1
|
Salehi S, Schallmayer E, Bandomir N, Kärcher A, Güth JF, Heitel P. Screening of Chelidonium majus isoquinoline alkaloids reveals berberine and chelidonine as selective ligands for the nuclear receptors RORβ and HNF4α, respectively. Arch Pharm (Weinheim) 2024; 357:e2300756. [PMID: 38501877 DOI: 10.1002/ardp.202300756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
The nuclear receptors hepatocyte nuclear factor 4α (HNF4α) and retinoic acid receptor-related orphan receptor-β (RORβ) are ligand-regulated transcription factors and potential drug targets for metabolic disorders. However, there is a lack of small molecular, selective ligands to explore the therapeutic potential in further detail. Here, we report the discovery of greater celandine (Chelidonium majus) isoquinoline alkaloids as nuclear receptor modulators: Berberine is a selective RORβ inverse agonist and modulated target genes involved in the circadian clock, photoreceptor cell development, and neuronal function. The structurally related chelidonine was identified as a ligand for the constitutively active HNF4α receptor, with nanomolar potency in a cellular reporter gene assay. In human liver cancer cells naturally expressing high levels of HNF4α, chelidonine acted as an inverse agonist and downregulated genes associated with gluconeogenesis and drug metabolism. Both berberine and chelidonine are promising tool compounds to further investigate their target nuclear receptors and for drug discovery.
Collapse
Affiliation(s)
- Sohrab Salehi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nils Bandomir
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Annette Kärcher
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Frederik Güth
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Mekala S, Sukumar G, Chawla S, Geesala R, Prashanth J, Reddy BJM, Mainkar P, Das A. Therapeutic Potential of Benzimidazoisoquinoline Derivatives in Alleviating Murine Hepatic Fibrosis. Chem Biodivers 2024; 21:e202301429. [PMID: 38221801 DOI: 10.1002/cbdv.202301429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFβ-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRβ, and TGFRIIβ in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Shilpa Chawla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Ramasatyaveni Geesala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Jupally Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
| | - B Jagan Mohan Reddy
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Prathama Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| |
Collapse
|
3
|
Sulaiman M, Jannat K, Nissapatorn V, Rahmatullah M, Paul AK, de Lourdes Pereira M, Rajagopal M, Suleiman M, Butler MS, Break MKB, Weber JF, Wilairatana P, Wiart C. Antibacterial and Antifungal Alkaloids from Asian Angiosperms: Distribution, Mechanisms of Action, Structure-Activity, and Clinical Potentials. Antibiotics (Basel) 2022; 11:1146. [PMID: 36139926 PMCID: PMC9495154 DOI: 10.3390/antibiotics11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug-resistant bacteria and fungi requires the development of antibiotics and antifungal agents. This review identified natural products isolated from Asian angiosperms with antibacterial and/or antifungal activities and analyzed their distribution, molecular weights, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1979 to 2022. One hundred and forty-one antibacterial and/or antifungal alkaloids were identified during this period, mainly from basal angiosperms. The most active alkaloids are mainly planar, amphiphilic, with a molecular mass between 200 and 400 g/mol, and a polar surface area of about 50 Å2, and target DNA and/or topoisomerase as well as the cytoplasmic membrane. 8-Acetylnorchelerythrine, cryptolepine, 8-hydroxydihydrochelerythrine, 6-methoxydihydrosanguinarine, 2'-nortiliacorinine, pendulamine A and B, rhetsisine, sampangine, tiliacorine, tryptanthrin, tylophorinine, vallesamine, and viroallosecurinine yielded MIC ≤ 1 µg/mL and are candidates for the development of lead molecules.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Monica Suleiman
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81411, Saudi Arabia
| | - Jean-Frédéric Weber
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR ŒNOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
4
|
Computational Studies of the Photogeneration from Dihydrosanguinarine and the Probable Cytotoxicity Mechanism of Sanguinarine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A computational investigation of the mechanism of dihydrosanguinarine (DHSAN) photoactivation and its conversion into the active drug sanguinarine (SAN) is here reported. The reaction mechanism of DHSAN photoconversion was fully explored by considering its excitation first, essential for generating one of the reactants, the 1O2, and then locating all the minima and transition states involved in the formation of SAN. Both forms of the drug present at physiological pH, namely, iminium cation and alkanolamine, were considered as products of such reaction. The ability of the generated drug SAN to induce cell apoptosis was then explored, taking into consideration two anticancer activities: the induction of DNA conformational and functional changes by intercalation and the absorption of light with proper wavelength to trigger type II photochemical reactions leading to 1O2 sensitization for photodynamic therapy application. Concerning the ability to work as photosensitizers, the outcomes of our calculations prove that DHSAN can easily be converted into the active SAN under visible and NIR irradiation through the application of two-photon excitation, and that the maximum absorption of SAN, once intercalated into DNA, shifts to the near region of the therapeutic window.
Collapse
|
5
|
Faal Hamedani N, Ghazvini M, Azad L, Noushin A. Green synthesis of pyrido[2,1‐
a
]isoquinolines and pyrido[1,2‐
a
]quinolins using Fe
3
O
4
‐MNPs as efficient nanocatalyst: Study of antioxidant activity. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Naghmeh Faal Hamedani
- Department of Chemistry, Faculty of ValiasrTechnical and Vocational University (TVU) Tehran Iran
| | | | - Leila Azad
- Department of ChemistryIslamic Azad University Khodabandeh Iran
| | | |
Collapse
|
6
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
7
|
Wang Y, Patil P, Kurpiewska K, Kalinowska-Tluscik J, Dömling A. Diverse Isoquinoline Scaffolds by Ugi/Pomeranz-Fritsch and Ugi/Schlittler-Müller Reactions. Org Lett 2019; 21:3533-3537. [PMID: 31033297 PMCID: PMC6528277 DOI: 10.1021/acs.orglett.9b00778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The Pomeranz–Fritsch reaction
and its Schlittler–Müller modification were successfully
applied in the Ugi postcyclization strategy by using orthogonally
protected aminoacetaldehyde diethyl acetal and complementary electron
rich building blocks. Several scaffolds, including isoquinolines,
carboline, alkaloid-like tetrazole-fused tetracyclic compounds, and
benzo[d]azepinone scaffolds, were synthesized in
generally moderate to good yield. All our syntheses provide a short
MCR-based sequence to novel or otherwise difficult to access scaffolds.
Hence, we foresee multiple applications of these synthesis technologies.
Collapse
Affiliation(s)
- Yuanze Wang
- Drug Design , University of Groningen , Deusinglaan 1 , 7313 AV Groningen , The Netherlands
| | - Pravin Patil
- Drug Design , University of Groningen , Deusinglaan 1 , 7313 AV Groningen , The Netherlands
| | - Katarzyna Kurpiewska
- Faculty of Chemistry , Jagiellonian University , 3 Ingardena Street , 30-060 Krakow , Poland
| | | | - Alexander Dömling
- Drug Design , University of Groningen , Deusinglaan 1 , 7313 AV Groningen , The Netherlands
| |
Collapse
|
8
|
Wan M, Zhang L, Chen Y, Li Q, Fan W, Xue Q, Yan F, Song W. Synthesis and Anticancer Activity Evaluation of Novel Phenanthridine Derivatives. Front Oncol 2019; 9:274. [PMID: 31058081 PMCID: PMC6478010 DOI: 10.3389/fonc.2019.00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Based on the structure of sanguinarine, fourteen phenanthridine derivatives were designed and synthesized in the current study. The cytotoxic activities of synthesized compounds were evaluated against five human cancer cell lines (MCF-7, PC3, Hela, A549, and HepG2 cell lines) via MTT assay. Among all the compounds tested, molecule 8a exhibited significant cytotoxic activity against MCF-7 cells with a IC50 value of 0.28 μM. A following up enzymatic assay indicated that compound 8a could inhibit the activity of DNA topoisomerase I/II. Further mechanistic studies performed in the MCF-7 cell line revealed that compound 8a could arrest cell cycle in S phase and induce cell apoptosis via downregulation of Bcl-2 and upregulation of Bax. Collectively, a potent DNA topoisomerase inhibitor (8a) was discovered, which exhibited potential as a candidate chemotherapeutic agent for the management of tumors in the present study.
Collapse
Affiliation(s)
- Minghui Wan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yiming Chen
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qiang Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Wenli Fan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qingxia Xue
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Weiguo Song
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Carbonell E, Martinez-Camarena A, Galiana-Rosello C, Inclan M, Tejero R, Yunta MJR, Navarro P, Gomez-Contreras F, Sanz AM, Campayo L, Cano MC, García-España E, González-García J. Acid–base behaviour and binding to double stranded DNA/RNA of benzo[g]phthalazine-based ligands. NEW J CHEM 2019. [DOI: 10.1039/c8nj05039b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Benzo[g]phthalazine derivatives show different binding modes and base selectivity towards canonical DNA/RNA depending on the substitution of the aromatic moiety.
Collapse
|
10
|
Zou C, Wang Y, Zou H, Ding N, Geng N, Cao C, Zhang G. Sanguinarine in Chelidonium majus induced antifeeding and larval lethality by suppressing food intake and digestive enzymes in Lymantria dispar. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:9-16. [PMID: 30744901 DOI: 10.1016/j.pestbp.2018.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 06/09/2023]
Abstract
Our previous studies had identified that both crude extracts and total alkaloid from Chelidonium majus exerted a significant antifeeding and larval lethality on Lymantria dispar. Moreover, sanguinarine, chelidonine, berberine hydrochloride and coptisine were the main alkaloid in C. majus exerting toxicity to L. dispar. In this paper, we evaluated the insecticidal and antifeeding activities of each alkaloid on the 3rd instar L. dispar larvae by bioassay. Meanwhile, the effects of alkaloids from C. majus on the activities and mRNA levels of three main digestive enzymes in L. dispar larvae were investigated. The results indicated that sanguinarine possessed the strongest insecticidal activity with a LD50 value of 4.963 μg/larva, and the coptisine showed little lethality to 3 rd instar L. dispar larvae among four alkaloids from C. majus. The insecticidal capacity of four alkaloids on 3rd instar L. dispar larvae was in the following decreasing order of sanguinarine > chelidonine > berberine hydrochloride > coptisine. Similarly, except coptisine, the other three alkaloids significantly reduced food intakes of third instar L. dispar larvae and suppressed activities of three digestive enzymes (α-amylase, lipase and total protease) simultaneously. Finally, qRT-PCR analysis revealed that the transcriptions of α-amylase, lipase and serine protease were affected by sanguinarine. Especially, at 48 h after treatment, the mRNA expressions of those digestive enzymes were significantly suppressed by sanguinarine. In conclusion, we suggested that alkaloids from C. majus induced antifeeding and larval lethality on L. dispar larvae by suppressing food intake and digestive enzymes in L. dispar. Our findings provide a novel insight into evaluating the antifeeding and insecticidal properties of C. majus, which afford a new strategy for integrated pest management programs as well.
Collapse
Affiliation(s)
- ChuanShan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - YaJun Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nan Ding
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - NanNan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - ChuanWang Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - GuoCai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
11
|
Basu A, Kumar GS. Nucleic acids binding strategies of small molecules: Lessons from alkaloids. Biochim Biophys Acta Gen Subj 2018; 1862:1995-2016. [DOI: 10.1016/j.bbagen.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
|
12
|
Synthesis, Bacteriostatic and Anticancer Activity of Novel Phenanthridines Structurally Similar to Benzo[c]phenanthridine Alkaloids. Molecules 2018; 23:molecules23092155. [PMID: 30150591 PMCID: PMC6225299 DOI: 10.3390/molecules23092155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 01/12/2023] Open
Abstract
In this study, we report the synthesis, antibacterial and anticancer evaluation of 38 novel phenanthridines that were designed as analogs of the benzo[c]phenanthridine alkaloids. The prepared phenanthridines differ from the benzo[c]phenanthridines in the absence of a benzene A-ring. All novel compounds were prepared from 6-bromo-2-hydroxy-3-methoxybenzaldehyde in several synthetic steps through reduction of Schiff bases and accomplished by radical cyclization. Twelve derivatives showed high antibacterial activity against Bacillussubtilis, Micrococcusluteus and/or Mycobacteriumvaccae at single digit micromolar concentrations. Some compounds also displayed cytotoxicity against the K-562 and MCF-7 cancer cell lines at as low as single digit micromolar concentrations and were more potent than chelerythrine and sanguinarine. The active compounds caused cell-cycle arrest in cancer cells, increased levels of p53 protein and caused apoptosis-specific fragmentation of PARP-1. Biological activity was connected especially with the presence of the N-methyl quaternary nitrogen and 7-benzyloxy substitution (compounds 7i, 7j, 7k, and 7l) of phenanthridine.
Collapse
|
13
|
Croaker A, King GJ, Pyne JH, Anoopkumar-Dukie S, Simanek V, Liu L. Carcinogenic potential of sanguinarine, a phytochemical used in 'therapeutic' black salve and mouthwash. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:46-56. [PMID: 29173498 DOI: 10.1016/j.mrrev.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/17/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023]
Abstract
Black salves are escharotic skin cancer therapies in clinical use since the mid 19th century. Sanguinaria canadensis, a major ingredient of black salve formulations, contains a number of bioactive phytochemicals including the alkaloid sanguinarine. Despite its prolonged history of clinical use, conflicting experimental results have prevented the carcinogenic potential of sanguinarine from being definitively determined. Sanguinarine has a molecular structure similar to known polyaromatic hydrocarbon carcinogens and is a DNA intercalator. Sanguinarine also generates oxidative and endoplasmic reticulum stress resulting in the unfolded protein response and the formation of 8-hydroxyguanine genetic lesions. Sanguinarine has been the subject of contradictory in vitro and in vivo genotoxicity and murine carcinogenesis test results that have delayed its carcinogenic classification. Despite this, epidemiological studies have linked mouthwash that contains sanguinarine with the development of oral leukoplakia. Sanguinarine is also proposed as an aetiological agent in gallbladder carcinoma. This literature review investigates the carcinogenic potential of sanguinarine. Reasons for contradictory genotoxicity and carcinogenesis results are explored, knowledge gaps identified and a strategy for determining the carcinogenic potential of sanguinarine especialy relating to black salve are discussed. As patients continue to apply black salve, especially to skin regions suffering from field cancerization and skin malignancies, an understanding of the genotoxic and carcinogenic potential of sanguinarine is of urgent clinical relevance.
Collapse
Affiliation(s)
- Andrew Croaker
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia; Wesley Medical Research Institute, Wesley Hospital, Auchenflower, QLD, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - John H Pyne
- School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Shailendra Anoopkumar-Dukie
- Quality Use of Medicines Network, Queensland, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Vilim Simanek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia.
| |
Collapse
|
14
|
Basu P, Kumar GS. Sanguinarine and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:155-172. [PMID: 27671816 DOI: 10.1007/978-3-319-41334-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of natural products derived from plants as medicines precedes even the recorded human history. In the past few years there were renewed interests in developing natural compounds and understanding their target specificity for drug development for many devastating human diseases. This has been possible due to remarkable advancements in the development of sensitive chemistry and biology tools. Sanguinarine is a benzophenanthridine alkaloid derived from rhizomes of the plant species Sanguinaria canadensis. The alkaloid can exist in the cationic iminium and neutral alkanolamine forms. Sanguinarine is an excellent DNA and RNA intercalator where only the iminium ion binds. Both forms of the alkaloid, however, shows binding to functional proteins like serum albumins, lysozyme and hemoglobin. The molecule is endowed with remarkable biological activities and large number of studies on its various activities has been published potentiating its development as a therapeutic agent particularly for chronic human diseases like cancer, asthma, etc. In this article, we review the properties of this natural alkaloid, and its diverse medicinal applications in relation to how it modulates cell death signaling pathways and induce apoptosis through different ways, its utility as a therapeutic agent for chronic diseases and its biological effects in animal and human models. These data may be useful to understand the therapeutic potential of this important and highly abundant alkaloid that may aid in the development of sanguinarine-based therapeutic agents with high efficacy and specificity.
Collapse
Affiliation(s)
- Pritha Basu
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
15
|
Sandor R, Midlik A, Sebrlova K, Dovrtelova G, Noskova K, Jurica J, Slaninova I, Taborska E, Pes O. Identification of metabolites of selected benzophenanthridine alkaloids and their toxicity evaluation. J Pharm Biomed Anal 2016; 121:174-180. [DOI: 10.1016/j.jpba.2016.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/24/2022]
|
16
|
Han BJ, Jiang GB, Yao JH, Li W, Wang J, Huang HL, Liu YJ. DNA interaction, antioxidant activity, and bioactivity studies of two ruthenium(II) complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:840-849. [PMID: 25150435 DOI: 10.1016/j.saa.2014.07.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/09/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(dcdppz)](ClO4)2 (1) and [Ru(bpy)2(dcdppz)](ClO4)2 (2) were prepared and characterized. The crystal structure of the complex 2 was solved by single crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group P21/n with a=12.9622(14)Å, b=17.1619(19)Å, c=22.7210(3)Å, β=100.930(2)(°), R=0.0536, Rω=0.1111. The DNA-binding constants for complexes 1 and 2 were determined to be 1.92×10(5) (s=1.72) and 2.24×10(5) (s=1.86)M(-1), respectively. The DNA-binding behaviors showed that complexes 1 and 2 interact with DNA by intercalative mode. The antioxidant activities of the ligand and the complexes were performed. Ligand, dcdppz, has no cytotoxicity against the selected cell lines. Complex 1 shows higher cytotoxicity than complex 2, but lower than cisplatin toward selected cell lines. The apoptosis and cell cycle arrest were investigated, and the apoptotic mechanism of BEL-7402 cells was studied by reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis. Complex 1 induces apoptosis in BEL-7402 cells through ROS-mediated mitochondrial dysfunction pathway and by regulating the expression of Bcl-2 family proteins.
Collapse
Affiliation(s)
- Bing-Jie Han
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Guang-Bin Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jun-Hua Yao
- Instrumentation Analysis and Research Center, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wei Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ji Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Hong-Liang Huang
- School of Life Science and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
17
|
Wang XZ, Yao JH, Jiang GB, Wang J, Huang HL, Liu YJ. Synthesis, characterization, cytotoxicity, a poptosis and cell cycle arrest of dibenzoxanthenes derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 133:559-567. [PMID: 24992915 DOI: 10.1016/j.saa.2014.05.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
Two new dibenzoxanthenes compounds 1 and 2 have been synthesized and characterized by analytical and spectral methods. The crystal structure of compound 2 informs that the five rings of compound are almost planar. The DNA binding properties of two compounds were studied by absorption titration, viscosity measurement and luminescence. These results indicate that two compounds interact with calf thymus DNA through intercalative mode. Agarose gel electrophoresis experiment shows that PBR 322 DNA can be induced to cleave by two compounds under photoactivated condition. Compound 1 exhibits higher cytotoxicity than compound 2 toward MG-63, BEL-7402 and A549 cells. The apoptosis and cellular uptake of MG-63 cells were studied by fluorescence microscopy. Two compounds can also enhance the level of reactive oxygen species (ROS) and decrease the mitochondrial membrane potential. Compound 1 induces cell cycle arrest in G2/M phase and compound 2 induces cell cycle arrest in G0/G1 phase in MG-63.
Collapse
Affiliation(s)
- Xiu-Zhen Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jun-Hua Yao
- Instrumentation Analysis and Research Center, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Guang-Bin Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ji Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Hong-Liang Huang
- School of Life Science and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Kumar GS, Hazra S. Sanguinarine, a promising anticancer therapeutic: photochemical and nucleic acid binding properties. RSC Adv 2014. [DOI: 10.1039/c4ra06456a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sanguinarine is a benzophenanthridine plant alkaloid with remarkable therapeutic utility. In this article the photochemical and nucleic acid binding properties of this putative anticancer agent is reviewed.
Collapse
Affiliation(s)
- Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032, India
| | - Soumitra Hazra
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032, India
| |
Collapse
|
19
|
Bhowmik D, Buzzetti F, Fiorillo G, Orzi F, Syeda TM, Lombardi P, Suresh Kumar G. Synthesis of new 13-diphenylalkyl analogues of berberine and elucidation of their base pair specificity and energetics of DNA binding. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00254c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Herman B, Gudrun A, Potopalsky AI, Chroboczek J, Tcherniuk SO. Amitozyn impairs chromosome segregation and induces apoptosis via mitotic checkpoint activation. PLoS One 2013; 8:e57461. [PMID: 23505430 PMCID: PMC3591406 DOI: 10.1371/journal.pone.0057461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 01/24/2013] [Indexed: 11/23/2022] Open
Abstract
Amitozyn (Am) is a semi-synthetic drug produced by the alkylation of major celandine (Chelidonium majus L.) alkaloids with the organophosphorous compound N,N'N'-triethylenethiophosphoramide (ThioTEPA). We show here that the treatment of living cells with Am reversibly perturbs the microtubule cytoskeleton, provoking a dose-dependent cell arrest in the M phase. Am changed the dynamics of tubulin polymerization in vitro, promoted the appearance of aberrant mitotic phenotypes in HeLa cells and induced apoptosis by the activation of caspase-9, caspase-3 and PARP, without inducing DNA breaks. Am treatment of HeLa cells induced changes in the phosphorylation of the growth suppressor pRb that coincided with maximum mitotic index. The dose-dependent and reversible anti-proliferative effect of Am was observed in several transformed cell lines. Importantly, the drug was also efficient against multidrug-resistant, paclitaxel-resistant or p53-deficient cells. Our results thus open the way to further pre-clinical evaluation of Am.
Collapse
Affiliation(s)
- Bastien Herman
- Institut de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Aldrian Gudrun
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Anatoly I. Potopalsky
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine (NAN Ukraine), Kiev, Ukraine
| | - Jadwiga Chroboczek
- Institut de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAN), Warsaw, Poland
- Thérapeutique Recombinante Expérimentale/Techniques de l’Ingénierie Médicale et de la Complexité/Informatique, Mathématiques et Applications de Grenoble (Therex/TIMC/IMAG), Centre National de la Recherche Scientifique (CNRS)/Université Joseph Fourier (UJF), Domaine de la Merci, La Tronche, France
| | - Sergey O. Tcherniuk
- Institut de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Department of Biological Sciences, Academy of Young Scientists of Ukraine (AYSU), Kiev, Ukraine
| |
Collapse
|
21
|
Kundu S, Biswas MK, Banerjee A, Bhadra K, Kumar GS, Drew MGB, Bhadra R, Ghosh P. Synthesis, structure and DNA binding studies of 9-phenyldibenzo[a,c] phenazin-9-ium. RSC Adv 2013. [DOI: 10.1039/c2ra22317a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Zhang J, Du Z, Wei X. Binding of nucleosides with the cytotoxic plant alkaloid sanguinarine: Spectroscopic and thermodynamic studies. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4728-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Chelidonium majus leaves methanol extract and its chelidonine alkaloid ingredient reduce cadmium-induced nephrotoxicity in rats. J Nat Med 2012; 67:159-67. [DOI: 10.1007/s11418-012-0667-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 03/20/2012] [Indexed: 01/22/2023]
|
24
|
Basu A, Jaisankar P, Suresh Kumar G. Synthesis of novel 9-O-N-aryl/aryl–alkyl amino carbonyl methyl substituted berberine analogs and evaluation of DNA binding aspects. Bioorg Med Chem 2012; 20:2498-505. [DOI: 10.1016/j.bmc.2012.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/13/2023]
|
25
|
Liu YJ, Liang ZH, Li ZZ, Yao JH, Huang HL. Ruthenium(II) Polypyridyl Complexes: Synthesis and Studies of DNA Binding, Photocleavage, Cytotoxicity, Apoptosis, Cellular Uptake, and Antioxidant Activity. DNA Cell Biol 2011; 30:829-38. [DOI: 10.1089/dna.2010.1170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Zhen-Hua Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Zheng-Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Jun-Hua Yao
- Instrumentation Analysis and Research Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Hong-Liang Huang
- School of Life Science and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| |
Collapse
|
26
|
Sanguinarine is an allosteric activator of AMP-activated protein kinase. Biochem Biophys Res Commun 2011; 413:259-63. [DOI: 10.1016/j.bbrc.2011.08.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 01/24/2023]
|
27
|
Differential effect of the benzophenanthridine alkaloids sanguinarine and chelerythrine on glycine transporters. Neurochem Int 2011; 58:641-7. [DOI: 10.1016/j.neuint.2011.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/29/2011] [Accepted: 02/01/2011] [Indexed: 11/30/2022]
|
28
|
Saha I, Hossain M, Suresh Kumar G. Sequence-selective binding of phenazinium dyes phenosafranin and safranin O to guanine-cytosine deoxyribopolynucleotides: spectroscopic and thermodynamic studies. J Phys Chem B 2010; 114:15278-87. [PMID: 20979425 DOI: 10.1021/jp1064598] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequence selectivity of the DNA binding of the phenazinium dyes phenosafranin and safranin O have been investigated with four sequence-specific deoxyribopolynucleotides from spectroscopic and calorimetric studies. The alternating guanine-cytosine sequence selectivity of the dyes has been revealed from binding affinity values, circular dichroism, thermal melting, competition dialysis, and calorimetric results. The binding affinities of both the dyes to the polynucleotides were of the order of 10(5) M(-1), but the values were higher for the guanine-cytosine polynucleotides over adenine-thymine ones. Phenosafranin had a higher binding affinity compared to safranin O. Isothermal titration calorimetric studies revealed that the binding reactions were exothermic and favored by negative enthalpy and predominantly large positive entropy contributions in all cases except poly(dA)·poly(dT) where the profile was anomalous. Although charged, nonpolyelectrolytic contribution was revealed to be dominant to the free energy of binding. The negative heat capacity values obtained from the temperature dependence of enthalpy changes, which were higher for phenosafranin compared to safranin O, suggested significant hydrophobic contribution to the binding process. In aggregate, the data presents evidence for the alternating guanine-cytosine base pair selectivity of these phenazinium dyes and a stronger binding of phenosafranin over safranin O.
Collapse
Affiliation(s)
- Ishita Saha
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), Kolkata 700 032, India
| | | | | |
Collapse
|
29
|
García VP, Valdés F, Martín R, Luis JC, Afonso AM, Ayala JH. Biosynthesis of antitumoral and bactericidal sanguinarine. J Biomed Biotechnol 2010; 2006:63518. [PMID: 16883053 PMCID: PMC1559923 DOI: 10.1155/jbb/2006/63518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A simple, rapid, and reliable TLC method for the separation and determination
of sanguinarine has been established. This intensively studied biologically active alkaloid has a wide range of
potentially useful medicinal properties, such as antimicrobial, antiinflammatory, and antitumoral activities. Sanguinarine has also been incorporated into
expectorant mixtures and has a strong bactericidal effect upon
gram-positive bacteria, particularly Bacillus anthracis
and staphylococci. These medicinal properties are due to
the interaction of sanguinarine with DNA. A fibre-optic-based
fluorescence instrument for in situ scanning was used for
quantitative measurements. The sanguinarine was determined over
the range 5–40 ng and a detection limit of 1.60 ng. The
method was applied to the quantification of sanguinarine in tissue
culture extracts of Chelidonium majus L.
Collapse
Affiliation(s)
- Víctor P. García
- Instituto de Productos Naturales y Agrobiología del Consejo Superior
de Investigaciones Científicas,
Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Instituto Universitario de Bioorgánica “Antonio González,” Universidad de La Laguna,
Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Islas Canarias, Spain
- *Víctor P. García:
| | - F. Valdés
- Departamento de Biología Vegetal (Fisiología Vegetal), Facultad de Farmacia, Universidad de La Laguna,
38206 La Laguna, Tenerife, Islas Canarias, Spain
| | - R. Martín
- Departamento de Biología Vegetal (Fisiología Vegetal), Facultad de Farmacia, Universidad de La Laguna,
38206 La Laguna, Tenerife, Islas Canarias, Spain
| | - J. C. Luis
- Departamento de Biología Vegetal (Fisiología Vegetal), Facultad de Farmacia, Universidad de La Laguna,
38206 La Laguna, Tenerife, Islas Canarias, Spain
| | - A. M. Afonso
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Química, Universidad de La Laguna,
38206 La Laguna, Tenerife, Islas Canarias, Spain
| | - J. H. Ayala
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Química, Universidad de La Laguna,
38206 La Laguna, Tenerife, Islas Canarias, Spain
| |
Collapse
|
30
|
Bhadra K, Kumar GS. Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design. Med Res Rev 2010; 31:821-62. [DOI: 10.1002/med.20202] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Maiti M, Kumar GS. Polymorphic nucleic Acid binding of bioactive isoquinoline alkaloids and their role in cancer. J Nucleic Acids 2009; 2010. [PMID: 20814427 PMCID: PMC2915887 DOI: 10.4061/2010/593408] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/20/2022] Open
Abstract
Bioactive alkaloids occupy an important position in applied chemistry and play an indispensable role in medicinal chemistry. Amongst them, isoquinoline alkaloids like berberine, palmatine and coralyne of protoberberine group, sanguinarine of the benzophenanthridine group, and their derivatives represent an important class of molecules for their broad range of clinical and pharmacological utility. In view of their extensive occurrence in various plant species and significantly low toxicities, prospective development and use of these alkaloids as effective anticancer agents are matters of great current interest. This review has focused on the interaction of these alkaloids with polymorphic nucleic acid structures (B-form, A-form, Z-form, HL-form, triple helical form, quadruplex form) and their topoisomerase inhibitory activity reported by several research groups using various biophysical techniques like spectrophotometry, spectrofluorimetry, thermal melting, circular dichroism, NMR spectroscopy, electrospray ionization mass spectroscopy, viscosity, isothermal titration calorimetry, differential scanning calorimetry, molecular modeling studies, and so forth, to elucidate their mode and mechanism of action for structure-activity relationships. The DNA binding of the planar sanguinarine and coralyne are found to be stronger and thermodynamically more favoured compared to the buckled structure of berberine and palmatine and correlate well with the intercalative mechanism of sanguinarine and coralyne and the partial intercalation by berberine and palmatine. Nucleic acid binding properties are also interpreted in relation to their anticancer activity.
Collapse
Affiliation(s)
- Motilal Maiti
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), Kolkata 700032, India
| | | |
Collapse
|
32
|
Maiti M, Kumar GS. Biophysical aspects and biological implications of the interaction of benzophenanthridine alkaloids with DNA. Biophys Rev 2009; 1:119-129. [PMID: 28509993 DOI: 10.1007/s12551-009-0014-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022] Open
Abstract
Benzophenanthridine alkaloids represent a very interesting and significant group of natural products that exhibit a broad range of biological and pharmacological properties. Among this group of alkaloids, sanguinarine, nitidine, fagaronine, and chelerythrine have the potential to form molecular complexes with DNA structures and have attracted recent attention for their possible clinical and pharmacological utility. This review focuses on the interaction of these alkaloids with polymorphic DNA structures (B-form, Z-form, HL-form, and triple helical form) reported by several research groups employing various physical techniques such as spectrophotometry, spectrofluorimetry, circular dichroism, NMR spectroscopy, thermal melting, viscometry as well as thermodynamic analysis by isothermal titration calorimetry and differential scanning calorimetry to elucidate the mode and mechanism of action at the molecular level to determine the structure-activity relationship. DNA binding properties of these alkaloids are interpreted in relation to their biological activity.
Collapse
Affiliation(s)
- Motilal Maiti
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata, 700032, India.
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata, 700032, India
| |
Collapse
|
33
|
Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem Pharmacol 2009; 78:1374-81. [PMID: 19643088 DOI: 10.1016/j.bcp.2009.07.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 12/14/2022]
Abstract
This study was aimed at evaluating the potential application of benzophenanthridine alkaloids, sanguinarine and cheleritrine, in the therapy of melanoma cancer. In vitro antiproliferative activity of sanguinarine was higher than that of cheleritrine against the B16 melanoma 4A5 cells. Both agents were able to produce DNA breaks, and the DNA unwinding assay showed that they act as DNA intercalating agents. Sanguinarine was selected for determination of its in vivo preclinical efficacy. Oral treatment with sanguinarine reduced the tumor burden in a transplantable murine tumor grown in a syngeneic host (B16 melanoma 4A5 in C57BL/6 mice), and in a human tumor xenograft grown in immunodeficient mice (A375 human melanoma in athymic nude mice). In A375 tumors a significant decrease in the proliferation marker Ki67, and a reduction in the activated mitogen-activated protein kinases (p-p44/42 MAPK), and in protein kinase B (pAKT) were also observed. Three out of eleven A375-bearing treated mice were tumor-free at the end of treatment, and did not develop any tumor after a further, treatment-free, observation period of 60 days. Sanguinarine also showed a striking antiangiogenic activity in mice. Data from the present study support the concept that sanguinarine can be effective in melanoma skin cancer.
Collapse
|
34
|
Du ZP, Suo QL, Zhang XY, Zhang LW, Wei XH. Spectral studies of the interaction between sanguinarine and guanosine. CHINESE CHEM LETT 2008. [DOI: 10.1016/j.cclet.2008.09.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Adhikari A, Hossain M, Maiti M, Suresh Kumar G. Energetics of the binding of phototoxic and cytotoxic plant alkaloid sanguinarine to DNA: Isothermal titration calorimetric studies. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2008.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Babu CK, Ansari KM, Mehrotra S, Khanna R, Khanna SK, Das M. Alterations in redox potential of glutathione/glutathione disulfide and cysteine/cysteine disulfide couples in plasma of dropsy patients with argemone oil poisoning. Food Chem Toxicol 2008; 46:2409-14. [DOI: 10.1016/j.fct.2008.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/11/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
37
|
Matkar SS, Wrischnik LA, Hellmann-Blumberg U. Sanguinarine causes DNA damage and p53-independent cell death in human colon cancer cell lines. Chem Biol Interact 2008; 172:63-71. [PMID: 18243168 DOI: 10.1016/j.cbi.2007.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 12/07/2007] [Accepted: 12/18/2007] [Indexed: 12/14/2022]
Abstract
The benzophenanthridine alkaloid sanguinarine has antimicrobial and possibly anticancer properties but it is not clear to what extent these activities involve DNA damage. Thus, we studied its ability to cause DNA single and double strand breaks, as well as increased levels of 8-oxodeoxyguanosine, in human colon cancer cells and found DNA damage consistent with oxidation. Since the tumor suppressor p53 is frequently involved in inducing apoptosis following DNA damage we investigated the effect of sanguinarine in wild type, p53-mutant and p53-null colon cancer cell lines. We found them to be equally sensitive to this plant compound, indicating that cell death is not mediated by p53 in this case. In addition, our observation that apoptosis induced by sanguinarine is initiated very rapidly raised the question whether there is enough time for cellular signaling in response to DNA damage. Moreover, the abundance of double strand breaks is not consistent with only oxidative damage to DNA. We conclude that the majority of DNA double strand breaks in sanguinarine-treated cells are likely the result, rather than the cause, of apoptotic cell death and that apoptosis induced by sanguinarine is independent of p53 and most likely independent of DNA damage.
Collapse
Affiliation(s)
- Smita S Matkar
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | | | | |
Collapse
|
38
|
Bhadra K, Maiti M, Kumar GS. Molecular recognition of DNA by small molecules: AT base pair specific intercalative binding of cytotoxic plant alkaloid palmatine. Biochim Biophys Acta Gen Subj 2007; 1770:1071-80. [PMID: 17434677 DOI: 10.1016/j.bbagen.2007.03.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 02/27/2007] [Accepted: 03/03/2007] [Indexed: 11/28/2022]
Abstract
The base dependent binding of the cytotoxic alkaloid palmatine to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by competition dialysis, spectrophotometric, spectrofluorimetric, thermal melting, circular dichroic, viscometric and isothermal titration calorimetric (ITC) studies. Binding of the alkaloid to various polynucleotides was dependent upon sequences of base pairs. Binding data obtained from absorbance measurements according to neighbour exclusion model indicated that the intrinsic binding constants decreased in the order poly(dA).poly(dT)>poly(dA-dT).poly(dA-dT)>poly(dG-dC).poly(dG-dC)>poly(dG).poly(dC). This affinity was also revealed by the competition dialysis, increase of steady state fluorescence intensity, increase in fluorescence quantum yield, stabilization against thermal denaturation and perturbations in circular dichroic spectrum. Among the polynucleotides, poly(dA).poly(dT) showed positive cooperativity at binding values lower than r=0.05. Viscosity studies revealed that in the strong binding region, the increase of contour length of DNA depended strongly on the sequence of base pairs being higher for AT polymers and induction of unwinding-rewinding process of covalently closed superhelical DNA. Isothermal titration calorimetric data showed a single entropy driven binding event in the AT homo polymer while that with the hetero polymer involved two binding modes, an entropy driven strong binding followed by an enthalpy driven weak binding. These results unequivocally established that the alkaloid palmatine binds strongly to AT homo and hetero polymers by mechanism of intercalation.
Collapse
Affiliation(s)
- Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | |
Collapse
|
39
|
Giri P, Kumar GS. Specific binding and self-structure induction to poly(A) by the cytotoxic plant alkaloid sanguinarine. Biochim Biophys Acta Gen Subj 2007; 1770:1419-26. [PMID: 17600625 DOI: 10.1016/j.bbagen.2007.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/17/2007] [Accepted: 05/21/2007] [Indexed: 11/24/2022]
Abstract
The cytotoxic plant alkaloid sanguinarine was found to bind preferentially and strongly to single stranded poly(A) with an association constant (K(a)) in the range 3.6-4.6 x 10(6) M(-1) in comparison to several nucleic acids. The binding induced unique self-structure formation in poly(A) that showed cooperative melting transition in circular dichroism, absorbance, and differential scanning calorimetry studies. The alkaloid binding was characterized to be intercalation as revealed from fluorescence quenching experiments and was predominantly enthalpy driven as revealed from isothermal titration calorimetry. Sanguinarine is the first and only natural product so far known to induce a self-structure formation in poly(A).
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | |
Collapse
|
40
|
Protoberberine Alkaloids: Physicochemical and Nucleic Acid Binding Properties. TOPICS IN HETEROCYCLIC CHEMISTRY 2007. [DOI: 10.1007/7081_2007_071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Maiti M, Kumar GS. Molecular aspects on the interaction of protoberberine, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structures and biological perspectives. Med Res Rev 2007; 27:649-95. [PMID: 16894530 DOI: 10.1002/med.20087] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alkaloids occupy an important position in chemistry and pharmacology. Among the various alkaloids, berberine and coralyne of the protoberberine group, sanguinarine of the benzophenanthridine group, and aristololactam-beta-d-glucoside of the aristolochia group have potential to form molecular complexes with nucleic acid structures and have attracted recent attention for their prospective clinical and pharmacological utility. This review highlights (i) the physicochemical properties of these alkaloids under various environmental conditions, (ii) the structure and functional aspects of various forms of deoxyribonucleic acid (DNA) (B-form, Z-form, H(L)-form, protonated form, and triple helical form) and ribonucleic acid (RNA) (A-form, protonated form, and triple helical form), and (iii) the interaction of these alkaloids with various polymorphic DNA and RNA structures reported by several research groups employing various analytical techniques like absorbance, fluorescence, circular dichroism, and NMR spectroscopy; electrospray ionization mass spectrometry, thermal melting, viscosity, and DNase footprinting as well as molecular modeling and thermodynamic studies to provide detailed binding mechanism at the molecular level for structure-activity relationship. Nucleic acids binding properties of these alkaloids are interpreted in relation to their biological activity.
Collapse
Affiliation(s)
- Motilal Maiti
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | | |
Collapse
|
42
|
Dvorák Z, Sovadinová I, Bláha L, Giesy JP, Ulrichová J. Quaternary benzo[c]phenathridine alkaloids sanguinarine and chelerythrine do not affect transcriptional activity of aryl hydrocarbon receptor: Analyses in rat hepatoma cell line H4IIE.luc. Food Chem Toxicol 2006; 44:1466-73. [PMID: 16782256 DOI: 10.1016/j.fct.2006.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 03/02/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
Quaternary benzo[c]phenanthridine alkaloids (QBAs) sanguinarine and chelerythrine exert a plethora of biological activities. Nevertheless, the specific cellular target for these alkaloids within the cell was not identified as far. Several literary data indicate that biological effects of QBAs could be associated with aryl hydrocarbon receptor (AhR) signaling pathway, including cytochrome P450 CYP1A, however, available information are controversial. In this work we analyzed the effects of sanguinarine and chelerythrine on AhR activity in rat hepatoma cells HII4E.luc stably transfected with dioxin responsive element fused to luciferase gene (DRE-LUC). Studied QBAs were tested in submicromolar concentration range (0.0001-1 microM) and in incubation times 6, 24 and 48 h. Transcriptional activity of AhR was monitored by chemiluminiscence measurement of luciferase catalytic activity. Sanguinarine and chelerythrine did not activated AhR in any time or dose tested. Chelerythrine (1 microM) but not sanguinarine caused moderate inhibition of AhR activation by 10 picomolar dioxin (exponential phase of receptor activation). In contrast, AhR activation by 2.5 nM dioxin (saturated receptor) was not affected by either alkaloid tested. In conclusion, the findings presented here favor rather for inactivity or modest inhibitory effect of QBAs on AhR signaling pathways in vitro than for the activation of the receptor. Regarding the concentrations of QBAs occurring in vivo, the use of products containing sanguinarine and/or chelerythrine has low toxicological potential in terms of the interactions with AhR signaling pathways.
Collapse
Affiliation(s)
- Zdenek Dvorák
- Institute of Medical Chemistry and Biochemistry, Faculty of Medicine, Palacký University, Hnevotínská 3, 775 15 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
43
|
Bai LP, Zhao ZZ, Cai Z, Jiang ZH. DNA-binding affinities and sequence selectivity of quaternary benzophenanthridine alkaloids sanguinarine, chelerythrine, and nitidine. Bioorg Med Chem 2006; 14:5439-45. [PMID: 16730995 DOI: 10.1016/j.bmc.2006.05.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
A comparative study on the intercalating binding of sanguinarine, chelerythrine, and nitidine with CT DNA, poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), and seven sequence-designed double-stranded oligodeoxynucleotides has been performed using fluorometric and spectrophotometric techniques, aiming at providing insights into their sequence selectivity for DNA-binding. The results show that both sanguinarine and nitidine bind preferentially to DNA containing alternating GC base pairs [d(TGCGCA)(2)], while chelerythrine exhibits quite distinct sequence selectivity from sanguinarine, which shows a high specificity for DNA containing contiguous GC base pairs [5'-TGGGGA-3'/3'-ACCCCT-5'].
Collapse
Affiliation(s)
- Li-Ping Bai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong
| | | | | | | |
Collapse
|
44
|
Giri P, Hossain M, Kumar GS. RNA specific molecules: cytotoxic plant alkaloid palmatine binds strongly to poly(A). Bioorg Med Chem Lett 2006; 16:2364-8. [PMID: 16497501 DOI: 10.1016/j.bmcl.2006.01.124] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/16/2006] [Accepted: 01/30/2006] [Indexed: 10/25/2022]
Abstract
The cytotoxic plant alkaloid palmatine was found to bind strongly by partial intercalation to single stranded poly(A) structure with binding affinity (Ka) of (8.36+/-0.26) x 10(5) M(-1). The binding of palmatine was characterized to be exothermic and enthalpy driven with one palmatine for every two adenine residues. On the other hand, the binding to the double stranded poly(A) has been found to be significantly weak. This study identifies poly(A) as a potential bio-target for the alkaloid palmatine and its use as a lead compound in antitumor drug screening.
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | |
Collapse
|
45
|
Sinha R, Islam MM, Bhadra K, Kumar GS, Banerjee A, Maiti M. The binding of DNA intercalating and non-intercalating compounds to A-form and protonated form of poly(rC).poly(rG): spectroscopic and viscometric study. Bioorg Med Chem 2005; 14:800-14. [PMID: 16202606 DOI: 10.1016/j.bmc.2005.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 11/20/2022]
Abstract
Polymorphic RNA conformations may serve as potential targets for structure specific antiviral agents. As an initial step in the development of such drugs, the interaction of a wide variety of compounds which are characterized to bind to DNA through classical or partial intercalation or by mechanism of groove binding, with the A-form and the protonated form of poly(rC).poly(rG), been evaluated by multifaceted spectroscopic and viscometric techniques. Results of this study suggest that (i) ethidium intercalates to the A-form of RNA, but does not intercalate to the protonated form, (ii) methylene blue intercalates to the protonated form of the RNA but does not intercalate to the A-form, (iii) actinomycin D does not bind to either conformations of the RNA, and (iv) berberine binds to the protonated form by partial intercalation process, while its binding to the A-form is very weak. The DNA groove binder distamycin A has much higher affinity to the protonated form of the RNA compared to the A-form and binds to both structures by non-intercalative mechanism. We conclude that the binding affinity characteristics of these DNA binding molecules to the RNA conformations are vastly different and may serve as data for the development of RNA based antiviral drugs.
Collapse
Affiliation(s)
- Rangana Sinha
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | | | | | | | |
Collapse
|
46
|
Zdarilová A, Vrzal R, Rypka M, Ulrichová J, Dvorák Z. Investigation of sanguinarine and chelerythrine effects on CYP1A1 expression and activity in human hepatoma cells. Food Chem Toxicol 2005; 44:242-9. [PMID: 16115718 DOI: 10.1016/j.fct.2005.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 06/02/2005] [Accepted: 07/11/2005] [Indexed: 11/20/2022]
Abstract
Quaternary benzo[c]phenanthridine alkaloids (QBA) sanguinarine and chelerythrine exhibit a wide spectrum of biological activities whence they are used in dental care products. Recent studies indicated that cytochrome P450 CYP1A attenuates sanguinarine toxicity both in vivo [Williams, M.K., Dalvi, S., Dalvi, R.R., 2000. Influence of 3-methylcholanthrene pretreatment on sanguinarine toxicity in mice. Vet. Hum. Toxicol. 42, 196-198] and in vitro [Vrba, J., Kosina, P., Ulrichová, J., Modrianský, M., 2004. Involvement of cytochrome P450 1A in sanguinarine detoxication. Toxicol. Lett. 151, 375-387]. However, CYP1A converts sanguinarine to the products that form DNA adducts [Stiborová, M., Simánek, V., Frei, E., Hobza, P., Ulrichová, J., 2002. DNA adduct formation from quaternary benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine as revealed by the 32P-postlabeling technique. Chem. Biol. Interact. 140, 231-242]. In our work we examined the effects of sanguinarine and chelerythrine on CYP1A1 expression and catalytic activity in human hepatoma cells-HepG2. Sanguinarine and chelerythrine did not affect basal and dioxin-inducible expression of CYP1A1 mRNA and protein in HepG2 cells. The enzymatic activity of CYP1A1 was assessed by the fluorescent measurement of 7-ethyxoresorufin-O-deethylase (EROD) activity. We observed a slight decrease of dioxin-induced EROD activity in HepG2 cells by sanguinarine and chelerythrine. This decrease was attributed to the inhibition of CYP1A1 catalytic activity, as revealed by enzyme kinetic studies on recombinant CYP1A1 protein. The IC50 values for the inhibition of CYP1A1 by sanguinarine and chelerythrine were 2.1 and 1.9muM, respectively. In conclusion, albeit the CYP1A modulates QBA cytotoxicity and genotoxicity, the QBA themselves do not affect CYP1A1 expression. The data indicate that studied alkaloids do not have specific cellular target and their biological effects are rather pleiotropic.
Collapse
Affiliation(s)
- A Zdarilová
- Institute of Medical Chemistry and Biochemistry, Faculty of Medicine, Palacký University, Hnĕvotínská 3, 775 15 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
47
|
Vlcková M, Kubán V, Vicar J, Simánek V. Capillary zone electrophoretic studies of interactions of some quaternary isoquinoline alkaloids with DNA constituents and DNA. Electrophoresis 2005; 26:1673-9. [PMID: 15812846 DOI: 10.1002/elps.200410193] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Capillary zone electrophoresis was applied for the investigation of interactions of some quaternary isoquinoline alkaloids, namely sanguinarine, chelerythrine, berberine, and jatrorrhizine, with DNA constituents and with DNA. None of these alkaloids attach covalently to nucleotides or to the whole DNA under physiological conditions. The interaction with DNA constituents is a noncovalent complexation based on weak intermolecular forces. Electrostatic attraction participates in the interaction but other types of intermolecular forces are involved as well. Cations were identified as the most probable interacting forms of the alkaloids. The interaction with compounds derived from purine was always stronger than those derived from pyrimidine. All alkaloids behaved analogously and similarly to ethidium bromide, the classic DNA intercalator. Stability constants K (in l.mol(-1)) for sanguinarine and chelerythrine in phosphate buffer of pH 7.4 (I(S) = 30 mM) ranged from tens to hundreds.
Collapse
Affiliation(s)
- Markéta Vlcková
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemĕdĕlská 1, CZ-613 00 Brno, Czech Republic
| | | | | | | |
Collapse
|
48
|
Bhadra K, Kumar GS, Das S, Islam MM, Maiti M. Protonated structures of naturally occurring deoxyribonucleic acids and their interaction with berberine. Bioorg Med Chem 2005; 13:4851-63. [PMID: 15946849 DOI: 10.1016/j.bmc.2005.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 01/29/2023]
Abstract
Protonation-induced conformational changes in natural DNAs of diverse base composition under the influence of low pH, low temperature, and low ionic strength have been studied using various spectroscopic techniques. At pH3.40, 10mM [Na+], and at 5 degrees C, all natural DNAs irrespective of base composition adopted an unusual and stable conformation remarkably different from the canonical B-form conformation. This protonated conformation has been characterized to have unique absorption and circular dichroic spectral characteristics and exhibited cooperative thermal melting profiles with decreased thermal melting temperatures compared to their respective B-form counterparts. The nature of this protonated structure was further investigated by monitoring the interaction of the plant alkaloid, berberine that was previously shown from our laboratory to differentially bind to B-form and H(L)-form of poly[d(G-C)] [Bioorg. Med. Chem.2003, 11, 4861]. Binding of berberine to protonated conformation of natural DNAs resulted in intrinsic circular dichroic changes as well as generation of induced circular dichroic bands for the bound berberine molecule with opposite signs and magnitude compared with B-form structures. Nevertheless, the binding of the alkaloid to both the B and protonated forms was non-linear and non-cooperative as revealed from Scatchard plots derived from spectrophotometric titration data. Steady state fluorescence studies on the other hand showed remarkable increase of the rather weak intrinsic fluorescence of berberine on binding to the protonated structure compared to the B-form structure. Taken together, these results suggest that berberine can detect the formation of significant population of H(L)-form structures under the influence of protonation irrespective of heterogeneous base compositions in natural DNAs.
Collapse
Affiliation(s)
- Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | | | | | |
Collapse
|
49
|
Yadav RC, Kumar GS, Bhadra K, Giri P, Sinha R, Pal S, Maiti M. Berberine, a strong polyriboadenylic acid binding plant alkaloid: spectroscopic, viscometric, and thermodynamic study. Bioorg Med Chem 2005; 13:165-74. [PMID: 15582461 DOI: 10.1016/j.bmc.2004.09.045] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 09/24/2004] [Accepted: 09/25/2004] [Indexed: 11/29/2022]
Abstract
The interaction of berberine with single stranded poly(rA) structure was investigated using a combination of spectrophotometric, spectrofluorimetric, circular dichroic, viscometric, and thermodynamic studies. The interaction process was characterized by typical hypochromic and bathochromic effects in the absorption spectrum of berberine, enhancement of fluorescence intensity of berberine, increase of viscosity, and perturbation of circular dichroic spectrum of single stranded poly(rA). Scatchard plot obtained from spectrophotometric analysis showed that berberine bound strongly to single stranded poly(rA) in a non-cooperative manner. In contrast, berberine does not show any significant effect (i) in its absorbance and fluorescence spectra on binding to double stranded poly(rA), (ii) alter the circular dichroic spectrum of double stranded poly(rA), or (iii) increase of viscosity of double stranded poly(rA) indicating that it does not bind at all to double stranded poly(rA) structure. Thermodynamic parameters indicated that the binding of the alkaloid to single stranded poly(rA) is an endothermic process and entropy driven. All these findings, taken together clearly support that berberine binds strongly to single stranded poly(rA) structure by a mechanism of partial intercalation leading to its use in gene regulation in eukaryotic cells.
Collapse
Affiliation(s)
- Ram Chandra Yadav
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | | | | | |
Collapse
|
50
|
Karp JM, Rodrigo KA, Pei P, Pavlick MD, Andersen JD, McTigue DJ, Fields HW, Mallery SR. Sanguinarine activates polycyclic aromatic hydrocarbon associated metabolic pathways in human oral keratinocytes and tissues. Toxicol Lett 2005; 158:50-60. [PMID: 15993743 DOI: 10.1016/j.toxlet.2005.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 02/25/2005] [Accepted: 02/28/2005] [Indexed: 12/14/2022]
Abstract
Sanguinarine's use in human clinical applications is currently controversial. While some studies have demonstrated sanguinarine's anti-inflammatory and anti-oxidant properties, other investigations reported sanguinarine's procarcinogenic effects. Like the tobacco-associated carcinogen, benzo(a)pyrene (B(a)P), sanguinarine is a polycyclic aromatic hydrocarbon (PAH). PAH exposure activates the aryl hydrocarbon transcription activating factor (AhR), resulting in nuclear translocation, binding to the aryl hydrocarbon nuclear translocator (ARNT), which thereby increases expression of a pool of carcinogen metabolizing enzymes. The goal of this study was to investigate whether sanguinarine activates this PAH-associated signaling cascade in human oral cells and tissues. Our results demonstrate that sanguinarine: (i) results in formation of the AhR-ARNT complex, (ii) induces AhR-associated gene expression, (iii) inhibits cytochrome P450 1A1 (CYP 1A1) microsomal oxidative activity and (iv) pretreatment upregulates CYP 1A1 function. Collectively, these data provide evidence that sanguinarine activates PAH-associated signaling and metabolic pathways. Notably, previous studies have demonstrated that mammalian hepatic microsomes metabolize sanguinarine to a mutagenic epoxide. Persons who respond to sanguinarine exposure with induction of primarily Phase I relative to Phase II enzymes are, therefore, at risk for sanguinarine bioactivation and its potential mutagenic effects.
Collapse
Affiliation(s)
- Jeffrey M Karp
- The Ohio State University College of Dentistry, Department of Pediatric Dentistry, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|