1
|
Ma J, He JJ, Hou JL, Zhou CX, Elsheikha HM, Zhu XQ. Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry-Based Metabolomics Reveals Metabolic Alterations in the Mouse Cerebellum During Toxoplasma gondii Infection. Front Microbiol 2020; 11:1555. [PMID: 32765450 PMCID: PMC7381283 DOI: 10.3389/fmicb.2020.01555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite with a remarkable neurotropism. We recently showed that T. gondii infection can alter the global metabolism of the cerebral cortex of mice. However, the impact of T. gondii infection on the metabolism of the cerebellum remains unknown. Here we apply metabolomic profiling to discover metabolic changes associated with T. gondii infection of the mouse cerebellum using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Multivariate statistics revealed differences in the metabolic profiles between the infected and control mouse groups and between the infected mouse groups as infection advanced. We also detected 10, 22, and 42 significantly altered metabolites (SAMs) in the infected cerebellum at 7, 14, and 21 days post infection (dpi), respectively. Four metabolites [tabersonine, arachidonic acid (AA), docosahexaenoic acid, and oleic acid] were identified as potential biomarker or responsive metabolites to T. gondii infection in the mouse cerebellum. Three of these metabolites (AA, docosahexaenoic acid, and oleic acid) play roles in the regulation of host behavior and immune response. Pathway analysis showed that T. gondii infection of the cerebellum involves reprogramming of amino acid and lipid metabolism. These results showcase temporal metabolomic changes during cerebellar infection by T. gondii in mice. The study provides new insight into the neuropathogenesis of T. gondii infection and reveals new metabolites and pathways that mediate the interplay between T. gondii and the mouse cerebellum.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun-Xue Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Jeske NA. Dynamic Opioid Receptor Regulation in the Periphery. Mol Pharmacol 2019; 95:463-467. [PMID: 30723091 PMCID: PMC6442319 DOI: 10.1124/mol.118.114637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022] Open
Abstract
Opioids serve a vital role in the current analgesic array of treatment options. They are useful in acute instances involving severe pain associated with trauma, surgery, and terminal diseases such as cancer. In the past three decades, multiple receptor isoforms and conformations have been reported throughout literature. Most of these studies conducted systemic analyses of opioid receptor function, often generalizing findings from receptor systems in central nervous tissue or exogenously expressing immortalized cell lines as common mechanisms throughout physiology. However, a culmination of innovative experimental data indicates that opioid receptor systems are differentially modulated depending on their anatomic expression profile. Importantly, opioid receptors expressed in the peripheral nervous system undergo regulation uncommon to similar receptors expressed in central nervous system tissues. This distinctive characteristic begs one to question whether peripheral opioid receptors maintain anatomically unique roles, and whether they may serve an analgesic advantage in providing pain relief without promoting addiction.
Collapse
Affiliation(s)
- Nathaniel A Jeske
- Departments of Oral and Maxillofacial Surgery, Pharmacology, and Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
3
|
Abstract
The aim of this study was to evaluate the plasma levels of lipoxin A4 (LXA4), a mediator involved in the resolution of inflammation in Chinese children with autism spectrum disorders (ASD). From January 2013 to June 2014, a total of 150 children (75 confirmed ASD cases and 75 their age-matched and sex-matched control cases) participated in this study after consent was obtained from their parents. Clinical information was collected. Plasma levels of LXA4 were measured at baseline. The severity of ASD was assessed at admission using the Childhood Autism Rating Scale total score. The results indicated that the mean plasma levels of LXA4 were significantly lower in autistic children compared with the normal children (P<0.0001). There was a significant negative relationship between circulating LXA4 levels and severity of autism evaluated by Childhood Autism Rating Scale scores (P=0.006) after adjustment for the possible covariates. On the basis of the receiver operating characteristic curve, the optimal cutoff value of plasma LXA4 levels as an indicator for an auxiliary diagnosis of ASD was projected to be 81.5 pg/ml, which yielded a sensitivity of 90.7% and a specificity of 76.0%, with the area under the curve at 0.911 (95% confidence interval, 0.867-0.955). These results suggested that autistic children had lower plasma LXA4 levels, suggesting an increased susceptibility to recurring inflammation in these samples.
Collapse
|
4
|
Hawkes R. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse. Front Syst Neurosci 2014; 8:41. [PMID: 24734006 PMCID: PMC3975104 DOI: 10.3389/fnsys.2014.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The cerebellar cortex comprises a stereotyped array of transverse zones and parasagittal stripes, built around multiple Purkinje cell subtypes, which is highly conserved across birds and mammals. This architecture is revealed in the restricted expression patterns of numerous molecules, in the terminal fields of the afferent projections, in the distribution of interneurons, and in the functional organization. This review provides an overview of cerebellar architecture with an emphasis on attempts to relate molecular architecture to the expression of long-term depression (LTD) at the parallel fiber-Purkinje cell (pf-PC) synapse.
Collapse
Affiliation(s)
- Richard Hawkes
- Department of Cell Biology and Anatomy, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Genes and Development Research Group, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| |
Collapse
|
5
|
Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc Natl Acad Sci U S A 2012; 109:21134-9. [PMID: 23150578 DOI: 10.1073/pnas.1202906109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Allosteric modulation of G-protein-coupled receptors represents a key goal of current pharmacology. In particular, endogenous allosteric modulators might represent important targets of interventions aimed at maximizing therapeutic efficacy and reducing side effects of drugs. Here we show that the anti-inflammatory lipid lipoxin A(4) is an endogenous allosteric enhancer of the CB(1) cannabinoid receptor. Lipoxin A(4) was detected in brain tissues, did not compete for the orthosteric binding site of the CB(1) receptor (vs. (3)H-SR141716A), and did not alter endocannabinoid metabolism (as opposed to URB597 and MAFP), but it enhanced affinity of anandamide at the CB1 receptor, thereby potentiating the effects of this endocannabinoid both in vitro and in vivo. In addition, lipoxin A(4) displayed a CB(1) receptor-dependent protective effect against β-amyloid (1-40)-induced spatial memory impairment in mice. The discovery of lipoxins as a class of endogenous allosteric modulators of CB(1) receptors may foster the therapeutic exploitation of the endocannabinoid system, in particular for the treatment of neurodegenerative disorders.
Collapse
|
6
|
Yeung J, Apopa PL, Vesci J, Kenyon V, Rai G, Jadhav A, Simeonov A, Holman TR, Maloney DJ, Boutaud O, Holinstat M. Protein kinase C regulation of 12-lipoxygenase-mediated human platelet activation. Mol Pharmacol 2012; 81:420-30. [PMID: 22155783 PMCID: PMC3286293 DOI: 10.1124/mol.111.075630] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/08/2011] [Indexed: 01/09/2023] Open
Abstract
Platelet activation is important in the regulation of hemostasis and thrombosis. Uncontrolled activation of platelets may lead to arterial thrombosis, which is a major cause of myocardial infarction and stroke. After activation, metabolism of arachidonic acid (AA) by 12-lipoxygenase (12-LOX) may play a significant role in regulating the degree and stability of platelet activation because inhibition of 12-LOX significantly attenuates platelet aggregation in response to various agonists. Protein kinase C (PKC) activation is also known to be an important regulator of platelet activity. Using a newly developed selective inhibitor for 12-LOX and a pan-PKC inhibitor, we investigated the role of PKC in 12-LOX-mediated regulation of agonist signaling in the platelet. To determine the role of PKC within the 12-LOX pathway, a number of biochemical endpoints were measured, including platelet aggregation, calcium mobilization, and integrin activation. Inhibition of 12-LOX or PKC resulted in inhibition of dense granule secretion and attenuation of both aggregation and αIIbβ(3) activation. However, activation of PKC downstream of 12-LOX inhibition rescued agonist-induced aggregation and integrin activation. Furthermore, inhibition of 12-LOX had no effect on PKC-mediated aggregation, indicating that 12-LOX is upstream of PKC. These studies support an essential role for PKC downstream of 12-LOX activation in human platelets and suggest 12-LOX as a possible target for antiplatelet therapy.
Collapse
Affiliation(s)
- Jennifer Yeung
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Keith DJ, Eshleman AJ, Janowsky A. Melittin stimulates fatty acid release through non-phospholipase-mediated mechanisms and interacts with the dopamine transporter and other membrane-spanning proteins. Eur J Pharmacol 2010; 650:501-10. [PMID: 20969853 DOI: 10.1016/j.ejphar.2010.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 11/29/2022]
Abstract
Phospholipase A(2) releases the fatty acid arachidonic acid from membrane phospholipids. We used the purported phospholipase A(2) stimulator, melittin, to examine the effects of endogenous arachidonic acid signaling on dopamine transporter function and trafficking. In HEK-293 cells stably transfected with the dopamine transporter, melittin reduced uptake of [((3))H]dopamine. Additionally, measurements of fatty acid content demonstrated a melittin-induced release of membrane-incorporated arachidonic acid, but inhibitors of phospholipase C, phospholipase D, and phospholipase A(2) did not prevent the release. Subsequent experiments measuring [(125)I]RTI-55 binding to the dopamine transporter demonstrated a direct interaction of melittin, or a melittin-activated endogenous compound, with the transporter to inhibit antagonist binding. This effect was not specific to the dopamine transporter, as [(3)H]spiperone binding to the recombinant dopamine D(2) receptor was also inhibited by melittin treatment. Finally, melittin stimulated an increase in internalization of the dopamine transporter, and this effect was blocked by pretreatment with cocaine. Thus, melittin acts through multiple mechanisms to regulate cellular activity, including release of membrane-incorporated fatty acids and interaction with the dopamine transporter.
Collapse
Affiliation(s)
- Dove J Keith
- Research Service, VA Medical Center, and Graduate Program in Neuroscience, Portland, OR 97239, USA
| | | | | |
Collapse
|
8
|
Walker TL, Campodonico JJ, Cavallo JS, Farley J. AA/12-Lipoxygenase Signaling Contributes to Inhibitory Learning in Hermissenda Type B Photoreceptors. Front Behav Neurosci 2010; 4. [PMID: 20802857 PMCID: PMC2928666 DOI: 10.3389/fnbeh.2010.00050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 07/15/2010] [Indexed: 11/13/2022] Open
Abstract
Conditioned inhibition (CI) is a major category of associative learning that occurs when an organism learns that one stimulus predicts the absence of another. In addition to being important in its own right, CI is interesting because its occurrence implies that the organism has formed an association between stimuli that are non-coincident. In contrast to other categories of associative learning that are dependent upon temporal contiguity (pairings) of stimuli, the neurobiology of CI is virtually unexplored. We have previously described a simple form of CI learning in Hermissenda, whereby animals' phototactic behavior is increased by repeated exposures to explicitly unpaired (EU) presentations of light and rotation. EU conditioning also produces characteristic reductions in the excitability and light response, and increases several somatic K(+) currents in Type B photoreceptors. Type B photoreceptors are a major site of plasticity for classical conditioning in Hermissenda. Because arachidonic acid (AA) and/or its metabolites open diverse K(+) channels in many cell types, we examined the potential contribution of AA to CI. Our results indicate that AA contributes to one of the major effects of EU-conditioning on Type B photoreceptors: decreases in light-evoked spike activity. We find that AA increases the transient (I(A)) somatic K(+) current in Type B photoreceptors, further mimicking CI training. In addition, our results indicate that metabolism of AA by a 12-lipoxygenase enzyme is critical for these effects of AA, and further that 12-lipoxygenase metabolites are apparently generated during CI training.
Collapse
Affiliation(s)
- Tony L Walker
- Program in Neuroscience, Indiana University Bloomington, IN, USA
| | | | | | | |
Collapse
|
9
|
Nelson TJ, Alkon DL. Neuroprotective versus tumorigenic protein kinase C activators. Trends Biochem Sci 2009; 34:136-45. [PMID: 19233655 DOI: 10.1016/j.tibs.2008.11.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Protein kinase C (PKC) activators possess potent neurotrophic and neuroprotective activity, thus indicating potential applications in treating neurodegenerative diseases, stroke and traumatic brain injury. Although some activators, such as bryostatin and gnidimacrin, have been tested as antitumor agents, others, such as phorbol esters, are potent tumor promoters. All PKC activators downregulate PKC at high concentrations and long application times. However, tumorigenic activators downregulate certain PKC isozymes, especially PKCdelta, more strongly. Tumorigenic activators possess unique structural features that could account for this difference. At concentrations that minimize PKC downregulation, PKC activators can improve long-term memory, reduce beta-amyloid levels, induce synaptogenesis, promote neuronal repair and inhibit cell proliferation. Intermittent, low concentrations of structurally specific, non-tumorigenic PKC activators, therefore, could offer therapeutic benefit for a variety of neurologic disorders.
Collapse
Affiliation(s)
- T J Nelson
- Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | | |
Collapse
|
10
|
Grumbach Y, Quynh NVT, Chiron R, Urbach V. LXA4 stimulates ZO-1 expression and transepithelial electrical resistance in human airway epithelial (16HBE14o-) cells. Am J Physiol Lung Cell Mol Physiol 2008; 296:L101-8. [PMID: 18849442 DOI: 10.1152/ajplung.00018.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipoxin A(4) (LXA(4)) is a biologically active eicosanoid produced in human airways that displays anti-inflammatory properties. In cystic fibrosis and severe asthma, LXA(4) production has been reported to be decreased, and, in such diseases, one of the consequences of airway inflammation is disruption of the tight junctions. In the present study, we investigated the possible role of LXA(4) on tight junction formation, using transepithelial electrical resistance (TER) measurements, Western blotting, and immunofluorescence. We observed that exposure to LXA(4) (100 nM) for 2 days significantly increased zonula occludens-1 (ZO-1), claudin-1, and occludin expression at the plasma membrane of confluent human bronchial epithelial 16HBE14o- cells. LXA(4) (100 nM) stimulated the daily increase of the 16HBE14o- cell monolayer TER, and this effect was inhibited by boc-2 (LXA(4) receptor antagonist). LXA(4) also had a rapid effect on ZO-1 immunofluorescence at the plasma membrane and increased TER within 10 min. In conclusion, our experiments provide evidence that LXA(4) plays certainly a new role for the regulation of tight junction formation and stimulation of the localization and expression of ZO-1 at the plasma membrane through a mechanism involving the LXA(4) receptor.
Collapse
Affiliation(s)
- Yael Grumbach
- Institut National de la Santé et de la Recherche Médicale U454, Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France
| | | | | | | |
Collapse
|
11
|
|
12
|
McNamara RK, Ostrander M, Abplanalp W, Richtand NM, Benoit SC, Clegg DJ. Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids 2006; 75:237-57. [PMID: 16935483 DOI: 10.1016/j.plefa.2006.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The phosphoinositide (PI)-protein kinase C (PKC) signal transduction pathway is initiated by pre- and postsynaptic Galphaq-coupled receptors, and regulates several clinically relevant neurochemical events, including neurotransmitter release efficacy, monoamine receptor function and trafficking, monoamine transporter function and trafficking, axonal myelination, and gene expression. Mounting evidence for PI-PKC signaling hyperactivity in the peripheral (platelets) and central (premortem and postmortem brain) tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, coupled with evidence that PI-PKC signal transduction is down-regulated in rat brain following chronic, but not acute, treatment with antipsychotic, mood-stabilizer, and antidepressant medications, suggest that PI-PKC hyperactivity is central to an underlying pathophysiology. Evidence that membrane omega-3 fatty acids act as endogenous antagonists of the PI-PKC signal transduction pathway, coupled with evidence that omega-3 fatty acid deficiency is observed in peripheral and central tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, support the hypothesis that omega-3 fatty acid deficiency may contribute to elevated PI-PKC activity in these illnesses. The data reviewed in this paper outline a potential molecular mechanism by which omega-3 fatty acids could contribute to the pathophysiology and treatment of recurrent neuropsychiatric illness.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0559, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Yang T, Roder KE, Bhat GJ, Thekkumkara TJ, Abbruscato TJ. Protein kinase C family members as a target for regulation of blood-brain barrier Na,K,2Cl-cotransporter during in vitro stroke conditions and nicotine exposure. Pharm Res 2006; 23:291-302. [PMID: 16450214 DOI: 10.1007/s11095-005-9143-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 10/17/2005] [Indexed: 12/19/2022]
Abstract
PURPOSE The aim of the study is to identify specific protein kinase C (PKC) isoforms involvement in K(+) transport mediated at altered blood-brain barrier (BBB) response to stroke conditions with prior nicotine exposure, which provides ways to intervene pharmacologically in PKC-mediated molecular pathways that could lead to effective treatment for smoking stroke patients. METHODS Changes in PKC isoform levels were studied in the cytosolic and membrane fractions of bovine brain microvessel endothelial cells subjected to stroke conditions as well as nicotine/cotinine exposure. Furthermore, abluminal Na,K,2Cl-cotransporter (NKCC) activity regulated by specific conventional PKC isoform activators and inhibitors was investigated using rubidium ((86)Rb) uptake studies. RESULTS Membrane-bound PKCalpha, PKCbetaI, and PKCepsilon levels were increased after 6 h hypoxia/aglycemia, and this was attenuated by 24-h nicotine/cotinine exposure. Interestingly, membrane-bound PKCgamma protein level was decreased after 6 h hypoxia/aglycemia and increased by 24-h nicotine/cotinine exposure. (86)Rb uptake studies showed that basolateral NKCC activity was down-regulated by both a conventional PKC inhibitor and specific inhibitors for PKCalpha, PKCbeta, and PKCvarepsilon and was up-regulated by an activator of conventional PKCs during 6-h hypoxia/aglycemia treatment. CONCLUSION Specific PKC inhibitors or activators might be designed to individualize stroke therapies and improve health outcome for smokers by rebalancing ion transport into and out of the brain.
Collapse
Affiliation(s)
- Tianzhi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, 79106, USA
| | | | | | | | | |
Collapse
|
14
|
Taylor AM, Hanchett R, Natarajan R, Hedrick CC, Forrest S, Nadler JL, McNamara CA. The effects of leukocyte-type 12/15-lipoxygenase on Id3-mediated vascular smooth muscle cell growth. Arterioscler Thromb Vasc Biol 2005; 25:2069-74. [PMID: 16037566 PMCID: PMC2929383 DOI: 10.1161/01.atv.0000178992.40088.f2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE 12/15-lipoxygenase (12/15-LO) has been implicated in the pathogenesis of vascular disease. Vascular smooth muscle cell (VSMC) proliferation is a key component of the response to injury in vascular disease. The role of 12/15-LO in regulating VSMC proliferation is poorly understood. Id3 has been shown to regulate growth in various cell types and is expressed in VSMCs within atherosclerotic and restenotic lesions. This study examines the role of Id3 in 12/15-LO-mediated VSMC proliferation. METHODS AND RESULTS Primary aortic VSMCs from leukocyte-type 12/15-LO transgenic, leukocyte-type 12/15-LO knockout (KO), and control mice were plated in equal densities and assayed for growth, Id3 protein expression, and Id3 transcription. Results demonstrated that 12/15-LO transgenic VSMCs grew faster, whereas 12/15-LO KO VSMCs grew slower relative to control VSMCs. Further, pharmacological and molecular inhibition of 12/15-LO resulted in decreased VSMC growth. Western blots demonstrated increased Id3 protein in 12/15-LO transgenic VSMCs, whereas luciferase promoter reporter assays revealed increased Id3 transcription. In addition, overexpression of 12/15-LO increased growth in control cells but not in Id3 KO cells. 12/15-LO transgenic VSMCs demonstrated increased protein kinase C (PKC) activity. Consistent with these data, PKC inhibition decreased Id3 promoter activation. CONCLUSIONS 12/15-LO is an important mediator of VSMC growth. The growth-promoting effects of 12/15-LO are at least partially mediated through induction of Id3 transcription.
Collapse
Affiliation(s)
- Angela M Taylor
- Cardiovascular Division, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Murzina GB. Mathematical simulation of the induction of long-term depression in cerebellar Purkinje cells. ACTA ACUST UNITED AC 2004; 34:115-21. [PMID: 15115318 DOI: 10.1023/b:neab.0000009205.08547.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The question of the mechanisms underlying the induction of associative and homosynaptic long-term depression in cerebellar Purkinje cells is addressed. Mathematical simulation was used to investigate the possibility that long-term depression, which is associated with a decrease in the efficiency of AMPA receptors, could be induced both by phosphorylation and dephosphorylation of these receptors.
Collapse
Affiliation(s)
- G B Murzina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow.
| |
Collapse
|
16
|
Yagi K, Shirai Y, Hirai M, Sakai N, Saito N. Phospholipase A2 products retain a neuron specific gamma isoform of PKC on the plasma membrane through the C1 domain--a molecular mechanism for sustained enzyme activity. Neurochem Int 2004; 45:39-47. [PMID: 15082220 DOI: 10.1016/j.neuint.2003.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 08/28/2003] [Accepted: 12/22/2003] [Indexed: 11/24/2022]
Abstract
To clarify molecular mechanism for sustained activation of gamma protein kinase C (gammaPKC), a neuron-specific subtype, we investigated the involvement of phospholipase A2 (PLA2) products in the membrane association of gammaPKC upon activation of G protein coupled purinoceptors in CHO-K1 and NG 108-15 cells. In addition, the functional domain responsible for PLA2-product mediated retention of gammaPKC on the plasma membrane was determined by simultaneously monitoring two different fluorescence-tagged gammaPKCs and mutants in the same living CHO-K1 cells. Purinoceptor activation by UTP induced a transient translocation of gammaPKC from the cytoplasm to the plasma membrane. Interestingly, PLA2 inhibitors, bromoenol lactone (BEL) and arachidonyl-trifluoromethyl ketone (AACOF3), shortened the retention time of gammaPKC on the plasma membrane in cells treated with UTP, while a DAG kinase inhibitor did not affect it. The C1 domain deficient mutant (DeltaC1-gammaPKC) also showed short membrane association compared with wild type gammaPKC, when cells are treated with UTP or arachidonic acid (AA) plus a Ca(2+) ionophore. However, deletion of C1A or C1B subdomains (DeltaC1A-gammaPKC or DeltaC1B-gammaPKC) did not alter the retention time on the plasma membrane, whereas PLA2 inhibitor shortened the retention times of both mutants. These results indicate that PLA2 products prolong the retention of gammaPKC on the plasma membrane through the C1A and/or C1B subdomain in purinoceptor-stimulated CHO-K1 cells. The importance of PLA2 product and C1 domain for the retention of gammaPKC on the membrane was also confirmed using neuronal cell line, suggesting that these are part of molecular machinery for sustaining enzyme activity in neurons.
Collapse
Affiliation(s)
- Keiko Yagi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Rokko-dai Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
17
|
Chen N, Appell M, Berfield JL, Reith MEA. Inhibition by arachidonic acid and other fatty acids of dopamine uptake at the human dopamine transporter. Eur J Pharmacol 2003; 478:89-95. [PMID: 14575792 DOI: 10.1016/j.ejphar.2003.08.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is known that arachidonic acid, in addition to promoting release of dopamine, can inhibit its transport. The present study provides preliminary information on structure-activity relationships for uptake inhibition by rotating disk voltammetry in human embryonic kidney-293 cells expressing the human dopamine transporter. Except for anandamide, all other fatty acids studied at a pretreatment concentration of 80 microM caused significant reductions in Vmax but not Km. Increasing saturation of the hydrocarbon tails (partial saturation: oleic acid, linoleic acid; full saturation: arachidic acid, stearic acid, stearic acid ethyl ester) removed inhibitory activity incrementally, suggesting a role for cis-unsaturation (folding/bending of hydrocarbon tails). The relative lack of effect of 5,8,11,14-eicosatetraynoic acid also supports the idea that less linear structures are less inhibitory on dopamine uptake. Esterification of the free carboxylic group (arachidonic acid ethyl ester) prevented most of the inhibitory activity, arguing against mere membrane lipid disruption. Finally, the endogenous cannabinoid anandamide greatly reduced uptake Vmax accompanied by a small decrease in Km, a potentially important effect on dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Nianhang Chen
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Box 1649, Peoria, IL 61656-1649, USA
| | | | | | | |
Collapse
|
18
|
Bonnans C, Mainprice B, Chanez P, Bousquet J, Urbach V. Lipoxin A4 stimulates a cytosolic Ca2+ increase in human bronchial epithelium. J Biol Chem 2003; 278:10879-84. [PMID: 12500974 DOI: 10.1074/jbc.m210294200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoxins are biologically active eicosanoids possessing anti-inflammatory properties. Using a calcium imaging system we investigated the effect of lipoxin A(4) (LXA(4)) on intracellular [Ca(2+)] ([Ca(2+)](i)) of human bronchial epithelial cell. Exposure of the cells to LXA(4) produced a dose-dependent increase in [Ca(2+)](i) followed by a recovery to basal values in primary culture and in 16HBE14o(-) cells. The LXA(4)-induced [Ca(2+)](i) increase was completely abolished after pre-treatment of the 16HBE14o(-) cells with pertussis toxin (G-protein inhibitor). The [Ca(2+)](i) response was not affected by the removal of external [Ca(2+)] but completely inhibited by thapsigargin (Ca(2+)-ATPase inhibitor) treatment. Pre-treatment of the bronchial epithelial cells with either MDL hydrochloride (adenylate cyclase inhibitor) or (R(p))-cAMP (cAMP-dependent protein kinase inhibitor) inhibited the Ca(2+) response to LXA(4). However, the response was not affected by chelerytrine chloride (protein kinase C inhibitor) or montelukast (cysteinyl leukotriene receptor antagonist). The LXA(4) receptor mRNA was detected, by RT-PCR, in primary culture of human bronchial epithelium and in immortalized 16HBE14o(-) cells. The functional consequences of the effect of LXA(4) on intracellular [Ca(2+)](i) have been investigated on Cl(-) secretion, measured using the short-circuit techniques on 16HBE14o(-) monolayers grown on permeable filters. LXA(4) produced a sustained stimulation of the Cl(-) secretion by 16HBE14o(-) monolayers, which was inhibited by BAPTA-AM, a chelator of intracellular calcium. Taken together our results provided evidence for the stimulation of a [Ca(2+)](i) increase by LXA(4) through a mechanism involving its specific receptor and protein kinase A activation and resulting in a subsequent Ca(2+)-dependent Cl(-) secretion by human airway epithelial cells.
Collapse
Affiliation(s)
- Caroline Bonnans
- INSERM U454, Department of Respiratory Disease, Centre Hospitalier Universitaire Arnaud de Villeneuve, 34295 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
19
|
Bhalla US, Ram PT, Iyengar R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 2002; 297:1018-23. [PMID: 12169734 DOI: 10.1126/science.1068873] [Citation(s) in RCA: 449] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intracellular signaling networks receive and process information to control cellular machines. The mitogen-activated protein kinase (MAPK) 1,2/protein kinase C (PKC) system is one such network that regulates many cellular machines, including the cell cycle machinery and autocrine/paracrine factor synthesizing machinery. We used a combination of computational analysis and experiments in mouse NIH-3T3 fibroblasts to understand the design principles of this controller network. We find that the growth factor-stimulated signaling network containing MAPK 1, 2/PKC can operate with one (monostable) or two (bistable) stable states. At low concentrations of MAPK phosphatase, the system exhibits bistable behavior, such that brief stimulus results in sustained MAPK activation. The MAPK-induced increase in the amounts of MAPK phosphatase eliminates the prolonged response capability and moves the network to a monostable state, in which it behaves as a proportional response system responding acutely to stimulus. Thus, the MAPK 1, 2/PKC controller network is flexibly designed, and MAPK phosphatase may be critical for this flexible response.
Collapse
Affiliation(s)
- Upinder S Bhalla
- National Center for Biological Sciences, Bangalore 560065 India.
| | | | | |
Collapse
|
20
|
Avis I, Hong SH, Martinez A, Moody T, Choi YH, Trepel J, Das R, Jett M, Mulshine JL. Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J 2001; 15:2007-9. [PMID: 11511519 DOI: 10.1096/fj.00-0866fje] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many arachidonic acid metabolites function in growth signaling for epithelial cells, and we previously reported the expression of the major arachidonic acid enzymes in human breast cancer cell lines. To evaluate the role of the 5-lipoxygenase (5-LO) pathway on breast cancer growth regulation, we exposed cells to insulinlike growth factor-1 or transferrin, which increased the levels of the 5-LO metabolite, 5(S)-hydrooxyeicosa-6E,8C,11Z,14Z-tetraenoic acid (5-HETE), by radioimmunoassay and high-performance liquid chromatography. Addition of 5-HETE to breast cancer cells resulted in growth stimulation, whereas selective biochemical inhibitors of 5-LO reduced the levels of 5-HETE and related metabolites. Application of 5-LO or 5-LO activating protein-directed inhibitors, but not a cyclooxygenase inhibitor, reduced growth, increased apoptosis, down-regulated bcl-2, up-regulated bax, and increased G1 arrest. Exposure of breast cancer cells to a 5-LO inhibitor up-regulated peroxisome proliferator-activated receptor (PPAR)a and PPARg expression, and these same cells were growth inhibited when exposed to relevant PPAR agonists. These results suggest that disruption of the 5-LO signaling pathway mediates growth arrest and apoptosis in breast cancer cells. Additional experiments suggest that this involves the interplay of several factors, including the loss of growth stimulation by 5-LO products, the induction of PPARg, and the potential activation of PPARg by interactions with shunted endoperoxides.
Collapse
Affiliation(s)
- I Avis
- Intervention Section, Department of Cell and Cancer Biology, Division of Clinical Sciences, National Cancer Institute, NIH Clinical Center, 9000 Rockville Pike, Bethesda, MD 20892-1906, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81:1143-95. [PMID: 11427694 DOI: 10.1152/physrev.2001.81.3.1143] [Citation(s) in RCA: 597] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
Collapse
Affiliation(s)
- M Ito
- Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
22
|
Laufer H, Biggers WJ. Unifying Concepts Learned from Methyl Farnesoate for Invertebrate Reproduction and Post-Embryonic Development. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.3.442] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Laufer H, Biggers WJ. Unifying Concepts Learned from Methyl Farnesoate for Invertebrate Reproduction and Post-Embryonic Development1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0442:uclfmf]2.0.co;2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Muzzio IA, Gandhi CC, Manyam U, Pesnell A, Matzel LD. Receptor-stimulated phospholipase A(2) liberates arachidonic acid and regulates neuronal excitability through protein kinase C. J Neurophysiol 2001; 85:1639-47. [PMID: 11287487 DOI: 10.1152/jn.2001.85.4.1639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Type B photoreceptors in Hermissenda exhibit increased excitability (e.g., elevated membrane resistance and lowered spike thresholds) consequent to the temporal coincidence of a light-induced intracellular Ca(2+) increase and the release of GABA from presynaptic vestibular hair cells. Convergence of these pre- and postsynaptically stimulated biochemical cascades culminates in the activation of protein kinase C (PKC). Paradoxically, exposure of the B cell to light alone generates an inositol triphosphate-regulated rise in diacylglycerol and intracellular Ca(2+), co-factors sufficient to stimulate conventional PKC isoforms, raising questions as to the unique role of synaptic stimulation in the activation of PKC. GABA receptors on the B cell are coupled to G proteins that stimulate phospholipase A(2) (PLA(2)), which is thought to regulate the liberation of arachidonic acid (AA), an "atypical" activator of PKC. Here, we directly assess whether GABA binding or PLA(2) stimulation liberates AA in these cells and whether free AA potentiates the stimulation of PKC. Free fatty-acid was estimated in isolated photoreceptors with the fluorescent indicator acrylodan-derivatized intestinal fatty acid-binding protein (ADIFAB). In response to 5 microM GABA, a fast and persistent increase in ADIFAB emission was observed, and this increase was blocked by the PLA(2) inhibitor arachidonyltrifluoromethyl ketone (50 microM). Furthermore, direct stimulation of PLA(2) by melittin (10 microM) increased ADIFAB emission in a manner that was kinetically analogous to GABA. In response to simultaneous exposure to the stable AA analogue oleic acid (OA, 20 microM) and light (to elevate intracellular Ca(2+)), B photoreceptors exhibited a sustained (>45 min) increase in excitability (membrane resistance and evoked spike rate). The excitability increase was blocked by the PKC inhibitor chelerythrine (20 microM) and was not induced by exposure of the cells to light alone. The increase in excitability in the B cell that followed exposure to light and OA persisted for > or =90 min when the pairing was conducted in the presence of the protein synthesis inhibitor anisomycin (1 microm), suggesting that the synergistic influence of these signaling agents on neuronal excitability did not require new protein synthesis. These results indicate that GABA binding to G-protein-coupled receptors on Hermissenda B cells stimulates a PLA(2) signaling cascade that liberates AA, and that this free AA interacts with postsynaptic Ca(2+) to synergistically stimulate PKC and enhance neuronal excitability. In this manner, the interaction of postsynaptic metabotropic receptors and intracellular Ca(2+) may serve as the catalyst for some forms of associative neuronal/synaptic plasticity.
Collapse
Affiliation(s)
- I A Muzzio
- Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
25
|
Kang SW, Adler SG, Nast CC, LaPage J, Gu JL, Nadler JL, Natarajan R. 12-lipoxygenase is increased in glucose-stimulated mesangial cells and in experimental diabetic nephropathy. Kidney Int 2001; 59:1354-62. [PMID: 11260396 DOI: 10.1046/j.1523-1755.2001.0590041354.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Arachidonic acid-derived 12-lipoxygenase (12-LO) products have potent growth and chemotactic properties. The present studies examined whether 12-LO and fibronectin are induced in cultured rat mesangial cells (MCs) exposed to high glucose and whether they are expressed in experimental diabetic nephropathy. METHODS To determine the effect of high glucose on MC 12-LO mRNA and protein expression, rat MCs were incubated with RPMI medium containing 100 (NG) or 450 mg/dL glucose (HG). For animal studies, rats were injected with diluent (control) or streptozotocin. The latter were left untreated (DM) or treated with insulin (DM + I). At sacrifice after four months, GAPDH, 12-LO, and fibronectin mRNA were measured by competitive reverse transcription-polymerase chain reaction (RT-PCR) in microdissected glomeruli (G). Renal sections were semiquantitatively scored (0 to 4+) for diabetic changes and for 12-LO and fibronectin by immunohistochemistry. RESULTS 12-LO mRNA expression in MC exposed to HG (12.71 +/- 1.17 attm/microL) and DM G (1.78 +/- 0.65 x 10-3 attm/glomerulus) was significantly higher than those of MCs in NG media (6.71 +/- 0.78 attm/microL) and control G (0.34 +/- 0.12 x 10-3 attm/glomerulus, P < 0.005), respectively. Western blot revealed a 1.7- and a 2.8-fold increase in MC and G 12-LO protein expression, respectively (P < 0.05). The immunohistochemistry score for G 12-LO and diabetic nephropathy score was significantly greater in DM and DM + I than controls. MC and G GAPDH mRNA remained unchanged. CONCLUSIONS In MCs exposed to HG and in diabetic rat glomeruli, increments in 12-LO mRNA and protein are associated with changes modeling diabetic nephropathy. These findings suggest a role for the 12-LO pathway in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- S W Kang
- Division of Nephrology and Hypertension, Department of Internal Medicine, Harbor-UCLA Research and Education Institute, Torrance, California, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Giembycz MA, Lynch OT, De Souza PM, Lindsay MA. Review: G-protein-coupled receptors on eosinophils. Pulm Pharmacol Ther 2001; 13:195-223. [PMID: 11001865 DOI: 10.1006/pupt.2000.0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M A Giembycz
- Thoracic Medicine, Imperial College of School of Medicine at the National Heart & Lung Institute, London, UK.
| | | | | | | |
Collapse
|
27
|
Zhang Y, Cribbs LL, Satin J. Arachidonic acid modulation of alpha1H, a cloned human T-type calcium channel. Am J Physiol Heart Circ Physiol 2000; 278:H184-93. [PMID: 10644598 DOI: 10.1152/ajpheart.2000.278.1.h184] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) and the products of its metabolism are central mediators of changes in cellular excitability. We show that the recently cloned and expressed T-type or low-voltage-activated Ca channel, alpha1H, is modulated by external AA. AA (10 microM) causes a slow, time-dependent attenuation of alpha1H current. At a holding potential of -80 mV, 10 microM AA reduces peak inward alpha1H current by 15% in 15 min and 70% in 30 min and shifts the steady-state inactivation curve -25 mV. AA inhibition was not affected by applying the cyclooxygenase inhibitor indomethacin or the lipoxygenase inhibitor nordihydroguaiaretic acid. The epoxygenase inhibitor octadecynoic acid partially antagonized AA attenuation of alpha1H. The epoxygenase metabolite epoxyeicosatrienoic acid (8,9-EET) mimicked the inhibitory effect of AA on alpha1H peak current. A protein kinase C (PKC)-specific inhibitor (peptide fragment 19-36) only partially antagonized the AA-induced reduction of peak alpha1H current and the shift of the steady-state inactivation curve but had no effect on 8,9-EET-induced attenuation of current. In contrast, PKA has no role in the modulation of alpha1H. These results suggest that AA attenuation and shift of alpha1H may be mediated directly by AA. The heterologous expression of T-type Ca channels allows us to study for the first time properties of this important class of ion channel in isolation. There is a significant overlap of the steady-state activation and inactivation curves, which implies a substantial window current. The selective shift of the steady-state inactivation curve by AA reduces peak Ca current and eliminates the window current. We conclude that AA may partly mediate physiological effects such as vasodilatation via the attenuation of T-type Ca channel current and the elimination of a T-type channel steady window current.
Collapse
Affiliation(s)
- Y Zhang
- Department of Physiology, The University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
28
|
Angenstein F, Riedel G, Reyman KG, Staak S. Transient translocation of protein kinase Cgamma in hippocampal long-term potentiation depends on activation of metabotropic glutamate receptors. Neuroscience 1999; 93:1289-95. [PMID: 10501452 DOI: 10.1016/s0306-4522(99)00315-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein kinase C has been implicated in long-term regulation of cellular functions including induction and maintenance of hippocampal long-term potentiation. In the present study the time-course of long-term potentiation-induced translocation of Ca(2+)-dependent protein kinase C isoenzymes (PKCalpha/beta and PKCgamma) was investigated. Quantitative immunoblot analysis was used to measure translocation of these isoenzymes between cytosolic, membrane-associated and membrane-inserted fraction at 5, 15 and 60 min after induction of long-term potentiation in the dentate gyrus in vivo. To investigate the involvement of metabotropic glutamate receptors in protein kinase C regulation during long-term potentiation induction, additional animals were treated before tetanization with (R,S)-alpha-methyl-4-carboxyphenylglycine, an antagonist of metabotropic glutamate receptors. Brief tetanic stimulation of the perforant path resulted in a 100-150% increase in the population spike amplitude in response to test stimuli 5, 15 or 60 min after stimulation in both untreated and (R,S)-alpha-methyl-4-carboxyphenylglycine-treated animals. Only those rats showing clear potentiation were selected for further biochemical analysis of the potentiated dentate gyrus. Five minutes after high-frequency stimulation the subcellular distribution of all studied protein kinase C isoenzymes was unchanged compared with controls. PKC-gamma translocated into the cytosol 15 min after tetanization and this redistribution was blocked by (R,S)-alpha-methyl-4-carboxyphenylgly-cine pretreatment. By contrast, PKC alpha/beta levels increased in the cytosolic fraction only 60 min after tetanization, but in a (R,S)-alpha-methyl-4-carboxyphenylglycine-independent manner. In an additional set of experiments it was shown that (R,S)-alpha-methyl-4-carboxyphenylglycine alone applied intraventricularly had no effect on the subcellular distribution of the studied isoenzymes. The data suggest that PKCalpha/beta and PKCgamma are activated during different post-tetanic phases and metabotropic glutamate receptor activation might be essential for tetanus-induced translocation of postsynaptic PKCgamma only.
Collapse
Affiliation(s)
- F Angenstein
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | |
Collapse
|
29
|
Roy K, Mandal AK, Sikdar R, Majumdar S, Ono Y, Sen PC. Unsaturated fatty acid-activated protein kinase (PKx) from goat testis cytosol. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1434:161-9. [PMID: 10556570 DOI: 10.1016/s0167-4838(99)00173-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytosolic fraction of goat cauda epididymis possesses a protein kinase (PKx) activity which is stimulated by a number of unsaturated fatty acids of which arachidonic acid is the best activator in absence of cAMP or Ca(2+). Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and diacylglycerol have no effect either alone or in combination. The membrane fraction does not show any appreciable kinase activity even after detergent treatment. PKx migrates as a single band of apparent molecular mass of 116 kDa on 10% SDS-PAGE after sequential chromatographic separation on DEAE-cellulose, phenyl-Sepharose, high-Q anion exchange and protamine-agarose affinity column. PKx phosphorylates histone H1, histone IIIs and protamine sulfate, but not casein. However, the best phosphorylation was obtained with a substrate based on PKC pseudosubstrate sequence (RFARKGSLRQKNV). The kinase phosphorylates two endogenous cytosolic proteins of 60 and 68 kDa. Ser residues are primarily phosphorylated although a low level of phosphorylation is observed on Thr residues also. Ca(2+) and Mn(2+) inhibit PKx activity in the micromolar range. Staurosporine is found to inhibit the PKx activity to a significant level at sub-nanomolar concentration. Lyso-phosphatidylcholine and certain detergents at very low concentrations (<0.05%) stimulate enzyme activity to some extent. The immuno-crossreactivity study with antibody against different PKC isotypes suggests that the protein kinase under study is not related to any known PKC family. Even the antibody against PKN (a related protein kinase reported in rat testis found to be activated by arachidonic acid) does not cross-react with this protein kinase. Hence we believe that the protein kinase (PKx) reported here is different even from the PKN of rat testis. The phosphorylation of endogenous proteins by the protein kinase may be involved in cell regulation including fertility regulation and signal transduction.
Collapse
Affiliation(s)
- K Roy
- Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Calcutta, India
| | | | | | | | | | | |
Collapse
|
30
|
Kishimoto K, Matsumura K, Kataoka Y, Morii H, Watanabe Y. Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 1999; 92:1061-77. [PMID: 10426546 DOI: 10.1016/s0306-4522(99)00051-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ca2(+)-sensitive 85,000 mol. wt cytosolic phospholipase A2 plays an essential role in the selective and stimulus-dependent release of arachidonic acid from membrane phospholipids. Cytosolic phospholipase A2-catalysed lipid mediators including arachidonic acid and its metabolites have been suggested to be involved in a variety of neuronal functions in the CNS. Since the cellular localization of cytosolic phospholipase A2 is still controversial and obscure, we tried an improved method of rapid processing of each specimens and succeeded in obtaining intense signals of cytosolic phospholipase A2 messenger RNA in the normal rat brain by northern blot analysis and in situ hybridization. Northern blot analysis showed the abundant distribution of cytosolic phospholipase A2 messenger RNA in most regions of the brain, with intense signals observed in the pineal gland and pons. Macroautoradiographs prepared after in situ hybridization with three different antisense riboprobes gave essentially similar patterns of localization; significant signals were widely detected in the gray matter of various regions, i.e. the olfactory bulb, cerebral cortex, hippocampus, amygdala, several thalamic and hypothalamic nuclei and cerebellum. Microautoradiographs showed that most of the intense signals were predominant in neurons, and that faint signals were from glial cells and other non-neuronal cells in the choroid plexus, inner surface cells of veins and the leptomeninges. In addition, the cycloheximide treatment increased the cytosolic phospholipase A2 messenger RNA level in the same cell populations originally possessing messenger RNA signals. Predominant expression of cytosolic phospholipase A2 messenger RNA in neurons may provide the basis for the contribution of cytosolic phospholipase A2-catalysed lipid mediators to a variety of neurotransmission and synaptic functions in the CNS.
Collapse
Affiliation(s)
- K Kishimoto
- Department of Neuroscience, Osaka Bioscience Institute, Suita-shi, Japan
| | | | | | | | | |
Collapse
|
31
|
Lin KT, Godfrey HP, Spokas EG, Sun FF, Wong PY. Modulation of LTB4 receptor in T-lymphocytes by lipoxin A4 (LXA4) and its role in delayed-type hypersensitivity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 447:151-63. [PMID: 10086191 DOI: 10.1007/978-1-4615-4861-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- K T Lin
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford 08084, USA
| | | | | | | | | |
Collapse
|
32
|
Higuchi Y, Matsukawa S. Glutathione depletion induces giant DNA and high-molecular-weight DNA fragmentation associated with apoptosis through lipid peroxidation and protein kinase C activation in C6 glioma cells. Arch Biochem Biophys 1999; 363:33-42. [PMID: 10049497 DOI: 10.1006/abbi.1998.1067] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione (GSH) depletion caused by l-buthionine-(S,R)-sulfoximine (BSO) induced apoptosis that was recognized by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick endo-labeling (TUNEL), nuclear DNA staining with fluorescence dye, and internucleosomal DNA fragmentation in C6 rat glioma cells. The BSO-induced cell death was associated with caspase-3 activation. Lipid peroxidation and protein kinase C (PK-C) activation were observed during the apoptosis of C6 cells, and these events were inhibited by antioxidants and iron chelators without affecting BSO-induced GSH depletion. Furthermore, approximately 2 Mbp giant DNA fragments were observed in the BSO-treated cells. The giant DNA fragmentation were followed by approximately 30-700 kbp and then less than 100 kbp, including internucleosomal DNA fragmentations. Such serial DNA degradation was prevented by the antioxidants, the iron chelators, and the PK-C inhibitors. These results suggest that during apoptosis induced by GSH-depletion caused by BSO, reactive oxygen species endogenously produced cause lipid peroxidation and that the lipid peroxidation induced PK-C activation, processes which are thought to be involved in the giant DNA, high-molecular-weight DNA, and the internucleosomal DNA fragmentations.
Collapse
Affiliation(s)
- Y Higuchi
- Department of Pharmacology, Kanazawa University School of Medicine, Ishikawa, Kanazawa, 920-8640,
| | | |
Collapse
|
33
|
Owada S, Larsson O, Arkhammar P, Katz AI, Chibalin AV, Berggren PO, Bertorello AM. Glucose decreases Na+,K+-ATPase activity in pancreatic beta-cells. An effect mediated via Ca2+-independent phospholipase A2 and protein kinase C-dependent phosphorylation of the alpha-subunit. J Biol Chem 1999; 274:2000-8. [PMID: 9890957 DOI: 10.1074/jbc.274.4.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the pancreatic beta-cell, glucose-induced membrane depolarization promotes opening of voltage-gated L-type Ca2+ channels, an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i), and exocytosis of insulin. Inhibition of Na+,K+-ATPase activity by ouabain leads to beta-cell membrane depolarization and Ca2+ influx. Because glucose-induced beta-cell membrane depolarization cannot be attributed solely to closure of ATP-regulated K+ channels, we investigated whether glucose regulates other transport proteins, such as the Na+,K+-ATPase. Glucose inhibited Na+,K+-ATPase activity in single pancreatic islets and intact beta-cells. This effect was reversible and required glucose metabolism. The inhibitory action of glucose was blocked by pretreatment of the islets with a selective inhibitor of a Ca2+-independent phospholipase A2. Arachidonic acid, the hydrolytic product of this phospholipase A2, also inhibited Na+, K+-ATPase activity. This effect, like that of glucose, was blocked by nordihydroguaiaretic acid, a selective inhibitor of the lipooxygenase metabolic pathway, but not by inhibitors of the cyclooxygenase or cytochrome P450-monooxygenase pathways. The lipooxygenase product 12(S)-HETE (12-S-hydroxyeicosatetranoic acid) inhibited Na+,K+-ATPase activity, and this effect, as well as that of glucose, was blocked by bisindolylmaleimide, a specific protein kinase C inhibitor. Moreover, glucose increased the state of alpha-subunit phosphorylation by a protein kinase C-dependent process. These results demonstrate that glucose inhibits Na+, K+-ATPase activity in beta-cells by activating a distinct intracellular signaling network. Inhibition of Na+,K+-ATPase activity may thus be part of the mechanisms whereby glucose promotes membrane depolarization, an increase in [Ca2+]i, and thereby insulin secretion in the pancreatic beta-cell.
Collapse
Affiliation(s)
- S Owada
- Rolf Luft Center for Diabetes Research L6B:01, Department of Molecular Medicine, Karolinska Institutet, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
Zafari AM, Ushio-Fukai M, Minieri CA, Akers M, Lassègue B, Griendling KK. Arachidonic acid metabolites mediate angiotensin II-induced NADH/NADPH oxidase activity and hypertrophy in vascular smooth muscle cells. Antioxid Redox Signal 1999; 1:167-79. [PMID: 11228745 DOI: 10.1089/ars.1999.1.2-167] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previously, we showed that angiotensin II stimulation of the NADH/NADPH oxidase is involved in hypertrophy of cultured vascular smooth muscle cells (VSMC). Here, we examine the pathways leading to oxidase activation, and demonstrate that arachidonic acid metabolites mediate hypertrophy by activating the p22phox-based NADH/NADPH oxidase. Angiotensin II stimulates phospholipase A2, releasing arachidonic acid, which stimulates oxidase activity in vitro. When arachidonic acid metabolism is blocked with 5,8,11,14-eicosatetraynoic acid (ETYA) or nordihydroguaiaretic acid (NDGA), oxidase activity decreases by 80 +/- 10%. In VSMC transfected with antisense p22phox to attenuate NADH/NADPH oxidase expression, arachidonic acid is unable to stimulate NADH/NADPH-dependent superoxide production. In these cells, or in cells in which NADH/NADPH oxidase activity is inhibited by diphenylene iodonium, angiotensin II-induced [3H]leucine incorporation is also inhibited. Attenuation of oxidase activation by inhibiting arachidonic acid metabolism with ETYA, NDGA, baicalein, or SKF-525A also inhibits angiotensin II-stimulated protein synthesis (74 +/- 2% and 34 +/- 1%, respectively). Thus, endogenous noncyclooxygenase arachidonic acid metabolites mediate angiotensin II-stimulated protein synthesis in cultured VSMC by activating the NADH/NADPH oxidase, providing mechanistic evidence for redox control of VSMC hypertrophy.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Aorta, Thoracic
- Arachidonic Acid/antagonists & inhibitors
- Arachidonic Acid/biosynthesis
- Arachidonic Acid/metabolism
- Arachidonic Acid/physiology
- Cells, Cultured
- Enzyme Activation
- Hypertrophy
- Intracellular Fluid/metabolism
- Membrane Transport Proteins
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Dehydrogenase/genetics
- NADPH Dehydrogenase/metabolism
- NADPH Oxidases
- Phospholipases A/physiology
- Phospholipases A2
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Rats
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/physiology
- Transfection
Collapse
Affiliation(s)
- A M Zafari
- Division of Cardiology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Protein kinase C (PKC) is a family of enzymes that are physiologically activated by 1,2-diacylglycerol (DAG) and other lipids. To date, 11 different isozymes, alpha, betaI, betaII, gamma, delta, epsilon, nu, lambda(iota), mu, theta and zeta, have been identified. On the basis of their structure and activators, they can be divided into three groups, two of which are activated by DAG or its surrogate, phorbol 12-myristate 13-acetate (PMA). PKC isozymes are remarkably different in number and prevalence in different cell lines and tissues. When activated, the isozymes bind to membrane phospholipids or to receptors that are located in and anchor the enzymes in a subcellular compartment. Some PKCs may also be activated in their soluble form. These enzymes phosphorylate serine and threonine residues on protein substrates, perhaps the best known of which are the myristoylated, alanine-rich C kinase substrate and nuclear lamins A, B and C. The enzymes clearly play a role in signal transduction, and, because of the importance of PMA as a tumor promoter, they are thought to affect some aspect of cell cycling. How PKC takes part in the regulation of cell transformation, growth, differentiation, ruffling, vesicle trafficking and gene expression, however, is largely unknown.
Collapse
Affiliation(s)
- W S Liu
- Department of Biological Sciences, Bowling Green State University, Ohio 43403, USA
| | | |
Collapse
|
36
|
Hazama H, Nakajima T, Asano M, Iwasawa K, Morita T, Igarashi K, Nagata T, Horiuchi T, Suzuki J, Soma M, Okuda Y. Omega-3 polyunsaturated fatty acids--modulation of voltage-dependent L-type Ca2+ current in guinea-pig tracheal smooth muscle cells. Eur J Pharmacol 1998; 355:257-66. [PMID: 9760040 DOI: 10.1016/s0014-2999(98)00484-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Omega-3 polyunsaturated fatty acids have been reported to be associated with favorable changes in the respiratory system. To determine one of the mechanisms for this effect, membrane currents were recorded in guinea-pig tracheal myocytes by using the whole-cell voltage clamp technique. Without EGTA in the patch pipette containing the Cs-internal solution, command voltage pulses positive to +0 mV from a holding potential of -60 mV elicited a voltage-dependent L-type Ca2+ current (I(Ca x L)) and a subsequent outward current. Upon repolarization, slowly decaying inward tail currents were recorded. The outward currents and the inward tail current were enhanced by methyl-1,4,-dihydro-2,6-dimethyl-3-nitro-4-(2-trigluromethylphenyl )-pyridine-5-carboxylate, and blocked by Cd2+ or nifedipine. Inclusion of EGTA (5 mM) in the patch pipette also abolished these currents, indicating that they were Ca2+-dependent. When [Cl-]o or [Cl-]i was changed, the reversal potential of these currents shifted, thus behaving like a Cl(-)-sensitive ion channel. 4,4'-Diisothiocyanatostilbene-2,2'-disulphonic acid. a Cl- channel blocker, inhibited the currents. The omega-3 polyunsaturated fatty acids eicosapentaenoic acid (3-30 microM) and docosahexaenoic acid (30 microM) suppressed I(Ca x L) and then inhibited I(Ca x Cl) in a reversible manner. Similar inhibitory effects of eicosapentaenoic acid on I(Ca x L) were observed with 5 mM EGTA in the patch pipette. Neurokinin A (1 microM) and caffeine (10 mM) also transiently activated I(Cl x Ca), probably due to Ca2+ release from Ca2+ storage sites. Pretreatment of the cells with eicosapentaenoic acid markedly suppressed the activation of I(Cl x Ca) by neurokinin A or caffeine. These results suggest that omega-3 polyunsaturated fatty acids inhibit voltage-dependent L-type Ca2+ currents and also Ca2+-activated Cl- currents in tracheal smooth muscle cells from the guinea-pig, which may play a role in modulation of tracheal smooth muscle tone.
Collapse
Affiliation(s)
- H Hazama
- Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fairman WA, Sonders MS, Murdoch GH, Amara SG. Arachidonic acid elicits a substrate-gated proton current associated with the glutamate transporter EAAT4. Nat Neurosci 1998; 1:105-13. [PMID: 10195124 DOI: 10.1038/355] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Arachidonic acid modulates both electrical and biochemical properties of membrane proteins involved in cellular signaling. In Xenopus laevis oocytes expressing the excitatory amino acid transporter EAAT4, physiologically relevant concentrations of arachidonic acid increase the amplitude of the substrate-activated current by roughly twofold at -60 mV. This stimulation is not attributable to the modulation of either substrate/ion cotransport or the ligand-gated chloride current, the major conductance associated with this carrier. Ion-substitution experiments reveal that arachidonic acid stimulates a proton-selective conductance. The effect does not require metabolism of arachidonic acid and is not blocked by inhibitors of endogenous oocyte ion-exchangers. This proton conductance expands the complex repertoire of the ligand-gated channel properties associated with EAAT4.
Collapse
Affiliation(s)
- W A Fairman
- Howard Hughes Medical Institute, Oregon Health Sciences University, Portland, USA
| | | | | | | |
Collapse
|
38
|
Macica CM, Yang Y, Lerea K, Hebert SC, Wang W. Role of the NH2 terminus of the cloned renal K+ channel, ROMK1, in arachidonic acid-mediated inhibition. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F175-81. [PMID: 9458837 DOI: 10.1152/ajprenal.1998.274.1.f175] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously demonstrated that the ROMK channel maintains the property of arachidonic acid (AA) sensitivity observed originally in the native ATP-sensitive K+ channel of the rat cortical collecting duct (16). We used the patch-clamp technique to extend these studies to other NH2-terminal splice variants of the ROMK channel family, ROMK2 and ROMK3, expressed in Xenopus oocytes to determine the mechanism by which AA inhibits channel activity. Although the conductance, channel open probability, and open/closed times of the three homologs were determined to be similar, addition of 5-10 microM AA caused only a moderate inhibition of ROMK2 (15 +/- 8%) and ROMK3 (13 +/- 9%) activity, indicating that differences in the NH2 termini of ROMK channels strongly influence the AA action. We consequently examined the effect of AA on a ROMK1 variant, R1ND37, in which the NH2 terminal amino acids 2-37 were deleted, and on a mutant ROMK1, R1S4A, in which the serine-4 residue was mutated to alanine. Like ROMK2 and ROMK3, AA had a diminished effect on these variants. Addition of 1 nM exogenous protein kinase C (PKC) inhibited ROMK1 but not the mutant, R1S4A. However, the effect of AA is not a result of stimulation of a membrane bound PKC, since PKC inhibitors, calphostin C and chelerythrine, failed to abolish the AA-induced inhibition. In contrast, application of 5 microM staurosporine, a nonspecific protein kinase inhibitor at high concentration, abolished the effect of AA. We conclude that phosphorylation of serine-4 residue in the NH2 terminus plays a key role in determination of AA effect on ROMK channels.
Collapse
Affiliation(s)
- C M Macica
- Department of Pharmacology, New York Medical College, Valhalla 10595, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
The protein content of skeletal muscle is determined by the relative rates of synthesis and degradation which must be regulated coordinately to maintain equilibrium. However, in conditions such as fasting where amino acids are required for gluconeogenesis, or in cancer cachexia, this equilibrium is disrupted and a net loss of protein ensues. This review, utilising studies performed in several situations, summarizes the current state of knowledge on the possible signalling pathways regulating protein turnover in skeletal muscle and highlights areas for future work.
Collapse
Affiliation(s)
- M G Thompson
- Rowett Research Institute, Bucksburn, Aberdeen, UK
| | | |
Collapse
|
40
|
|
41
|
Nishio E, Watanabe Y. Role of the lipoxygenase pathway in phenylephrine-induced vascular smooth muscle cell proliferation and migration. Eur J Pharmacol 1997; 336:267-73. [PMID: 9384242 DOI: 10.1016/s0014-2999(97)01259-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We studied the effects of phenylephrine-stimulated proliferation and migration of vascular smooth muscle cells and the role of 12-lipoxygenase-mediated pathways under normal as well as high glucose conditions. Phenylephrine-induced increases in cellular proliferation and migration were attenuated by the specific 12-lipoxygenase inhibitor baicalein. In contrast, neither of the cyclo-oxygenase inhibitors, indomethacin or ibuprofen, had any effect. Direct addition of the 12-lipoxygenase product, 12-S-hydroxyeicosatetraenoic acid (12-HETE), increased the proliferation and migration of vascular smooth muscle cells treated with both phenylephrine and nordihydroguaiaretic acid. Furthermore, we observed that phenylephrine induced greater increases in the proliferation and migration of vascular smooth muscle cells and also that the 12-lipoxygenase inhibitor prevented the enhancement of proliferation and migration of vascular smooth muscle cells induced by phenylephrine in the presence of high glucose (25 mmol/l). These results suggest that 12-lipoxygenase activation plays a key role in phenylephrine-induced responses of vascular smooth muscle cells under normal and hyperglycemic conditions. 12-lipoxygenase may be a good pharmacological target for treatment of vascular disease of hypertension and diabetes mellitus.
Collapse
Affiliation(s)
- E Nishio
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | |
Collapse
|
42
|
Serhan CN. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? PROSTAGLANDINS 1997; 53:107-37. [PMID: 9112289 DOI: 10.1016/s0090-6980(97)00001-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipid-derived mediators play critical roles in inflammation and other multicellular vascular processes, including atherosclerosis and thrombosis. The lipoxins (LXs) were first isolated in 1984, and have continued to show intriguing and potentially important biological roles. These compounds carry a trihydroxytetraene structure and are both structurally and functionally unique among arachidonic acid-derived bioactive products. The availability of synthetic materials for evaluation of bioactions as well as appropriate methods of detection to determine when and where LX are generated has, in recent studies, catapulted our understanding of the formation and actions of the lipoxins. This mini-review addresses new concepts in the formation and biological roles of these lipid-derived mediators and considers whether the lipoxins and the newly discovered aspirin-triggered lipoxins (ATL) represent novel approaches for therapeutic opportunities. Recent findings indicate that select cytokines and aspirin initiate and regulate LX biosynthetic events. These circuits involve cell-cell interfacing that facilitates transcellular events to form LX that display anti-inflammatory actions in both in vitro and in vivo models. These recent results suggest that LX biosynthetic circuits assemble to evoke anti-inflammatory actions and generate LX that can serve as "stop signals" in appropriate microenvironments.
Collapse
Affiliation(s)
- C N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham, and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
43
|
Roisin MP, Leinekugel X, Tremblay E. Implication of protein kinase C in mechanisms of potassium-induced long-term potentiation in rat hippocampal slices. Brain Res 1997; 745:222-30. [PMID: 9037413 DOI: 10.1016/s0006-8993(96)01155-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The involvement of Ca2+/phospholipid-dependent (alpha, beta, gamma, PKCs) and Ca(2+)-independent PKC (epsilon and zeta isoforms) in mechanisms of long-term potentiation was investigated in CA1 hippocampal slices, using a brief high potassium pulse (50 mM, 40 s) to induce long-term potentiation (K+/LTP). The K+ pulse induced first, in 15 s a translocation of PKC activity to the membrane. This was rapidly followed, from 1 to 60 min after the pulse, by a selective activation of PKC in the cytosol. This activation, which could be blocked by the NMDA (N-methyl-D-aspartate) receptor antagonist 2-amino-5-phosphonovalerate (APV), was associated with a significant increase n immunoreactivity for gamma PKC in he cytosol, and also to a less degree for beta PKC. In contrast, application of the phorbol ester PMA (phorbol 12-mirystate 13 acetate) to other slices induced a rapid and persistent translocation to the membrane of alpha, beta, epsilon and zeta PKCs. A major role for the activation role for the activation of cytosolic gamma PKC in the maintenance of LTP is discussed.
Collapse
Affiliation(s)
- M P Roisin
- Université René Descartes, Paris C, INSERM U 29, Hopital de Port-Royal, Paris, France
| | | | | |
Collapse
|
44
|
Abstract
In many organs and tissues, the cellular response to injury is associated with a reiteration of specific developmental processes. Studies have shown that, in response to injury, vascular wall cells in adult organisms express genes or gene products characteristic of earlier developmental states. Other genes, expressed preferentially in adult cells in vivo, are down-regulated following injurious stimuli. Complicating matters, however, are recent observations demonstrating that the vascular wall is comprised of phenotypically heterogeneous subpopulations of endothelial cells, smooth muscle cells, and fibroblasts. It is unclear how specific subsets of cells respond to injury and thus contribute to the vascular remodeling that characterizes chronic pulmonary hypertension. This review discusses vascular development in the lung and the cellular responses occurring in pulmonary hypertension; special attention is given to heterogeneity of responses within cell populations and reiteration of developmental processes.
Collapse
Affiliation(s)
- K R Stenmark
- University of Colorado Health Sciences Center, Developmental Lung Biology Laboratory, Denver 80262, USA
| | | |
Collapse
|
45
|
Natarajan R, Bai W, Rangarajan V, Gonzales N, Gu JL, Lanting L, Nadler JL. Platelet-derived growth factor BB mediated regulation of 12-lipoxygenase in porcine aortic smooth muscle cells. J Cell Physiol 1996; 169:391-400. [PMID: 8908207 DOI: 10.1002/(sici)1097-4652(199611)169:2<391::aid-jcp19>3.0.co;2-c] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Platelet-derived growth factor BB (PDGF) is a potent mitogen and chemoattractant for vascular smooth muscle cells (VSMC). In the present study, we have examined the effect of PDGF on the 12-lipoxygenase (12-LO) pathway of arachidonate metabolism in porcine aortic VSMC (PVSMC). The rationale for this is previous studies showing that LO products have growth and chemotactic effects in VSMC and that another VSMC growth factor, angiotensin II, is a potent positive regulator of 12-LO activity and expression. We observed that PDGF causes a significant increase in the formation of the 12-LO product, 12-hydroxyeicosatetraenoic acid (12-HETE) in PVSMC. In addition, PDGF also markedly increased leukocyte-type 12-LO messenger RNA and protein expression. PDGF-induced PVSMC migration was inhibited significantly by two LO blockers but not by a cyclooxygenase blocker. Furthermore, although the proliferative effects of PDGF on PVSMC were not altered by cell culture under hyperglycemic conditions (25 mM glucose, HG), the chemotactic effects of PDGF as well as those of 10% fetal calf serum were significantly greater in cells cultured in HG as compared to normal glucose conditions (5.5 mM), thus indicating a potential new mechanism for the accelerated cardiovascular disease usually observed in diabetes. These results indicate a novel mechanism for the biological effects of PDGF in leading to cardiovascular disease.
Collapse
Affiliation(s)
- R Natarajan
- Department of Diabetes, Endocrinology, and Metabolism, City of Hope Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Lundy DF, McBean GJ. Inhibition of the high-affinity uptake of D-[3H]aspartate in rate by L-alpha-aminoadipate and arachidonic acid. J Neurol Sci 1996; 139 Suppl:1-9. [PMID: 8899651 DOI: 10.1016/0022-510x(96)00072-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism of inhibition of the high-affinity sodium-dependent transport of D-[3H]aspartate by the gliotoxin, L-alpha-aminoadipate, and also by the endogenous fatty acid, arachidonic acid (cis-5,8,11,14 eicosatetraenoic acid), into rat brain synaptosomes has been investigated. L-alpha-Aminoadipate competitively inhibited the transport of D-[3H]aspartate with a K1 value of 192 microM. Superfusion of coronal slices of rat brain for 40 min with 1 mM L-alpha-aminoadipate reduced the glutathione concentration of the tissue by 20%. Neither glutamate nor kainate depleted the glutathione level of the slices. Pre-incubation of synaptosomes with arachidonic acid (10 microM) for 10-60 min produced a marked potentiation of the inhibition of D-[3H]aspartate transport, compared to experiments in which the acid was added concurrently with the D-[3H]aspartate ('co-incubation' experiments). Inhibition of D-[3H]aspartate transport by arachidonic acid was not blocked by addition of nordihydroguaretic acid to the pre-incubation medium. Staurosporine (50 nM) reduced the inhibition of transport occurring during pre-incubation with 10 microM arachidonic acid, and there was no longer any significant difference from the level of inhibition obtained in co-incubation experiments. Phorbol, 12-myristate, 13-acetate (1 microM) reduced the transport of D-[3H]aspartate to 73% of control after 20 min pre-incubation of the synaptosomes. This study highlights the fact that inhibition of glutamate transport may affect brain function in a number of different ways. Competitive inhibition by a structural analogue of glutamate, such as L-alpha-aminoadipate, leads to a reduction in the glutathione level, which may be an important factor in L-alpha-aminoadipate-mediated toxicity. On the other hand, the more long-term effects of non-competitive inhibition of glutamate transport by arachidonic acid, in a mechanism involving protein kinase C, may represent a physiological means for regulation of transporter activity in the brain.
Collapse
Affiliation(s)
- D F Lundy
- Department of Biochemistry, University College, Berfield, Dublin, Ireland
| | | |
Collapse
|
47
|
Chen CC, Chen WC. Increased protein kinase C isoform gamma in the hippocampus of pentylenetetrazol-induced chemoshocked mouse. Brain Res 1996; 725:75-80. [PMID: 8828588 DOI: 10.1016/0006-8993(96)00336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein kinase C (PKC) activity, Western blot analysis of PKC alpha, -beta and -gamma, endogenous substrate protein phosphorylation and Western blot analysis of neuromodulin were studied in the cortex, striatum, hippocampus and cerebellum of mouse brain after pentylenetetrazol-induced chemoshock. The PKC isozymes and endogenous substrates in the crude cytosolic and membrane fractions of these four brain regions were partially purified by DE-52 columns eluted with buffer containing 100 or 200 mM KCl. Almost the same PKC activity in the cortex, striatum, hippocampus and cerebellum was found. This kinase activity was increased in the membrane fractions of hippocampus from chemoshocked mice, while that in other brain regions was not changed. On further analysis by immunoblotting, this increased activity was found to be due to the increase of PKC gamma isozyme. The in vitro phosphorylation of neuromodulin was also found to be increased in the hippocampus of chemoshocked mice, while the level of neuromodulin was not changed after chemoshock. Therefore, an increase of PKC gamma alone, but not neuromodulin, in the hippocampus contributed to the increased phosphorylation of this substrate in chemoshocked mice.
Collapse
Affiliation(s)
- C C Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
48
|
Schwartz Z, Gates PA, Nasatzky E, Sylvia VL, Mendez J, Dean DD, Boyan BD. Effect of 17 beta-estradiol on chondrocyte membrane fluidity and phospholipid metabolism is membrane-specific, sex-specific, and cell maturation-dependent. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1282:1-10. [PMID: 8679644 DOI: 10.1016/0005-2736(96)00019-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study we examined the hypothesis that 17 beta-estradiol exerts both rapid and direct, nongenomic effects of cells in the endochondral pathway. To do this, we used a cell culture model in which chondrocytes at two distinct stages of cell maturation are isolated from the costochondral cartilage of male and female rats, and examined the short-term effect of 17 alpha- and 17 beta-estradiol on [14C]arachidonic acid turnover in the cell layer and phospholipase A2 specific activity in plasma membranes and extracellular matrix vesicles isolated from similarly prepared cultures. In addition, the effect of 17 alpha- and 17 beta-estradiol on plasma membrane and matrix vesicle membrane fluidity was assessed. The effect of hormone on arachidonic acid turnover was rapid, time- and concentration-dependent, stereo-specific, and cell maturation-specific. Only resting zone cells from female rats were affected, and only 17 beta-estradiol elicited a response. Similarly, only female rat resting zone chondrocytes exhibited a change in phospholipase A2 activity after a 24 h exposure to hormone, causing an increase in enzyme activity in the matrix vesicles, but not plasma membranes. When isolated membranes were incubated directly with hormone, membrane fluidity was decreased in both plasma membranes and matrix vesicles isolated from female rat resting zone chondrocyte cultures. This nongenomic effect was dose-dependent and stereo-specific and differentially expressed in the two membrane fractions with respect to time course and magnitude of response. These results support the hypothesis that 17 beta-estradiol has a rapid action on chondrocyte membrane lipid metabolism and suggest that specific membrane components, characteristic of a particular sex and state of cell maturation, are involved in the nongenomic effects of this sex hormone on isolated matrix vesicles and plasma membranes.
Collapse
Affiliation(s)
- Z Schwartz
- Department of Periodontics, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
49
|
Shraga-Levine Z, Ben-Menahem D, Naor Z. Arachidonic acid and lipoxygenase products stimulate protein kinase C beta mRNA levels in pituitary alpha T3-1 cell line: role in gonadotropin-releasing hormone action. Biochem J 1996; 316 ( Pt 2):667-70. [PMID: 8687415 PMCID: PMC1217399 DOI: 10.1042/bj3160667] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cross-talk of arachidonic acid (AA) and its lipoxygenase products with protein kinase C beta (PKC beta) mRNA levels during the action of gonadotropin-releasing hormone (GnRH) was investigated in the pituitary alpha T3-1 cell line. The addition of AA or its 5-lipoxygenase products 5-hydroxyeicosatetraenoic acid (5-HETE) or leukotriene C4 (LTC4) for 30 or 60 min stimulated PCK beta, but not PKC alpha mRNA levels (3-5-fold); PCK gamma is not expressed by the cells. Other HETEs or leukotrienes tested showed no significant effect. The range of effective concentration for LTC4 and 5-HETE (around 10(-10) M) is the range found in GnRH-stimulated pituitary cells. Although PKC beta mRNA levels were preferentially elevated by LTC4 and 5-HETE at early time points, PKC alpha mRNA levels were elevated at 6-12 h of incubation when PKC beta mRNA levels returned to basal levels. The addition of the phospholipase A2 inhibitor 4-bromophenacyl bromide or the selective 5-lipoxygenase inhibitor L-656,224 abolished [D-Trp6]GnRH (GnRH-A) elevation of PKC beta mRNA levels, whereas PKC alpha mRNA levels were not increased by this neurohormone. The cyclo-oxygenase inhibitor indomethacin elevated basal PKC beta mRNA levels and potentiated the GnRH-A response. Cross-talk exists between AA and some of its lipoxygenase products and PKC beta gene expression during cell signalling. AA, 5-HETE and LTC4 participate in the rapid stimulation of PKC beta mRNA levels by GnRH.
Collapse
Affiliation(s)
- Z Shraga-Levine
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
50
|
Lennartz MR, Lefkowith JB. Role of arachidonate in monocyte/macrophage function. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-5245(96)80017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|