1
|
Almeida-Corrêa S, Czisch M, Wotjak CT. In Vivo Visualization of Active Polysynaptic Circuits With Longitudinal Manganese-Enhanced MRI (MEMRI). Front Neural Circuits 2018; 12:42. [PMID: 29887796 PMCID: PMC5981681 DOI: 10.3389/fncir.2018.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for in vivo non-invasive whole-brain mapping of neuronal activity. Mn2+ enters active neurons via voltage-gated calcium channels and increases local contrast in T1-weighted images. Given the property of Mn2+ of axonal transport, this technique can also be used for tract tracing after local administration of the contrast agent. However, MEMRI is still not widely employed in basic research due to the lack of a complete description of the Mn2+ dynamics in the brain. Here, we sought to investigate how the activity state of neurons modulates interneuronal Mn2+ transport. To this end, we injected mice with low dose MnCl2 2. (i.p., 20 mg/kg; repeatedly for 8 days) followed by two MEMRI scans at an interval of 1 week without further MnCl2 injections. We assessed changes in T1 contrast intensity before (scan 1) and after (scan 2) partial sensory deprivation (unilateral whisker trimming), while keeping the animals in a sensory enriched environment. After correcting for the general decay in Mn2+ content, whole brain analysis revealed a single cluster with higher signal in scan 1 compared to scan 2: the left barrel cortex corresponding to the right untrimmed whiskers. In the inverse contrast (scan 2 > scan 1), a number of brain structures, including many efferents of the left barrel cortex were observed. These results suggest that continuous neuronal activity elicited by ongoing sensory stimulation accelerates Mn2+ transport from the uptake site to its projection terminals, while the blockage of sensory-input and the resulting decrease in neuronal activity attenuates Mn2+ transport. The description of this critical property of Mn2+ dynamics in the brain allows a better understanding of MEMRI functional mechanisms, which will lead to more carefully designed experiments and clearer interpretation of the results.
Collapse
Affiliation(s)
- Suellen Almeida-Corrêa
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Czisch
- Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carsten T Wotjak
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
2
|
Daulatzai MA. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox Res 2016; 30:295-337. [DOI: 10.1007/s12640-016-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
3
|
Chau LS, Akhtar O, Mohan V, Kondilis A, Galvez R. Rapid adult experience-dependent anatomical plasticity in layer IV of primary somatosensory cortex. Brain Res 2013; 1543:93-100. [PMID: 24183785 DOI: 10.1016/j.brainres.2013.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
Sensory deprivation, such as whisker deprivation, is one of the most common paradigms used to examine experience-dependent plasticity. Many of these studies conducted during development have demonstrated anatomical and synaptic neocortical plasticity with varying lengths of deprivation (for review, see Holtmaat and Svoboda, 2009). However, to date, there have been few studies exploring brief periods of experience-dependent neocortical plasticity in adulthood, similar to that observed from learning and memory paradigms (Siucinska and Kossut, 1996, 2004; Galvez et al., 2006; Chau et al., 2013). Examining both synapsin I and Golgi-Cox stained neurons in primary somatosensory cortex of unilaterally whisker-deprived adult mice, the current study demonstrates that 5 days of whisker deprivation results in more synapses in spared barrels and reduced synapses in deprived barrels. To our knowledge, this is the first study to characterize anatomical changes in layer IV of primary somatosensory cortex after a brief period of sensory deprivation in adulthood. Furthermore, findings from the present study suggest that analyses from prolonged periods of either sensory deprivation or stimulation during adulthood are missing forms of plasticity that could provide better insight into various cognitive processes, such as learning and memory.
Collapse
Affiliation(s)
- Lily S Chau
- Psychology Department University of Illinois at Urbana-Champaign, USA.
| | - Omar Akhtar
- Psychology Department University of Illinois at Urbana-Champaign, USA
| | - Vijay Mohan
- Psychology Department University of Illinois at Urbana-Champaign, USA
| | | | - Roberto Galvez
- Psychology Department University of Illinois at Urbana-Champaign, USA; Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign, USA; Neuroscience Program University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
4
|
Levin BE, Hamm MW. Plasticity of Brain α-Adrenoceptors During the Development of Diet-Induced Obesity in the Rat. ACTA ACUST UNITED AC 2012; 2:230-8. [PMID: 16355480 DOI: 10.1002/j.1550-8528.1994.tb00052.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Male Sprague-Dawley rats, which are prone to develop diet-induced obesity (DIO) on a high energy (HE) diet can be separated from rats which are diet-resistant (DR) by several prospective tests. Using such tests, chow-fed DRl-prone rats have higher binding of 3H paraminoclonidine (PAC) to brain alpha2-adrenoceptors than do DIO-prone rats. These differences disappear after 3 months on a HE diet. To study the predictive value of these tests and possible associated changes in presynaptic membrane composition, brain alpha3(1-) (1nM 3H prazosin) and (alpha2-adrenoceptor (1nM) 3-H PAC) binding and synaptosomal fatty acid composition were assessed in 3-month-old male rats separated by weight gain into DR and DIO groups after 1 month on a HE diet. DIO had comparable total caloric intake but gained 30% and 43% more weight and were hyperinsulinemic compared to DR and chow-fed rats, respectively. After 1 month on a HE diet, DR rats still had 15%-53% higher 3H PAC binding than DIO and/or chow-fed rats in 14 of 16 brain areas assessed. A phenotype effect was present primarily in the amygdala where DR rats had higher 3H PAC binding than DIO rats. A diet effect was seen in some hypothalamic nuclei where both DR and DIO rats had higher 3H PAC binding than chow-fed rats. Conversely, DIO rats had 14%-21% higher 3H prazosin binding than DR rats in 3 brain areas. Changes in brain synaptosomal membranes' fatty acids reflected both phenotype and diet effects. Thus, while diet composition affects presynaptic membrane composition and alpha2-adrenoceptor binding in both DR and DIO rats, the predominance of plasticity of these parameters is limited to the brains of DR rats. This suggests that such plasticity may be an important determinant of the ability to resist the development of diet-induced obesity on a HE diet.
Collapse
Affiliation(s)
- B E Levin
- Neurology Service, Department of Veterans Affairs Medical Center, East Orange, NJ 07018, USA
| | | |
Collapse
|
5
|
NAKAO M, KARASHIMA A, IWASAKI N, KATAYAMA N, YAMAMOTO M. Fluctuations and synchronizations of neural activities during sleep: Neural basis of possible sleep functions? Sleep Biol Rhythms 2006. [DOI: 10.1111/j.1479-8425.2006.00206.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Iwasaki N, Karashima A, Tamakawa Y, Katayama N, Nakao M. Sleep EEG dynamics in rat barrel cortex associated with sensory deprivation. Neuroreport 2004; 15:2681-4. [PMID: 15570178 DOI: 10.1097/00001756-200412030-00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sleep is involved in the development and maintenance of neural networks. We investigated how somatosensory deprivation affects EEG dynamics of adult rats during sleep, which might be a result of changes in neural organization. Rats' whiskers were clipped unilaterally daily and the resulting changes in the balance of EEG spectral powers between the intact and sensory deprived barrel cortices were recorded for a month. Both delta and theta band spectral powers in the deprived cortex initially decreased in terms of their ratio to the intact cortex. Subsequently, the ratio was restored to control levels. This non-monotonic change in EEG activity might reflect the re-organization process of the cortical circuit.
Collapse
Affiliation(s)
- Naoko Iwasaki
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aza Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | | | | | | | |
Collapse
|
7
|
Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 2001. [PMID: 11517274 DOI: 10.1523/jneurosci.21-17-06862.2001] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thalamocortical neurons innervating the barrel cortex in neonatal rodents transiently store serotonin (5-HT) in synaptic vesicles by expressing the plasma membrane serotonin transporter (5-HTT) and the vesicular monoamine transporter (VMAT2). 5-HTT knock-out (ko) mice reveal a nearly complete absence of 5-HT in the cerebral cortex by immunohistochemistry, and of barrels, both at P7 and adulthood. Quantitative electron microscopy reveals that 5-HTT ko affects neither the density of synapses nor the length of synaptic contacts in layer IV. VMAT2 ko mice, completely lacking activity-dependent vesicular release of monoamines including 5-HT, also show a complete lack of 5-HT in the cortex but display largely normal barrel fields, despite sometimes markedly reduced postnatal growth. Transient 5-HTT expression is thus required for barrel pattern formation, whereas activity-dependent vesicular 5-HT release is not.
Collapse
|
8
|
Gierdalski M, Jablonska B, Smith A, Skangiel-Kramska J, Kossut M. Deafferentation induced changes in GAD67 and GluR2 mRNA expression in mouse somatosensory cortex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:111-9. [PMID: 10407193 DOI: 10.1016/s0169-328x(99)00153-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Partial vibrissectomy in adult mice induces body map plasticity in SI barrel cortex. To examine if the disturbed balance of cortical activation affects the excitatory and inhibitory neurotransmitter systems, we studied glutamic acid decarboxylase (GAD 67) and AMPA receptor subunit GluR2 mRNA expression in the barrel cortex. At varying times post-vibrissectomy, sparing row C of whiskers on one side of the snout, the brains were processed for in situ hybridization using specific [(35)S]oligonucleotides to detect the laminar localization of GAD67 and GluR2 mRNAs. Three and seven days after vibrissectomy, the expression of GAD67 was decreased in the deafferented cortex, while 30 days post-lesion, no effects were observed. At 3 days post-lesion, an ipsilateral decrease in GAD67 mRNA expression was also observed. No decreases in GluR2 transcripts were found in the deafferented cortex, but an increased expression was observed in the representation of the spared row C of whiskers 3 days after vibrissectomy. Seven and 30 days post lesion no changes in GluR2 expression were found. These data indicate that in the barrel cortex, peripheral deafferentation transiently regulates GAD67 and GluR2 expression at the transcriptional level. We suggest that this may be a manifestation of adaptive processes.
Collapse
Affiliation(s)
- M Gierdalski
- Department of Neurophysiology, Nencki Institute, 3 Pasteur st, 02-093, Warsaw, Poland
| | | | | | | | | |
Collapse
|
9
|
Edeline JM. Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 1999; 57:165-224. [PMID: 9987805 DOI: 10.1016/s0301-0082(98)00042-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of this review is to give a detailed description of the main results obtained in the field of learning-induced plasticity. The review is focused on receptive field and map changes observed in the auditory, somatosensory and visual thalamo-cortical system as a result of an associative training performed in waking animals. Receptive field (RF) plasticity, 2DG and map changes obtained in the auditory and somatosensory system are reviewed. In the visual system, as there is no RF and map analysis during learning per se, the evidence presented are from increased neuronal responsiveness, and from the effects of perceptual learning in human and non human primates. Across sensory modalities, the re-tuning of neurons to a significant stimulus or map reorganizations in favour of the significant stimuli were observed at the thalamic and/or cortical level. The analysis of the literature in each sensory modality indicates that relationships between learning-induced sensory plasticity and behavioural performance can, or cannot, be found depending on the tasks that were used. The involvement (i) of Hebbian synaptic plasticity in the described neuronal changes and (ii) of neuromodulators as "gating" factors of the neuronal changes, is evaluated. The weakness of the Hebbian schema to explain learning-induced changes and the need to better define what the word "learning" means are stressed. It is suggested that future research should focus on the dynamic of information processing in sensory systems, and the concept of "effective connectivity" should be useful in that matter.
Collapse
Affiliation(s)
- J M Edeline
- NAMC, URA CNRS 1491, Université Paris-Sud, Orsay, France.
| |
Collapse
|
10
|
Schiene K, Staiger JF, Bruehl C, Witte OW. Enlargement of cortical vibrissa representation in the surround of an ischemic cortical lesion. J Neurol Sci 1999; 162:6-13. [PMID: 10064162 DOI: 10.1016/s0022-510x(98)00292-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been shown that cortical lesions are associated with an increase of excitability in surrounding brain regions, and with a downregulation of GABA(A) receptors. In the present study we investigated whether this increased excitability affects the cortical map of inputs represented in areas surrounding the lesioned brain area. Focal lesions with a diameter of 2-2.5 mm were induced photochemically in the hindlimb area at the border of the primary somatosensory cortex of the rat. One week after lesioning, the cortical representation of the B3 vibrissa was studied using 14C-deoxyglucose (DG) autoradiography. In all animals mechanical stimulation of the B3 vibrissa produced a column-shaped DG-labeling in the somatosensory cortex, corresponding to the B3-barrel with a maximum of the glucose uptake in layer IV. In control animals without cortical lesions (n=6), stimulation increased the glucose uptake rate by 50.8+/-10.5% in layer IV. In lesioned animals (n=6) maximum DG-uptake in layer IV (54.8+/-8.6%) did not differ significantly from that in controls. However, as compared to control animals, lesioned animals showed also increased glucose uptake within the activated column in layers II/II (51.+/-11.1%, lesioned animals; 31.8+/-11.2%, controls; P<0.05, lesioned vs. control) and V (47.5+/-5.8%, lesioned animals, 28.8+/-10.5%, controls; P<0.05, lesioned vs. control). The diameter of the metabolically activated B3-barrel area of layer IV was expanded from 461.8+/-77.6 microm in control animals to 785.5+/-103.6 microm; P<0.01) in lesioned animals. Lesioned animals also showed expansion of the activated area in layers II/III (890.4+/-134.8 microm, lesioned animals; 430.6+/-95.1 microm, controls; P<0.01) and layer V (1117.5+/-163.6 microm, lesioned animals; 648.7+/-114.1 microm, controls; P<0.01). The depth profile of the activation columns showed a maximum in layer IV in control animals, which was expanded towards layers II/III and layer V in lesioned animals. It is concluded that cortical lesions alter the representational area of neighboring afferent inputs through disinhibition or 'unmasking' of pre-existing silent or ineffectual intracortical synapses. The present observations raise the possibility that the brain supports recovery from lesions by decreasing GABAergic inhibition, thereby facilitating a remapping of the cortical representation in neighboring brain areas.
Collapse
Affiliation(s)
- K Schiene
- Neurologische Klinik, der Heinrich Heine Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
11
|
Blue ME, Martin LJ, Brennan EM, Johnston MV. Ontogeny of non-NMDA glutamate receptors in rat barrel field cortex: I. metabotropic receptors. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970915)386:1<16::aid-cne4>3.0.co;2-g] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Dolan S, Cahusac PM. Differential effect of whisker trimming on excitatory and inhibitory transmission in primary somatosensory cortex of the adult rat in vivo. Neuroscience 1996; 70:79-92. [PMID: 8848139 DOI: 10.1016/0306-4522(95)00375-s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of sensory deprivation on excitatory and inhibitory activity in the primary somatosensory cortex were studied in the adult rat. Excitatory and inhibitory transmission generated by whisker stimulation, and neuronal responsiveness to iontophoretically applied excitatory amino acids were recorded. Whisker input deprivation, through whisker trimming for a median of 24 days, resulted in a significant decrease in excitatory transmission to surround whisker stimulation. In contrast, the response magnitude to principal whisker stimulation remained unchanged. However, the response latencies to principal whisker and surround whisker stimulation were significantly reduced, which led to altered temporal response distributions in deprived cells. Neurons deprived of sensory input were significantly less responsive to glutamate, N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionate and kainate. Following deprivation, no change was observed in cortical inhibitory transmission measured 30-200 ms post-stimulus. These results show that excitatory transmission (including excitatory amino acid receptor function) is altered by adult whisker deprivation.
Collapse
Affiliation(s)
- S Dolan
- Department of Psychology, University of Stirling, Scotland, U.K
| | | |
Collapse
|
13
|
Jiménez-Capdeville ME, Reader TA, Molina-Holgado E, Dykes RW. Changes in extracellular levels of dopamine metabolites in somatosensory cortex after peripheral denervation. Neurochem Res 1996; 21:1-6. [PMID: 8833217 DOI: 10.1007/bf02527665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study examined the effects of a nerve transection on monoamine release from primary somatosensory cortex. The technique of microdialysis was employed to sample extracellular levels of norepinephrine (NE), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindole-3-acetic acid (5-HIAA) and homovanillic acid (HVA) in the barrel field of freely moving rats following the surgical transection of the contralateral infraorbital nerve. Microdialysates obtained 3, 4, and 5 days after deafferentation were analyzed using high-performance liquid chromatography with electrochemical detection. We found a significant increase in the release of the dopamine metabolites, DOPAC and HVA from the deafferented cortex. Three days after deafferentation the release of DOPAC was three-fold higher in the deafferented than in the control animals, and remained about 100% higher in the next two days in this group of animals. The release of HVA showed a gradual increase following the deafferentation procedure, since a 92% larger value on day 3 increased to a 338% difference on day 5. On the other hand, the release rate of NE and the levels of the serotonin metabolite 5-HIAA were not significantly affected by the deafferentation procedure. These results are discussed in the context of the possible participation of dopamine in the reorganization of the deafferented somatosensory cortex.
Collapse
Affiliation(s)
- M E Jiménez-Capdeville
- Departmento de Bioquimica, Facultad de Medicina, Universidad Autonoma de San Luis Potosi, Mexico
| | | | | | | |
Collapse
|
14
|
Dunn-Meynell AA, Levin BE. Lateralized effect of unilateral somatosensory cortex contusion on behavior and cortical reorganization. Brain Res 1995; 675:143-56. [PMID: 7796123 DOI: 10.1016/0006-8993(95)00050-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have shown that rats recover function after unilateral somatosensory cortex lesions, possibly by transfer of information processing to other brain areas not normally involved in those functions. In the present study, adult rats underwent unilateral contusions of the somatosensory cortex with ablation of the barrel receptor field. Behavioral testing with modified beam-walking and sensory neglect tasks demonstrated persistent somatosensory deficits in rats with left contusions but no apparent deficits in right injured animals. After 2 months, the [14C]2-deoxyglucose (2-DG) method was used to show the metabolic activity produced by unilateral stimulation of the facial vibrissae. In left injured animals, cortical metabolic activity rostral and caudal to the injury site was depressed both under basal conditions and during right vibrissal stimulation. On the other hand, comparison of the pattern of [14C]2-DG uptake in the intact, right cortex revealed changes in the pattern of glucose utilization associated with left injury combined with right vibrissal stimulation. Pattern changes were quantified by measuring the area in which glucose utilization was within the highest 25% of this range (high activity area; HAA). Right vibrissal stimulation in left injured rats caused an expansion of this HAA in the intact occipital/temporal cortex. Also, in the intact somatosensory cortex of left injured rats, there was an enlarged HAA whether or not vibrissal stimulation was performed. Thus, a combination of depressed peri-injury metabolic activity and aberrant activity in remote brain areas occurs following unilateral somatosensory cortex injury. It remains to be shown whether these factors ameliorate or contribute to persistent behavioral deficits.
Collapse
Affiliation(s)
- A A Dunn-Meynell
- Neurology Service (127), Department of Veterans Affairs Medical Center, East Orange, NJ 07018-1095, USA
| | | |
Collapse
|
15
|
Ito M. Barrelfield of the prenatally X-irradiated rat somatosensory cortex: a histochemical and electrophysiological study. J Comp Neurol 1995; 352:248-62. [PMID: 7721993 DOI: 10.1002/cne.903520208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of prenatal X-irradiation on the vibrissal cortical barrelfield of the brain of rats exposed to 200 R on the embryonic day 17 was studied morphologically and electrophysiologically. Cytoarchitectural barrels fail to appear in adult rats that have been subjected to this in utero treatment. However, sections cut in a plane tangential to the vibrissal cortex and examined for cytochrome oxidase (CO), a mitochondrial enzyme, contained a matrix of patterned CO activity which, albeit smaller and weaker in intensity, is similar to CO barrels in normal controls. Current source density analysis of cortical field potentials indicated that, as in the normal cortex, the earliest sink following peripheral stimulation appears in association with this high CO activity. These results suggest that the specific vibrissal thalamocortical pathway sets up an excitatory synaptic activity in the cortex of the irradiated animal. Efficacy of this route in eliciting postsynaptic spikes in the cortical output neurons was confirmed by recording extracellular spike responses to vibrissa displacements from layer Vb pyramidal neurons that were then injected intracellularly with horseradish peroxidase for later anatomical identification.
Collapse
Affiliation(s)
- M Ito
- Physiological Laboratory, Aichi Colony for the Handicapped, Kasugai, Japan
| |
Collapse
|
16
|
Jabłońska B, Gierdalski M, Siucińska E, Skangiel-Kramska J, Kossut M. Partial blocking of NMDA receptors restricts plastic changes in adult mouse barrel cortex. Behav Brain Res 1995; 66:207-216. [PMID: 7755891 DOI: 10.1016/0166-4328(94)00141-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes of cortical body maps can be evoked in brains of adult animals by injury to sensory nerves. We investigated changes of functional representation of row C of mystacial vibrissae in the barrel cortex of mice. Plastic changes of cortical representations were mapped with 2-deoxyglucose autoradiography. Seven days after lesions of all vibrissae except row C, cortical representation of the spared row increased in width by 60%. Partial blocking of N-methyl-D-aspartate (NMDA) receptors by subdural implants of thin sheets of Elvax impregnated with DL-2-amino-5-phosphonovaleric acid (APV) prevented development of the increase of row C representation. Low level of NMDA receptor blocking did not affect significantly the basal level of 2DG uptake and stimulus evoked uptake but prevented the plastic change of the body map.
Collapse
Affiliation(s)
- B Jabłońska
- Department of Neurophysiology, Nencki Institute, Warsaw, Poland
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Dunn-Meynell A, Pan S, Levin BE. Focal traumatic brain injury causes widespread reductions in rat brain norepinephrine turnover from 6 to 24 h. Brain Res 1994; 660:88-95. [PMID: 7828006 DOI: 10.1016/0006-8993(94)90842-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of right sensorimotor traumatic brain injury (TBI) in male Sprague-Dawley rats on brain norepinephrine (NE) turnover was assessed by measuring the decline of endogenous NE levels following tyrosine hydroxylase inhibition produced with alpha-methyl-p-tyrosine. Right sensorimotor cortex contusions were produced by a pneumatically driven piston which depressed the dural surface by 2 mm at 3.2 m/s. TBI rats were compared to uninjured, anesthetized controls at 6 h and 24 h after surgery. While NE turnover was not affected at the lesion site at 6 h after TBI, it was either abolished or decreased by 33-75% bilaterally in the hypothalamus and in the cerebral cortex surrounding and rostral to the lesion site. In the cortex caudal to the lesion site, NE turnover was completely abolished. NE turnover in cerebral cortex opposite the lesion site and in the contralateral cerebellum was decreased by 51 and 43%, respectively, at 6 h. At 24 h, NE turnover was either abolished or decreased bilaterally by 45-92% in all cortical areas, in the hypothalamus, cerebellum, locus coeruleus and medulla. Thus, right sensorimotor cortex contusion causes a marked, early and widespread depression of brain NE turnover. Since amphetamine increases NE turnover, this may explain the dramatic improvement in behavioral deficits which occurs following amphetamine administration at 24 h after such lesions.
Collapse
Affiliation(s)
- A Dunn-Meynell
- Neurology Service, Department of Veterans Affairs Medical Center, East Orange, NJ 07018
| | | | | |
Collapse
|
19
|
Dunn-Meynell AA, Levin BE. Alpha 1-adrenoceptors in the adult rat barrel field: effects of deafferentation and norepinephrine removal. Brain Res 1993; 623:25-32. [PMID: 8221090 DOI: 10.1016/0006-8993(93)90005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Norepinephrine (NE), acting on brain adrenoceptors, plays an important role in barrel field neuronal activity and plasticity. For this reason, the distribution of alpha 1- and alpha 2-adrenoceptors in the somatosensory cortex barrel field was studied by autoradiographic techniques in rats undergoing plastic change or NE depletion. In layers IV and V of the cortex, the pattern of alpha 1-adrenoceptors (assessed by [3H]prazosin binding) varied across the barrel field. There was relatively low binding within the barrels themselves, with 21% higher binding in the surrounding septa. alpha 2-Adrenoceptor binding (assessed with [3H]paraminoclonidine) was almost homogeneous across the entire barrel field. Two weeks after noradrenergic deafferentation by unilateral lesioning of the locus coeruleus, there was a 16% upregulation of [3H]prazosin binding. This then returned to control levels of by 8 weeks. Peripheral deafferentation of sensory input to the barrel field produced the opposite effect on alpha 1-adrenoceptors. Unilateral removal of all but the central (C3) vibrissa (which induces plastic changes in the cortical representation of the spared virbrissa) caused a 12% decrease in [3H]prazosin binding in the whole barrel field at 2 weeks after surgery which returned to normal by 8 weeks. Therefore, alpha 1-adrenoceptors in the barrel field of the rat are affected in opposite ways by changes in NE content and afferent sensory input. We hypothesize that alpha 1-adrenoceptor levels are modulated after vibrissectomy through either an indirect reaction to reduced cortical gamma-aminobutyric acid levels, or by a reordering of metabolic priorities during plastic change of the cortical neuronal network.
Collapse
Affiliation(s)
- A A Dunn-Meynell
- Department of Veterans Affairs Medical Center, East Orange, NJ 07018
| | | |
Collapse
|
20
|
Christie MJ, Jelinek HF. Dye-coupling among neurons of the rat locus coeruleus during postnatal development. Neuroscience 1993; 56:129-37. [PMID: 7694183 DOI: 10.1016/0306-4522(93)90568-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Simultaneous recordings from pairs of locus coeruleus neurons in neonatal rat brain slices previously demonstrated synchronous, subthreshold oscillations of membrane potential (rats < 24 days old) and electronic-coupling between 40% of pairs of neurons from rats less than 10 days old. In the present study, slices from 1-21 day-old rats were stained with avidin-HRP-diaminobenzidine only if a single neuron per slice was impaled for longer than 10 min using an electrode containing biocytin. In slices from rats less than one week old, multiple stained neurons (3.8 +/- 0.6 neurons/slice) were observed in 10 of 11 slices. Apparent contacts between stained neurons were observed at varying distances along dendrites. In rats older than one week significantly fewer multiple stained neurons were observed (three of 20 slices). The proportion of neurons displaying spontaneous subthreshold oscillations of membrane potential decreased with age, and the frequencies of subthreshold oscillations of membrane potential and entrained action potentials increased with age. The presence of multiple stained neurons was not correlated with the occurrence of subthreshold oscillations, cell input resistance, or the number of coupled neurons predicted from the shape of electronic potentials. In recordings from neurons displaying subthreshold oscillations, input resistance was lower and the number of coupled neurons predicted from electrotonic potentials was greater than in those without oscillations. These results suggest that low resistance pathways are common between locus coeruleus neurons in brain slices from rats younger than about one week old, consistent with previous electrotonic-coupling studies.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M J Christie
- Department of Pharmacology, University of Sydney, N.S.W., Australia
| | | |
Collapse
|
21
|
Levin BE, Dunn-Meynell A. Regulation of growth-associated protein 43 (GAP-43) messenger RNA associated with plastic change in the adult rat barrel receptor complex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 18:59-70. [PMID: 8479290 DOI: 10.1016/0169-328x(93)90173-m] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plastic change occurs in the adult rat barrel receptor complex following peripheral deafferentation by removal of facial vibrissae (vibrissectomy) and can be prevented by prior depletion of brain norepinephrine. Growth-associated protein (GAP-43, B50, F1, pp46), a marker for synaptic reorganization, increases in the barrel cortex of adult rats following both peripheral and central deafferentation. Here we followed changes in GAP-43 mRNA expression in the barrel receptor system following vibrissectomy. Adult rats had unilateral total vibrissectomy with sparing of the central (C3) vibrissa. By in situ hybridization, GAP-43 mRNA first increased at 24h (9%, P < 0.05) in the ipsilateral trigeminal complex. Levels remained elevated (up to 25% of the unlesioned side) over the next 6 days, decreased to 88% at 7 days and returned to control levels at 14 days. Contralateral barrel cortex levels of GAP-43 mRNA increased by 14% at 4-5 days remained elevated through 7 days and returned to control levels by 14 days. Increased GAP-43 mRNA levels 6 days after vibrissectomy were reproduced by complete transection of the infraorbital nerve and were blocked by depletion of brain norepinephrine. No change occurred in ventrobasal thalamus GAP-43 mRNA at any time. Dot blot and Northern blot hybridizations of GAP-43 mRNA after vibrissectomy showed a 43% increase in the ipsilateral trigeminal complex and a 16% increase in the contralateral barrel cortex at 3 days and an 84% increase in ipsilateral trigeminal and 50% increase in contralateral barrel cortex GAP-43 mRNA at 6 days, respectively. Thus, deafferentation-induced plasticity in the barrel pathway depends upon norepinephrine and is associated with increase in both GAP-43 mRNA and protein suggesting that this may involve a structural change.
Collapse
Affiliation(s)
- B E Levin
- Neurology Service, Department of Veterans Affairs Medical Center, E. Orange, NJ 07018
| | | |
Collapse
|
22
|
Affiliation(s)
- M Kossut
- Nencki Institute, Warsaw, Poland
| |
Collapse
|
23
|
Klein BG, Blaker WD, White CF, Misra BR. Time course of serotonergic afferent plasticity within rat spinal trigeminal nucleus following infraorbital nerve transection. Brain Res 1992; 588:335-40. [PMID: 1382811 DOI: 10.1016/0006-8993(92)91596-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-performance liquid chromatography with electrochemical detection (HPLC-ED) and immunocytochemistry were used to examine the time course of serotonergic afferent plasticity within trigeminal subnucleus interpolaris (SpVi) following infraorbital nerve (ION) transection in adult rats. Biochemical analysis was also performed in trigeminal subnucleus caudalis (SpVc) to examine the possibility of transient lesion-induced changes in this region. No significant changes in serotonin (5-HT) or 5-hydroxyindoleacetic acid (5-HIAA) concentration, or in density of 5-HT-immunoreactive (5-HTIR) axonal varicosities were observed in either subnucleus on the lesioned side, up to 51 days following ION cut. However, at 76-79 days post-lesion, a significant increase in 5-HT concentration was again demonstrated within SpVi.
Collapse
Affiliation(s)
- B G Klein
- Department of Biomedical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | | | | | |
Collapse
|
24
|
Dunn-Meynell AA, Benowitz LI, Levin BE. Vibrissectomy induced changes in GAP-43 immunoreactivity in the adult rat barrel cortex. J Comp Neurol 1992; 315:160-70. [PMID: 1531989 DOI: 10.1002/cne.903150204] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Within the rat primary somatosensory cortex, neurons responding principally to movement of each individual mystacial vibrissa are grouped together in structures termed barrels. Previous studies have examined changes in the area of cortex showing increased 2-deoxyglucose uptake in response to vibrissal stimulation. These studies have shown that chronic removal of all but the central (C3) vibrissa in adult rats induces an enlarged representation of the remaining C3 barrel in the contralateral cortex. This increase is prevented by cortical norepinephrine depletion. The major question raised by such studies is whether such plasticity is due to structural rearrangement or unmasking of otherwise silent synapses. In this study, antibodies to GAP-43, a presynaptic protein whose synthesis is related to neuronal development and regeneration, were used to investigate this issue. In adult rat brain, tangential sections through layer IV of the barrel receptor field normally show moderate levels of GAP-43 immunoreactivity (GAP-IR) in the inter-barrel septa and low levels within the barrels themselves. The present study examined changes in the pattern of GAP-IR from 1 to 8 weeks after vibrissectomy with sparing of C3 as an index of possible physical reorganization of cortical circuits. Quantitative analysis of the cortices of animals with unilateral vibrissectomy with sparing of C3 showed that the area of low GAP-IR within the barrels surrounding C3 was decreased at 1 week (8.4% shrinkage; P less than 0.01) and 8 weeks (12.0% shrinkage; P less than 0.015), relative to the cortex ipsilateral to the surgery. Both bilateral vibrissectomy with sparing of C3 and ibotenic acid lesions of the ventrobasal thalamus produced similar results. Some evidence was also seen that the area of low GAP-IR in the C3 barrel shrank to a similar degree after such manipulations. Cortical norepinephrine depletion had no apparent effect on vibrissectomy-induced GAP-IR changes. These results suggest that removal of vibrissal input to the adult rat barrel cortex produces transynaptic induction of axonal sprouting within the barrel cortex.
Collapse
Affiliation(s)
- A A Dunn-Meynell
- Neurology Service, Department of Veterans Affairs Medical Center, E. Orange, New Jersey 07019
| | | | | |
Collapse
|