1
|
Henriksen K, Genovese F, Reese-Petersen A, Audoly LP, Sun K, Karsdal MA, Scherer PE. Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease. Endocr Rev 2024; 45:361-378. [PMID: 38091968 PMCID: PMC11492497 DOI: 10.1210/endrev/bnad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our overview covers several key areas related to recent results obtained for collagen type VI and endotrophin (ETP). (1) An introduction to the history of ETP, including how it was identified, how it is released, and its function and potential receptors. (2) An introduction to the collagen family, with a focus on what differentiates collagen type VI from an evolutionary standpoint. (3) An overview of collagen type VI, the 6 individual chains (COL6A1, A2, A3, A4, A5, and A6), their differences and similarities, as well as their expression profiles and function. (4) A detailed analysis of COL6A3, including the cleaved product endotrophin, and what separates it from the other 5 collagen 6 molecules, including its suggested function based on insights gained from knockout and gain of function mouse models. (5) The pathology of ETP. What leads to its presence and release and what are the consequences thereof? (6) Functional implications of circulating ETP. Here we review the data with the functional roles of ETP in mind. (7) We propose that ETP is a mediator for fibrotic (or fibroinflammatory) disorders. Based on what we know about ETP, we have to consider it as a target for the treatment of fibrotic (or fibroinflammatory) disorders. What segment(s) of the patient population would most dramatically respond to an ETP-targeted intervention? How can we find the population that would profit most from an intervention? We aim to present a broad overview over the ETP field at large, providing an assessment of where the future research efforts need to be placed to tap into the vast potential of ETP, both as a marker and as a target in different diseases.
Collapse
Affiliation(s)
- Kim Henriksen
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Federica Genovese
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | | | | | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Morten A Karsdal
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Di Martino A, Cescon M, D’Agostino C, Schilardi F, Sabatelli P, Merlini L, Faldini C. Collagen VI in the Musculoskeletal System. Int J Mol Sci 2023; 24:5095. [PMID: 36982167 PMCID: PMC10049728 DOI: 10.3390/ijms24065095] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Collagen VI exerts several functions in the tissues in which it is expressed, including mechanical roles, cytoprotective functions with the inhibition of apoptosis and oxidative damage, and the promotion of tumor growth and progression by the regulation of cell differentiation and autophagic mechanisms. Mutations in the genes encoding collagen VI main chains, COL6A1, COL6A2 and COL6A3, are responsible for a spectrum of congenital muscular disorders, namely Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM), which show a variable combination of muscle wasting and weakness, joint contractures, distal laxity, and respiratory compromise. No effective therapeutic strategy is available so far for these diseases; moreover, the effects of collagen VI mutations on other tissues is poorly investigated. The aim of this review is to outline the role of collagen VI in the musculoskeletal system and to give an update about the tissue-specific functions revealed by studies on animal models and from patients' derived samples in order to fill the knowledge gap between scientists and the clinicians who daily manage patients affected by collagen VI-related myopathies.
Collapse
Affiliation(s)
- Alberto Di Martino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Claudio D’Agostino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Francesco Schilardi
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Cesare Faldini
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
3
|
Woodard DR, Daniel S, Nakahara E, Abbas A, DiCesare SM, Collier GE, Hulleman JD. A loss-of-function cysteine mutant in fibulin-3 (EFEMP1) forms aberrant extracellular disulfide-linked homodimers and alters extracellular matrix composition. Hum Mutat 2022; 43:1945-1955. [PMID: 35998264 PMCID: PMC9772001 DOI: 10.1002/humu.24452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/16/2022] [Accepted: 08/21/2022] [Indexed: 01/25/2023]
Abstract
Fibulin-3 (F3 or EFEMP1) is a disulfide-rich, secreted glycoprotein necessary for maintaining extracellular matrix (ECM) and connective tissue integrity. Three studies have identified distinct autosomal recessive F3 mutations in individuals with Marfan Syndrome-like phenotypes. Herein, we characterize how one of these mutations, c.163T>C; p.Cys55Arg (C55R), disrupts F3 secretion, quaternary structure, and function by forming unique extracellular disulfide-linked homodimers. Dual cysteine mutants suggest that the C55R-induced disulfide species forms because of the new availability of Cys70 on adjacent F3 monomers. Surprisingly, mutation of single cysteines located near Cys55 (i.e., Cys29, Cys42, Cys48, Cys61, Cys70, Cys159, and Cys171) also produced similar extracellular disulfide-linked dimers, suggesting that this is not a phenomenon isolated to the C55R mutant. To assess C55R functionality, F3 knockout (KO) retinal pigmented epithelial (RPE) cells were generated, followed by reintroduction of wild-type (WT) or C55R F3. F3 KO cells produced lower levels of the ECM remodeling enzyme, matrix metalloproteinase 2, and reduced formation of collagen VI ECM filaments, both of which were partially rescued by WT F3 overexpression. However, C55R F3 was unable to compensate for these same ECM-related defects. Our results highlight the unique behavior of particular cysteine mutations in F3 and uncover potential routes to restore C55R F3 loss-of-function.
Collapse
Affiliation(s)
- DaNae R. Woodard
- Department of Ophthalmology, University of, Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steffi Daniel
- Department of Ophthalmology, University of, Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emi Nakahara
- Department of Ophthalmology, University of, Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ali Abbas
- Department of Ophthalmology, University of, Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sophia M. DiCesare
- Department of Ophthalmology, University of, Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gracen E. Collier
- Department of Ophthalmology, University of, Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D. Hulleman
- Department of Ophthalmology, University of, Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, University of, Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Vaclavik V, Tiab L, Sun YJ, Mahajan VB, Moulin A, Allaman-Pillet N, Munier FL, Schorderet DF. New COL6A6 Variant Causes Autosomal Dominant Retinitis Pigmentosa in a Four-Generation Family. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35333290 PMCID: PMC8963667 DOI: 10.1167/iovs.63.3.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To report that variants in the gene for a large lamina basal component protein, COL6A6 (collagen type VI alpha 6 chain, Col6α6), linked to chromosome 3p22.1 causes retinitis pigmentosa (RP) in patients with autosomal dominant transmission (adRP). Methods A positional-cloning approach, whole exome sequencing, and modeling were used. The proband and several affected family members have been phenotyped and followed for over 12 years. Results A heterozygous missense variant, c.509C>G (p. Ser170Cys) in exon 2 of COL6A6 (comprised of 36 exons and 2236 amino acids), was observed in a four- generation family and is likely to cause the adRP phenotype. It was identified in 10 affected members. All affected family members had a distinct phenotype: late-onset rod cone dystrophy, with good retained visual acuity, until their late 70s. Immunohistochemistry of human retina showed a dot-like signal at the base of the inner segments of photoreceptors and outer plexiform layer (OPL). The structural modeling of the N7 domain of Col6α6 suggests that the mutant might result in the abnormal cellular localization of collagen VI or malformation of collagen fibers resulting in the loss of its unique filament structure. Conclusions COL6A6 is widely expressed in human tissues and evolutionary conserved. It is thought to interact with a range of extracellular matrix components. Our findings suggest that this form of RP has long-term useful central visual acuity and a mild progression, which are important considerations for patient counseling.
Collapse
Affiliation(s)
- Veronika Vaclavik
- Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland.,Department of Ophthalmology, Hospital Cantonal, Fribourg, Switzerland
| | - Leila Tiab
- Institute for Research in Ophthalmology, Sion, Switzerland
| | - Young Joo Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Alexandre Moulin
- Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Francis L Munier
- Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Takenaka-Ninagawa N, Kim J, Zhao M, Sato M, Jonouchi T, Goto M, Yoshioka CKB, Ikeda R, Harada A, Sato T, Ikeya M, Uezumi A, Nakatani M, Noguchi S, Sakurai H. Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice. Stem Cell Res Ther 2021; 12:446. [PMID: 34372931 PMCID: PMC8351132 DOI: 10.1186/s13287-021-02514-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of COL6A1, 2, and 3 genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The purpose of this study was to clarify the pathological mechanism of UCMD by supplementing COL6 through cell transplantation. Methods To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs). Results All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (Col6a1KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in Col6a1KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (Col6a1KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. Conclusions These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02514-3.
Collapse
Affiliation(s)
- Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Jinsol Kim
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Jonouchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Megumi Goto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Rukia Ikeda
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Aya Harada
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahiko Sato
- Department of Anatomy, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, Department of Clinical Development, Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8551, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
7
|
Mereness JA, Mariani TJ. The critical role of collagen VI in lung development and chronic lung disease. Matrix Biol Plus 2021; 10:100058. [PMID: 34195595 PMCID: PMC8233475 DOI: 10.1016/j.mbplus.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Type VI collagen (collagen VI) is an obligate extracellular matrix component found mainly in the basement membrane region of many mammalian tissues and organs, including skeletal muscle and throughout the respiratory system. Collagen VI is probably most recognized in medicine as the genetic cause of a spectrum of muscular dystrophies, including Ullrich Congenital Myopathy and Bethlem Myopathy. Collagen VI is thought to contribute to myopathy, at least in part, by mediating muscle fiber integrity by anchoring myoblasts to the muscle basement membrane. Interestingly, collagen VI myopathies present with restrictive respiratory insufficiency, thought to be due primarily to thoracic muscular weakening. Although it was recently recognized as one of the (if not the) most abundant collagens in the mammalian lung, there is a substantive knowledge gap concerning its role in respiratory system development and function. A few studies have suggested that collagen VI insufficiency is associated with airway epithelial cell survival and altered lung function. Our recent work suggested collagen VI may be a genomic risk factor for chronic lung disease in premature infants. Using this as motivation, we thoroughly assessed the role of collagen VI in lung development and in lung epithelial cell biology. Here, we describe the state-of-the-art for collagen VI cell and developmental biology within the respiratory system, and reveal its essential roles in normal developmental processes and airway epithelial cell phenotype and intracellular signaling.
Collapse
Affiliation(s)
- Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Thomas J. Mariani
- Corresponding author. Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
Li Y, Zhang J, Dai Y, Fan Y, Xu J. Novel Mutations in COL6A3 That Associated With Peters' Anomaly Caused Abnormal Intracellular Protein Retention and Decreased Cellular Resistance to Oxidative Stress. Front Cell Dev Biol 2020; 8:531986. [PMID: 33304895 PMCID: PMC7693641 DOI: 10.3389/fcell.2020.531986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Peters' anomaly (PA) is a rare form of anterior segment dysgenesis characterized by central corneal opacity accompanied by iridocorneal or lenticulo-corneal adhesions. Although genetic mutations, particularly those affecting transcription factors that function in eye development, are known to cause PA, the etiology of this disease remains poorly understood. In this study, 23 patients with PA were recruited for panel sequencing. Four out of 23 patients were found to carry variants in known PA causal genes, PITX2 and PITX3. More importantly, two homozygous mutations (NM_057164: p.Val86Ala and p.Arg689Cys) in the COL6A3 gene (collagen type VI alpha-3 chain) that correlated with the phenotype of type I PA were identified, and then validated by following whole-exome sequencing. The expression profile of the COL6A3 gene in the cornea and the impact of the mutations on protein physiological processing and cellular function were further explored. It was shown that COL6A3 presented relatively high expression in the cornea. The mutant COL6A3 protein was relatively retained intracellularly, and its expression reduced cellular resistance to oxidative stress through an enhanced endoplasmic reticulum stress response. Taken together, our findings expanded the known genetic spectrum of PA, and provided evidence for the involvement of COL6A3 or collagen VI in ocular anterior segment development, thereby offering new insight for future investigations targeting PA.
Collapse
Affiliation(s)
- Yue Li
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yidan Fan
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
9
|
Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020; 198:108137. [PMID: 32663498 PMCID: PMC7508887 DOI: 10.1016/j.exer.2020.108137] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
No other tissue in the body depends more on the composition and organization of the extracellular matrix (ECM) for normal structure and function than the corneal stroma. The precise arrangement and orientation of collagen fibrils, lamellae and keratocytes that occurs during development and is needed in adults to maintain stromal function is dependent on the regulated interaction of multiple ECM components that contribute to attain the unique properties of the cornea: transparency, shape, mechanical strength, and avascularity. This review summarizes the contribution of different ECM components, their structure, regulation and function in modulating the properties of the corneal stroma. Fibril forming collagens (I, III, V), fibril associated collagens with interrupted triple helices (XII and XIV), network forming collagens (IV, VI and VIII) as well as small leucine-rich proteoglycans (SLRP) expressed in the stroma: decorin, biglycan, lumican, keratocan, and fibromodulin are some of the ECM components reviewed in this manuscript. There are spatial and temporal differences in the expression of these ECM components, as well as interactions among them that contribute to stromal function. Unique regions within the stroma like Bowman's layer and Descemet's layer are discussed. To define the complexity of corneal stroma composition and structure as well as the relationship to function is a daunting task. Our knowledge is expanding, and we expect that this review provides a comprehensive overview of current knowledge, definition of gaps and suggests future research directions.
Collapse
Affiliation(s)
- Edgar M Espana
- Department of Molecular Pharmacology and Physiology, USA; Cornea, External Disease and Refractive Surgery, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, USA.
| |
Collapse
|
10
|
Willumsen N, Bager C, Karsdal MA. Matrix Metalloprotease Generated Fragments of Type VI Collagen Have Serum Biomarker Potential in Cancer - A Proof of Concept Study. Transl Oncol 2019; 12:693-698. [PMID: 30856553 PMCID: PMC6411605 DOI: 10.1016/j.tranon.2019.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Type VI collagen (COL6) is associated with several pro-tumorigenic events. COL6 is primarily composed of three alpha-chains (a1-a3) forming a specialized microfibrillar network to support tissue architecture. COL6 homeostasis is lost in the tumor due to increased COL6 synthesis by activated fibroblast and altered proteolytic degradation by matrix metalloproteases (MMPs). Consequently, pathology-specific COL6 fragments are released to the circulation. This study evaluates four COL6 fragments measured in serum as potential biomarkers for cancer. METHODS C6Ma1 (MMP-generated neo-epitope on the a1 chain), C6Ma3 (MMP-generated neo-epitope on the a3 chain), PRO-C6 (C-terminal of the a3 chain) and IC-6 (internal epitope on the a1 chain) were measured by ELISA in serum from patients with various stage 1-4 cancer indications (n = 4-11 per indication, total n = 65) and healthy controls (n = 13). RESULTS C6Ma1 and C6Ma3 were significantly elevated in most cancer types compared to controls; PRO-C6 and IC6 were not. No significant differences were seen according to age, gender and TNM stage. Comparing cancer patients to controls, the AUROC was 0.90 (P < .0001), 0.87 (P < .0001), 0.59 (P = .311) and 0.53 (P = .747) for C6Ma1, C6Ma3, PRO-C6 and IC-6, respectively. Only C6M and C6Ma3 correlated significantly (Spearman, r = 0.74, P < .0001). CONCLUSIONS MMP-generated COL6 fragments (C6Ma1, C6Ma3) were elevated in serum from cancer patients compared to controls and had promising diagnostic accuracy. This supports that MMP-mediated COL6 remodeling is important in tumorigenesis and indicate cancer biomarker potential of quantifying COL-6 fragments in serum. Future studies should determine biological and clinical applicability of the COL-6 serum biomarkers in relation to cancer.
Collapse
Affiliation(s)
| | - Cecilie Bager
- Nordic Bioscience, Biomarkers and Research, DK-2730, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, Biomarkers and Research, DK-2730, Herlev, Denmark
| |
Collapse
|
11
|
Type VI collagen promotes lung epithelial cell spreading and wound-closure. PLoS One 2018; 13:e0209095. [PMID: 30550606 PMCID: PMC6294368 DOI: 10.1371/journal.pone.0209095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
Basement membrane (BM) is an essential part of the extracellular matrix (ECM) that plays a crucial role in mechanical support and signaling to epithelial cells during lung development, homeostasis and repair. Abnormal composition and remodeling of the lung ECM have been associated with developmental abnormalities observed in multiple pediatric and adult respiratory diseases. Collagen VI (COL6) is a well-studied muscle BM component, but its role in the lung and its effect on pulmonary epithelium is largely undetermined. We report the presence of COLVI immediately subjacent to human airway and alveolar epithelium in the pediatric lung, in a location where it is likely to interact with epithelial cells. In vitro, both primary human lung epithelial cells and human lung epithelial cell lines displayed an increased rate of “wound healing” in response to a scratch injury when plated on COL6 as compared to other matrices. For the 16HBE cell line, wounds remained >5-fold larger for cells on COL1 (p<0.001) and >6-fold larger on matrigel (p<0.001), a prototypical basement membrane, when compared to COL6 (>96% closure at 10 hr). The effect of COL6 upon lung epithelial cell phenotype was associated with an increase in cell spreading. Three hours after initial plating, 16HBE cells showed >7-fold less spreading on matrigel (p<0.01), and >4-fold less spreading on COL1 (p<0.01) when compared to COL6. Importantly, the addition of COL6 to other matrices also enhanced cell spreading. Similar responses were observed for primary cells. Inhibitor studies indicated both integrin β1 activity and activation of multiple signaling pathways was required for enhanced spreading on all matrices, with the PI3K/AKT pathway (PI3K, CDC42, RAC1) showing both significant and specific effects for spreading on COL6. Genetic gain-of-function experiments demonstrated enhanced PI3K/AKT pathway activity was sufficient to confer equivalent cell spreading on other matrices as compared to COL6. We conclude that COL6 has significant and specific effects upon human lung epithelial cell-autonomous functions.
Collapse
|
12
|
A transcriptomic comparison of theca and granulosa cells in chicken and cattle follicles reveals ESR2 as a potential regulator of CYP19A1 expression in the theca cells of chicken follicles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:40-53. [PMID: 29772405 DOI: 10.1016/j.cbd.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that theca and granulosa cell layers in follicles do not play the same roles in mammals and birds, especially regarding the synthesis of estrogen. The functions of these two cell types have been well characterized in cattle, but they remain unclear in chickens. To clarify this issue, a comparison of small yellow follicles (SYFs) in chickens and cattle at different follicular development stages was done by weighted gene co-expression network analysis (WGCNA). The modules obtained from WGCNA were used for further identification of the key genes associated with CYP19A1 expression. Module preservation analysis showed high similarity between cow_D (the follicular phase before the LH surge) and chicken_SYF (small yellow follicle between 6 and 8 mm in diameter) datasets, and 10 top hub genes highly associated with CYP19A1 expression in chicken SYFs were identified in each module. A comparison of the transcriptomes of theca and granulosa cells (TCs and GCs) between chicken SYFs and cattle follicles at the differentiation stage, as well as the aforementioned hub genes, revealed that ESR2 is a potential regulator of CYP19A1 expression in the theca cells of chicken SYFs. Furthermore, 197 cell-specific (179 in theca and 18 in granulosa) and 235 cell-biased expressed genes (196 in theca and 39 in granulosa) in chicken small yellow follicles were also identified by transcriptomic comparison of theca and granulosa cells.
Collapse
|
13
|
Lamandé SR, Bateman JF. Collagen VI disorders: Insights on form and function in the extracellular matrix and beyond. Matrix Biol 2017; 71-72:348-367. [PMID: 29277723 DOI: 10.1016/j.matbio.2017.12.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the three canonical collagen VI genes, COL6A1, COL6A2 and COL6A3, cause a spectrum of muscle disease from Bethlem myopathy at the mild end to the severe Ullrich congenital muscular dystrophy. Mutations can be either dominant or recessive and the resulting clinical severity is influenced by the way mutations impact the complex collagen VI assembly process. Most mutations are found towards the N-terminus of the triple helical collagenous domain and compromise extracellular microfibril assembly. Outside the triple helix collagen VI is highly polymorphic and discriminating mutations from rare benign changes remains a major diagnostic challenge. Collagen VI deficiency alters extracellular matrix structure and biomechanical properties and leads to increased apoptosis and oxidative stress, decreased autophagy, and impaired muscle regeneration. Therapies that target these downstream consequences have been tested in a collagen VI null mouse and also in small human trials where they show modest clinical efficacy. An important role for collagen VI in obesity, cancer and diabetes is emerging. A major barrier to developing effective therapies is the paucity of information about how collagen VI deficiency in the extracellular matrix signals the final downstream consequences - the receptors involved and the intracellular messengers await further characterization.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia.
| | - John F Bateman
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
14
|
Godwin ARF, Starborg T, Sherratt MJ, Roseman AM, Baldock C. Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomater 2017; 52:21-32. [PMID: 27956360 PMCID: PMC5402720 DOI: 10.1016/j.actbio.2016.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. STATEMENT OF SIGNIFICANCE Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Tobias Starborg
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Michael J Sherratt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Alan M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.
| |
Collapse
|
15
|
Kumar P, Satyam A, Cigognini D, Pandit A, Zeugolis DI. Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. J Tissue Eng Regen Med 2017; 12:6-18. [PMID: 27592127 DOI: 10.1002/term.2283] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 07/30/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022]
Abstract
Development of implantable devices based on the principles of in vitro organogenesis has been hindered due to the prolonged time required to develop an implantable device. Herein we assessed the influence of serum concentration (0.5% and 10%), oxygen tension (0.5%, 2% and 20%) and macromolecular crowding (75 μg/ml carrageenan) in extracellular matrix deposition in human corneal fibroblast culture (3, 7 and 14 days). The highest extracellular matrix deposition was observed after 14 days in culture at 0.5% serum, 2% oxygen tension and 75 μg/ml carrageenan. These data indicate that low oxygen tension coupled with macromolecular crowding significantly accelerate the development of scaffold-free tissue-like modules. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Pramod Kumar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhigyan Satyam
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Daniela Cigognini
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
16
|
Kohara Y, Soeta S, Izu Y, Arai K, Amasaki H. Distribution of type VI collagen in association with osteoblast lineages in the groove of Ranvier during rat postnatal development. Ann Anat 2016; 208:58-68. [DOI: 10.1016/j.aanat.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 01/29/2023]
|
17
|
Gronkiewicz KM, Giuliano EA, Kuroki K, Bunyak F, Sharma A, Teixeira LBC, Hamm CW, Mohan RR. Development of a novel in vivo corneal fibrosis model in the dog. Exp Eye Res 2015; 143:75-88. [PMID: 26450656 DOI: 10.1016/j.exer.2015.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The aim of this study was to develop a novel in vivo corneal model of fibrosis in dogs utilizing alkali burn and determine the ability of suberanilohydroxamic acid (SAHA) to inhibit corneal fibrosis using this large animal model. To accomplish this, we used seven research Beagle dogs. An axial corneal alkali burn in dogs was created using 1 N NaOH topically. Six dogs were randomly and equally assigned into 2 groups: A) vehicle (DMSO, 2 μL/mL); B) anti-fibrotic treatment (50 μM SAHA). The degree of corneal opacity, ocular health, and anti-fibrotic effects of SAHA were determined utilizing the Fantes grading scale, modified McDonald-Shadduck (mMS) scoring system, optical coherence tomography (OCT), corneal histopathology, immunohistochemistry (IHC), and transmission electron microscopy (TEM). The used alkali burn dose to produce corneal fibrosis was well tolerated as no significant difference in mMS scores between control and treatment groups (p = 0.89) were detected. The corneas of alkali burned dogs showed significantly greater levels of α-smooth muscle actin, the fibrotic marker, than the controls (p = 0.018). Total corneal thickness of all dogs post-burn was significantly greater than baseline OCT images irrespective of treatment (p = 0.004); TEM showed that alkali burned corneas had significantly greater minimum and maximum interfibrillar distances than the controls (p = 0.026, p = 0.018). The tested topical corneal alkali burn dose generated significant opacity and fibrosis in dog corneas without damaging the limbus as evidenced by histopathology, IHC, TEM, and OCT findings, and represents a viable large animal corneal fibrosis in vivo model. Additional in vivo SAHA dosing studies with larger sample size are warranted.
Collapse
Affiliation(s)
- K M Gronkiewicz
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA
| | - E A Giuliano
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA
| | - K Kuroki
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Columbia, MO, USA
| | - F Bunyak
- Department of Computer Science, University of Missouri, Columbia, MO, USA
| | - A Sharma
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA
| | - L B C Teixeira
- Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - C W Hamm
- Mason Eye Institute, University of Missouri, Columbia, MO, USA
| | - R R Mohan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA; Mason Eye Institute, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
18
|
Ramanoudjame L, Rocancourt C, Lainé J, Klein A, Joassard L, Gartioux C, Fleury M, Lyphout L, Kabashi E, Ciura S, Cousin X, Allamand V. Two novel COLVI long chains in zebrafish that are essential for muscle development. Hum Mol Genet 2015; 24:6624-39. [PMID: 26362255 DOI: 10.1093/hmg/ddv368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022] Open
Abstract
Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two 'short' (α1, α2) and one 'long' chain (theoretically any one of α3-6). In humans, defects in the most widely expressed heterotrimer (α123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described α4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian α4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.
Collapse
Affiliation(s)
- Laetitia Ramanoudjame
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | | | - Jeanne Lainé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France, Département de Physiologie, Sorbonne Universités UPMC Paris 06, Site Pitié-Salpêtrière, Paris F-75013, France
| | - Arnaud Klein
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | | | - Corine Gartioux
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | - Marjory Fleury
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | - Laura Lyphout
- Fish Ecophysiology Group, Ifremer, L'Houmeau F-17137, France
| | - Edor Kabashi
- Sorbonne Universités Paris VI, UMR CNRS 1127 UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière-ICM, Paris, France and
| | - Sorana Ciura
- Sorbonne Universités Paris VI, UMR CNRS 1127 UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière-ICM, Paris, France and
| | - Xavier Cousin
- Fish Ecophysiology Group, Ifremer, L'Houmeau F-17137, France, INRA LPGP, Campus de Beaulieu, Rennes F-35042, France
| | - Valérie Allamand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France,
| |
Collapse
|
19
|
Kohara Y, Soeta S, Izu Y, Amasaki H. Accumulation of type VI collagen in the primary osteon of the rat femur during postnatal development. J Anat 2015; 226:478-88. [PMID: 25943007 DOI: 10.1111/joa.12296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 12/17/2022] Open
Abstract
In rodents, the long bone diaphysis is expanded by forming primary osteons at the periosteal surface of the cortical bone. This ossification process is thought to be regulated by the microenvironment in the periosteum. Type VI collagen (Col VI), a component of the extracellular matrix (ECM) in the periosteum, is involved in osteoblast differentiation at early stages. In several cell types, Col VI interacts with NG2 on the cytoplasmic membrane to promote cell proliferation, spreading and motility. However, the detailed functions of Col VI and NG2 in the ossification process in the periosteum are still under investigation. In this study, to clarify the relationship between localization of Col VI and formation of the primary osteon, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the periosteum of rat femoral diaphysis during postnatal growing periods by immunohistochemistry. Primary osteons enclosing the osteonal cavity were clearly identified in the cortical bone from 2 weeks old. The size of the osteonal cavities decreased from the outer to the inner region of the cortical bone. In addition, the osteonal cavities of newly formed primary osteons at the outermost region started to decrease in size after rats reached the age of 4 weeks. Immunohistochemistry revealed concentrated localization of Col VI in the ECM in the osteonal cavity. Col VI-immunoreactive areas were reduced and they disappeared as the osteonal cavities became smaller from the outer to the inner region. In the osteonal cavities of the outer cortical regions, Runx2-immunoreactive spindle-shaped cells and mature osteoblasts were detected in Col VI-immunoreactive areas. The numbers of Runx2-immunoreactive cells were significantly higher in the osteonal cavities than in the osteogenic layers from 2 to 4 weeks. Most of these Runx2-immunoreactive cells showed NG2-immunoreactivity. Furthermore, PCNA-immunoreactivity was detected in the Runx2-immunoreactive spindle cells in the osteonal cavities. These results indicate that Col VI provides a characteristic microenvironment in the osteonal cavity of the primary osteon, and that differentiation and proliferation of the osteoblast lineage occur in the Col VI-immunoreactive area. Interaction of Col VI and NG2 may be involved in the structural organization of the primary osteon by regulating osteoblast lineages.
Collapse
Affiliation(s)
- Yukihiro Kohara
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hajime Amasaki
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
20
|
Abstract
BACKGROUND Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. METHODS Analysis of the current literature regarding the epidemiology, clinical features, and pathogenesis of iERM and fibrotic tissue contraction. RESULTS Epidemiologic studies report a relationship between iERM prevalence, increasing age, and posterior vitreous detachment. Clinically, iERM progresses through different stages characterized by an increased thickness and wrinkling of the membrane. Pathophysiologically, iERM formation is a fibrotic process in which myofibroblast formation and the deposition of newly formed collagens play key roles. Anomalous posterior vitreous detachment may be a key event initiating the formation of iERM. The age-related accumulation of advanced glycation end products may contribute to anomalous posterior vitreous detachment formation and may also influence the mechanical properties of the iERM. CONCLUSION Remodeling of the extracellular matrix at the vitreoretinal interface by aging and fibrotic changes, plays a significant role in the pathogenesis of iERM. A better understanding of molecular mechanisms underlying this process may eventually lead to the development of effective and nonsurgical approaches to treat and prevent vitreoretinal fibrotic diseases.
Collapse
|
21
|
Cescon M, Gattazzo F, Chen P, Bonaldo P. Collagen VI at a glance. J Cell Sci 2015; 128:3525-31. [DOI: 10.1242/jcs.169748] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Collagen VI represents a remarkable extracellular matrix molecule, and in the past few years, studies of this molecule have revealed its involvement in a wide range of tissues and pathological conditions. In addition to its complex multi-step pathway of biosynthesis and assembly that leads to the formation of a characteristic and distinctive network of beaded microfilaments in the extracellular matrix, collagen VI exerts several key roles in different tissues. These range from unique biomechanical roles to cytoprotective functions in different cells, including myofibers, chondrocytes, neurons, fibroblasts and cardiomyocytes. Indeed, collagen VI has been shown to exert a surprisingly broad range of cytoprotective effects, which include counteracting apoptosis and oxidative damage, favoring tumor growth and progression, regulating autophagy and cell differentiation, and even contributing to the maintenance of stemness. In this Cell Science at a Glance article and the accompanying poster, we present the current knowledge of collagen VI, and in particular, discuss its relevance in stemness and in preserving the mechanical properties of tissues, as well as its links with human disorders.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Peiwen Chen
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| |
Collapse
|
22
|
ColVI myopathies: where do we stand, where do we go? Skelet Muscle 2011; 1:30. [PMID: 21943391 PMCID: PMC3189202 DOI: 10.1186/2044-5040-1-30] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/23/2011] [Indexed: 02/08/2023] Open
Abstract
Collagen VI myopathies, caused by mutations in the genes encoding collagen type VI (ColVI), represent a clinical continuum with Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) at each end of the spectrum, and less well-defined intermediate phenotypes in between. ColVI myopathies also share common features with other disorders associated with prominent muscle contractures, making differential diagnosis difficult. This group of disorders, under-recognized for a long time, has aroused much interest over the past decade, with important advances made in understanding its molecular pathogenesis. Indeed, numerous mutations have now been reported in the COL6A1, COL6A2 and COL6A3 genes, a large proportion of which are de novo and exert dominant-negative effects. Genotype-phenotype correlations have also started to emerge, which reflect the various pathogenic mechanisms at play in these disorders: dominant de novo exon splicing that enables the synthesis and secretion of mutant tetramers and homozygous nonsense mutations that lead to premature termination of translation and complete loss of function are associated with early-onset, severe phenotypes. In this review, we present the current state of diagnosis and research in the field of ColVI myopathies. The past decade has provided significant advances, with the identification of altered cellular functions in animal models of ColVI myopathies and in patient samples. In particular, mitochondrial dysfunction and a defect in the autophagic clearance system of skeletal muscle have recently been reported, thereby opening potential therapeutic avenues.
Collapse
|
23
|
|
24
|
Gil ES, Mandal BB, Park SH, Marchant JK, Omenetto FG, Kaplan DL. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials 2010; 31:8953-63. [PMID: 20801503 PMCID: PMC2949540 DOI: 10.1016/j.biomaterials.2010.08.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/07/2010] [Indexed: 12/30/2022]
Abstract
RGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation, proliferation, ECM organization, and gene expression of hCFs was assessed. RGD surface modification enhanced cell attachment, proliferation, alignment and expression of both collagens (type I and V) and proteoglycans (decorin and biglycan). Confocal and histological images of the lamellar systems revealed that the bio-functionalized silk human cornea 3D constructs exhibited integrated corneal stroma tissue with helicoidal multi-lamellar alignment of collagen-rich and proteoglycan-rich extracellular matrix, with transparency of the construct. This biomimetic approach to replicate corneal stromal tissue structural hierarchy and architecture demonstrates a useful strategy for engineering human cornea. Further, this approach can be exploited for other tissue systems due to the pervasive nature of such helicoids in most human tissues.
Collapse
Affiliation(s)
- Eun Seok Gil
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, Massachusetts 02155 USA
| | - Biman B. Mandal
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, Massachusetts 02155 USA
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, Massachusetts 02155 USA
| | - Jeffrey K. Marchant
- Sackler School of Biomedical Science, Tufts University, 4 Colby St. Medford, Massachusetts 02155 USA
| | - Fiorenzo G. Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, Massachusetts 02155 USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, Massachusetts 02155 USA
- Sackler School of Biomedical Science, Tufts University, 4 Colby St. Medford, Massachusetts 02155 USA
| |
Collapse
|
25
|
Adriaenssens T, Mazoyer C, Segers I, Wathlet S, Smitz J. Differences in collagen expression in cumulus cells after exposure to highly purified menotropin or recombinant follicle-stimulating hormone in a mouse follicle culture model. Biol Reprod 2009; 80:1015-25. [PMID: 19164180 DOI: 10.1095/biolreprod.107.067462] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Extracellular matrix (ECM) formation by cumulus cells is an important process that determines fertilization and embryo quality. Several collagen types are present in the ovarian follicular ECM and are related to proliferation, steroidogenesis, and luteinization. In vitro mouse follicles can optimally grow and provide developmentally competent oocytes with 10 IU/L recombinant follicle-stimulating hormone (rFSH). As a model for superovulation, experiments with 100 IU/L rFSH or 100 IU/L highly purified menotropin (HP-hMG) exposure during antral growth were undertaken. Col4a1, Col4a2, and Col6a2 expression levels were analyzed at three time points during antral growth and at a 4-h interval up to 16 h after ovulation induction using quantitative PCR. The presence and induction of the collagen mRNA and protein were confirmed in cumulus from in vivo- and in vitro-grown follicles, and TGFBs 1 and 2 were assayed as potential regulators. The study revealed that exposure to 100 IU/L FSH, as in both superovulation conditions, significantly influenced the follicle morphology and slowed down nuclear maturation and mucification (P < 0.05). This coincided with an increased expression of the three collagens in the cumulus-oocyte complex at the end of antral growth and in the first hours following the ovulatory dose of human chorionic gonadotropin (P < 0.05). The increased expression might reflect a differentiation but is most likely due to a precocious luteinization of the cumulus. Growth in HP-hMG resulted in higher Tgfb1 mRNA and protein levels, fewer COCs with an increased collagen expression and with a more synchronous nuclear maturation. This suggests that the presence of luteinizing hormone activity tempered the effect of the elevated FSH dose.
Collapse
|
26
|
Petrini S, Tessa A, Stallcup WB, Sabatelli P, Pescatori M, Giusti B, Carrozzo R, Verardo M, Bergamin N, Columbaro M, Bernardini C, Merlini L, Pepe G, Bonaldo P, Bertini E. Altered expression of the MCSP/NG2 chondroitin sulfate proteoglycan in collagen VI deficiency. Mol Cell Neurosci 2005; 30:408-17. [PMID: 16169245 DOI: 10.1016/j.mcn.2005.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 06/09/2005] [Accepted: 08/10/2005] [Indexed: 01/27/2023] Open
Abstract
NG2, the rat homologue of the human melanoma chondroitin sulfate proteoglycan (MCSP), is a ligand for collagen VI (COL6). We have examined skeletal muscles of patients affected by Ullrich scleroatonic muscular dystrophy (UCMD), an inherited syndrome caused by COL6 genes mutations. A significant decrease of NG2 immunolabeling was found in UCMD myofibers, as well as in skeletal muscle and cornea of COL6 null-mice. In UCMD muscles, truncated NG2 core protein isoforms were detected. However, real-time RT-PCR analysis revealed marked increase in NG2 mRNA content in UCMD muscle compared to controls. We hypothesize that NG2 immunohistochemical and biochemical behavior may be compromised owing to the absence of its physiological ligand. MCSP/NG2 proteoglycan may be considered an important receptor mediating COL6-sarcolemma interactions, a relationship that is disrupted by the pathogenesis of UCMD muscle.
Collapse
Affiliation(s)
- Stefania Petrini
- Unit of Molecular Medicine, Bambino Gesù Hospital IRCCS, P.zza S. Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Naugle JE, Olson ER, Zhang X, Mase SE, Pilati CF, Maron MB, Folkesson HG, Horne WI, Doane KJ, Meszaros JG. Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling. Am J Physiol Heart Circ Physiol 2005; 290:H323-30. [PMID: 16143656 DOI: 10.1152/ajpheart.00321.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fibroblast (CF) proliferation and differentiation into hypersecretory myofibroblasts can lead to excessive extracellular matrix (ECM) production and cardiac fibrosis. In turn, the ECM produced can potentially activate CFs via distinct feedback mechanisms. To assess how specific ECM components influence CF activation, isolated CFs were plated on specific collagen substrates (type I, III, and VI collagens) before functional assays were carried out. The type VI collagen substrate potently induced myofibroblast differentiation but had little effect on CF proliferation. Conversely, the type I and III collagen substrates did not affect differentiation but caused significant induction of proliferation (type I, 240.7 +/- 10.3%, and type III, 271.7 +/- 21.8% of basal). Type I collagen activated ERK1/2, whereas type III collagen did not. Treatment of CFs with angiotensin II, a potent mitogen of CFs, enhanced the growth observed on types I and III collagen but not on the type VI collagen substrate. Using an in vivo model of myocardial infarction (MI), we measured changes in type VI collagen expression and myofibroblast differentiation after post-MI remodeling. Concurrent elevations in type VI collagen and myofibroblast content were evident in the infarcted myocardium 20-wk post-MI. Overall, types I and III collagen stimulate CF proliferation, whereas type VI collagen plays a potentially novel role in cardiac remodeling through facilitation of myofibroblast differentiation.
Collapse
Affiliation(s)
- Jennifer E Naugle
- Northeastern Ohio Universities College of Medicine, Dept. of Physiology and Pharmacology, 4209 State Rte. 44, Rootstown, OH 44272-0095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schmitt-Bernard CF, Pouliquen Y, Argilès A. [BIG-H3 protein: mutation of codon 124 and corneal amyloidosis]. J Fr Ophtalmol 2004; 27:510-22. [PMID: 15179309 DOI: 10.1016/s0181-5512(04)96173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In 1997, a group of hereditary corneal dystrophies was related to mutations in the TGFBI (BIGH3) gene. Within this group, some corneal dystrophies present particular biochemical features in that they are characterized by corneal amyloid deposition. Contrary to clinical and genetic knowledge, the biochemical characteristics of the encoded protein (Big-h3) and the mechanisms of its amyloid conversion remain unclear. We review the current knowledge on the Big-h3 protein and focus on the behavior of the codon 124 region. We discuss this protein's mechanisms of amyloid conversion from our results and previous reports as well as from other types of amyloidosis. These data provide a better understanding of the putative processes leading to the phenotypic variations linked with their respective codon 124 mutation.
Collapse
|
29
|
Hirsch M, Prenant G, Renard G. Three-dimensional supramolecular organization of the extracellular matrix in human and rabbit corneal stroma, as revealed by ultrarapid-freezing and deep-etching methods. Exp Eye Res 2001; 72:123-35. [PMID: 11161728 DOI: 10.1006/exer.2000.0935] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present work was carried out to clarify the three-dimensional fine structure of extracellular matrix in the cornea, using ultrarapid-freezing and deep-etching methods for electron microscopy. Fresh and glutaraldehyde-fixed samples of human and rabbit posterior corneas were ultrarapidly-frozen onto a copper block cooled by liquid helium or liquid nitrogen, freeze-fractured, deeply etched for 8-10 min and rotary replicated with platinum-carbon. Replicas were examined in a transmission electron microscope equipped with a tilting device. Only structures with repeatedly observed, similar architectural profiles free from ice crystal damage, were taken into account. The very recognizable major collagen fibrils revealed 8-10 nm subfibrils running helically along the fibril long axis. The other extracellular matrix components consisted of: (1) 8-12 nm interfibrillar bridging filaments, frequently ornamented with globular domains, joining neighbouring collagen fibrils like steps of a ladder; (2) 10-20 nm filaments with relatively large globular domains, running on the surface of collagen fibrils along their long axes, and projecting finger-like structures into interfibrillar spaces sometimes attaching to adjacent collagen fibrils; (3) 10-15 nm beaded filaments with a periodicity of 75-110 nm, forming extended networks, especially at the interlamellar interfaces; and (4) 8-14 nm straight or sinuous strands consisting of 4-6 nm repeating subunits or modules, forming extended sheets by lateral association at the Descemet's membrane/stroma interface. In the light of the information available from studies on the localization of extracellular matrix components in the cornea, and by reference to the structural models of extracellular matrix molecules and macromolecular assemblies, we have related the deep-etched extracellular matrix structures described above to: (1) proteoglycans; (2) fibril-associated collagens with interrupted triple helices or FACIT collagens; (3) type VI collagen; and (4) fibronectin, respectively.
Collapse
Affiliation(s)
- M Hirsch
- Laboratoire Universitaire de Recherche sur les Thérapeutiques Substitutives en Ophtalmologie (EA 2395), Université Pierre et Marie Curie (Paris 6), Hotel Dieu, F-75181 Paris Cedex 04, France
| | | | | |
Collapse
|
30
|
Reale E, Groos S, Luciano L, Eckardt C, Eckardt U. In the mammalian eye type VI collagen tetramers form three morphologically different aggregates. Matrix Biol 2001; 20:37-51. [PMID: 11246002 DOI: 10.1016/s0945-053x(00)00132-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The organization of the aggregates occurring in the stroma: (1) of the murine and human cornea after incubation in an ATP acidic solution; (2) of surgically excised epiretinal membranes (ERM); and (3) of the trabecular meshwork of monkey eyes was investigated morphologically and immunocytochemically on thin section electron microscopy. Morphology. The aggregates in the cornea appeared as cross-banded fibrils. The bands were uniformly electron dense (single banded form); they were separated from each other by interbands consisting of a bundle of filaments emerging in cross section as small areas of randomly assembled dot-like structures. In the ERM, most of the aggregates stood out as heteromorphic cross-banded bodies showing dense bands with electron denser borders (double banded form) and interbands composed of longitudinally oriented, parallel sheets or laminae of amorphous material enclosing thin, similarly oriented filaments. These extended, thinner and double in number (since interlacing with similar components of the opposite sheet), into the pale central zone of the dense band. The aggregates of the trabecular meshwork were heteromorphic, had uniformly dense bands (single banded form as in the cornea), but their interbands displayed longitudinal sheets (as the ERM aggregates). Immunocytochemistry revealed type VI collagen in the three eye aggregates with gold particles preferentially localized at the interbands. The specificity of the antibodies used was tested by Western blot analysis of type VI collagen samples extracted from human placenta and on homogenates of human cornea. In conclusion, the results indicate that the tetramers of type VI collagen may aggregate differently into structures with distinct supramolecular arrangements. These are illustrated in schematic drawings.
Collapse
Affiliation(s)
- E Reale
- Zentrum Anatomie, Abteilung Zellbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | | | | | | | | |
Collapse
|
31
|
Kypreos KE, Birk D, Trinkaus-Randall V, Hartmann DJ, Sonenshein GE. Type V collagen regulates the assembly of collagen fibrils in cultures of bovine vascular smooth muscle cells. J Cell Biochem 2000; 80:146-55. [PMID: 11029762 DOI: 10.1002/1097-4644(20010101)80:1<146::aid-jcb140>3.0.co;2-h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vascular smooth muscle cells (SMCs), the major cellular constituent of the medial layer of an artery, synthesize the majority of connective tissue proteins, including fibrillar collagen types I, III, and V/XI. Proper collagen synthesis and deposition, which are important for the integrity of the arterial wall, require the antioxidant vitamin C. Vitamin C serves as cofactor for the enzymes prolyl and lysyl hydroxylase, which are responsible for the proper hydroxylation of collagen. Here, the role of type V collagen in the assembly of collagen fibrils in the extracellular matrix (ECM) of cultured vascular SMCs was investigated. Treatment of SMCs with vitamin C resulted in a dramatic induction in the levels of the cell-layer associated pepsin-resistant type V collagen, whereas only a minor induction in the levels of types I and III collagen was detected. Of note, the deposition of type V collagen was accompanied by the formation of striated collagen fibrils in the ECM. Immunohistochemistry demonstrated that type V collagen, but not type I collagen, became masked as collagen fibrils matured. Furthermore, the relative ratio of type V to type I collagen decreased as the ECM matured as a function of days in culture, and this decrease was accompanied by an increase in the diameter of collagen fibrils. Together these results suggest that the masking of type V collagen is caused by its internalization on continuous deposition of type I collagen on the exterior of the fibril. Furthermore, they suggest that type V collagen acts as framework for the initial assembly of collagen molecules into heterotypic fibrils, regulating the diameter and architecture of these fibrils.
Collapse
Affiliation(s)
- K E Kypreos
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
32
|
Andresen JL, Ledet T, Hager H, Josephsen K, Ehlers N. The influence of corneal stromal matrix proteins on the migration of human corneal fibroblasts. Exp Eye Res 2000; 71:33-43. [PMID: 10880274 DOI: 10.1006/exer.2000.0850] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motivated by the alterations seen in the corneal matrix composition after photorefractive keratectomy and the migration of corneal keratocytes seen following this procedure, the locomotor response of corneal stromal fibroblasts to various extracellular matrix proteins was determined. In addition, the involvement of integrin mediated attachment to the matrix proteins was investigated. Quantitative invasion assays were performed using collagen gels, supplemented with either fibronectin, tenascin, collagen type V, collagen type VI, chondroitin sulfate or keratan sulfate. The ultrastructure of the gels was visualized by scanning electron microscopy and related to the migration results. The extent of alpha(1)beta(1), alpha(2)beta(1), alpha(3)beta(1)and alpha(5)beta(1)integrin mediated attachment to the matrix proteins was evaluated using blocking antibodies. Fibronectin increased corneal fibroblast migration significantly, and served as an excellent substrate for cellular attachment, mediated by the alpha(5)beta(1)integrin. Addition of tenascin to the fibronectin-containing gels disrupted these effects, while attachment to this matrix also involved the integrins alpha(2)beta(1)and alpha(3)beta(1). Chondroitin sulfate and collagen types V and VI primarily altered the structure of the collagen matrix, resulting in an inhibition of migration by the collagens and an increase by chondroitin sulfate. They all served as poor substrates for attachment. Thus, the migratory activity of corneal fibroblasts in vitro is influenced by the composition of the surrounding extracellular matrix, either by integrin mediated cell-matrix interactions or through matrix-matrix interactions. This study provides evidence that the provisional matrix deposited in a corneal stromal wound may facilitate the entry of migrating corneal fibroblasts.
Collapse
Affiliation(s)
- J L Andresen
- Department of Ophthalmology, Aarhus University Hospital, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Lekskul M, Burrows R, Kublin CL, Cintron C. CxGELSIX: a novel preparation of type VI collagen with possible use as a biomaterial. Cornea 2000; 19:194-203. [PMID: 10746452 DOI: 10.1097/00003226-200003000-00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study was initiated to evaluate tissue acceptance and stability of a novel type VI collagen preparation (CxGelsix) as a biomaterial in the rabbit corneal stroma. We hypothesized that CxGelsix, embedded intrastromally, does not have any adverse affect on surrounding corneal tissues, and remains intact in the presence of an acute inflammatory reaction during corneal wound healing. METHODS Type VI collagen was extracted and purified from rabbit corneal stroma under nondenaturing conditions. This preparation, Gelsix, was concentrated and cross-linked with polyethylene glycol to produce a transparent film (CxGelsix). Discs of CxGelsix, 4.0-mm diameter, 9- to 35-microm thick were implanted intrastromally and clinically examined periodically for 4 months. In another experiment, implantation of CxGelsix, 2.0-mm-diameter, was followed by corneal wounding adjacent to the implant and examined clinically for 30 weeks. At the end of these periods, the tissues from these experiments were processed for light and transmission electron microscopy. RESULTS An intralamellar 4.0-mm-diameter disc of CxGelsix does not alter the structure of corneal epithelium above the implant, suggesting normal transport of nutrients through CxGelsix. Moreover, no structural abnormalities were seen in the rest of the cornea, and the cornea remains transparent. Although the cornea accepts the presence of CxGelsix disc as judged by clinical criteria, gradual degradation of the implant is seen ultrastructurally. CxGelsix is remarkably stable despite its exposure to endogenous enzymes during inflammation and wound healing. Partial degradation of the implant occurs only after many months, and it is gradually replaced with bundles of fine collagen fibrils reminiscent of normal cornea. CONCLUSION The results of this study suggest that CxGelsix is potentially useful as a biomaterial.
Collapse
Affiliation(s)
- M Lekskul
- Schepens Eye Research Institute, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
34
|
Rühl M, Sahin E, Johannsen M, Somasundaram R, Manski D, Riecken EO, Schuppan D. Soluble collagen VI drives serum-starved fibroblasts through S phase and prevents apoptosis via down-regulation of Bax. J Biol Chem 1999; 274:34361-8. [PMID: 10567413 DOI: 10.1074/jbc.274.48.34361] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We previously showed that soluble, pepsin-solubilized collagen VI increases de novo DNA synthesis in serum-starved HT1080 and 3T3 fibroblasts up to 100-fold compared with soluble collagen I, reaching 80% of the stimulation caused by 10% fetal calf serum. Here we show that collagen VI also inhibits apoptotic cell death in serum-starved cells as evidenced by morphological criteria, DNA laddering, complementary apoptosis assays (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorting), and quantification of apoptosis-regulating proteins. In the presence of starving medium alone or collagen I, the proapoptotic Bax was up-regulated 2-2.5-fold, compared with soluble collagen VI and fetal calf serum, whereas levels of the antiapoptotic Bcl-2 protein remained unaffected. In accordance with its potent stimulation of DNA synthesis, soluble collagen VI carries serum-starved HT1080 and Balb 3T3 fibroblasts through G(2) as shown by fluorescence-activated cell sorting analysis, whereas cells exposed to medium and collagen I where arrested at G(1)-S. This was accompanied by a 2-3-fold increase in cyclin A, B, and D1 protein expression. Collagen VI-induced inhibition of apoptotic cell death may be operative during embryogenesis, wound healing, and fibrosis when elevated tissue and blood levels of collagen VI are observed, thus initiating a feedback loop of mesenchymal cell activation and proliferation.
Collapse
Affiliation(s)
- M Rühl
- Department of Medicine I, Klinikum B. Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Hirsch M, Noske W, Prenant G, Renard G. Fine structure of the developing avian corneal stroma as revealed by quick-freeze, deep-etch electron microscopy. Exp Eye Res 1999; 69:267-77. [PMID: 10471335 DOI: 10.1006/exer.1999.0695] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corneal transparency depends on the precise organization of the stromal extracellular matrix. The morphology of the extracellular matrix of the embryonic and adult avian secondary posterior cornea was studied in glutaraldehyde-fixed, quick-frozen, deep-etched replicas with the electron microscope. Although the collagen fibrils changed from a loose network to a more ordered parallel lamellar arrangement during development, their mean diameter remained constant between 30.3 and 31.2 nm. Besides collagen fibrils, other extracellular matrix components were observed: (i) straight or Y-shaped cross-bridging interfibrillar 8-10 nm filaments with 18-22 nm globules; (ii) relatively loose networks of 10-20 nm beaded filaments, with a mean periodicity of 107 nm, often running perpendicular to the collagen fibrils and adhering to the plasma membrane of stromal cells at early developmental stages; (iii) straight or curved 6-12 nm strands forming sheets within the stromal matrix that progressively disappeared, whereas similar structures persisted at the Descemet's membrane-stroma interface; (iv) dense networks of filaments with 6-8 nm filaments, sometimes polygonally arranged, and a substructure of 2-3 nm filaments with globular domains, which progressively disappeared with maturation but remained at the Descemet's membrane-stroma interface; (v) polygonal networks of 9-10 nm filaments with globular domains adherent to the surface of cell plasma membranes at early developmental stages. The temporal expression of deep-etched supramolecular structural assemblies is compatible with that of the so-called 'interstitial basement membrane components' previously described. The quick-freeze and deep-etching method can reveal important aspects of the in situ organization of the corneal extracellular matrix.
Collapse
Affiliation(s)
- M Hirsch
- Laboratoire de Recherche sur les Thérapeutiques Substitutives en Ophtalmologie (EA 2395), Université Pierre et Marie Curie (Paris 6), Hôtel Dieu, Paris, Cedex 04, F-75181, France
| | | | | | | |
Collapse
|
36
|
Chapman SA, Ayad S, O'Donoghue E, Bonshek RE. Glycoproteins of trabecular meshwork, cornea and sclera. Eye (Lond) 1998; 12 ( Pt 3a):440-8. [PMID: 9775247 DOI: 10.1038/eye.1998.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To analyse high-molecular-weight matrix glycoproteins in trabecular meshwork, cornea and sclera using SDS/PAGE and immuno- and lectin blotting. METHOD Extracts of normal trabecular meshwork (TM), cornea and sclera were analysed under reducing conditions on SDS/ PAGE. Western blots were stained for total protein, and major high-molecular-weight components were identified by immunoblotting with antibodies to fibronectin (FN) and type VI collagen. Lectin blotting with PSA, MPA and DSA identified some of the glycoprotein glycans. RESULTS FN antibody bound to the 240 kDa band in TM, cornea and sclera. Type VI collagen antibody bound more strongly to one band and less so to two other bands at approximately 200 kDA in normal TM and to a ladder of bands in cornea and sclera. PSA and DSA bound at 240, 200 and 140 kDa in TM, cornea and sclera. MPA bound at 240, 200 and 140 kDa in TM and at 240, 200 and approximately 120 kDA in cornea and sclera. CONCLUSIONS FN is a component of the band at 240 kDA in TM, cornea and sclera. Normal TM was found to contain relatively more of one of the isoforms of the alpha 3 (VI) chain whilst cornea and sclera contained all the alpha 3 (VI) isoforms. Complex N-linked bi/tri-antennary glycans were localised in FN and the alpha 1, alpha 2 and alpha 3 (VI) chains in TM, cornea and sclera. O-linked glycans (identified by MPA binding) were located in FN and alpha 3 (VI) chains of TM, cornea and sclera.
Collapse
Affiliation(s)
- S A Chapman
- Department of Pathological Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
37
|
Howell SJ, Doane KJ. Type VI collagen increases cell survival and prevents anti-beta 1 integrin-mediated apoptosis. Exp Cell Res 1998; 241:230-41. [PMID: 9633532 DOI: 10.1006/excr.1998.4051] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-matrix interactions are important in the development of the avian cornea. Type VI collagen is present within the periocular mesenchyme prior to the migration of cells into the corneal stroma and is abundant in the mature stroma. Whether the interaction of cells with type VI collagen is essential for cellular survival in the cornea is not known. In the present study, we examined the interaction of corneal cells with type VI collagen in vitro to determine if it can increase cell proliferation and decrease apoptosis. In vivo analysis demonstrated that apoptosis occurs in the periocular region during early stages of avian corneal development, but in fully mature corneas apoptosis only occurs in the corneal epithelium and not in the stroma. In vitro analysis examined the importance of beta 1 integrin interactions with type VI collagen in mature corneal fibroblasts and the precursor cells. Using an anti-beta 1 integrin blocking antibody, CSAT, integrin/matrix interactions were disrupted. Results indicated that viability of both corneal fibroblasts and periocular mesenchyme cells was greater on type VI collagen than on type I collagen or BSA-blocked glass. In addition, less apoptosis was observed for both cell types on type VI collagen when beta 1 integrin--matrix interactions were disrupted. These data indicated that these cells require intact beta 1 interactions with type I collagen and with BSA-coated glass controls to remain viable. Thus, type VI collagen may play a role in the rescue of corneal cells from anti-beta 1 integrin-induced apoptosis by increasing cell survival, probably via a non-beta 1 integrin-dependent mechanism.
Collapse
Affiliation(s)
- S J Howell
- Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown 44272-0095, USA
| | | |
Collapse
|
38
|
Everts V, Niehof A, Jansen D, Beertsen W. Type VI collagen is associated with microfibrils and oxytalan fibers in the extracellular matrix of periodontium, mesenterium and periosteum. J Periodontal Res 1998; 33:118-25. [PMID: 9553871 DOI: 10.1111/j.1600-0765.1998.tb02300.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type VI collagen was immunolocalized in several soft connective tissues at the light and electron microscopic level. Positive labeling was found in all tissues examined, periodontal ligament, gingiva, mesenterium and periosteum. The labeled structures could be divided into 2 categories: microfibrils intermingling with collagen fibrils, and those that formed bundles (oxytalan fibres and elastin-associated microfibrils). Control sections incubated with antibody preabsorbed to purified type VI collagen, or with non-immune antibody, proved to be negative. Our observations indicate that the structural organization of type VI collagen varies from small microfibrillar structures associated with the collagen and elastin fibre systems to highly ordered parallel arrays of oxytalan bundles.
Collapse
Affiliation(s)
- V Everts
- Department of Cell Biology and Histology, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Doliana R, Mucignat MT, Segat D, Zanussi S, Fabbro C, Lakshmi TR, Colombatti A. Alternative splicing of VWFA modules generates variants of type VI collagen alpha 3 chain with a distinctive expression pattern in embryonic chicken tissues and potentially different adhesive function. Matrix Biol 1998; 16:427-42. [PMID: 9524362 DOI: 10.1016/s0945-053x(98)90015-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type VI collagen, a ubiquitous extracellular cell adhesion molecule, is formed by heterotrimeric monomers which associate into dimers and tetramers and assemble into larger oligomers constituting the 100 nm-long periodic microfilaments of connective tissues. One distinctive structural characteristic of type VI collagen is represented by an alpha 3 chain with a much larger molecular mass compared to the other two chains and with an extensive size heterogeneity, exemplified by the separation into up to five polypeptides in SDS-PAGE. There is evidence that the alpha 3(VI) mRNA can undergo alternative splicing of three VWFA modules at the 5'-end, potentially resulting in the expression of protein variants. Here we report that alternative splicing of alpha 3(VI) mRNA in chicken embryo did not result in the absolute predominance of a particular alpha 3(VI) form in any tissue; instead, the expression of variants including exons A9, A8 and A6 increased with age. In addition, these variants had a more restricted tissue distribution pattern compared to variants including only constitutive exons: A9+ were the rarest and were present almost exclusively in skin and skeletal muscle; A6+ were expressed in several of the examined tissues with local variations; A8+ had intermediate levels and were less widely distributed than A6+ variants. Quantitative densitometric scanning of immunoblots of type VI collagen purified from gizzard and stained with VWFA module-specific antibodies indicated that the polymorphic migration pattern of alpha 3(VI) polypeptides is contributed by concurrent or independent splicing of two exons (A8 and A6) and probably by processing and/or proteolysis at the N- and C-terminus. Three exon-specific recombinant polypeptides were examined in cell adhesion assays, and A6 appeared to be the most active, particularly at low substrate concentrations. The adhesion to the recombinant modules was not abrogated by EDTA nor by mAbs against the integrin beta 1 or alpha 2 subunits. Over all, these results suggest that the splicing of the alpha 3(VI) mRNA and the tissue distribution pattern of type VI collagen variants, apart from promoting cell adhesion to different extents, might also affect additional structural as well as functional properties of this molecule, including microfilament formation and interaction with other extracellular matrix molecules.
Collapse
Affiliation(s)
- R Doliana
- Division of Experimental Oncology 2, Oncology Referral Center, Aviano, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Burg MA, Nishiyama A, Stallcup WB. A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen. Exp Cell Res 1997; 235:254-64. [PMID: 9281375 DOI: 10.1006/excr.1997.3674] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have established that the NG2 proteoglycan binds directly to type VI collagen. To further our understanding of the biochemical and functional significance of this interaction we have used NG2 cDNA to construct a series of NG2 mutants with deletions spaced throughout the entire length of the 260-kDa NG2 core protein. Following transfection of these mutant cDNAs into B28 glioma cells, we determined the ability of mutant NG2 molecules to anchor type VI collagen on the cell surface. Eight of 11 transfectant populations were able to anchor type VI collagen. The three NG2 variants incapable of anchoring type VI collagen have deletions clustered within the central one-third of the NG2 ectodomain. These deletions identify a 469-amino-acid domain of NG2 responsible for binding of type VI collagen. Functional consequences of the NG2-type VI collagen interaction were explored by testing the relative ability of NG2-transfected and untransfected glioma cells to migrate toward type VI collagen. NG2-expressing cells exhibited a greater migratory response toward type VI collagen than their NG2-negative counterparts. This enhanced migration could be specifically inhibited with NG2 antibodies. Furthermore, glioma cells expressing NG2 in which the collagen-binding domain was deleted failed to exhibit this enhanced migration, whereas NG2 mutants in which non-collagen-binding regions were deleted continued to exhibit increased chemotaxis toward the type VI collagen. These comparisons confirm the importance of the central collagen-binding domain in mediating functionally important interactions between NG2 and type VI collagen.
Collapse
Affiliation(s)
- M A Burg
- The Burnham Institute, La Jolla Cancer Research Center, 10901 North Torrey Pines Road, La Jolla, California, 92037, USA.
| | | | | |
Collapse
|
41
|
Abstract
Connective tissue microfibrils are key structural elements of the dermal matrix which play major roles in establishing and maintaining the structural and mechanical integrity of this complex tissue. Type VI collagen microfibrils form extensive microfibrillar networks which intercalate between the major collagen fibrils and are juxtaposed to cellular basement membranes, blood vessels and other interstitial structures. Fibrillin microfibrils define the continuous elastic network of skin, and are present in dermis as microfibril bundles devoid of measureable elastin extending from the dermal-epithelial junction and as components of the thick elastic fibres present in the deep reticular dermis. Electron microscopic analyses have revealed both classes of microfibrils to have complex ultrastructures. The ability to isolate intact native microfibrils from skin has enabled a combination of high resolution and biochemical techniques to be applied to elucidate their structure:function relationships. These approaches have generated new information about their molecular organisation and physiological interactions in health and disease.
Collapse
Affiliation(s)
- C M Kielty
- School of Biological Sciences, University of Manchester, United Kingdom
| | | |
Collapse
|
42
|
Chang J, Nakajima H, Poole CA. Structural colocalisation of type VI collagen and fibronectin in agarose cultured chondrocytes and isolated chondrons extracted from adult canine tibial cartilage. J Anat 1997; 190 ( Pt 4):523-32. [PMID: 9183676 PMCID: PMC1467638 DOI: 10.1046/j.1469-7580.1997.19040523.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell-matrix and matrix-matrix interactions are of critical importance in regulating the development, maintenance and repair of articular cartilage. In this study, we examined the structural colocalisation of type VI collagen and fibronectin in isolated chondrons and long-term agarose cultured chondrocytes extracted from normal adult canine articular cartilage. Using double labelling immunohistochemistry in conjunction with dual channel confocal microscopy and digital image processing we demonstrate that type VI collagen and fibronectin are distributed in a similar staining pattern and are colocalised at the surface of cultured chondrocytes and isolated chondrons. The results suggest that type VI collagen and fibronectin may play a role in both cell-matrix adhesion and matrix-matrix cohesion in the pericellular microenvironment surrounding articular cartilage chondrocytes.
Collapse
Affiliation(s)
- J Chang
- Department of Anatomy, Faculty of Medicine and Health Sciences, University of Auckland, New Zealand.
| | | | | |
Collapse
|
43
|
de Carvalho HF, Taboga SR, Vilamaior PS. Collagen type VI is a component of the extracellular matrix microfibril network of the prostatic stroma. Tissue Cell 1997; 29:163-70. [PMID: 9149439 DOI: 10.1016/s0040-8166(97)80016-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stroma-epithelium relationships are of great relevance in prostatic morphogenesis and physiology. However, little knowledge exists about either stromal cells or extracellular matrix composition and arrangement in this system. Ultrastructural analysis revealed the existence of a microfibrillar system which occupies large areas of the rat prostatic stroma. In this work, we have applied immunocytochemistry and an ATP treatment for the ultrastructural identification of collagen type VI microfibrils, aiming at examining its participation in the prostatic microfibrillar network. Immunocytochemistry was also extended to a human case of prostatic nodular hyperplasia. Both methods succeeded in identifying collagen type VI in the rat ventral prostate. Collagen type VI is evenly distributed throughout the stroma but mainly associated with the basal lamina, collagen fibrils, and around the stromal cells. The use of ATP treatment allowed for the discrimination between collagen type VI and elastin-associated microfibrils, and demonstrated that these two classes of microfibrils establish an extended, mixed, and open network. The same aspects of association with the basal lamina, with stromal cells (particularly with smooth muscle cells), and with fibrillar components of the stroma were observed in the human tissue. We suggest that the collagen type VI and elastin-associated microfibril system may be involved in the control of some aspects of cellular behavior and may also play a structural role, maintaining the organ integrity after the deformations occurring under smooth muscle contraction.
Collapse
|
44
|
Burg MA, Tillet E, Timpl R, Stallcup WB. Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules. J Biol Chem 1996; 271:26110-6. [PMID: 8824254 DOI: 10.1074/jbc.271.42.26110] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previous studies have suggested that the NG2 proteoglycan interacts with type VI collagen. We have further characterized this interaction using a solid phase binding assay in which purified NG2 was shown to bind to pepsin-solubilized type VI collagen. In addition, NG2 bound a recombinant alpha2 (VI) collagen chain but did not appreciably bind to the recombinant alpha1 (VI) chain or the N-terminal domain of alpha3 (VI) (N9-N2). Binding of NG2 to type VI collagen was shown to be concentration-dependent and saturable and to depend mainly on the NG2 core protein, since chondroitinase-treated NG2 bound the collagen as well as undigested samples. In addition, the binding studies revealed several other possible ligands for NG2, including type II collagen, type V collagen, tenascin, and laminin. Binding of the proteoglycan to these molecules was also shown to be mediated by domains contained within the NG2 core protein. The ability of NG2 to bind to these extracellular matrix molecules was compared with that of the chondroitin sulfate proteoglycan decorin, revealing an almost identical binding pattern of the two proteoglycans to the different collagen types. In addition, decorin was found to effectively inhibit the ability of NG2 to bind to collagen, thus suggesting that the two proteoglycans may bind to some of the same regions on the collagen substrates. In contrast, decorin did not bind tenascin and was ineffective in inhibiting the binding of NG2 to tenascin or laminin, indicating that NG2 may bind these two molecules using a separate domain that is distinct from its collagen binding region.
Collapse
Affiliation(s)
- M A Burg
- La Jolla Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
45
|
Senga K, Kobayashi M, Hattori H, Yasue K, Mizutani H, Ueda M, Hoshino T. Type VI collagen in mouse masseter tendon, from osseous attachment to myotendinous junction. Anat Rec (Hoboken) 1995; 243:294-302. [PMID: 8579248 DOI: 10.1002/ar.1092430303] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND METHODS The association of masseter tendon type VI collagen with other extracellular matrix (ECM) components was examined from osseous attachment to myotendinous junction by immunohistochemistry and transmission electron microscopy with ATP treatment and enzyme digestion. RESULTS In the tendon proper, fibrocytes extended their processes among bundles of striated collagen fibrils and associated with adjacent cells through amorphous materials, thus forming a three-dimensional network. The amorphous or filamentous material was observed around the fibrocyte cell body and along the cell processes, where the localization of type VI collagen was confirmed by immunohistochemistry using anti-type VI collagen antibody. After treatment with 20 mM adenosine 5'-triphosphate (ATP), 100 nm periodic fibrils, an aggregated form of type VI collagen, were formed in the place where amorphous or filamentous material was present before the treatment. In myotendinous junction, the ATP-aggregated periodic fibrils were observed to associate with the external lamina of the muscle cells as well as among junctional tendon collagen fibrils. In the tendon-bone boundary, ATP-aggregated periodic fibrils were observed around fibrocartilage-like cells in the uncalcifying area but not in the calcification front. Prolonged ATP treatment or hyaluronidase predigestion caused the formation of type VI collagen periodic fibrils in the area near the calcified matrix. CONCLUSIONS The distribution of type VI collagen in mouse masseter tendon is different in different anatomical position. This may reflect the different functional demand for this collagen.
Collapse
Affiliation(s)
- K Senga
- Department of Oral Surgery, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Everts V, Korper W, Niehof A, Jansen I, Beertsen W. Type VI collagen is phagocytosed by fibroblasts and digested in the lysosomal apparatus: involvement of collagenase, serine proteinases and lysosomal enzymes. Matrix Biol 1995; 14:665-76. [PMID: 9057816 DOI: 10.1016/s0945-053x(05)80030-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Type VI collagen is present in most connective tissues, where it is considered to play a crucial role in the attachment of cells to the extracellular matrix and/or in the three-dimensional organization of the collagen meshwork. Although some information is available on its formation, the mechanisms involved in its degradation are not understood. Here, we present evidence for lysosomal digestion of type VI collagen by fibroblasts of periosteal explants. In the lysosomal apparatus of these cells, broad-banded filamentous aggregates characterized by 100-nm periodicity were found, which proved to consist of type VI collagen as indicated by their stainability with anti-type VI collagen antibodies. By interfering with synthesis (ascorbate or alpha, alpha-dipyridyl), intracellular translocation of collagen-containing vesicles (colchicine) as well as phagocytosis (cytochalasin B), it was shown that the intracellular broad-banded type VI collagen represented phagocytosed material. In the presence of acidotropic agents (NH4Cl and methylamine) the amount of intracellular type VI collagen increased significantly (5- to 10-fold), suggesting that a rise of pH in the endosomal/lysosomal apparatus causes inhibition of its degradation. By using a variety of proteinase inhibitors, it was found that inhibition of collagenase (when used in combination with NH4Cl), or inhibition of cysteine proteinases (both with and without NH4Cl), resulted in an increased amount of intracellular type VI collagen, whereas inhibition of serine proteinases significantly lowered the level of intracellular type VI collagen. The data presented are the first to indicate a pathway by which type VI collagen degradation may occur: fibroblasts phagocytose type VI collagen and subsequently digest this collagen in their lysosomal apparatus. Degradation depends on the activity of several enzymes, among them collagenase and serine proteinases, probably exerting their activity in the extracellular space just before the actual internalization. After uptake, digestion involves pH-sensitive lysosomal enzymes, including those belonging to the class of cysteine proteinases.
Collapse
Affiliation(s)
- V Everts
- Laboratory of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Marcelino J, McDevitt CA. Attachment of articular cartilage chondrocytes to the tissue form of type VI collagen. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1249:180-8. [PMID: 7599172 DOI: 10.1016/0167-4838(95)00026-q] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Type VI collagen is composed of a short triple helix rich in RGD sequences with globular domains at each extremity of the helix. Disulfide-bonded tetramers of the monomeric molecule associate non-covalently to form networks of microfibrils in connective tissues, including cartilage. The disulfide-bonded tetramer can be extracted with 6 M guanidine HCl and purified without pepsin digestion and is referred to here as the tissue form of type VI collagen. Type VI collagen in mature articular cartilage appears to be concentrated pericellularly. We undertook a systematic investigation using solid phase assays to establish the nature of the attachment of bovine articular cartilage chondrocytes to the intact, tissue form of bovine type VI collagen. The tissue form of type VI collagen was extracted from bovine meniscus cartilage with 6 M guanidine HCl and purified by polyethylene glycol precipitation. When equal molar quantities were coated on microwells, the tissue form of type VI collagen attached more cells than the pepsin-digested form of the molecule that lacked the globular domains. The attachment to the intact, tissue form was dose-dependent and saturable and was not inhibited by heparin or type II collagen. A linear GRGDSP peptide failed to inhibit attachment of the chondrocytes to the intact, tissue or pepsin-digested forms of type VI collagen, but totally inhibited the interaction when the intact molecule was reduced and alkylated. In contrast, a cyclic C*GRGDSPC* peptide inhibited attachment to the tissue form of type VI collagen, but not to fibronectin. The attachment had a metal ion dependence that could be satisfied by MnCl2, slightly less by MgCl2, but not at all by CaCl2. A direct interaction between the tissue form of type VI collagen and a chondrocyte cell surface receptor or receptors is a structural feature of the pericellular matrix in cartilage.
Collapse
Affiliation(s)
- J Marcelino
- Department of Biomedical Engineering, Cleveland Clinic Foundation Research Institute, OH 44195, USA
| | | |
Collapse
|
48
|
Han J, Daniel JC, Pappas GD. Expression of type VI collagen during glioblastoma cell invasion in brain tissue cultures. Cancer Lett 1995; 88:127-32. [PMID: 7874684 DOI: 10.1016/0304-3835(94)03627-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human glioblastoma cells, U-87 MG, were utilized in two separate rat brain tissue culture systems. In both cases, the glioblastoma cells deeply penetrated and formed tumor masses inside the brain tissues. Immunofluorescence technique, utilizing anti-type VI collagen antibodies demonstrated strong immunoreactivity of type VI collagen in the tumor masses, invading cells, and cell groups. We suggest that type VI collagen may be involved in tumor cells infiltration and invasion of healthy rat brain tissues. Furthermore, the brain tissue culture method may provide a rapid in vitro model with which cellular and extracellular determinants of invasiveness may be studied.
Collapse
Affiliation(s)
- J Han
- Department of Anatomy and Cell Biology, College of Medicine (M/C 901), University of Illinois at Chicago 60612
| | | | | |
Collapse
|
49
|
Han J, Daniel JC. Biosynthesis of type VI collagen by glioblastoma cells and possible function in cell invasion of three-dimensional matrices. Connect Tissue Res 1995; 31:161-70. [PMID: 15612332 DOI: 10.3109/03008209509028404] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The biosynthesis of type VI collagen was studied in human glioblastoma cell line, U-87 MG. The effects of ascorbic acid on type VI collagen synthesis and secretion were investigated. After ascorbic acid treatment, type VI collagen in cell layers increased from 4.48% in control to 6.63% in the ascorbic acid treated cultures, an increase of 48%. The effect of ascorbic acid on type VI collagen synthesized by glioblastoma cells was lower than that reported for osteosarcoma cells (Engvall et al., 1986). The reason for these differences is still under investigation. The function of type VI collagen in glioblastoma cells is still unknown. We utilized the collagen gel system to elucidate the possible roles of type VI collagen in glioblastoma cells in vitro. Glioblastoma cells in collagen gels showed a stellate shape with long, branched processes in all directions. The strong positive reactivity of type VI collagen detected on cell bodies and cell processes by anti-type VI collagen antibody indicated that this specific collagen was associated with cell surfaces and processes, without releasing or diffusing into the gels. Type VI collagen was directly involved in the cell process extension. When living cells were treated with anti-type VI collagen antibody, a variation of cell morphology was observed. Instead of a stellate shape with processes, cells formed clusters without or with very short processes. These data suggest that type VI collagen, synthesized and secreted by glioblastoma cells, may play a role in tumor cell adhesion and spreading, and enhance cell process extension, penetration, and invasion into collagen gels.
Collapse
Affiliation(s)
- J Han
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|
50
|
Perris R, Kuo HJ, Glanville RW, Bronner-Fraser M. Collagen type VI in neural crest development: distribution in situ and interaction with cells in vitro. Dev Dyn 1993; 198:135-49. [PMID: 8305706 DOI: 10.1002/aja.1001980207] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have examined the spatio-temporal distribution of collagen type VI (Col VI) during neural crest development in vivo and its ability to promote neural crest cell attachment and migration in vitro. An affinity purified antiserum and chain-specific monoclonal antibodies against chicken Col VI were employed to immunolocalize the collagen in tissue sections and by immunoblotting. At stages of initial neural crest cell migration, the alpha 1(VI) and alpha 2(VI) chains were immunolocalized in apposition with basement membranes of the neural tube, somites, notochord and ectoderm, whereas no immunoreactivity was seen for the alpha 3(VI) chain. Immunoblotting analysis confirmed the expression of alpha 1(VI) and alpha 2(VI) chains and the lack of detectable immunoreactivity for the alpha 3(VI) chain at these early phases of neural crest development. Conversely, at advanced phases of migration and following gangliogenesis, expression of alpha 3(VI) chain coincided with that of alpha 1(VI) and alpha 2(VI) chains in apposition with basement membranes, around the dorsal root ganglia, and in fibrillar arrangements within the developing dermis and ventral sclerotome. The ability of Col VI to promote neural crest cell attachment and migration was tested in vitro using quantitative assays for these processes. Both native microfilaments and isolated tetramers of Col VI strongly promoted neural crest cell attachment and migration. Optimal stimulation of neural crest cell adhesion and migration was dependent upon structural integrity of Col VI since unfolded and disassembled alpha chains only weakly promoted cell attachment and were virtually inactive in supporting cell movement. The importance of a native macromolecular organization of Col VI further was analyzed in experiments in which dissociated tetramers were reassociated by Ca(2+)- and temperature-dependent self-aggregation. In contrast to native microfilaments, these oligomeric complexes were less effective in promoting neural crest cell movement, but still retained the ability to stimulate maximal cell attachment. The results indicate that Col VI is a primary component of the extracellular matrix deposited along neural crest migratory pathways, where it may participate in the regulation of cell movement by functioning as a migratory substrate. The ability of Col VI to promote neural crest cell adhesion and motility is highly dependent upon maintainance of a native macromolecular arrangement.
Collapse
Affiliation(s)
- R Perris
- Reference Center for Oncology, Experimental Division II, Aviano (PN), Italy
| | | | | | | |
Collapse
|