1
|
Wei WM, Xu YL, Zheng RH, Zhao T, Fang W, Qin YD. Theoretical Study on the Mechanism of the Acylate Reaction of β-Lactamase. ACS OMEGA 2021; 6:12598-12604. [PMID: 34056410 PMCID: PMC8154126 DOI: 10.1021/acsomega.1c00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 05/25/2023]
Abstract
Using density functional theory and a cluster approach, we study the reaction potential surface and compute Gibbs free energies for the acylate reaction of β-lactamase with penicillin G, where the solvent effect is important and taken into consideration. Two reaction paths are investigated: one is a multi-step process with a rate-limit energy barrier of 19.1 kcal/mol, which is relatively small, and the reaction can easily occur; the other is a one-step process with a barrier of 45.0 kcal/mol, which is large and thus makes the reaction hard to occur. The reason why the two paths have different barriers is explained.
Collapse
Affiliation(s)
- Wen-Mei Wei
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Yan-Li Xu
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Ren-Hui Zheng
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P. R. China
| | - Tingting Zhao
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Weijun Fang
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Yi-De Qin
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| |
Collapse
|
2
|
Wang F, Shen L, Zhou H, Wang S, Wang X, Tao P. Machine Learning Classification Model for Functional Binding Modes of TEM-1 β-Lactamase. Front Mol Biosci 2019; 6:47. [PMID: 31355207 PMCID: PMC6629954 DOI: 10.3389/fmolb.2019.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
TEM family of enzymes is one of the most commonly encountered β-lactamases groups with different catalytic capabilities against various antibiotics. Despite the studies investigating the catalytic mechanism of TEM β-lactamases, the binding modes of these enzymes against ligands in different functional catalytic states have been largely overlooked. But the binding modes may play a critical role in the function and even the evolution of these proteins. In this work, a newly developed machine learning analysis approach to the recognition of protein dynamics states was applied to compare the binding modes of TEM-1 β-lactamase with regard to penicillin in different catalytic states. While conventional analysis methods, including principal components analysis (PCA), could not differentiate TEM-1 in different binding modes, the application of a machine learning method led to excellent classification models differentiating these states. It was also revealed that both reactant/product states and apo/product states are more differentiable than the apo/reactant states. The feature importance generated by the training procedure of the machine learning model was utilized to evaluate the contribution from residues at active sites and in different secondary structures. Key active site residues, Ser70 and Ser130, play a critical role in differentiating reactant/product states, while other active site residues are more important for differentiating apo/product states. Overall, this study provides new insights into the different dynamical function states of TEM-1 and may open a new venue for β-lactamases functional and evolutional studies in general.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Li Shen
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Hongyu Zhou
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing, and Systems Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, United States
| | - Peng Tao
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
3
|
Smith CA, Nossoni Z, Toth M, Stewart NK, Frase H, Vakulenko SB. Role of the Conserved Disulfide Bridge in Class A Carbapenemases. J Biol Chem 2016; 291:22196-22206. [PMID: 27590339 PMCID: PMC5063999 DOI: 10.1074/jbc.m116.749648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Indexed: 08/30/2023] Open
Abstract
Some members of the class A β-lactamase family are capable of conferring resistance to the last resort antibiotics, carbapenems. A unique structural feature of these clinically important enzymes, collectively referred to as class A carbapenemases, is a disulfide bridge between invariant Cys69 and Cys238 residues. It was proposed that this conserved disulfide bridge is responsible for their carbapenemase activity, but this has not yet been validated. Here we show that disruption of the disulfide bridge in the GES-5 carbapenemase by the C69G substitution results in only minor decreases in the conferred levels of resistance to the carbapenem imipenem and other β-lactams. Kinetic and circular dichroism experiments with C69G-GES-5 demonstrate that this small drop in antibiotic resistance is due to a decline in the enzyme activity caused by a marginal loss of its thermal stability. The atomic resolution crystal structure of C69G-GES-5 shows that two domains of this disulfide bridge-deficient enzyme are held together by an intensive hydrogen-bonding network. As a result, the protein architecture and imipenem binding mode remain unchanged. In contrast, the corresponding hydrogen-bonding networks in NMCA, SFC-1, and SME-1 carbapenemases are less intensive, and as a consequence, disruption of the disulfide bridge in these enzymes destabilizes them, which causes arrest of bacterial growth. Our results demonstrate that the disulfide bridge is essential for stability but does not play a direct role in the carbapenemase activity of the GES family of β-lactamases. This would likely apply to all other class A carbapenemases given the high degree of their structural similarity.
Collapse
Affiliation(s)
- Clyde A Smith
- From the Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025 and
| | - Zahra Nossoni
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Marta Toth
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Nichole K Stewart
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Hilary Frase
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Sergei B Vakulenko
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
4
|
Valegård K, Iqbal A, Kershaw NJ, Ivison D, Généreux C, Dubus A, Blikstad C, Demetriades M, Hopkinson RJ, Lloyd AJ, Roper DI, Schofield CJ, Andersson I, McDonough MA. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1567-79. [PMID: 23897479 DOI: 10.1107/s0907444913011013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/23/2013] [Indexed: 11/10/2022]
Abstract
Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate. Mutagenesis studies imply that Ser173, which is present in a conserved SXXK motif, acts as a nucleophile in catalysis, consistent with studies of related esterases, β-lactamases and D-Ala carboxypeptidases. Structures of wild-type ORF12 and of catalytic residue variants were obtained in complex with and in the absence of clavulanic acid. The role of ORF12 in clavulanic acid biosynthesis is unknown, but it may be involved in the epimerization of (3S,5S)-clavaminic acid to (3R,5R)-clavulanic acid.
Collapse
Affiliation(s)
- Karin Valegård
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Torol S, Kasap M. Purification and characterization of OXA-23 from Acinetobacter baumannii. J Enzyme Inhib Med Chem 2012; 28:836-42. [PMID: 22651799 DOI: 10.3109/14756366.2012.689296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the existence of bla(OXA-23) is reported in various parts of the world, the product of bla(OXA-23) gene, OXA-23, has not been purified and its kinetic properties are not known. In this study, OXA-23 of Acinetobacter baumannii isolated from Kocaeli University intensive care unit was characterized after purification using recombinant methods. Preliminary results showed that conventional protein purification methods were not effective for purification of OXA-23. Therefore, OXA-23 was fused to maltose-binding protein of Escherichia coli, the fused protein was expressed and purified to homogeneity. Kinetic properties of the pure protein were then studied with substrates e.g., imipenem, meropenem, cefepime, ceftazidime, ampicilline, piperacillin, penicillin G, and nitrocefin. Also clavulanic acid, tazobactam, and sulbactam concentrations that inhibit 50% of OXA-23 enzyme activity were calculated. Modelling of OXA-23 revealed its ionic surface structure, conformation in the fused form and its topology allowing us to make predictions for OXA-23 substrate specificity.
Collapse
Affiliation(s)
- Sinem Torol
- Department Of Medical Biology/KABI Proteomics Laboratory, Kocaeli University Medical School, Kocaeli, Turkey
| | | |
Collapse
|
6
|
Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-beta-lactam beta-lactamase inhibitor. Antimicrob Agents Chemother 2010; 54:5132-8. [PMID: 20921316 DOI: 10.1128/aac.00568-10] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NXL104 is a potent inhibitor of class A and C serine β-lactamases, including KPC carbapenemases. Native and NXL104-inhibited TEM-1 and P99 β-lactamases analyzed by liquid chromatography-electrospray ionization-time of flight mass spectrometry revealed that the inactivated enzymes formed a covalent adduct with NXL104. The principal inhibitory characteristics of NXL104 against TEM-1 and P99 β-lactamases were determined, including partition ratios, dissociation constants (K), rate constants for deactivation (k(2)), and reactivation rates. NXL104 is a potent inhibitor of TEM-1 and P99, characterized by high carbamylation efficiencies (k(2)/K of 3.7 × 10(5) M(-1) s(-1) for TEM-1 and 1 × 10(4) M(-1) s(-1) for P99) and slow decarbamylation. Complete loss of β-lactamase activity was obtained at a 1/1 enzyme/NXL104 ratio, with a k(3) value (rate constant for formation of product and free enzyme) close to zero for TEM-1 and P99. Fifty percent inhibitory concentrations (IC(50)s) were evaluated on selected β-lactamases, and NXL104 was shown to be a very potent inhibitor of class A and C β-lactamases. IC(50)s obtained with NXL104 (from 3 nM to 170 nM) were globally comparable on the β-lactamases CTX-M-15 and SHV-4 with those obtained with the comparators (clavulanate, tazobactam, and sulbactam) but were far lower on TEM-1, KPC-2, P99, and AmpC than those of the comparators. In-depth studies on TEM-1 and P99 demonstrated that NXL104 had a comparable or better affinity and inactivation rate than clavulanate and tazobactam and in all cases an improved stability of the covalent enzyme/inhibitor complex.
Collapse
|
7
|
Fisette O, Morin S, Savard PY, Lagüe P, Gagné SM. TEM-1 backbone dynamics-insights from combined molecular dynamics and nuclear magnetic resonance. Biophys J 2010; 98:637-45. [PMID: 20159160 DOI: 10.1016/j.bpj.2009.08.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/28/2022] Open
Abstract
Dynamic properties of class A beta-lactamase TEM-1 are investigated from molecular dynamics (MD) simulations. Comparison of MD-derived order parameters with those obtained from model-free analysis of nuclear magnetic resonance (NMR) relaxation data shows high agreement for N-H moieties within alpha- and beta-secondary structures, but significant deviation for those in loops. This was expected, because motions slower than the protein global tumbling often take place in loop regions. As previously shown using NMR, TEM-1 is a highly ordered protein. Motions are observed within the Omega loop that could, upon substrate binding, stabilize E166 in a catalytically efficient position as the cavity between the protein core and the Omega loop is partially filled. The rigidity of active site residues is consistent with the enzyme high turnover number. MD data are also shown to be useful during the model selection step of model-free analysis: local N-H motions observed over the course of the trajectories help assess whether a peptide plan undergoes low or high amplitude motions on one or more timescales. This joint use of MD and NMR provides a better description of protein dynamics than would be possible using either technique alone.
Collapse
Affiliation(s)
- Olivier Fisette
- Département de Biochimie et de Microbiologie, Université Laval and PROTEO, Québec, Canada
| | | | | | | | | |
Collapse
|
8
|
Bös F, Pleiss J. Multiple molecular dynamics simulations of TEM beta-lactamase: dynamics and water binding of the omega-loop. Biophys J 2010; 97:2550-8. [PMID: 19883598 DOI: 10.1016/j.bpj.2009.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022] Open
Abstract
The Omega-loop of TEM beta-lactamase is involved in substrate recognition and catalysis. Its dynamical properties and interaction with water molecules were investigated by performing multiple molecular dynamics simulations of up to 50 ns. Protein flexibility was assessed by calculating the root mean-square fluctuations and the generalized order parameter, S(2). The residues in secondary structure elements are highly ordered, whereas loop regions are more flexible, which is in agreement with previous experimental observations. Interestingly, the Omega-loop (residues 161-179) is rigid with order parameters similar to secondary structure elements, with the exception of the tip of the loop (residues 173-177) that has a considerably higher flexibility and performs an opening and closing motion on the 50-ns timescale. The rigidity of the main part of the Omega-loop is mediated by stabilizing and highly conserved water bridges inside a cavity lined by the Omega-loop and residues 65-69 of the protein core. In contrast, the flexible tip of the Omega-loop lacks these interactions. Hydration of the cavity and exchange of the water molecules with the bulk solvent occurs via two pathways: the flexible tip that serves as a door to the cavity, and a temporary water channel involving the side chain of Arg(164).
Collapse
Affiliation(s)
- Fabian Bös
- Institute of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
9
|
Conserved water molecules stabilize the Omega-loop in class A beta-lactamases. Antimicrob Agents Chemother 2008; 52:1072-9. [PMID: 18195065 DOI: 10.1128/aac.01035-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A set of 49 high-resolution (<or=2.2 A) structures of the TEM, SHV, and CTX-M class A beta-lactamase families was systematically analyzed to investigate the role of conserved water molecules in the stabilization of the Omega-loop. Overall, 13 water molecules were found to be conserved in at least 45 structures, including two water positions which were found to be conserved in all structures. Of the 13 conserved water molecules, 6 are located at the Omega-loop, forming a dense cluster with hydrogen bonds to residues at the Omega-loop as well as to the rest of the protein. This layer of conserved water molecules is packed between the Omega-loop and the rest of the protein and acts as structural glue, which could reduce the flexibility of the Omega-loop. A correlation between conserved water molecules and conserved protein residues could in general not be detected, with the exception of the conserved water molecules at the Omega-loop. Furthermore, the evolutionary relationship between the three families, derived from the number of conserved water molecules, is similar to the relationship derived from phylogenetic analysis.
Collapse
|
10
|
Padayatti PS, Sheri A, Totir MA, Helfand MS, Carey MP, Anderson VA, Carey PR, Bethel CR, Bonomo RA, Buynak JD, van den Akker F. Rational design of a beta-lactamase inhibitor achieved via stabilization of the trans-enamine intermediate: 1.28 A crystal structure of wt SHV-1 complex with a penam sulfone. J Am Chem Soc 2006; 128:13235-42. [PMID: 17017804 PMCID: PMC2593906 DOI: 10.1021/ja063715w] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
beta-Lactamases are one of the major causes of antibiotic resistance in Gram negative bacteria. The continuing evolution of beta-lactamases that are capable of hydrolyzing our most potent beta-lactams presents a vexing clinical problem, in particular since a number of them are resistant to inhibitors. The efficient inhibition of these enzymes is therefore of great clinical importance. Building upon our previous structural studies that examined tazobactam trapped as a trans-enamine intermediate in a deacylation deficient SHV variant, we designed a novel penam sulfone derivative that forms a more stable trans-enamine intermediate. We report here the 1.28 A resolution crystal structure of wt SHV-1 in complex with a rationally designed penam sulfone, SA2-13. The compound is covalently bound to the active site of wt SHV-1 similar to tazobactam yet forms an additional salt-bridge with K234 and hydrogen bonds with S130 and T235 to stabilize the trans-enamine intermediate. Kinetic measurements show that SA2-13, once reacted with SHV-1 beta-lactamase, is about 10-fold slower at being released from the enzyme compared to tazobactam. Stabilizing the trans-enamine intermediate represents a novel strategy for the rational design of mechanism-based class A beta-lactamase inhibitors.
Collapse
Affiliation(s)
- Pius S. Padayatti
- Department of Biochemistry, Case Western Reserve University, Cleveland Ohio 44106
| | - Anjaneyulu Sheri
- Department of Chemistry, Southern Methodist University, Dallas TX 75275-0314
| | - Monica A. Totir
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106
| | - Marion S. Helfand
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland Ohio 44106
| | - Marianne P. Carey
- Department of Biochemistry, Case Western Reserve University, Cleveland Ohio 44106
| | - Vernon A. Anderson
- Department of Biochemistry, Case Western Reserve University, Cleveland Ohio 44106
| | - Paul R. Carey
- Department of Biochemistry, Case Western Reserve University, Cleveland Ohio 44106
| | - Christopher R. Bethel
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland Ohio 44106
| | - Robert A. Bonomo
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland Ohio 44106
- Department of Pharmacology, Case Western Reserve University, Cleveland Ohio 44106
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, Dallas TX 75275-0314
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland Ohio 44106
| |
Collapse
|
11
|
Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP, Burrows LL. Common beta-lactamases inhibit bacterial biofilm formation. Mol Microbiol 2005; 58:1012-24. [PMID: 16262787 PMCID: PMC3097517 DOI: 10.1111/j.1365-2958.2005.04892.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Beta-lactamases, which evolved from bacterial penicillin-binding proteins (PBPs) involved in peptidoglycan (PG) synthesis, confer resistance to beta-lactam antibiotics. While investigating the genetic basis of biofilm development by Pseudomonas aeruginosa, we noted that plasmid vectors encoding the common beta-lactamase marker TEM-1 caused defects in twitching motility (mediated by type IV pili), adherence and biofilm formation without affecting growth rates. Similarly, strains of Escherichia coli carrying TEM-1-encoding vectors grew normally but showed reduced adherence and biofilm formation, showing this effect was not species-specific. Introduction of otherwise identical plasmid vectors carrying tetracycline or gentamicin resistance markers had no effect on biofilm formation or twitching motility. The effect is restricted to class A and D enzymes, because expression of the class D Oxa-3 beta-lactamase, but not class B or C beta-lactamases, impaired biofilm formation by E. coli and P. aeruginosa. Site-directed mutagenesis of the catalytic Ser of TEM-1, but not Oxa-3, abolished the biofilm defect, while disruption of either TEM-1 or Oxa-3 expression restored wild-type levels of biofilm formation. We hypothesized that the A and D classes of beta-lactamases, which are related to low molecular weight (LMW) PBPs, may sequester or alter the PG substrates of such enzymes and interfere with normal cell wall turnover. In support of this hypothesis, deletion of the E. coli LMW PBPs 4, 5 and 7 or combinations thereof, resulted in cumulative defects in biofilm formation, similar to those seen in beta-lactamase-expressing transformants. Our results imply that horizontal acquisition of beta-lactamase resistance enzymes can have a phenotypic cost to bacteria by reducing their ability to form biofilms. Beta-lactamases likely affect PG remodelling, manifesting as perturbation of structures involved in bacterial adhesion that are required to initiate biofilm formation.
Collapse
Affiliation(s)
| | - Craig Daniels
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Anindya S. Ghosh
- Department of Microbiology and Immunology, University of North Dakota Medical School, Grand Forks, ND, USA
| | - Kevin D. Young
- Department of Microbiology and Immunology, University of North Dakota Medical School, Grand Forks, ND, USA
| | - Lakshmi P. Kotra
- Department of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Lori L. Burrows
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Chen Y, Delmas J, Sirot J, Shoichet B, Bonnet R. Atomic resolution structures of CTX-M beta-lactamases: extended spectrum activities from increased mobility and decreased stability. J Mol Biol 2005; 348:349-62. [PMID: 15811373 DOI: 10.1016/j.jmb.2005.02.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/28/2005] [Accepted: 02/02/2005] [Indexed: 11/30/2022]
Abstract
Extended spectrum beta-lactamases (ESBLs) confer bacterial resistance to third-generation cephalosporins, such as cefotaxime and ceftazidime, increasing hospital mortality rates. Whereas these antibiotics are almost impervious to classic beta-lactamases, such as TEM-1, ESBLs have one to four orders greater activity against them. The origins of this activity have been widely studied for the TEM and SHV-type ESBLs, but have received less attention for the CTX-M beta-lactamases, an emerging family that is now the dominant ESBL in several regions. To understand how CTX-M beta-lactamases achieve their remarkable activity, biophysical and structural studies were undertaken. Using reversible, two-state thermal denaturation, it was found that as these enzymes evolve a broader substrate range, they sacrifice stability. Thus, the mutant enzyme CTX-M-16 is eightfold more active against ceftazidime than the pseudo-wild-type CTX-M-14 but is 1.9 kcal/mol less stable. This is consistent with a "stability-activity tradeoff," similar to that observed in the evolution of other resistance enzymes. To investigate the structural basis of enzyme activity and stability, the structures of four CTX-M enzymes were determined by X-ray crystallography. The structures of CTX-M-14, CTX-M-27, CTX-M-9 and CTX-M-16 were determined to 1.10 Angstroms, 1.20 Angstroms, 0.98 Angstroms and 1.74 Angstroms resolution, respectively. The enzyme active sites resemble those of the narrow-spectrum TEM-1 and SHV-1, and not the enlarged sites typical of ESBL mutants such as TEM-52 and TEM-64. Instead, point substitutions leading to specific interactions may be responsible for the improved activity against ceftazidime and cefotaxime, consistent with observations first made for the related Toho-1 enzyme. The broadened substrate range of CTX-M-16 may result from coupled defects in the enzyme's B3 strand, which lines the active site. Substitutions Val231-->Ala and Asp240-->Gly, which convert CTX-M-14 into CTX-M-16, occur at either end of this strand. These defects appear to increase the mobility of B3 based on anisotropic B-factor analyses at ultrahigh resolution, consistent with stability loss and activity gain. The unusually high resolution of these structures that makes such analyses possible also makes them good templates for inhibitor discovery.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94143-2240, USA
| | | | | | | | | |
Collapse
|
13
|
Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 2005; 105:395-424. [PMID: 15700950 DOI: 10.1021/cr030102i] [Citation(s) in RCA: 704] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
14
|
Madec S, Blin C, Krishnamoorthy R, Picard B, Chaibi EB, Fouchereau-Péron M, Labia R. Substitution of Met-69 by Ala or Gly in TEM-1 beta-lactamase confer an increased susceptibility to clavulanic acid and other inhibitors. FEMS Microbiol Lett 2002; 211:13-6. [PMID: 12052544 DOI: 10.1111/j.1574-6968.2002.tb11196.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In some inhibitor-resistant TEM-derived beta-lactamases, Met-69 is substituted by Leu, Ile or Val. Residue 69 is located in a region of strong structural constraints, at the beginning of H2 alpha-helix, and in the vicinity of B3 and B4 beta-strands. Analysis of the three-dimensional structure of TEM-1 beta-lactamase suggests that alteration of the substrate-binding site can be produced by changes of the size of residue 69 side chain. Met-69 was substituted by alanine or glycine in TEM-Bs beta-lactamase (a TEM-1-related enzyme) using site-directed mutagenesis. The minimum inhibitory concentrations of the mutants compared with the wild-type revealed an increased susceptibility to beta-lactamase inhibitor-beta-lactam combinations and to first-generation cephalosporins. Comparing the Met69Ala and Met69Gly beta-lactamases with TEM-Bs, K(m) constants of the mutants showed an increased affinity for most beta-lactams but the kcat for most substrates did not change substantially. Mutants also demonstrated lower IC50 for the three inhibitors (clavulanic acid, tazobactam and sulbactam). The two substitutions of the residue 69 by alanine and glycine had a noticeable effect on K(m) values of TEM-Bs beta-lactamase, and on affinity for beta-lactamase inhibitors.
Collapse
Affiliation(s)
- Stéphanie Madec
- CNRS, UBO, MNHN, FRE 2125, 6 rue de l'Université, 29000, Quimper, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Paunola E, Qiao M, Shmelev A, Makarow M. Inhibition of translocation of beta -lactamase into the yeast endoplasmic reticulum by covalently bound benzylpenicillin. J Biol Chem 2001; 276:34553-9. [PMID: 11447216 DOI: 10.1074/jbc.m102056200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found recently that beta-lactamase folds in the yeast cytosol to a native-like, catalytically active, and trypsin-resistant conformation, and is thereafter translocated into the ER and secreted to the medium. Previously, it was thought that pre-folded proteins cannot be translocated. Here we have studied in living yeast cells whether beta-lactamase, a tight globule in authentic form, must be unfolded for ER translocation. A beta-lactamase mutant (E166A) binds irreversibly benzylpenicillin via Ser(70) in the active site. We fused E166A to the C terminus of a yeast-derived polypeptide having a post-translational signal peptide. In the presence of benzylpenicillin, the E166A fusion protein was not translocated into the endoplasmic reticulum, whereas translocation of the unmutated variant was not affected. The benzylpenicillin-bound protein adhered to the endoplasmic reticulum membrane, where it prevented translocation of BiP, carboxypeptidase Y, and secretory proteins. Although the 321-amino acid-long N-terminal fusion partner adopts no regular secondary structure and should have no constraints for pore penetration, the benzylpenicillin-bound protein remained fully exposed to the cytosol, maintaining its signal peptide. Our data suggest that the beta-lactamase portion must unfold for translocation, that the unfolding machinery is cytosolic, and that unfolding of the remote C-terminal beta-lactamase is required for initiation of pore penetration.
Collapse
Affiliation(s)
- E Paunola
- Program in Cellular Biotechnology, Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
16
|
Hujer AM, Hujer KM, Bonomo RA. Mutagenesis of amino acid residues in the SHV-1 beta-lactamase: the premier role of Gly238Ser in penicillin and cephalosporin resistance. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:37-50. [PMID: 11343789 DOI: 10.1016/s0167-4838(01)00164-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.
Collapse
Affiliation(s)
- A M Hujer
- Research Service, Louis Stokes Veterans Affairs Medical Center, OH 44106, USA
| | | | | |
Collapse
|
17
|
Alvarez-Idaboy J, González-Jonte R, Hernández-Laguna A, Smeyers Y. Reaction mechanism of the acyl-enzyme formation in β-lactam hydrolysis by means of quantum chemical modeling. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0166-1280(00)00351-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Guo F, Dmitrienko GI, Clarke AJ, Viswanatha T. The role of the nonconserved residues at position 167 of class A beta-lactamases in susceptibility to mechanism-based inhibitors. Microb Drug Resist 2000; 2:261-8. [PMID: 9158770 DOI: 10.1089/mdr.1996.2.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Differences in specificities between the class A beta-lactamases for both substrate and inhibitors are known. The role of the nonconserved amino acid residue at position 167 of the class A enzyme, which forms a cis bond with the catalytically essential Glu-166 residue, in both the hydrolysis of beta-lactam substrates and inactivation by mechanism-based inhibitors, was investigated. Site-directed mutagenesis was performed on the penPC gene encoding the Bacillus cereus 569/H beta-lactamase I to replace thr-167 with the corresponding Staphylococcus aureus PC1 residue Ile. Kinetic data obtained from the purified Thr-167-Ile B. cereus 569/H beta-lactamase was compared to that obtained from the wild-type B. cereus and S. aureus enzymes and indicated that the replacement had little effect on the Michaelis parameters for the hydrolysis of S- and A-type penicillins. However, the Thr-167-Ile enzymes became more S. aureus PC1-like in its response to the mechanism-based inhibitors clavulanic acid and 6-beta-(trifluoromethane sulfonyl)amidopenicillanic acid sulfone. A model for the role of this nonconserved residue at position 167 in the mechanism of inactivation by mechanism-based inhibitors is proposed.
Collapse
Affiliation(s)
- F Guo
- Department of Chemistry, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
19
|
Hänninen AL, Simola M, Saris N, Makarow M. The cytoplasmic chaperone hsp104 is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum. Mol Biol Cell 1999; 10:3623-32. [PMID: 10564260 PMCID: PMC25649 DOI: 10.1091/mbc.10.11.3623] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Severe heat stress causes protein denaturation in various cellular compartments. If Saccharomyces cerevisiae cells grown at 24 degrees C are preconditioned at 37 degrees C, proteins denatured by subsequent exposure to 48-50 degrees C can be renatured when the cells are allowed to recover at 24 degrees C. Conformational repair of vital proteins is essential for survival, because gene expression is transiently blocked after the thermal insult. Refolding of cytoplasmic proteins requires the Hsp104 chaperone, and refolding of lumenal endoplasmic reticulum (ER) proteins requires the Hsp70 homologue Lhs1p. We show here that conformational repair of heat-damaged glycoproteins in the ER of living yeast cells required functional Hsp104. A heterologous enzyme and a number of natural yeast proteins, previously translocated and folded in the ER and thereafter denatured by severe heat stress, failed to be refolded to active and secretion-competent structures in the absence of Hsp104 or when an ATP-binding site of Hsp104 was mutated. During recovery at 24 degrees C, the misfolded proteins persisted in the ER, although the secretory apparatus was fully functional. Hsp104 appears to control conformational repair of heat-damaged proteins even beyond the ER membrane.
Collapse
Affiliation(s)
- A L Hänninen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
20
|
Pitarch J, Pascual-Ahuir JL, Silla E, Tu��n I, Ruiz-L�pez MF. Modeling ?-lactam interactions in aqueous solution through combined quantum mechanics-molecular mechanics methods. J Comput Chem 1999. [DOI: 10.1002/(sici)1096-987x(199910)20:13<1401::aid-jcc7>3.0.co;2-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Moreno-Hagelsieb G, Gómez-Puyou A, Soberon X. Escherichia coli TEM1 beta-lactamase in CTAB reverse micelles: exchange/diffusion-limited catalysis. FEBS Lett 1999; 459:111-4. [PMID: 10508927 DOI: 10.1016/s0014-5793(99)01228-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report kinetic data of penicillin hydrolysis catalyzed by beta-lactamase entrapped in reverse micelles formed with cetyl trimethylammonium bromide (CTAB), n-octane, hexanol and aqueous buffer. The K(cat) of this diffusion-limited reaction can be improved in aqueous buffer by a factor of 1.1-1.2 just by increasing the phosphate buffer concentration from 50 to 100 mM. In reverse micelles, increasing the buffer concentration has little effect on K(cat) when the size of the empty micelle is below the size of the protein. However, in larger micelles, the effect is enhanced and the K(cat) improves several fold, changing the form of the curve of K(cat) versus Wo from bell-shaped to almost hyperbolic. The results indicate that micellar exchange and internal diffusion may limit the reaction in reverse micelles and provide further evidence that the form of the curve depends on other factors besides the relationship between the size of the enzyme and that of the empty reverse micelle.
Collapse
Affiliation(s)
- G Moreno-Hagelsieb
- Dpto. de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología-UNAM, Av. Universidad 2001, Cuernavaca, Morelos, Mexico.
| | | | | |
Collapse
|
22
|
Doi N, Yanagawa H. Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution. FEBS Lett 1999; 453:305-7. [PMID: 10405165 DOI: 10.1016/s0014-5793(99)00732-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-engineering techniques have been adapted for the molecular design of biosensors that combine a molecular-recognition site with a signal-transduction function. The optical signal-transduction mechanism of green fluorescent protein (GFP) is most attractive, but hard to combine with a ligand-binding site. Here we describe a general method of creating entirely new molecular-recognition sites on GFPs. At the first step, a protein domain containing a desired molecular-binding site is inserted into a surface loop of GFP. Next, the insertional fusion protein is randomly mutated, and new allosteric proteins that undergo changes in fluorescence upon binding of target molecules are selected from the random library. We have tested this methodology by using TEM1 beta-lactamase and its inhibitory protein as our model protein-ligand system. 'Allosteric GFP biosensors' constructed by this method may be used in a wide range of applications including biochemistry and cell biology.
Collapse
Affiliation(s)
- N Doi
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo, Japan
| | | |
Collapse
|
23
|
Guo F, Huynh J, Dmitrienko GI, Viswanatha T, Clarke AJ. The role of the non-conserved residue at position 104 of class A beta-lactamases in susceptibility to mechanism-based inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1431:132-47. [PMID: 10209286 DOI: 10.1016/s0167-4838(99)00048-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of the non-conserved amino acid residue at position 104 of the class A beta-lactamases, which comprises a highly conserved sequence of amino acids at the active sites of these enzymes, in both the hydrolysis of beta-lactam substrates and inactivation by mechanism-based inhibitors was investigated. Site-directed mutagenesis was performed on the penPC gene encoding the Bacillus cereus 569/H beta-lactamase I to replace Asp104 with the corresponding Staphylococcus aureus PC1 residue Ala104. Kinetic data obtained with the purified Asp104Ala B. cereus 569/H beta-lactamase I was compared to that obtained from the wild-type B. cereus and S. aureus enzymes. Replacement of amino acid residue 104 had little effect on the Michaelis parameters for the hydrolysis of both S- and A-type penicillins. Relative to wild-type enzyme, the Asp104Ala beta-lactamase I had 2-fold higher Km values for benzylpenicillin and methicillin, but negligible difference in Km for ampicillin and oxacillin. However, kcat values were also slightly increased resulting in little change in catalytic efficiency, kcat/Km. In contrast, the Asp104Ala beta-lactamase I became more like the S. aureus enzyme in its response to the mechanism-based inhibitors clavulanic acid and 6-beta-(trifluoromethane sulfonyl)amido-penicillanic acid sulfone with respect to both response to the inhibitors and subsequent enzymatic properties. Based on the known three-dimensional structures of the Bacillus licheniformis 749/C, Escherichia coli TEM and S. aureus PC1 beta-lactamases, a model for the role of the non-conserved residue at position 104 in the process of inactivation by mechanism-based inhibitors is proposed.
Collapse
Affiliation(s)
- F Guo
- Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | | | | | |
Collapse
|
24
|
Sirot D, Labia R, Pouedras P, Chanal-Claris C, Cerceau C, Sirot J. Inhibitor-resistant OXY-2-derived beta-lactamase produced by Klebsiella oxytoca. Antimicrob Agents Chemother 1998; 42:2184-7. [PMID: 9736532 PMCID: PMC105771 DOI: 10.1128/aac.42.9.2184] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella oxytoca strains are generally moderately resistant to amoxicillin and ticarcillin due to the activities of the chromosomally encoded OXY-1 and OXY-2 class A beta-lactamase families. These enzymes have the ability to hydrolyze not only penicillins but also cephalosporins, including cefuroxime, ceftriaxone, and aztreonam, and are inhibited by clavulanic acid. A Klebsiella oxytoca strain was isolated from a culture of blood from a patient who had been treated with amoxicillin-clavulanate (3 g/day) for 10 days 1 month earlier. This strain harbored an unusual phenotype characterized by resistance to amoxicillin-clavulanate. It produced an OXY-2-type beta-lactamase (pI 6.3), as confirmed by PCR amplification with primers specific for the OXY-2-encoding gene. Gene sequencing revealed a point mutation (A-->G) corresponding to the amino acid substitution Ser-->Gly at position 130. This mutant enzyme was poorly inhibited by inhibitors, and its kinetic constants compared to those of the parent enzyme were characterized by an increased Km value for ticarcillin, with a drastically reduced activity against cephalosporins, as is observed with inhibitor-resistant TEM enzymes. The substitution Ser-->Gly-130 was previously described in the inhibitor-resistant beta-lactamase SHV-10 derived from an SHV-5 variant, but this is the first report of such a mutant in OXY enzymes from K. oxytoca.
Collapse
Affiliation(s)
- D Sirot
- Laboratoire de Bactériologie, Faculté de Médecine, 63001 Clermont-Ferrand Cedex, France. Danielle.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Rat nerve growth factor receptor ectodomain (NGFRe) and Escherichia coli beta-lactamase were translocated into the yeast endoplasmic reticulum (ER), glycosylated, misfolded and rapidly degraded. NGFRe underwent ATP-dependent thermosensitive degradation independently of vesicular transport. Since no evidence for degradation by the cytoplasmic 26S proteosome complex could be obtained, NGFRe appeared to be degraded in the ER. Beta-lactamase exited the ER by vesicular traffic and was transported from the Golgi via the Vps10 receptor pathway to the vacuole for degradation. Machineries in the ER and the Golgi appear to recognize distinct structural features on misfolded heterologous proteins and guide them to different degradation pathways.
Collapse
Affiliation(s)
- H Holkeri
- Institute of Biotechnology, Helsinki, Finland
| | | |
Collapse
|
26
|
Ma L, Ishii Y, Ishiguro M, Matsuzawa H, Yamaguchi K. Cloning and sequencing of the gene encoding Toho-2, a class A beta-lactamase preferentially inhibited by tazobactam. Antimicrob Agents Chemother 1998; 42:1181-6. [PMID: 9593147 PMCID: PMC105770 DOI: 10.1128/aac.42.5.1181] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli TUM1083, which is resistant to ampicillin, carbenicillin, cephaloridine, cephalothin, piperacillin, cefuzonam, and aztreonam while being sensitive to cefoxitin, moxalactam, cefmetazole, ceftazidime, and imipenem, was isolated from the urine of a patient treated with beta-lactam antibiotics. The beta-lactamase (Toho-2) purified from the bacteria hydrolyzed beta-lactam antibiotics such as penicillin G, carbenicillin, cephaloridine, cefoxitin, cefotaxime, ceftazidime, and aztreonam and especially had increased relative hydrolysis rates for cephalothin, cephaloridine, cefotaxime, and ceftizoxime. Different from other extended-spectrum beta-lactamases, Toho-2 was inhibited 16-fold better by the beta-lactamase inhibitor tazobactam than by clavulanic acid. Resistance to beta-lactams was transferred by conjugation from E. coli TUM1083 to E. coli ML4909, and the transferred plasmid was about 54.4 kbp, belonging to the incompatibility group IncFII. The cefotaxime resistance gene for Toho-2 was subcloned from the 54.4-kbp plasmid. The sequence of the gene was determined, and the open reading frame of the gene was found to consist of 981 bases. The nucleotide sequence of the gene (DDBJ accession no. D89862) designated as bla(toho) was found to have 76.3% identity to class A beta-lactamase CTX-M-2 and 76.2% identity to Toho-1. It has 55.9% identity to SHV-1 beta-lactamase and 47.5% identity to TEM-1 beta-lactamase. Therefore, the newly isolated beta-lactamase designated as Toho-2 produced by E. coli TUM1083 is categorized as an enzyme similar to Toho-1 group beta-lactamases rather than to mutants of TEM or SHV enzymes. According to the amino acid sequence deduced from the DNA sequence, the precursor consisted of 327 amino acid residues. Comparison of Toho-2 with other beta-lactamase (non-Toho-1 group) suggests that the substitutions of threonine for Arg-244 and arginine for Asn-276 are important for the extension of the substrate specificity.
Collapse
Affiliation(s)
- L Ma
- Department of Microbiology, Toho University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
27
|
Paunola E, Suntio T, Jämsä E, Makarow M. Folding of active beta-lactamase in the yeast cytoplasm before translocation into the endoplasmic reticulum. Mol Biol Cell 1998; 9:817-27. [PMID: 9529380 PMCID: PMC25309 DOI: 10.1091/mbc.9.4.817] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polypeptides targeted to the yeast endoplasmic reticulum (ER) posttranslationally are thought to be kept in the cytoplasm in an unfolded state by Hsp70 chaperones before translocation. We show here that Escherichia coli beta-lactamase associated with Hsp70, but adopted a native-like conformation before translocation in living Saccharomyces cerevisiae cells. beta-Lactamase is a globular trypsin-resistant molecule in authentic form. For these studies, it was linked to the C terminus of a yeast polypeptide Hsp150delta, which conferred posttranslational translocation and provided sites for O-glycosylation. We devised conditions to retard translocation of Hsp150delta-beta-lactamase. This enabled us to show by protease protection assays that an unglycosylated precursor was associated with the cytoplasmic surface of isolated microsomes, whereas a glycosylated form resided inside the vesicles. Both proteins were trypsin resistant and had similar beta-lactamase activity and Km values for nitrocefin. The enzymatically active cytoplasmic intermediate could be chased into the ER, followed by secretion of the activity to the medium. Productive folding in the cytoplasm occurred in the absence of disulfide formation, whereas in the ER lumen, proper folding required oxidation of the sulfhydryls. This suggests that the polypeptide was refolded in the ER and consequently, at least partially unfolded for translocation.
Collapse
Affiliation(s)
- E Paunola
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
28
|
Holkeri H, Paunola E, Jämsä E, Makarow M. Dissection of the translocation and chaperoning functions of yeast BiP/Kar2p in vivo. J Cell Sci 1998; 111 ( Pt 6):749-57. [PMID: 9472003 DOI: 10.1242/jcs.111.6.749] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used the rat nerve growth factor receptor ectodomain (NGFRe) and Escherichia coli ss-lactamase to dissect the functions of Saccharomyces cerevisiae BiP/Kar2p in vivo. Both were fused to the Hsp150Delta-polypeptide, which promotes proper folding of heterologous proteins which otherwise are misfolded in the yeast ER. Hsp150Delta-NGFRe and Hsp150Delta-beta-lactamase acquired disulfides and were properly folded and ONcreted to the culture medium. When disulfide formation was prevented by incubating cells with dithiothreitol (DTT), Hsp150Delta-NGFRe remained in the endoplasmic reticulum (ER). The occupancy of an otherwise partially used N-glycosylation site of reduced NGFRe was complete suggesting that, normally, folding and disulfide formation occurred as rapidly as N-glycosylation. Removal of DTT resulted in remarkably rapid disulfide formation and secretion, suggesting only mild conformational distortion of reduced NGFRe. In contrast, reduced Hsp150(Delta)-ss-lactamase was severely misfolded and attained a secretion competent conformation more slowly after reoxidation. When kar2-159 cells were incubated at permissive temperature 24 degrees C with DTT, the reporter proteins were retained in the ER. After shift of the cells to 34 degrees C to inactivate BiP/Kar2p irreversibly, and subsequent removal of DTT, most pre-accumulated Hsp150Delta-NGFRe was rapidly secreted, whereas Hsp150Delta-beta-lactamase was secretion incompetent. Thus, Hsp150Delta-NGFRe did not require BiP/Kar2p for conformational maturation, though translocation was dependent on BiP/Kar2p. Apparently proteins differ in their post-translocational requirements for BiP/Kar2p, indicating that translocation and chaperoning are distinct functions.
Collapse
Affiliation(s)
- H Holkeri
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
29
|
Banerjee S, Pieper U, Kapadia G, Pannell LK, Herzberg O. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Biochemistry 1998; 37:3286-96. [PMID: 9521648 DOI: 10.1021/bi972127f] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structure of class A beta-lactamases contains an omega-loop associated with the active site, which carries a key catalytic residue, Glu166. A 16-residue omega-loop deletion mutant of beta-lactamase from Staphylococcus aureus PC1, encompassing residues 163-178, was produced in order to examine the functional and structural role of the loop. The crystal structure was determined and refined at 2.3 A, and the kinetics of the mutant enzyme was characterized with a variety of beta-lactam antibiotics. In general, the wild-type beta-lactamase hydrolyzes penicillin compounds better than cephalosporins. In contrast, the deletion of the omega-loop led to a variant enzyme that acts only on cephalosporins, including third generation compounds. Kinetic measurements and electrospray mass spectrometry revealed that the first and third generation cephalosporins form stable acyl-enzyme complexes, except for the chromogenic cephalosporin, nitrocefin, which after acylating the enzyme undergoes hydrolysis at a 1000-fold slower rate than that with wild-type beta-lactamase. Hydrolysis of the acyl-enzyme adducts is prevented because the deletion of the omega-loop eliminates the deacylation apparatus comprising Glu166 and its associated nucleophilic water site. The crystal structure reveals that while the overall fold of the mutant enzyme is similar to that of the native beta-lactamase, local adjustments in the vicinity of the missing loop occurred. The altered beta-lactam specificity is attributed to these structural changes. In the native structure, the omega-loop restricts the conformation of a beta-strand at the edge of the active site depression. Removal of the loop provides the beta-strand with a new degree of conformational flexibility, such that it is displaced inward toward the active site space. Modeled Michaelis complexes with benzylpenicillin and cephaloridine show that the perturbed conformation of the beta-strand is inconsistent with penicillin binding because of steric clashes between the beta-lactam side chain substituent and the beta-strand. In contrast, no clashes occur upon cephalosporin binding. Recognition of third generation cephalosporins is possible because the bulky side chain substituents of the beta-lactam ring typical of these compounds can be accommodated in the space freed by the deletion of the omega-loop.
Collapse
Affiliation(s)
- S Banerjee
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | |
Collapse
|
30
|
Matagne A, Lamotte-Brasseur J, Frère JM. Catalytic properties of class A beta-lactamases: efficiency and diversity. Biochem J 1998; 330 ( Pt 2):581-98. [PMID: 9480862 PMCID: PMC1219177 DOI: 10.1042/bj3300581] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
beta-Lactamases are the main cause of bacterial resistance to penicillins, cephalosporins and related beta-lactam compounds. These enzymes inactivate the antibiotics by hydrolysing the amide bond of the beta-lactam ring. Class A beta-lactamases are the most widespread enzymes and are responsible for numerous failures in the treatment of infectious diseases. The introduction of new beta-lactam compounds, which are meant to be 'beta-lactamase-stable' or beta-lactamase inhibitors, is thus continuously challenged either by point mutations in the ubiquitous TEM and SHV plasmid-borne beta-lactamase genes or by the acquisition of new genes coding for beta-lactamases with different catalytic properties. On the basis of the X-ray crystallography structures of several class A beta-lactamases, including that of the clinically relevant TEM-1 enzyme, it has become possible to analyse how particular structural changes in the enzyme structures might modify their catalytic properties. However, despite the many available kinetic, structural and mutagenesis data, the factors explaining the diversity of the specificity profiles of class A beta-lactamases and their amazing catalytic efficiency have not been thoroughly elucidated. The detailed understanding of these phenomena constitutes the cornerstone for the design of future generations of antibiotics.
Collapse
Affiliation(s)
- A Matagne
- Centre for Protein Engineering and Laboratoire d'Enzymologie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | | | | |
Collapse
|
31
|
Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 1998. [PMID: 9449253 DOI: 10.1093/jac/42.1.1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- I Massova
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, USA
| | | |
Collapse
|
32
|
Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 1998; 42:1-17. [PMID: 9449253 PMCID: PMC105448 DOI: 10.1128/aac.42.1.1] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- I Massova
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, USA
| | | |
Collapse
|
33
|
Betton JM, Jacob JP, Hofnung M, Broome-Smith JK. Creating a bifunctional protein by insertion of beta-lactamase into the maltodextrin-binding protein. Nat Biotechnol 1997; 15:1276-9. [PMID: 9359111 DOI: 10.1038/nbt1197-1276] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hybrid proteins were generated by inserting the penicillin-hydrolyzing enzyme, TEM beta-lactamase (Bla), into the maltodextrin-binding protein (MalE). The inserted Bla was functionally accommodated by MalE when it was placed within permissive sites. The maltose binding and penicillinase activities of purified hybrids were indistinguishable from those of the wild-type MalE and Bla proteins. Moreover, these hybrids displayed an additional unexpected property: maltose stabilized the active site of inserted Bla.
Collapse
Affiliation(s)
- J M Betton
- Département des Biotechnologies, Institut Pasteur-CNRS URA1444, Paris, France.
| | | | | | | |
Collapse
|
34
|
Bret L, Chaibi EB, Chanal-Claris C, Sirot D, Labia R, Sirot J. Inhibitor-resistant TEM (IRT) beta-lactamases with different substitutions at position 244. Antimicrob Agents Chemother 1997; 41:2547-9. [PMID: 9371365 PMCID: PMC164160 DOI: 10.1128/aac.41.11.2547] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel inhibitor-resistant TEM (IRT) beta-lactamase was detected in an Escherichia coli isolate resistant to amoxicillin-clavulanate and susceptible to cephalothin. The substrate and inhibitor profiles of this beta-lactamase were similar to those of IRT-1 and IRT-2. The novel IRT's bla gene was sequenced, and the deduced amino acid sequence showed the amino acid replacement Arg for His-244 of the TEM-1 sequence. Substitutions for Arg-244 have been reported in three TEM-1 mutants: IRT-1 (which corresponds to TEM-31) (Cys), IRT-2/TEM-30 (Ser), and TEM-41 (Thr). We designated this novel beta-lactamase, which corresponds to TEM-51, IRT-15.
Collapse
Affiliation(s)
- L Bret
- Laboratoire de Bactériologie, Faculté de Médecine, Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
35
|
Banerjee S, Shigematsu N, Pannell LK, Ruvinov S, Orban J, Schwarz F, Herzberg O. Probing the non-proline cis peptide bond in beta-lactamase from Staphylococcus aureus PC1 by the replacement Asn136 --> Ala. Biochemistry 1997; 36:10857-66. [PMID: 9283075 DOI: 10.1021/bi970352r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A non-proline cis peptide is present between Glu166 and Ile167 in the active site of beta-lactamase from Staphylococcus aureus PC1. To examine the role of the interaction between the side chain of Asn136 and the main chain of Glu166, the site-directed mutant N136A was produced. The enzyme shows no measurable hydrolytic activity toward a variety of penicillins or cephalosporins except for the chromogenic cephalosporin, nitrocefin. For nitrocefin, the progress curve exhibits a fast burst with a stoichiometry of 1 mol of degraded substrate per mole of enzyme followed by a slow phase with a hydrolysis rate that is reduced by approximately 700-fold compared with that of the wild-type enzyme. Thus, the mutant enzyme is deacylation defective. Monitoring the hydrolysis of nitrocefin after preincubation with a number of beta-lactam compounds shows that cephalosporins form stable acyl complexes with the enzyme, whereas penicillins do not. The molecular weight of the mutant was determined by electrospray mass spectrometry, and the presence of the stable acyl enzyme adducts with cephaloridine and cefotaxime was confirmed by both electrospray and MALDI mass spectrometry. Therefore, in addition to impairing deacylation, the acylation machinery has been altered compared with the wild-type enzyme to act on cephalosporins and not on penicillins. Urea denaturation and thermal unfolding studies show that the N136A mutant enzyme is less stable than the wild-type enzyme. However, stability against chemical denaturation of the mutant enzyme is enhanced in the presence of cephaloridine beyond the stability of the wild-type protein. This is attributed to accumulation of favorable interactions between the cephaloridine and the protein, which play a role in the folded state and not in the unfolded state.
Collapse
Affiliation(s)
- S Banerjee
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Wladkowski BD, Chenoweth SA, Sanders JN, Krauss M, Stevens WJ. Acylation of β-Lactams by Class A β-Lactamase: An ab Initio Theoretical Study on the Effects of the Oxy-Anion Hole. J Am Chem Soc 1997. [DOI: 10.1021/ja963678g] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian D. Wladkowski
- Contribution from the Department of Chemistry, Western Maryland College, Two College Hill, Westminster, Maryland 21157, and Center for Advanced Research in Biotechnology, National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, Maryland 20850
| | - Sarah A. Chenoweth
- Contribution from the Department of Chemistry, Western Maryland College, Two College Hill, Westminster, Maryland 21157, and Center for Advanced Research in Biotechnology, National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, Maryland 20850
| | - Julie N. Sanders
- Contribution from the Department of Chemistry, Western Maryland College, Two College Hill, Westminster, Maryland 21157, and Center for Advanced Research in Biotechnology, National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, Maryland 20850
| | - Morris Krauss
- Contribution from the Department of Chemistry, Western Maryland College, Two College Hill, Westminster, Maryland 21157, and Center for Advanced Research in Biotechnology, National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, Maryland 20850
| | - Walter J. Stevens
- Contribution from the Department of Chemistry, Western Maryland College, Two College Hill, Westminster, Maryland 21157, and Center for Advanced Research in Biotechnology, National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, Maryland 20850
| |
Collapse
|
37
|
Sirot D, Recule C, Chaibi EB, Bret L, Croize J, Chanal-Claris C, Labia R, Sirot J. A complex mutant of TEM-1 beta-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob Agents Chemother 1997; 41:1322-5. [PMID: 9174192 PMCID: PMC163908 DOI: 10.1128/aac.41.6.1322] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli GR102 was isolated from feces of a leukemic patient. It expressed different levels of resistance to amoxicillin or ticarcillin plus clavulanate and to the various cephalosporins tested. The double-disk synergy test was weakly positive. Production of a beta-lactamase with a pI of 5.6 was transferred to E. coli HB101 by conjugation. The nucleotide sequence was determined by direct sequencing of the amplification products obtained by PCR performed with TEM gene primers. This enzyme differed from TEM-1 (blaT-1B gene) by four amino acid substitutions: Met-->Leu-69, Glu-->Lys-104, Gly-->Ser-238 and Asn-->Asp-276. The amino acid susbstitutions Leu-69 and Asp-276 are known to be responsible for inhibitor resistance of the IRT-4 mutant, as are Lys-104 and Ser-238 substitutions for hydrolytic activity of the extended-spectrum beta-lactamases TEM-15, TEM-4, and TEM-3. These combined mutations led to a mutant enzyme which conferred a level of resistance to coamoxiclav (MIC, 64 microg/ml) much lower than that conferred by IRT-4 (MIC, 2,048 microg/ml) but higher than that conferred by TEM-15 or TEM-1 (MIC, 16 microg/ml). In addition, the MIC of ceftazidime for E. coli transconjugant GR202 (1 microg/ml) was lower than that for E. coli TEM-15 (16 microg/ml) and higher than that for E. coli IRT-4 or TEM-1 (0.06 microg/ml). The MICs observed for this TEM-type enzyme were related to the kinetic constants Km and k(cat) and the 50% inhibitory concentration, which were intermediate between those observed for IRT-4 and TEM-15. In conclusion, this new type of complex mutant derived from TEM-1 (CMT-1) is able to confer resistance at a very low level to inhibitors and at a low level to extended-spectrum cephalosporins. CMT-1 received the designation TEM-50.
Collapse
Affiliation(s)
- D Sirot
- Laboratoire de Bacteriologie-Virologie, Faculté de Médecine, Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Raquet X, Lamotte-Brasseur J, Bouillenne F, Frère JM. A disulfide bridge near the active site of carbapenem-hydrolyzing class A beta-lactamases might explain their unusual substrate profile. Proteins 1997; 27:47-58. [PMID: 9037711 DOI: 10.1002/(sici)1097-0134(199701)27:1<47::aid-prot6>3.0.co;2-k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial resistance to beta-lactam antibiotics, a clinically worrying and recurrent problem, is often due to the production of beta-lactamases, enzymes that efficiently hydrolyze the amide bond of the beta-lactam nucleus. Imipenem and other carbapenems escape the activity of most active site serine beta-lactamases and have therefore become very popular drugs for antibacterial chemotherapy in the hospital environment. Their usefulness is, however, threatened by the appearance of new beta-lactamases that efficiently hydrolyze them. This study is focused on the structure and properties of two recently described class A carbapenemases, produced by Serratia marcescens and Enterobacter cloacae strains and leads to a better understanding of the specificity of beta-lactamases. In turn, this will contribute to the design of better antibacterial drugs. Three-dimensional models of the two class A carbapenemases were constructed by homology modeling. They suggested the presence, near the active site of the enzymes, of a disulfide bridge (C69-C238) whose existence was experimentally confirmed. Kinetic parameters were measured with the purified Sme-1 carbapenemase, and an attempt was made to explain its specific substrate profile by analyzing the structures of minimized Henri-Michaelis complexes and comparing them to those obtained for the "classical" TEM-1 beta-lactamase. The peculiar substrate profile of the carbapenemases appears to be strongly correlated with the presence of the disulfide bridge between C69 and C238.
Collapse
Affiliation(s)
- X Raquet
- Centre d'Ingénierie des Protéines, Université de Liège (Sart-Tilman), Belgium
| | | | | | | |
Collapse
|
39
|
Zawadzke LE, Chen CC, Banerjee S, Li Z, Wäsch S, Kapadia G, Moult J, Herzberg O. Elimination of the hydrolytic water molecule in a class A beta-lactamase mutant: crystal structure and kinetics. Biochemistry 1996; 35:16475-82. [PMID: 8987980 DOI: 10.1021/bi962242a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two site-directed mutant enzymes of the class A beta-lactamase from Staphylococcus aureus PC1 were produced with the goal of blocking the site that in the native enzyme is occupied by the proposed hydrolytic water molecule. The crystal structures of these two mutant enzymes, N170Q and N170M, have been determined and refined at 2.2 and 2.0 A, respectively. They reveal that the side chain of Gln 170 displaces the water molecule, whereas that of Met170 does not. In both cases, the catalytic rates with benzylpenicillin are reduced by 10(4) compared with the native enzyme. With nitrocefin, the N170Q mutant enzyme exhibits an approximately 800-fold reduced rate compared with the native enzyme and in addition, a fast initial burst with stoichiometry of 1 mol of degraded nitrocefin/mol of enzyme. Stopped-flow kinetic experiments establish that the rate constant of the burst is 250 s-1, a value comparable with the rate of acylation of the native enzyme. Two structurally based mechanisms that explain the kinetic properties of the N170Q beta-lactamase are proposed, both invoking a deacylation-impaired enzyme due to the elimination of the hydrolytic water molecule. The catalytic rate of the N170M mutant enzyme with nitrocefin is reduced by approximately 50-fold compared with the native enzyme, and the slow progressive inhibition that is revealed indicates that the hydrolysis proceeds via a branched pathway mechanism. This is consistent with the structural data that show that the water site is preserved and that Met170 occupies part of the space that is required for substrate binding. The short contacts between the substrate and the enzyme may lead to structure perturbation and inactivation.
Collapse
Affiliation(s)
- L E Zawadzke
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen CC, Smith TJ, Kapadia G, Wäsch S, Zawadzke LE, Coulson A, Herzberg O. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1. Biochemistry 1996; 35:12251-8. [PMID: 8823158 DOI: 10.1021/bi961153v] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two mutant beta-lactamases from Staphylococcus aureus PC1 which probe key catalytic residues have been produced by site-directed mutagenesis. In the S70A enzyme, the nucleophilic group that attacks the beta-lactam carbonyl carbon atom was eliminated. Consequently, the kcat values for hydrolysis of benzylpenicillin and nitrocefin have been reduced by 10(4)-10(5) compared with the wild-type enzyme. The crystal structure of S70A beta-lactamase has been determined at 2.1 A resolution. With the exception of the mutation site, the structure is identical to that of the native enzyme. The residual activity is attributed either to mistranslation that leads to production of wild-type enzyme and/or to remaining features of the active site that stabilize the tetrahedral transition state. Soaking of the crystals with ampicillin or clavulanate, followed by flash-freezing, has been carried out and the structures examined at 2.0 A resolution. For both experiments, the difference electron density maps revealed buildup of density in the active site that presumably corresponds to beta-lactam binding. However, neither electron density is sufficiently clear for defining the atomic details of the bound compounds. The K73H beta-lactamase has been prepared to test the possible role of Lys73 in proton transfer. It exhibits no detectable activity toward benzylpenicillin, and 10(5)-fold reduction of kcat for nitrocefin hydrolysis compared with the wild-type enzyme. No significant recovery of activity has been measured when the pH was varied between 5.0 and 8.0. The crystal structure of K73H beta-lactamase has been determined at 1.9 A resolution. While the overall structure is similar to that of the native enzyme, the electrostatic interactions between His73 and neighboring residues indicate that the imidazole ring is positively charged. In addition, the hydroxyl group of Ser70 adopts a position that is incompatible with nucleophilic attack on substrates. A crystal soaked with ampicillin was flash-frozen, and diffraction data were collected at 2.1 A resolution. The electron density map showed no indication of substrate binding.
Collapse
Affiliation(s)
- C C Chen
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hosseini-Mazinani SM, Nakajima E, Ihara Y, Kameyama KZ, Sugimoto K. Recovery of active beta-lactamases from Proteus vulgaris and RTEM-1 hybrid by random mutagenesis by using a dnaQ strain of Escherichia coli. Antimicrob Agents Chemother 1996; 40:2152-9. [PMID: 8878598 PMCID: PMC163490 DOI: 10.1128/aac.40.9.2152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Proteus vulgaris and RTEM-1 beta-lactamases that belong to molecular class A with 37% amino acid similarity were examined to find the relationship between amino acid residues and activity of enzymes. MICs of ampicillin were > 2,000 micrograms/ml for Escherichia coli cells producing these enzymes. We have made 18 hybrid genes by substituting the coding region of the P. vulgaris beta-lactamase gene with the equivalent portions from the RTEM-1 gene. Most of these hybrids produced inactive proteins, but a few hybrid enzymes had partial or trace activity. From one of the hybrid genes (MIC of ampicillin, 100 micrograms/ml), we recovered three kinds of active mutants which provided ampicillin MICs of 1,000 micrograms/ml by the selection of spontaneous mutations in a dnaQ strain of E. coli. In these mutants, Leu-148, Met-182, and Tyr-274 were replaced with Val, Thr, and His, respectively. These amino acids have not been identified as residues with functional roles in substrate hydrolysis. Furthermore, from these hybrid mutants, we obtained a second set of mutants which conferred ampicillin MICs of 1,500 micrograms/ml. Interestingly, the second mutations were limited to these three amino acid substitutions. These amino acid residues which do not directly interact with substrates have an effect on enzyme activity. These mutant enzymes exhibited lower K(m) values for cephaloridine than both parental enzymes.
Collapse
|
42
|
Strynadka NC, Martin R, Jensen SE, Gold M, Jones JB. Structure-based design of a potent transition state analogue for TEM-1 beta-lactamase. NATURE STRUCTURAL BIOLOGY 1996; 3:688-95. [PMID: 8756327 DOI: 10.1038/nsb0896-688] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The structure of the plasmid-mediated beta-lactamase TEM-1 has been solved in complex with a designed boronic acid inhibitor (1R)-1-acetamido-2-(3-carboxyphenyl)ethane boronic acid at 1.7 A resolution. The boronate inhibitor was designed based on the crystallographic coordinates of the acyl-enzyme intermediate of TEM-1 bound to the substrate penicillin G. The boronate-TEM-1 complex is highly ordered and defines a novel transition state analogue of the deacylation step in the beta-lactamase reaction pathway. The design principles of this highly effective inhibitor (Ki = 110 nM) and the resulting structural and mechanistic implications are presented.
Collapse
Affiliation(s)
- N C Strynadka
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
43
|
Marchand-Brynaert J, Bouchet M, Touillaux R, Beauve C, Fastrez J. Design and synthesis of a bifunctional label for selection of β-lactamase displayed on filamentous bacteriophage by catalytic activity. Tetrahedron 1996. [DOI: 10.1016/0040-4020(96)00197-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Vanwetswinkel S, Marchand-Brynaert J, Fastrez J. Selection of the most active enzymes from a mixture of phage-displayed β-lactamase mutants. Bioorg Med Chem Lett 1996. [DOI: 10.1016/0960-894x(96)00120-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Frau J, Price SL. Possible binding orientations ofβ-lactams withinStaphylococcus aureus POβ-lactamase suggest factors involved inβ-lactamase resistance. Theor Chem Acc 1996. [DOI: 10.1007/bf02335462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Lemozy J, Sirot D, Chanal C, Huc C, Labia R, Dabernat H, Sirot J. First characterization of inhibitor-resistant TEM (IRT) beta-lactamases in Klebsiella pneumoniae strains. Antimicrob Agents Chemother 1995; 39:2580-2. [PMID: 8585751 PMCID: PMC162990 DOI: 10.1128/aac.39.11.2580] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two clinical strains of Klebsiella pneumoniae, TP 01 and TP 02, presented resistance to amoxicillin-clavulanate and were fully susceptible to cephalothin. These strains produced two beta-lactamases, SHV-1 and a TEM enzyme with a pI of 5.2. The previously described changes Arg-244-->Cys and Arg-244-->Ser in IRT-1 and IRT-2 (A. Belaaouaj, C. Lapoumeroulie, M. M. Caniça, G. Vedel, P. Nevot, R. Krishnamoorthy, and G. Paul, FEMS Microbiol. Lett. 120:75-80, 1994) were found in TEM enzymes from the TP 01 and TP 02 strains, respectively. This is the first report of inhibitor-resistant TEM (IRT) in species other than Escherichia coli from the family Enterobacteriaceae.
Collapse
Affiliation(s)
- J Lemozy
- Laboratoire de Microbiologie, CHR PURPAN, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Ishii Y, Ohno A, Taguchi H, Imajo S, Ishiguro M, Matsuzawa H. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother 1995; 39:2269-75. [PMID: 8619581 PMCID: PMC162928 DOI: 10.1128/aac.39.10.2269] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli TUH12191, which is resistant to piperacillin, cefazolin, cefotiam, ceftizoxime, cefuzonam, and aztreonam but is susceptible to cefoxitin, latamoxef, flomoxef, and imipenem, was isolated from the urine of a patient treated with beta-lactam antibiotics. The beta-lactamase (Toho-1) purified from the bacteria had a pI of 7.8, had a molecular weight of about 29,000, and hydrolyzed beta-lactam antibiotics such as penicillin G, ampicillin, oxacillin, carbenicillin, piperacillin, cephalothin, cefoxitin, cefotaxime, ceftazidime, and aztreonam. Toho-1 was markedly inhibited by beta-lactamase inhibitors such as clavulanic acid and tazobactam. Resistance to beta-lactams, streptomycin, spectinomycin, sulfamethoxazole, and trimethoprim was transferred by conjugational transfer from E. coli TUH12191 to E. coli ML4903, and the transferred plasmid was about 58 kbp, belonging to incompatibility group M. The cefotaxime resistance gene for Toho-1 was subcloned from the 58-kbp plasmid by transformation of E. coli MV1184. The sequence of the gene for Toho-1 was determined, and the open reading frame of the gene consisted of 873 or 876 bases (initial sequence, ATGATG). The nucleotide sequence of the gene (DDBJ accession number D37830) was found to be about 73% homologous to the sequence of the gene encoding a class A beta-lactamase produced by Klebsiella oxytoca E23004. According to the amino acid sequence deduced from the DNA sequence, the precursor consisted of 290 or 291 amino acid residues, which contained amino acid motifs common to class A beta-lactamases (70SXXK, 130SDN, and 234KTG). Toho-1 was about 83% homologous to the beta-lactamase mediated by the chromosome of K. oxytoca D488 and the beta-lactamase mediated by the plasmid of E. coli MEN-1. Therefore, the newly isolated beta-lactamase Toho-1 produced by E. coli TUH12191 is similar to beta-lactamases produced by K. oxytoca D488, K. oxytoca E23004, and E. coli MEN-1 rather than to mutants of TEM or SHV enzymes. Toho-1 has shown the highest degree of similarity to K. oxytoca class A beta-lactamase. Detailed comparison of Toho-1 with other beta-lactamases implied that replacement of Asn-276 by Arg with the concomitant substitution of Thr for Arg-244 is an important mutation in the extension of the substrate specificity.
Collapse
Affiliation(s)
- Y Ishii
- Department of Microbiology, Toho University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Vanwetswinkel S, Touillaux R, Fastrez J, Marchand-Brynaert J. Bifunctional activity labels for selection of filamentous bacteriophages displaying enzymes. Bioorg Med Chem 1995; 3:907-15. [PMID: 7582967 DOI: 10.1016/0968-0896(95)00084-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two bifunctional activity labels of beta-lactamases or penicillin binding proteins have been prepared. They feature a penicillin sulfone derivative, i.e. a suicide substrate of serine beta-lactamases, or a penicillin derivative connected to a biotin moiety through a spacer containing a disulfide bridge. The biotinyl spacer 4 was prepared by coupling biotin to epsilon-amino-caproic acid, then to cystamine, and purified by transient protection with t-Boc. The penicillin sulfone inhibitor 13 was prepared by chemoselective sulfonylation of methoxymethyl 6-aminopenicillinate with pentafluorophenoxy- or benzyloxy-carbonylmethylsulfonyl chloride (9), followed by permanganate oxidation. Both direct coupling of the activated ester 13b and indirect coupling of the acid 13c obtained by benzyl ester deprotection, afforded the biotinylated sulfone inhibitor 16. The acid 6 resulting from reaction of the biotinyl spacer 4 with glutaric anhydride was activated as pentafluorophenyl-ester 7 and reacted with 6-aminopenicillanic acid to afford the penicillin binding protein label 18. Selection of the most active beta-lactamase displayed on phage from a mixture containing less active enzymes could be accomplished in three rounds of labeling and affinity chromatography using suicide inhibitor 16.
Collapse
Affiliation(s)
- S Vanwetswinkel
- Laboratoire de Biochimie Physique et des Biopolymères, Université Catholique de Louvain, Belgium
| | | | | | | |
Collapse
|
49
|
Swarén P, Maveyraud L, Guillet V, Masson JM, Mourey L, Samama JP. Electrostatic analysis of TEM1 beta-lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutations. Structure 1995; 3:603-13. [PMID: 8590021 DOI: 10.1016/s0969-2126(01)00194-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Escherichia coli TEM1 is a penicillinase and belongs to class A beta-lactamases. Its naturally occurring mutants are responsible for bacterial resistance to beta-lactamin-based antibiotics. X-ray structure determinations show that all class A beta-lactamases are similar, but, despite the numerous kinetic investigations, the reaction mechanism of these enzymes is still debated. We address the questions of what the molecular contexts during the acylation and deacylation steps are and how they contribute to the efficiency of these penicillinases. RESULTS Electrostatic analysis of the 1.8 A resolution refined X-ray structure of the wild-type enzyme, and of its modelled Michaelis and acyl-enzyme complexes, showed that substrate binding induces an upward shift in the pKa of the unprotonated Lys73 by 6.4 pH units. The amine group of Lys73 can then abstract the Ser70 hydroxyl group proton and promote acylation. In the acyl-enzyme complex, the deacylating water is situated between the carboxylate group of Glu166, within the enzyme, and the estercarbonyl carbon of the acyl-enzyme complex, in an electrostatic potential gradient amounting to 30 kTe-1 A-1. Other residues, not directly involved in catalysis, also contribute to the formation of this gradient. The deacylation rate is related to the magnitude of the gradient. The kinetic behavior of site-directed mutants that affect the protonation state of residue 73 cannot be explained on the basis of the wild-type enzyme mechanism. CONCLUSIONS In the wild-type enzyme, the very high rates of acylation and deacylation of class A beta-lactamases arise from an optimal chemical setup in which the acylation reaction seems triggered by substrate binding that changes the general base property of Lys73. In site-directed mutants where Lys73 is protonated, acylation may proceed through activation of a water molecule by Glu166, and Lys73 contributes as a proton shuffle partner in this pathway.
Collapse
Affiliation(s)
- P Swarén
- Laboratoire de Pharmacologie et de Toxicologie Fondamentales du CNRS, Toulouse, France
| | | | | | | | | | | |
Collapse
|
50
|
Galleni M, Lamotte-Brasseur J, Raquet X, Dubus A, Monnaie D, Knox JR, Frère JM. The enigmatic catalytic mechanism of active-site serine beta-lactamases. Biochem Pharmacol 1995; 49:1171-8. [PMID: 7763298 DOI: 10.1016/0006-2952(94)00502-d] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Galleni
- Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|