 1996; 6:311-6. [PMID: 8985715 DOI: 10.1016/s0924-977x(96)00036-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The N-methyl-D-aspartate (NMDA) receptor polyamine site antagonist, ifenprodil, had no effect on spontaneous alteration or locomotor activity in the Y-maze when given alone. The NMDA receptor/ion channel blocker, dizocilpine, induced a deficit in spontaneous alteration, but when ifenprodil was co-administered with dizocilpine, it showed a strong tendency to attenuate the dizocilpine-induced deficit. In the plus-maze, ifenprodil had an anxiolytic profile which was accompanied by an increase in locomotion. Dizocilpine had an anxiolytic profile in this model and increased locomotor activity. When co-administered with dizocilpine, ifenprodil reduced both the anxiolytic and locomotor effects of dizocilpine. When co-administered with ifenprodil, cyclopentyladenosine (CPA) and 1,3-dipropyl-8-cyclopentylxanthine (CPX) reduced the anxiolytic effect of ifenprodil. CPA and CPX in combination did not reverse the anxiolytic effect of ifenpropil. It is concluded that NMDA antagonists with different sites of action can show distinct behavioural profiles, with dizocilpine but not ifenprodil inducing a deficit in working memory, while both are anxiolytic. Blockade of NMDA receptors by ifenprodil, however, can preclude any response to dizocilpine. The anxiolytic activity of ifenprodil may involve the release of purines acting at adenosine receptors.
Collapse
Affiliation(s)
- C M Fraser
- Division of Neuroscience and Biomedical Systems, University of Glasgow, UK
| | | | | | | | | |
Collapse
|