1
|
Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S. Limited expression of non-integrating CpG-free plasmid is associated with increased nucleosome enrichment. PLoS One 2020; 15:e0244386. [PMID: 33347482 PMCID: PMC7751972 DOI: 10.1371/journal.pone.0244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
Collapse
Affiliation(s)
- Omar Habib
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Rozita Mohd Sakri
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Nadiah Ghazalli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
2
|
Kirikovich SS, Taranov OS, Omigov VV, Potter EA, Dolgova EV, Proskurina AS, Efremov YR, Bogachev SS. Ultrastructural analysis of the Krebs-2 ascites cancer cells treated with extracellular double-stranded DNA preparation. Ultrastruct Pathol 2019; 43:56-65. [PMID: 30758240 DOI: 10.1080/01913123.2019.1575499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electron-microscopic analysis of the ultrastructure of the Krebs-2 carcinoma ascites cells in the first 90 min immediately after their exposure to fragmented double-stranded DNA has been performed. Morphological attributes of the treated cancer cells indicate the induction in these cells of destructive processes of presumably apoptotic type. The predominance of dystrophic-destructive changes in cells after the addition of DNA is supposed to be a consequence of the disturbance in metabolic processes caused by the experimental action.
Collapse
Affiliation(s)
- Svetlana S Kirikovich
- a Institute of Cytology and Genetics , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Oleg S Taranov
- b State Research Center of Virology and Biotechnology VECTOR , Rospotrebnadzor , Novosibirsk region , Russia
| | - Vladimir V Omigov
- b State Research Center of Virology and Biotechnology VECTOR , Rospotrebnadzor , Novosibirsk region , Russia
| | - Ekaterina A Potter
- a Institute of Cytology and Genetics , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Evgenia V Dolgova
- a Institute of Cytology and Genetics , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Anastasia S Proskurina
- a Institute of Cytology and Genetics , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Yaroslav R Efremov
- a Institute of Cytology and Genetics , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia.,c Department of natural sciences , Novosibirsk State University , Novosibirsk , Russia
| | - Sergey S Bogachev
- a Institute of Cytology and Genetics , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| |
Collapse
|
3
|
Bell P, Montaner LJ, Maul GG. Accumulation and intranuclear distribution of unintegrated human immunodeficiency virus type 1 DNA. J Virol 2001; 75:7683-91. [PMID: 11462040 PMCID: PMC115003 DOI: 10.1128/jvi.75.16.7683-7691.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2001] [Accepted: 05/09/2001] [Indexed: 12/12/2022] Open
Abstract
The RNA genome of human immunodeficiency virus type 1 (HIV-1) is converted into DNA after infection in order to integrate into the host cell DNA. However, a large number of these reverse-transcribed genomes remain unintegrated in the nucleus of infected cells. Currently, there are no data available about the intranuclear distribution pattern of unintegrated HIV-1 DNA in relation to nuclear structures as observed on the single-cell level. In the present study, we investigated the intranuclear fate of unintegrated viral DNA in cell lines expressing CD4 and coreceptors (HOS-CD4.CCR5 and U373-MAGI-CXCR4(CEM)) infected with HIV-1 (strain 89.6). We used a novel approach to distinguish in situ unintegrated from integrated viral DNA by performing fluorescent in situ hybridization on cells in which stress-induced chromosome condensation had been induced, a procedure that contracts chromosomes independent of the cell cycle. Cells infected for 15 h accumulated large amounts of HIV-1 DNA which was located between the condensed chromosome strands, allowing the identification of this viral DNA as unintegrated. In contrast, in HeLa/LAV, a cell line carrying integrated HIV-1 genomes, the great majority of viral DNA colocalized with the cellular DNA. We show that unintegrated HIV-1 DNA does not evenly distribute within the host cell nucleus but tends to aggregate into clusters containing many copies of the viral genomes. The formation of these DNA clusters was independent of viral DNA replication and thus appeared to result solely from multiple infections. The DNA aggregates remained in the nuclei of infected cells for at least 25 h after the infection was stopped. The emergence of transcription sites, which most likely denote sites of the integrated provirus, lagged clearly behind the accumulation of viral DNA. These transcription foci could not be linked to unintegrated DNA molecules, suggesting that this DNA type is unable to transcribe, at least at levels comparable to those of integrated DNA. Neither unintegrated HIV-1 DNA nor transcription foci nor integrated DNA was observed to associate with nuclear domain 10 (ND10), a nuclear structure known to represent the site where several DNA viruses replicate and transcribe. Also, HIV-1 does not modify ND10 at early or late times of infection. There was no specific association of HIV-1 transcripts with splicing factor SC35 domains, in contrast to what has been reported for a number of both cellular and viral genes. Surprisingly, unintegrated HIV-1 DNA was found to accumulate within or in close association with SC35 domains, demonstrating a specific distribution of the viral DNA within the host cell nucleus. Taken together, our results demonstrate that unintegrated proviral HIV-1 DNA does not randomly localize within infected cells but preferentially aggregates in the nucleus within SC35 domains.
Collapse
Affiliation(s)
- P Bell
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
4
|
Shimokawa T, Okumura K, Ra C. DNA induces apoptosis in electroporated human promonocytic cell line U937. Biochem Biophys Res Commun 2000; 270:94-9. [PMID: 10733910 DOI: 10.1006/bbrc.2000.2388] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental gene transfer has permitted a wide variety of studies on gene regulation and function. However, possible effects of the introduced DNA on cellular metabolism are not well understood. Here we demonstrated that introduction of DNA into a promonocytic cell line, U937, by electroporation caused extensive cell death. The toxicity of DNA was concentration-dependent. Various DNAs including plasmid and genomic DNAs all caused cell death, indicating that the toxicity is nucleotide sequence-independent. DNA-induced cell death was associated with internucleosomal DNA fragmentation, a decrease in cell size, and a considerable proportion of cells outside cell cycle. From these results, we concluded that cells died by apoptosis. Our findings have experimental implication for an important issue concerning the interpretation of experiments using gene transfer. In addition, we propose that our observed phenomenon may be relevant to an important immune defense mechanism in monocytes/macrophages that facilitates a response to certain viral infections.
Collapse
Affiliation(s)
- T Shimokawa
- Allergy Research Center and Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | | | | |
Collapse
|
5
|
Zanussi S, Simonelli C, Bortolin MT, D'Andrea M, Comar M, Tirelli U, Giacca M, De Paoli P. Dynamics of provirus load and lymphocyte subsets after interleukin 2 treatment in HIV-infected patients. AIDS Res Hum Retroviruses 1999; 15:97-103. [PMID: 10029242 DOI: 10.1089/088922299311529] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The association of antiretroviral agents plus interleukin 2 (IL-2) represents an efficient approach to the treatment of HIV+ subjects. While the effects of IL-2 on the immune system have been investigated, little is known concerning its impact on HIV dynamics. Two antiretroviral drugs control HIV viremia, but have minimal effects on the proviral load, a predictor of disease progression and response to therapy. The aim of this study was to define the effect of rIL-2 on HIV proviral copy numbers and its relationship to changes in CD4+ and CD8+ subsets. Twelve HIV+ patients with CD4 cell counts between 200 and 500 cells/mm3 were treated with six cycles of subcutaneous rIL-2, in combination with zidovudine and didanosine. This regimen resulted in a rapid and durable decrease in proviral load in the peripheral blood, in an increase in CD8+ lymphocytes, and in the emergence of a CD4+CD45RA+ T subset. These results demonstrate that the rationale for IL-2 administration to HIV+ patients may depend not only on its effects on the immune system, but also on the reduction of the number of infected cells, reinforcing the notion that IL-2 can have a favorable impact on the natural history of HIV infection.
Collapse
Affiliation(s)
- S Zanussi
- Department of Microbiology-Immunology and Virology, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Engleka KA, Lewis EW, Howard BH. Mechanisms of replication-deficient vaccinia virus/T7 RNA polymerase hybrid expression: effect of T7 RNA polymerase levels and alpha-amanitin. Virology 1998; 243:331-9. [PMID: 9568032 DOI: 10.1006/viro.1998.9070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Components of the eukaryotic vaccinia virus/T7 RNA polymerase hybrid expression system were assessed using recombinant and nonrecombinant forms of modified vaccinia Ankara (MVA), a replication-deficient vaccinia virus strain. Recombinant MVA virus expressing T7 RNA polymerase (Wyatt, L. S., Moss, B., and Rozenblatt, S. (1995). Virology 210, 202-205) stimulated high levels of expression from a T7 promoter-chloramphenicol acetyltransferase (CAT) reporter. Most, but not all, of the virally induced expression was T7 RNA polymerase and T7 promoter dependent, with no viral enhancement of translation of T7 transcripts. The efficacy of supplying T7 RNA polymerase expression from nonviral sources was evaluated using a self-amplifying T7 RNA polymerase autogene or an inducible T7 RNA polymerase expression vector. The latter modes yielded CAT activity dependent on T7 RNA polymerase expression; however, expression required viral factors independent of T7 RNA polymerase and did not reach that attained using the recombinant virus. In further experiments, MVA-induced T7 RNA polymerase expression was upregulated by alpha-amanitin, an inhibitor of eukaryotic polymerases. This indicates that MVA/T7 RNA polymerase hybrid expression may be rendered still more efficient by ameliorating transcriptional interference due to an alpha-amanitin-sensitive eukaryotic factor(s).
Collapse
Affiliation(s)
- K A Engleka
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA.
| | | | | |
Collapse
|
7
|
Szurek PF, Brooks BR. Development of physical forms of unintegrated retroviral DNA in mouse spinal cord tissue during ts1-induced spongiform encephalomyelopathy: elevated levels of a novel single-stranded form in paralyzed mice. J Virol 1995; 69:348-56. [PMID: 7983729 PMCID: PMC188582 DOI: 10.1128/jvi.69.1.348-356.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ts1 is a murine leukemia virus that causes rapidly evolving hindlimb paralysis in susceptible strains of mice. Following perinatal infection, three physical forms of unintegrated viral DNA were detected in the spinal cord by Southern blot hybridization. Linear and supercoiled closed-circle viral double-stranded DNAs were detected in both the central nervous system and non-central nervous system tissues. An elevated level of a novel minus-sense single-stranded form of viral DNA, which had a very high mobility in agarose gels, was correlated with the onset of symptoms of paralysis. As the severity of paralysis progressed, the level of this single-stranded form increased rapidly, with the highest level in the spinal cords of moribund mice. Since the virulence of a number of cytopathic retroviruses has been associated with the presence of increased amounts of unintegrated viral DNA in the tissues of the infected hosts, this novel form of highly mobile unintegrated single-stranded DNA may have a role in the neuropathogenesis of ts1.
Collapse
Affiliation(s)
- P F Szurek
- Neurology Service, William S. Middleton Memorial Veterans Affairs Hospital
| | | |
Collapse
|
8
|
Rosenberg YJ, Lewis MG, Leon EC, Cafaro A, Eddy GA, Greenhouse JJ. Viral DNA burden and decline in percentage of CD4-positive cells in the lymphoid compartment of SIV-infected macaques. AIDS Res Hum Retroviruses 1994; 10:1269-77. [PMID: 7848682 DOI: 10.1089/aid.1994.10.1269] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The decline in CD4+ cells and increased viral DNA and RNA burden in the blood of human immunodeficiency virus (HIV)-infected individuals have been used as closely related correlates of disease progression. However, little is known about levels of total or unintegrated viral DNA in lymphoid tissue of HIV-infected patients and how they relate to CD4+ cell decline or disease progression. Exploiting the similarities between HIV- and simian immunodeficiency virus (SIV)-induced disease, we examined lymphoid organs and peripheral blood from SIV-infected macaques for total (pol) and unintegrated 2-LTR circular viral DNA by polymerase chain reaction (PCR). Two SIV isolates (SIVmac/251 and SIVmne/E11S) that differ markedly in their biological and clinical properties were studied. The results indicate that total viral DNA burdens vary considerably between isolates. There was no strong association between total viral DNA levels and CD4% in lymphoid tissues when isolates were compared and death was not associated with any particular level of viral pol DNA. In contrast, accumulation of unintegrated viral DNA was closely associated with decline in CD4/CD8 ratios in lymphoid organs and AIDS. The appearance of both pol and unintegrated viral DNA in thymus of infected macaques also emerged as one of the single best correlates or possible predictors of advanced disease yet studied. Their roles in pathogenesis are discussed.
Collapse
Affiliation(s)
- Y J Rosenberg
- Henry M. Jackson Foundation Laboratories, Rockville, Maryland 20850
| | | | | | | | | | | |
Collapse
|
9
|
Stacey KJ, Ross IL, Hume DA. Electroporation and DNA-dependent cell death in murine macrophages. Immunol Cell Biol 1993; 71 ( Pt 2):75-85. [PMID: 8486399 DOI: 10.1038/icb.1993.8] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The difficulty of transfecting primary macrophages and macrophage cell lines has meant that relatively few studies on regulation of gene expression have been performed in these cells. This study has optimized an electroporation procedure for the macrophage cell line RAW 264, but shows that introduction of DNA into the cytoplasm of primary macrophages by electroporation is toxic to the cells. It is proposed that this cell death may have a physiological role in defence against certain viral infections which result in accumulation of cytoplasmic DNA. RAW 264 cells were efficiently transfected by electroporation, but electroporated bone marrow derived macrophages (BMM) showed large scale cell death over a period of 12 h. Electroporation without DNA was not toxic and DNase treatment of samples before transfection prevented cell death. The toxicity of DNA was concentration-dependent and sequence-independent. Synthetic, genomic and plasmid DNA all caused cell death. This sensitivity to DNA seems to be distinct from the antiviral state induced by double-stranded RNA and may be part of an uncharacterized viral defence system.
Collapse
Affiliation(s)
- K J Stacey
- Centre for Molecular Biology and Biotechnology, University of Queensland, St Lucia, Australia
| | | | | |
Collapse
|