1
|
Richardson SJ, Thekkedam CG, Casarotto MG, Beard NA, Dulhunty AF. Complex Actions of FKBP12 on RyR1 Ion Channel Activity Consistent with Negative Co-Operativity in FKBP12 Binding to the RyR1 Tetramer. Cells 2025; 14:157. [PMID: 39936949 PMCID: PMC11817637 DOI: 10.3390/cells14030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
The association of the 12 KDa FK506 binding protein (FKBP12) with ryanodine receptor type 1 (RyR1) in skeletal muscle is thought to suppress RyR1 channel opening and contribute to healthy muscle function. The strongest evidence for this role is increased RyR1 channel activity following FKBP12 dissociation. However, the corollary that channel activity will decrease when FKBP12 is added back to FKBP12-depleted RyR1 is not well established, and when reported, the time- and concentration-dependence of inhibition vary over orders of magnitude. Here, we address this problem with an investigation of the molecular mechanisms of the FKBP12 regulation of RyR1. Muscle processing to obtain sarcoplasmic reticulum (SR) vesicle preparations enriched in RyR1 resulted in substantial FKBP12 dissociation from RyR1, indicating low-affinity binding. Conversely, high-affinity binding was indicated by some FKBP12 remaining bound to RyR1 after solubilization. We report, for the first time, an increase in the activity of FKBP12-depleted channels after the addition of exogenous FKBP12 (5 nM to 5 µM), followed by a reduction in activity consistent with inhibition after 20-30 min exposure to higher [FKBP12]s. Both the increase and later decline in activity were time- and concentration-dependent. The results suggest a high-affinity activation when FKBP12 binding sites on the RyR1 tetramer are partially occupied by FKBP12 and lower affinity inhibition as more RyR1 monomers become occupied. These novel results imply negative cooperativity in FKBP12 binding to RyR1 and a dynamic role for FKBP12/RyR1 interactions in intact muscle fibers.
Collapse
Affiliation(s)
| | - Chris G. Thekkedam
- Developmental and Regeneration Biology Laboratory, Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, NSW 2010, Australia;
| | - Marco G. Casarotto
- Biomolecular Interactions Group, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia;
| | - Nicole A. Beard
- Muscle Proteomics Group, Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT 2617, Australia;
| | - Angela F. Dulhunty
- Muscle Research Group, Eccles Institute of Neuroscience, John Curtin School of Mecical Research, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Albaghdadi AJH, Xu W, Kan FWK. An Immune-Independent Mode of Action of Tacrolimus in Promoting Human Extravillous Trophoblast Migration Involves Intracellular Calcium Release and F-Actin Cytoskeletal Reorganization. Int J Mol Sci 2024; 25:12090. [PMID: 39596157 PMCID: PMC11593602 DOI: 10.3390/ijms252212090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
We have previously reported that the calcineurin inhibitor macrolide immunosuppressant Tacrolimus (TAC, FK506) can promote the migration and invasion of the human-derived extravillous trophoblast cells conducive to preventing implantation failure in immune-complicated gestations manifesting recurrent implantation failure. Although the exact mode of action of TAC in promoting implantation has yet to be elucidated, the integral association of its binding protein FKBP12 with the inositol triphosphate receptor (IP3R) regulated intracellular calcium [Ca2+]i channels in the endoplasmic reticulum (ER), suggesting that TAC can mediate its action through ER release of [Ca2+]i. Using the immortalized human-derived first-trimester extravillous trophoblast cells HTR8/SVneo, our data indicated that TAC can increase [Ca2+]I, as measured by fluorescent live-cell imaging using Fluo-4. Concomitantly, the treatment of HTR8/SVneo with TAC resulted in a major dynamic reorganization in the actin cytoskeleton, favoring a predominant distribution of cortical F-actin networks in these trophoblasts. Notably, the findings that TAC was unable to recover [Ca2+]i in the presence of the IP3R inhibitor 2-APB indicate that this receptor may play a crucial role in the mechanism of action of TAC. Taken together, our results suggest that TAC has the potential to influence trophoblast migration through downstream [Ca2+]i-mediated intracellular events and mechanisms involved in trophoblast migration, such as F-actin redistribution. Further research into the mono-therapeutic use of TAC in promoting trophoblast growth and differentiation in clinical settings of assisted reproduction is warranted.
Collapse
Affiliation(s)
| | | | - Frederick W. K. Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.J.H.A.); (W.X.)
| |
Collapse
|
3
|
Belhaj A, Dewachter L, Monier A, Vegh G, Rorive S, Remmelink M, Closset M, Melot C, Creteur J, Salmon I, Rondelet B. Beneficial Effects of Tacrolimus on Brain-Death-Associated Right Ventricular Dysfunction in Pigs. Int J Mol Sci 2023; 24:10439. [PMID: 37445625 PMCID: PMC10341891 DOI: 10.3390/ijms241310439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Right ventricular (RV) dysfunction remains a major problem after heart transplantation and may be associated with brain death (BD) in a donor. A calcineurin inhibitor tacrolimus was recently found to have beneficial effects on heart function. Here, we examined whether tacrolimus might prevent BD-induced RV dysfunction and the associated pathobiological changes. METHODS After randomized tacrolimus (n = 8; 0.05 mg·kg-1·day-1) or placebo (n = 9) pretreatment, pigs were assigned to a BD procedure and hemodynamically investigated 1, 3, 5, and 7 h after the Cushing reflex. After euthanasia, myocardial tissue was sampled for pathobiological evaluation. Seven pigs were used as controls. RESULTS Calcineurin inhibition prevented increases in pulmonary vascular resistance and RV-arterial decoupling induced by BD. BD was associated with an increased RV pro-apoptotic Bax-to-Bcl2 ratio and RV and LV apoptotic rates, which were prevented by tacrolimus. BD induced increased expression of the pro-inflammatory IL-6-to-IL-10 ratio, their related receptors, and vascular cell adhesion molecule-1 in both the RV and LV. These changes were prevented by tacrolimus. RV and LV neutrophil infiltration induced by BD was partly prevented by tacrolimus. BD was associated with decreased RV expression of the β-1 adrenergic receptor and sarcomere (myosin heavy chain [MYH]7-to-MYH6 ratio) components, while β-3 adrenergic receptor, nitric oxide-synthase 3, and glucose transporter 1 expression increased. These changes were prevented by tacrolimus. CONCLUSIONS Brain death was associated with isolated RV dysfunction. Tacrolimus prevented RV dysfunction induced by BD through the inhibition of apoptosis and inflammation activation.
Collapse
Affiliation(s)
- Asmae Belhaj
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, 5530 Yvoir, Belgium;
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Astrid Monier
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Gregory Vegh
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Sandrine Rorive
- Department of Anatomopathology, Erasmus Academic Hospital, 1070 Brussels, Belgium; (S.R.); (M.R.); (I.S.)
| | - Myriam Remmelink
- Department of Anatomopathology, Erasmus Academic Hospital, 1070 Brussels, Belgium; (S.R.); (M.R.); (I.S.)
| | - Mélanie Closset
- Department of Laboratory Medicine, CHU UCL Namur, UCLouvain, 5530 Yvoir, Belgium;
| | - Christian Melot
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| | - Jacques Creteur
- Department of Critical Care, Erasmus Academic Hospital, 1070 Brussels, Belgium;
| | - Isabelle Salmon
- Department of Anatomopathology, Erasmus Academic Hospital, 1070 Brussels, Belgium; (S.R.); (M.R.); (I.S.)
| | - Benoît Rondelet
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, 5530 Yvoir, Belgium;
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (L.D.); (A.M.); (G.V.); (C.M.)
| |
Collapse
|
4
|
A bivalent remipede toxin promotes calcium release via ryanodine receptor activation. Nat Commun 2023; 14:1036. [PMID: 36823422 PMCID: PMC9950431 DOI: 10.1038/s41467-023-36579-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.
Collapse
|
5
|
Armstrong NS, Frank CA. The calcineurin regulator Sarah enables distinct forms of homeostatic plasticity at the Drosophila neuromuscular junction. Front Synaptic Neurosci 2023; 14:1033743. [PMID: 36685082 PMCID: PMC9846150 DOI: 10.3389/fnsyn.2022.1033743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The ability of synapses to maintain physiological levels of evoked neurotransmission is essential for neuronal stability. A variety of perturbations can disrupt neurotransmission, but synapses often compensate for disruptions and work to stabilize activity levels, using forms of homeostatic synaptic plasticity. Presynaptic homeostatic potentiation (PHP) is one such mechanism. PHP is expressed at the Drosophila melanogaster larval neuromuscular junction (NMJ) synapse, as well as other NMJs. In PHP, presynaptic neurotransmitter release increases to offset the effects of impairing muscle transmitter receptors. Prior Drosophila work has studied PHP using different ways to perturb muscle receptor function-either acutely (using pharmacology) or chronically (using genetics). Some of our prior data suggested that cytoplasmic calcium signaling was important for expression of PHP after genetic impairment of glutamate receptors. Here we followed up on that observation. Methods: We used a combination of transgenic Drosophila RNA interference and overexpression lines, along with NMJ electrophysiology, synapse imaging, and pharmacology to test if regulators of the calcium/calmodulin-dependent protein phosphatase calcineurin are necessary for the normal expression of PHP. Results: We found that either pre- or postsynaptic dysregulation of a Drosophila gene regulating calcineurin, sarah (sra), blocks PHP. Tissue-specific manipulations showed that either increases or decreases in sra expression are detrimental to PHP. Additionally, pharmacologically and genetically induced forms of expression of PHP are functionally separable depending entirely upon which sra genetic manipulation is used. Surprisingly, dual-tissue pre- and postsynaptic sra knockdown or overexpression can ameliorate PHP blocks revealed in single-tissue experiments. Pharmacological and genetic inhibition of calcineurin corroborated this latter finding. Discussion: Our results suggest tight calcineurin regulation is needed across multiple tissue types to stabilize peripheral synaptic outputs.
Collapse
Affiliation(s)
- Noah S. Armstrong
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States,*Correspondence: C. Andrew Frank
| |
Collapse
|
6
|
Boehm M, Tian X, Ali MK, Mao Y, Ichimura K, Zhao M, Kuramoto K, Dannewitz Prosseda S, Fajardo G, Dufva MJ, Qin X, Kheyfets VO, Bernstein D, Reddy S, Metzger RJ, Zamanian RT, Haddad F, Spiekerkoetter E. Improving Right Ventricular Function by Increasing BMP Signaling with FK506. Am J Respir Cell Mol Biol 2021; 65:272-287. [PMID: 33938785 PMCID: PMC8485990 DOI: 10.1165/rcmb.2020-0528oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
Right ventricular (RV) function is the predominant determinant of survival in patients with pulmonary arterial hypertension (PAH). In preclinical models, pharmacological activation of BMP (bone morphogenetic protein) signaling with FK506 (tacrolimus) improved RV function by decreasing RV afterload. FK506 therapy further stabilized three patients with end-stage PAH. Whether FK506 has direct effects on the pressure-overloaded right ventricle is yet unknown. We hypothesized that increasing cardiac BMP signaling with FK506 improves RV structure and function in a model of fixed RV afterload after pulmonary artery banding (PAB). Direct cardiac effects of FK506 on the microvasculature and RV fibrosis were studied after surgical PAB in wild-type and heterozygous Bmpr2 mutant mice. RV function and strain were assessed longitudinally via cardiac magnetic resonance imaging during continuous FK506 infusion. Genetic lineage tracing of endothelial cells (ECs) was performed to assess the contribution of ECs to fibrosis. Molecular mechanistic studies were performed in human cardiac fibroblasts and ECs. In mice, low BMP signaling in the right ventricle exaggerated PAB-induced RV fibrosis. FK506 therapy restored cardiac BMP signaling, reduced RV fibrosis in a BMP-dependent manner independent from its immunosuppressive effect, preserved RV capillarization, and improved RV function and strain over the time course of disease. Endothelial mesenchymal transition was a rare event and did not significantly contribute to cardiac fibrosis after PAB. Mechanistically, FK506 required ALK1 in human cardiac fibroblasts as a BMPR2 co-receptor to reduce TGFβ1-induced proliferation and collagen production. Our study demonstrates that increasing cardiac BMP signaling with FK506 improves RV structure and function independent from its previously described beneficial effects on pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Mario Boehm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardio-Pulmonary Institute, Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Xuefei Tian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Yuqiang Mao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Kenzo Ichimura
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Mingming Zhao
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Kazuya Kuramoto
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Svenja Dannewitz Prosseda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Giovanni Fajardo
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Melanie J. Dufva
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado; and
- Department of Pediatrics, Section of Cardiology, Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Xulei Qin
- Cardiovascular Institute, and
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Vitaly O. Kheyfets
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado; and
- Department of Pediatrics, Section of Cardiology, Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Bernstein
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Sushma Reddy
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Ross J. Metzger
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Roham T. Zamanian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute, and
| | - Francois Haddad
- Cardiovascular Institute, and
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute, and
| |
Collapse
|
7
|
Pacheco J, Wills RC, Hammond GRV. Induced Dimerization Tools to Deplete Specific Phosphatidylinositol Phosphates. Methods Mol Biol 2021; 2251:105-120. [PMID: 33481234 DOI: 10.1007/978-1-0716-1142-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical dimerization systems have been used to drive acute depletion of polyphosphoinsitides (PPIns). They do so by inducing subcellular localization of enzymes that catabolize PPIns. By using this approach, all seven PPIns can be depleted in living cells and in real time. The rapid permeation of dimerizer agents and the specific expression of recruiter proteins confer great spatial and temporal resolution with minimal cell perturbation. In this chapter, we provide detailed instructions to monitor and induce depletion of PPIns in live cells.
Collapse
Affiliation(s)
- Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Robinson K, Culley D, Waring S, Lamb GD, Easton C, Casarotto MG, Dulhunty AF. Peptide mimetic compounds can activate or inhibit cardiac and skeletal ryanodine receptors. Life Sci 2020; 260:118234. [PMID: 32791148 DOI: 10.1016/j.lfs.2020.118234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022]
Abstract
AIMS Our aim was to characterise the actions of novel BIT compounds with structures based on peptides and toxins that bind to significant regulatory sites on ryanodine receptor (RyR) Ca2+ release channels. RyRs, located in sarcoplasmic reticulum (SR) Ca2+ store membranes of striated muscle, are essential for muscle contraction. Although severe sometimes-deadly myopathies occur when the channels become hyperactive following genetic or acquired changes, specific inhibitors of RyRs are rare. MAIN METHODS The effect of BIT compounds was determined by spectrophotometric analysis of Ca2+ release from isolated SR vesicles, analysis of single RyR channel activity in artificial lipid bilayers and contraction of intact and skinned skeletal muscle fibres. KEY FINDINGS The inhibitory compounds reduced: (a) Ca2+ release from SR vesicles with IC50s of 1.1-2.5 μM, competing with activation by parent peptides and toxins; (b) single RyR ion channel activity with IC50s of 0.5-1.5 μM; (c) skinned fibre contraction. In contrast, activating BIT compounds increased Ca2+ release with an IC50 of 5.0 μM and channel activity with AC50s of 2 to 12 nM and enhanced skinned fibre contraction. Sub-conductance activity dominated channel activity with both inhibitors and activators. Effects of all compounds on skeletal and cardiac RyRs were similar and reversible. Competition experiments suggest that the BIT compounds bind to the regulatory helical domains of the RyRs that impact on channel gating mechanisms through long-range allosteric interactions. SIGNIFICANCE The BIT compounds are strong modulators of RyR activity and provide structural templates for novel research tools and drugs to combat muscle disease.
Collapse
Affiliation(s)
- Ken Robinson
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Dane Culley
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sam Waring
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Graham D Lamb
- Physiology, Anatomy and Microbiology, Biochemistry and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Christopher Easton
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|
9
|
Roy Chowdhury A, Srinivasan S, Csordás G, Hajnóczky G, Avadhani NG. Dysregulation of RyR Calcium Channel Causes the Onset of Mitochondrial Retrograde Signaling. iScience 2020; 23:101370. [PMID: 32738613 PMCID: PMC7394923 DOI: 10.1016/j.isci.2020.101370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/18/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023] Open
Abstract
This study shows that multiple modes of mitochondrial stress generated by partial mtDNA depletion or cytochrome c oxidase disruption cause ryanodine receptor channel (RyR) dysregulation, which instigates the release of Ca2+ in the cytoplasm of C2C12 myoblasts and HCT116 carcinoma cells. We also observed a reciprocal downregulation of IP3R channel activity and reduced mitochondrial uptake of Ca2+. Ryanodine, an RyR antagonist, abrogated the mitochondrial stress-mediated increase in [Ca2+]c and the entire downstream signaling cascades of mitochondrial retrograde signaling. Interestingly, ryanodine also inhibited mitochondrial stress-induced invasive behavior in mtDNA-depleted C2C12 cells and HCT116 carcinoma cells. In addition, co-immunoprecipitation shows reduced FKBP12 protein binding to RyR channel proteins, suggesting the altered function of the Ca2+ channel. These results document how the endoplasmic reticulum-associated RyR channels, in combination with inhibition of the mitochondrial uniporter system, modulate cellular Ca2+ homeostasis and signaling under mitochondrial stress conditions.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - György Csordás
- Mitocare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Hajnóczky
- Mitocare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther 2020; 215:107623. [PMID: 32622856 DOI: 10.1016/j.pharmthera.2020.107623] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
FK506 binding (FKBP) proteins are part of the highly conserved immunophilin family and its members have fundamental roles in the regulation of signalling pathways involved in inflammation, adaptive immune responses, cancer and developmental biology. The original member of this family, FKBP12, is a well-known binding partner for the immunosuppressive drugs tacrolimus (FK506) and sirolimus (rapamycin). FKBP12 and its analog, FKBP12.6, function as cis/trans peptidyl prolyl isomerases (PPIase) and they catalyse the interconversion of cis/trans prolyl conformations. Members of this family uniquely contain a PPIase domain, which may not be functional. The larger FKBPs, such as FKBP51, FKBP52 and FKBPL, contain extra regions, including tetratricopeptide repeat (TPR) domains, which are important for their versatile protein-protein interactions with inflammation-related signalling pathways. In this review we focus on the pivotal role of FKBP proteins in regulating glucocorticoid signalling, canonical and non-canonical NF-κB signalling, mTOR/AKT signalling and TGF-β signalling. We examine the mechanism of action of FKBP based immunosuppressive drugs on these cell signalling pathways and how off target interactions lead to the development of side effects often seen in the clinic. Finally, we discuss the latest advances in the role of FKBPs as therapeutic targets and the development of novel agents for a range of indications of unmet clinical need, including glucocorticoid resistance, obesity, stress-induced inflammation and novel cancer immunotherapy.
Collapse
Affiliation(s)
- Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
11
|
Salvage SC, Gallant EM, Beard NA, Ahmad S, Valli H, Fraser JA, Huang CLH, Dulhunty AF. Ion channel gating in cardiac ryanodine receptors from the arrhythmic RyR2-P2328S mouse. J Cell Sci 2019; 132:jcs.229039. [PMID: 31028179 PMCID: PMC6550012 DOI: 10.1242/jcs.229039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 μM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Samantha C Salvage
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Esther M Gallant
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton ACT 2601, Australia
| | - Nicole A Beard
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - James A Fraser
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Angela F Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton ACT 2601, Australia
| |
Collapse
|
12
|
Ivarsson N, Mattsson CM, Cheng AJ, Bruton JD, Ekblom B, Lanner JT, Westerblad H. SR Ca 2+ leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance. J Gen Physiol 2019; 151:567-577. [PMID: 30635368 PMCID: PMC6445590 DOI: 10.1085/jgp.201812152] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/16/2018] [Indexed: 01/14/2023] Open
Abstract
Skeletal muscle oxidative capacity and fatigue resistance can be improved with endurance training, but the mechanism is not fully understood. Ivarsson et al. find that the signaling pathway that increases fatigue resistance in muscle is triggered by a mild Ca2+ leak from the sarcoplasmic reticulum. Effective practices to improve skeletal muscle fatigue resistance are crucial for athletes as well as patients with dysfunctional muscles. To this end, it is important to identify the cellular signaling pathway that triggers mitochondrial biogenesis and thereby increases oxidative capacity and fatigue resistance in skeletal muscle fibers. Here, we test the hypothesis that the stress induced in skeletal muscle fibers by endurance exercise causes a reduction in the association of FK506-binding protein 12 (FKBP12) with ryanodine receptor 1 (RYR1). This will result in a mild Ca2+ leak from the sarcoplasmic reticulum (SR), which could trigger mitochondrial biogenesis and improved fatigue resistance. After giving mice access to an in-cage running wheel for three weeks, we observed decreased FKBP12 association to RYR1, increased baseline [Ca2+]i, and signaling associated with greater mitochondrial biogenesis in muscle, including PGC1α1. After six weeks of voluntary running, FKBP12 association is normalized, baseline [Ca2+]i returned to values below that of nonrunning controls, and signaling for increased mitochondrial biogenesis was no longer present. The adaptations toward improved endurance exercise performance that were observed with training could be mimicked by pharmacological agents that destabilize RYR1 and thereby induce a modest Ca2+ leak. We conclude that a mild RYR1 SR Ca2+ leak is a key trigger for the signaling pathway that increases muscle fatigue resistance.
Collapse
Affiliation(s)
- Niklas Ivarsson
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - C Mikael Mattsson
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Robinson K, Easton CJ, Dulhunty AF, Casarotto MG. Exploiting Peptidomimetics to Synthesize Compounds That Activate Ryanodine Receptor Calcium Release Channels. ChemMedChem 2018; 13:1957-1971. [DOI: 10.1002/cmdc.201800366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Ken Robinson
- Research School of Chemistry Australian National University Canberra Australia
| | | | - Angela F. Dulhunty
- John Curtin School of Medical Research Australian National University Canberra Australia
| | - Marco G. Casarotto
- John Curtin School of Medical Research Australian National University Canberra Australia
| |
Collapse
|
14
|
Xu L, Mowrey DD, Chirasani VR, Wang Y, Pasek DA, Dokholyan NV, Meissner G. G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca 2. J Biol Chem 2017; 293:2015-2028. [PMID: 29255089 DOI: 10.1074/jbc.m117.803247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
The ryanodine receptor ion channel RyR1 is present in skeletal muscle and has a large cytoplasmic N-terminal domain and smaller C-terminal pore-forming domain comprising six transmembrane helices, a pore helix, and a selectivity filter. The RyR1 S6 pore-lining helix has two conserved glycines, Gly-4934 and Gly-4941, that facilitate RyR1 channel gating by providing S6 flexibility and minimizing amino acid clashes. Here, we report that substitution of Gly-4941 with Asp or Lys results in functional channels as indicated by caffeine-induced Ca2+ release response in HEK293 cells, whereas a low response of the corresponding Gly-4934 variants suggested loss of function. Following purification, the RyR1 mutants G4934D, G4934K, and G4941D did not noticeably conduct Ca2+ in single-channel measurements. Gly-4941 replacement with Lys resulted in channels having reduced K+ conductance and reduced selectivity for Ca2+ compared with wildtype. RyR1-G4941K did not fully close at nanomolar cytosolic Ca2+ concentrations and nearly fully opened at 2 μm cytosolic or sarcoplasmic reticulum luminal Ca2+, and Ca2+- and voltage-dependent regulation of RyR1-G4941K mutant channels was demonstrated. Computational methods and single-channel recordings indicated that the open G4941K variant results in the formation of a salt bridge to Asp-4938. In contrast, wildtype RyR1 was closed and not activated by luminal Ca2+ at low cytosolic Ca2+ levels. A model suggested that luminal Ca2+ activates RyR1 by accessing a recently identified cytosolic Ca2+-binding site in the open channel as the Ca2+ ions pass through the pore.
Collapse
Affiliation(s)
- Le Xu
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Venkat R Chirasani
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ying Wang
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel A Pasek
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gerhard Meissner
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
15
|
Richardson SJ, Steele GA, Gallant EM, Lam A, Schwartz CE, Board PG, Casarotto MG, Beard NA, Dulhunty AF. Association of FK506 binding proteins with RyR channels - effect of CLIC2 binding on sub-conductance opening and FKBP binding. J Cell Sci 2017; 130:3588-3600. [PMID: 28851804 DOI: 10.1242/jcs.204461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
Ryanodine receptor (RyR) Ca2+ channels are central to striated muscle function and influence signalling in neurons and other cell types. Beneficially low RyR activity and maximum conductance opening may be stabilised when RyRs bind to FK506 binding proteins (FKBPs) and destabilised by FKBP dissociation, with submaximal opening during RyR hyperactivity associated with myopathies and neurological disorders. However, the correlation with submaximal opening is debated and quantitative evidence is lacking. Here, we have measured altered FKBP binding to RyRs and submaximal activity with addition of wild-type (WT) CLIC2, an inhibitory RyR ligand, or its H101Q mutant that hyperactivates RyRs, which probably causes cardiac and intellectual abnormalities. The proportion of sub-conductance opening increases with WT and H101Q CLIC2 and is correlated with reduced FKBP-RyR association. The sub-conductance opening reduces RyR currents in the presence of WT CLIC2. In contrast, sub-conductance openings contribute to excess RyR 'leak' with H101Q CLIC2. There are significant FKBP and RyR isoform-specific actions of CLIC2, rapamycin and FK506 on FKBP-RyR association. The results show that FKBPs do influence RyR gating and would contribute to excess Ca2+ release in this CLIC2 RyR channelopathy.
Collapse
Affiliation(s)
- Spencer J Richardson
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Gregory A Steele
- Capital Pathology Laboratory, 70 Kent St, Deakin, ACT 2600, Australia
| | - Esther M Gallant
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Alexander Lam
- Neurosurgery, Royal Perth Hospital, 197 Wellington St, Perth, WA 6000, Australia
| | - Charles E Schwartz
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Philip G Board
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Marco G Casarotto
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Nicole A Beard
- Cardiac Physiology Department, Health Research Institute, Faculty of Education Science and Mathematics, University of Canberra, Bruce, ACT 2617, Australia
| | - Angela F Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| |
Collapse
|
16
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Rebbeck RT, Willemse H, Groom L, Casarotto MG, Board PG, Beard NA, Dirksen RT, Dulhunty AF. Regions of ryanodine receptors that influence activation by the dihydropyridine receptor β1a subunit. Skelet Muscle 2015. [PMID: 26203350 PMCID: PMC4510890 DOI: 10.1186/s13395-015-0049-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Although excitation-contraction (EC) coupling in skeletal muscle relies on physical activation of the skeletal ryanodine receptor (RyR1) Ca2+ release channel by dihydropyridine receptors (DHPRs), the activation pathway between the DHPR and RyR1 remains unknown. However, the pathway includes the DHPR β1a subunit which is integral to EC coupling and activates RyR1. In this manuscript, we explore the isoform specificity of β1a activation of RyRs and the β1a binding site on RyR1. Methods We used lipid bilayers to measure single channel currents and whole cell patch clamp to measure L-type Ca2+ currents and Ca2+ transients in myotubes. Results We demonstrate that both skeletal RyR1 and cardiac RyR2 channels in phospholipid bilayers are activated by 10–100 nM of the β1a subunit. Activation of RyR2 by 10 nM β1a was less than that of RyR1, suggesting a reduced affinity of RyR2 for β1a. A reduction in activation was also observed when 10 nM β1a was added to the alternatively spliced (ASI(−)) isoform of RyR1, which lacks ASI residues (A3481-Q3485). It is notable that the equivalent region of RyR2 also lacks four of five ASI residues, suggesting that the absence of these residues may contribute to the reduced 10 nM β1a activation observed for both RyR2 and ASI(−)RyR1 compared to ASI(+)RyR1. We also investigated the influence of a polybasic motif (PBM) of RyR1 (K3495KKRRDGR3502) that is located immediately downstream from the ASI residues and has been implicated in EC coupling. We confirmed that neutralizing the basic residues in the PBM (RyR1 K-Q) results in an ~50 % reduction in Ca2+ transient amplitude following expression in RyR1-null (dyspedic) myotubes and that the PBM is also required for β1a subunit activation of RyR1 channels in lipid bilayers. These results suggest that the removal of β1a subunit interaction with the PBM in RyR1 could contribute directly to ~50 % of the Ca2+ release generated during skeletal EC coupling. Conclusions We conclude that the β1a subunit likely binds to a region that is largely conserved in RyR1 and RyR2 and that this region is influenced by the presence of the ASI residues and the PBM in RyR1. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0049-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN USA
| | - Hermia Willemse
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| | - Linda Groom
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, NY USA
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| | - Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| | - Nicole A Beard
- Discipline of Biomedical Sciences, Centre for Research in Therapeutic Solutions, University of Canberra, Canberra, ACT 2601 Australia
| | - Robert T Dirksen
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, NY USA
| | - Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| |
Collapse
|
18
|
Efremov RG, Leitner A, Aebersold R, Raunser S. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 2014; 517:39-43. [DOI: 10.1038/nature13916] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
|
19
|
Venturi E, Galfré E, O'Brien F, Pitt SJ, Bellamy S, Sessions RB, Sitsapesan R. FKBP12.6 activates RyR1: investigating the amino acid residues critical for channel modulation. Biophys J 2014; 106:824-33. [PMID: 24559985 PMCID: PMC3945099 DOI: 10.1016/j.bpj.2013.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/25/2013] [Accepted: 12/19/2013] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that FKBP12 associates with RyR2 in cardiac muscle and that it modulates RyR2 function differently to FKBP12.6. We now investigate how these proteins affect the single-channel behavior of RyR1 derived from rabbit skeletal muscle. Our results show that FKBP12.6 activates and FKBP12 inhibits RyR1. It is likely that both proteins compete for the same binding sites on RyR1 because channels that are preactivated by FKBP12.6 cannot be subsequently inhibited by FKBP12. We produced a mutant FKBP12 molecule (FKBP12E31Q/D32N/W59F) where the residues Glu(31), Asp(32), and Trp(59) were converted to the corresponding residues in FKBP12.6. With respect to the functional regulation of RyR1 and RyR2, the FKBP12E31Q/D32N/W59F mutant lost all ability to behave like FKBP12 and instead behaved like FKBP12.6. FKBP12E31Q/D32N/W59F activated RyR1 but was not capable of activating RyR2. In conclusion, FKBP12.6 activates RyR1, whereas FKBP12 activates RyR2 and this selective activator phenotype is determined within the amino acid residues Glu(31), Asp(32), and Trp(59) in FKBP12 and Gln(31), Asn(32), and Phe(59) in FKBP12.6. The opposing but different effects of FKBP12 and FKBP12.6 on RyR1 and RyR2 channel gating provide scope for diversity of regulation in different tissues.
Collapse
Affiliation(s)
- Elisa Venturi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Elena Galfré
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Fiona O'Brien
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha J Pitt
- School of Medicine, University of St. Andrews, St. Andrew, United Kingdom
| | - Stuart Bellamy
- Centre for Nanoscience and Quantum Information (NSQI), University of Bristol, Bristol, United Kingdom
| | | | - Rebecca Sitsapesan
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
20
|
Rangel EB. Tacrolimus in pancreas transplant: a focus on toxicity, diabetogenic effect and drug–drug interactions. Expert Opin Drug Metab Toxicol 2014; 10:1585-1605. [DOI: 10.1517/17425255.2014.964205] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Multiple actions of phi-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proc Natl Acad Sci U S A 2013; 110:8906-11. [PMID: 23671114 DOI: 10.1073/pnas.1214062110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently reported the isolation of a scorpion toxin named U1-liotoxin-Lw1a (U1-LITX-Lw1a) that adopts an unusual 3D fold termed the disulfide-directed hairpin (DDH) motif, which is the proposed evolutionary structural precursor of the three-disulfide-containing inhibitor cystine knot (ICK) motif found widely in animals and plants. Here we reveal that U1-LITX-Lw1a targets and activates the mammalian ryanodine receptor intracellular calcium release channel (RyR) with high (fM) potency and provides a functional link between DDH and ICK scorpion toxins. Moreover, U1-LITX-Lw1a, now described as ϕ-liotoxin-Lw1a (ϕ-LITX-Lw1a), has a similar mode of action on RyRs as scorpion calcines, although with significantly greater potency, inducing full channel openings at lower (fM) toxin concentrations whereas at higher pM concentrations increasing the frequency and duration of channel openings to a submaximal state. In addition, we show that the C-terminal residue of ϕ-LITX-Lw1a is crucial for the increase in full receptor openings but not for the increase in receptor subconductance opening, thereby supporting the two-binding-site hypothesis of scorpion toxins on RyRs. ϕ-LITX-Lw1a has potential both as a pharmacological tool and as a lead molecule for the treatment of human diseases that involve RyRs, such as malignant hyperthermia and polymorphic ventricular tachycardia.
Collapse
|
22
|
FK506 binding proteins: Cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 2013; 700:181-93. [DOI: 10.1016/j.ejphar.2012.12.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/04/2012] [Accepted: 12/18/2012] [Indexed: 02/04/2023]
|
23
|
Takano K, Liu D, Tarpey P, Gallant E, Lam A, Witham S, Alexov E, Chaubey A, Stevenson RE, Schwartz CE, Board PG, Dulhunty AF. An X-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity. Hum Mol Genet 2012; 21:4497-507. [PMID: 22814392 DOI: 10.1093/hmg/dds292] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chloride intracellular channel 2 (CLIC2) protein is a member of the glutathione transferase class of proteins. Its' only known function is the regulation of ryanodine receptor (RyR) intracellular Ca(2+) release channels. These RyR proteins play a major role in the regulation of Ca(2+) signaling in many cells. Utilizing exome capture and deep sequencing of genes on the X-chromosome, we have identified a mutation in CLIC2 (c.303C>G, p.H101Q) which is associated with X-linked intellectual disability (ID), atrial fibrillation, cardiomegaly, congestive heart failure (CHF), some somatic features and seizures. Functional studies of the H101Q variant indicated that it stimulated rather than inhibited the action of RyR channels, with channels remaining open for longer times and potentially amplifying Ca(2+) signals dependent on RyR channel activity. The overly active RyRs in cardiac and skeletal muscle cells and neuronal cells would result in abnormal cardiac function and trigger post-synaptic pathways and neurotransmitter release. The presence of both cardiomegaly and CHF in the two affected males and atrial fibrillation in one are consistent with abnormal RyR2 channel function. Since the dysfunction of RyR2 channels in the brain via 'leaky mutations' can result in mild developmental delay and seizures, our data also suggest a vital role for the CLIC2 protein in maintaining normal cognitive function via its interaction with RyRs in the brain. Therefore, our patients appear to suffer from a new channelopathy comprised of ID, seizures and cardiac problems because of enhanced Ca(2+) release through RyRs in neuronal cells and cardiac muscle cells.
Collapse
Affiliation(s)
- Kyoko Takano
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hutt DM, Roth DM, Chalfant MA, Youker RT, Matteson J, Brodsky JL, Balch WE. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability. J Biol Chem 2012; 287:21914-25. [PMID: 22474283 DOI: 10.1074/jbc.m112.339788] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Galfré E, Pitt SJ, Venturi E, Sitsapesan M, Zaccai NR, Tsaneva-Atanasova K, O'Neill S, Sitsapesan R. FKBP12 activates the cardiac ryanodine receptor Ca2+-release channel and is antagonised by FKBP12.6. PLoS One 2012; 7:e31956. [PMID: 22363773 PMCID: PMC3283708 DOI: 10.1371/journal.pone.0031956] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/16/2012] [Indexed: 11/18/2022] Open
Abstract
Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca(2+)-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca(2+)-induced Ca(2+)-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca(2+), whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 µM) increased Ca(2+)-wave frequency and decreased the SR Ca(2+)-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12.We provide a biophysical analysis of the mechanisms by which FK-binding proteins can regulate RyR2 single-channel gating. Our data indicate that FKBP12, in addition to FKBP12.6, may be important in regulating RyR2 function in the heart. In heart failure, it is possible that an alteration in the dual regulation of RyR2 by FKBP12 and FKBP12.6 may occur. This could contribute towards a higher RyR2 open probability, 'leaky' RyR2 channels and Ca(2+)-dependent arrhythmias.
Collapse
Affiliation(s)
- Elena Galfré
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Samantha J. Pitt
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Elisa Venturi
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Mano Sitsapesan
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Nathan R. Zaccai
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | | | - Stephen O'Neill
- Cardiovascular Research Group, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Rebecca Sitsapesan
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Wen H, Kang S, Song Y, Song Y, Yang HJ, Kim MH, Park S. Characterization of the binding sites for the interactions between FKBP12 and intracellular calcium release channels. Arch Biochem Biophys 2012; 517:37-42. [DOI: 10.1016/j.abb.2011.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 11/30/2022]
|
27
|
Mathea S, Li S, Schierhorn A, Jahreis G, Schiene-Fischer C. Suppression of EGFR autophosphorylation by FKBP12. Biochemistry 2011; 50:10844-50. [PMID: 22103444 DOI: 10.1021/bi2013855] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FK506 binding proteins (FKBPs) represent a subfamily of peptidyl prolyl cis/trans isomerases that can control receptor-mediated intracellular signaling. The prototypic PPIase FKBP12 functionally interacts with EGFR. FKBP12 was shown to inhibit EGF-induced EGFR autophosphorylation with all internal phosphorylation sites equally affected. The inhibition of EGFR catalytic activity is conducted by targeting the EGFR kinase domain. The change of intracellular FKBP12 levels resulted in a change of EGFR autophosphorylation level. Collectively, our results demonstrate that FKBP12 forms an endogenous inhibitor of EGFR phosphorylation directly involved in the control of cellular EGFR activity.
Collapse
Affiliation(s)
- Sebastian Mathea
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
28
|
Dulhunty AF, Hewawasam R, Liu D, Casarotto MG, Board PG. Regulation of the cardiac muscle ryanodine receptor by glutathione transferases. Drug Metab Rev 2011; 43:236-52. [DOI: 10.3109/03602532.2010.549134] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010; 2:a003996. [PMID: 20961976 DOI: 10.1101/cshperspect.a003996] [Citation(s) in RCA: 566] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with and are regulated by phosphorylation, redox modifications, and a variety of small proteins and ions. Most RyR channel modulators interact with the large cytoplasmic domain whereas the carboxy-terminal portion of the protein forms the ion-conducting pore. Mutations in RyR2 are associated with human disorders such as catecholaminergic polymorphic ventricular tachycardia whereas mutations in RyR1 underlie diseases such as central core disease and malignant hyperthermia. This chapter examines the current concepts of the structure, function and regulation of RyRs and assesses the current state of understanding of their roles in associated disorders.
Collapse
Affiliation(s)
- Johanna T Lanner
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas 77030,USA
| | | | | | | |
Collapse
|
30
|
Kampfer AJ, Balog EM. S-Adenosyl-l-methionine Regulation of the Cardiac Ryanodine Receptor Involves Multiple Mechanisms. Biochemistry 2010; 49:7600-14. [DOI: 10.1021/bi100599b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angela J. Kampfer
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Edward M. Balog
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
31
|
Hewawasam R, Liu D, Casarotto MG, Dulhunty AF, Board PG. The structure of the C-terminal helical bundle in glutathione transferase M2-2 determines its ability to inhibit the cardiac ryanodine receptor. Biochem Pharmacol 2010; 80:381-8. [DOI: 10.1016/j.bcp.2010.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/07/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
|
32
|
Arutyunyan RS, Kuznetsov SV. Effect of neurogenic inactivity on posttetanic responses of rat fast muscle. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093010010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Wei L, Hanna AD, Beard NA, Dulhunty AF. Unique isoform-specific properties of calsequestrin in the heart and skeletal muscle. Cell Calcium 2009; 45:474-84. [PMID: 19376574 DOI: 10.1016/j.ceca.2009.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 02/02/2009] [Accepted: 03/15/2009] [Indexed: 10/20/2022]
Abstract
Calcium signaling in myocytes is dependent on the cardiac ryanodine receptor (RyR2) calcium release channel and the calcium buffering protein in the sarcoplasmic reticulum, cardiac calsequestrin (CSQ2). The overall properties of CSQ2 and its regulation of RyR2 have not been explored in detail or directly compared with skeletal CSQ1 and its regulation of the skeletal RyR1, with physiological ionic strength and Ca(2+) concentrations. We find that there are major differences between the two isoforms under these physiological conditions. Ca(2+) binding to CSQ2 is 50% lower than to CSQ1. Only approximately 30% of CSQ2 is bound to cardiac junctional face membrane (JFM), compared with approximately 70% of CSQ1 and the ratio of CSQ2 to RyR2 is only 50% of the CSQ1/RyR1 ratio. Chemical crosslinking shows that CSQ2 is mostly monomer/dimer, while CSQ1 is mostly polymerized. In single channel lipid bilayer experiments, CSQ2 monomers and/or dimers increase the open probability of both RyR1 and RyR2 channels, while CSQ1 polymers decrease the activity of RyR1. We speculate that CSQ2 facilitates high rates of Ca(2+) release through RyR2 during systole, while CSQ1 curtails RyR1 opening in response to a single action potential to maintain Ca(2+) and allow repeated Ca(2+) release and graded activation with increased stimulation frequency.
Collapse
Affiliation(s)
- Lan Wei
- John Curtin School of Medical Research, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
34
|
Johnson JD, Ao Z, Ao P, Li H, Dai LJ, He Z, Tee M, Potter KJ, Klimek AM, Meloche RM, Thompson DM, Verchere CB, Warnock GL. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transplant 2009; 18:833-45. [PMID: 19500470 DOI: 10.3727/096368909x471198] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet transplantation has the potential to be an effective treatment for type 1 diabetes mellitus. While recent improvements have improved 1-year outcomes, follow-up studies show a persistent loss of graft function/survival over 5 years. One possible cause of islet transplant failure is the immunosuppressant regimen required to prevent alloimmune graft rejection. Although there is evidence from separate studies, mostly in rodents and cell lines, that FK506 (tacrolimus), rapamycin (sirolimus), and mycophenolate mofetil (MMF; CellCept) can damage pancreatic beta-cells, there have been few side-by-side, multiparameter comparisons of the effects of these drugs on human islets. In the present study, we show that 24-h exposure to FK506 or MMF impairs glucose-stimulated insulin secretion in human islets. FK506 had acute and direct effects on insulin exocytosis, whereas MMF did not. FK506, but not MMF, impaired human islet graft function in diabetic NOD*scid mice. All of the immunosuppressants tested in vitro increased caspase-3 cleavage and caspase-3 activity, whereas MMF induced ER-stress to the greatest degree. Treating human islets with the GLP-1 agonist exenatide ameliorated the immunosuppressant-induced defects in glucose-stimulated insulin release. Together, our results demonstrate that immunosuppressants impair human beta-cell function and survival, and that these defects can be circumvented to a certain extent with exenatide treatment.
Collapse
Affiliation(s)
- James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pouliquin P, Pace SM, Dulhunty AF. In vitro modulation of the cardiac ryanodine receptor activity by Homer1. Pflugers Arch 2009; 458:723-32. [PMID: 19296124 DOI: 10.1007/s00424-009-0664-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/10/2009] [Accepted: 03/04/2009] [Indexed: 11/27/2022]
Abstract
The Homer protein family allows clustering and/or functional modulation of many proteins from different calcium signalling complexes including those formed by the ryanodine receptor (RyR) Ca(2+) release channel in skeletal muscle and the heart. Homer1b/c and the cardiac RyR (RyR2) are strongly expressed in the heart and neurons where their interaction with each other may modulate Ca(2+) signalling. However, functional interactions between Homer1b and RyR2 have been poorly defined. Our preliminary data and similar consensus binding sites for Homer in RyR2 and skeletal RyR (RyR1) proteins, led to the hypothesis that Homer may similarly regulate both RyR isoforms. Single-channel and [(3)H]ryanodine binding data showed that RyR2 and RyR1 activity increased to a maximum with ~50-100 nM Homer1b and fell with Homer1b > 200 nM. Homer1b (50 nM) activated RyR2 and RyR1 at all cytosolic [Ca(2+)]; estimated EC(50) value of RyR2 diminished from ~2.8 microM Ca(2+) (control) to ~1.9 microM Ca(2+) in the presence of 50 nM Homer1b. Short Homer1 (lacking the coiled-coil multimerisation domain) and Homer1b similarly modulated RyR2, indicating an action through ligand binding, not mutimerisation. These actions of Homer were generally similar in RyR2 and RyR1. The strong functional interactions suggest that Homer1 is likely to be an endogenous modulator of RyR channels in the heart and neurons as well as in skeletal muscle.
Collapse
Affiliation(s)
- Pierre Pouliquin
- Division of Molecular Bioscience, The John Curtin School of Medical Research, The Australian National University, P.O. Box 334, Canberra, ACT 2601, Australia.
| | | | | |
Collapse
|
36
|
Beard NA, Wei L, Cheung SN, Kimura T, Varsányi M, Dulhunty AF. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin. Cell Calcium 2009; 44:363-73. [PMID: 19230141 DOI: 10.1016/j.ceca.2008.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Calcium signaling, intrinsic to skeletal and cardiac muscle function, is critically dependent on the amount of calcium stored within the sarcoplasmic reticulum. Calsequestrin, the main calcium buffer in the sarcoplasmic reticulum, provides a pool of calcium for release through the ryanodine receptor and acts as a luminal calcium sensor for the channel via its interactions with triadin and junctin. We examined the influence of phosphorylation of calsequestrin on its ability to store calcium, to polymerise and to regulate ryanodine receptors by binding to triadin and junctin. Our hypothesis was that these parameters might be altered by phosphorylation of threonine 353, which is located near the calcium and triadin/junctin binding sites. Although phosphorylation increased the calcium binding capacity of calsequestrin nearly 2-fold, it did not alter calsequestrin polymerisation, its binding to triadin or junctin or inhibition of ryanodine receptor activity at 1 mM luminal calcium. Phosphorylation was required for calsequestrin binding to junctin when calcium concentration was low (100 nM), and ryanodine receptors were activated by dephosphorylated calsequestrin when it bound to triadin alone. These novel data shows that phosphorylated calsequestrin is required for high capacity calcium buffering and suggest that ryanodine receptor inhibition by calsequestrin is mediated by junctin.
Collapse
Affiliation(s)
- Nicole A Beard
- John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Tacrolimus reduces nitric oxide synthase function by binding to FKBP rather than by its calcineurin effect. Kidney Int 2009; 75:719-26. [PMID: 19177155 DOI: 10.1038/ki.2008.697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypertension develops in many patients receiving the immunosuppressive drug tacrolimus (FK506). One possible mechanism for hypertension is a reduction in vasodilatory nitric oxide. We found that tacrolimus and a calcineurin autoinhibitory peptide significantly decreased vascular calcineurin activity; however, only tacrolimus altered intracellular calcium release in mouse aortic endothelial cells. In mouse aortas, incubation with tacrolimus increased protein kinase C activity and basal endothelial nitric oxide synthase phosphorylation at threonine 495 but reduced basal and agonist-induced endothelial nitric oxide synthase phosphorylation at serine 1177, a mechanism known to inhibit synthase activity. While this decreased nitric oxide production and endothelial function, the calcineurin autoinhibitory peptide had no such effects. Inhibition of ryanodine receptor opening or protein kinase C blocked the effects of tacrolimus. Since it is known that the FK506 binding protein (FKBP12/12.6) interacts with the ryanodine receptor to regulate calcium release, we propose this as the mechanism by which tacrolimus alters intracellular calcium and endothelial nitric oxide synthase rather than by its effect on calcineurin. Our study shows that prevention of the tacrolimus-induced intracellular calcium leak may attenuate endothelial dysfunction and the consequent hypertension.
Collapse
|
38
|
Murphy RM, Larkins NT, Mollica JP, Beard NA, Lamb GD. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. J Physiol 2008; 587:443-60. [PMID: 19029185 DOI: 10.1113/jphysiol.2008.163162] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results indicating that at least part of the Ca2+ leakage occurred through SERCA. It is concluded that CSQ1 plays an important role in EDL muscle fibres by providing a large total pool of releasable Ca2+ in the SR whilst maintaining free [Ca2+] in the SR at sufficiently low levels that Ca2+ leakage through the high density of SERCA1 pumps does not metabolically compromise muscle function.
Collapse
Affiliation(s)
- Robyn M Murphy
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
39
|
Györke S, Carnes C. Dysregulated sarcoplasmic reticulum calcium release: potential pharmacological target in cardiac disease. Pharmacol Ther 2008; 119:340-54. [PMID: 18675300 DOI: 10.1016/j.pharmthera.2008.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 06/17/2008] [Indexed: 12/15/2022]
Abstract
In the heart, Ca(2+) released from the intracellular Ca(2+) storage site, the sarcoplasmic reticulum (SR), is the principal determinant of cardiac contractility. SR Ca(2+) release is controlled by dedicated molecular machinery, composed of the cardiac ryanodine receptor (RyR2) and a number of accessory proteins, including FKBP12.6, calsequestrin (CASQ2), triadin (TRD) and junctin (JN). Acquired and genetic defects in the components of the release channel complex result in a spectrum of abnormal Ca(2+) release phenotypes ranging from arrhythmogenic spontaneous Ca(2+) releases and Ca(2+) alternans to the uniformly diminished systolic Ca(2+) release characteristic of heart failure. In this article, we will present an overview of the structure and molecular components of the SR and Ca(2+) release machinery and its modulation by different intracellular factors, such as Ca(2+) levels inside the SR as well as phosphorylation and redox modification of RyR2s. We will also discuss the relationships between abnormal SR Ca(2+) release and various cardiac disease phenotypes, including, arrhythmias and heart failure, and consider SR Ca(2+) release as a potential therapeutic target.
Collapse
Affiliation(s)
- Sandor Györke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| | | |
Collapse
|
40
|
Beca S, Pavlov E, Kargacin ME, Aschar-Sobbi R, French RJ, Kargacin GJ. Inhibition of a cardiac sarcoplasmic reticulum chloride channel by tamoxifen. Pflugers Arch 2008; 457:121-35. [PMID: 18458943 DOI: 10.1007/s00424-008-0510-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/25/2022]
Abstract
Anion and cation channels present in the sarcoplasmic reticulum (SR) are believed to be necessary to maintain the electroneutrality of SR membrane during Ca(2+) uptake by the SR Ca(2+) pump (SERCA). Here we incorporated canine cardiac SR ion channels into lipid bilayers and studied the effects of tamoxifen and other antiestrogens on these channels. A Cl(-) channel was identified exhibiting multiple subconductance levels which could be divided into two primary conductance bands. Tamoxifen decreases the time the channel spends in its higher, voltage-sensitive band and the mean channel current. The lower, voltage-insensitive, conductance band is not affected by tamoxifen, nor is a K(+) channel present in the cardiac SR preparation. By examining SR Ca(2+) uptake, SERCA ATPase activity, and SR ion channels in the same preparation, we also estimated SERCA transport current, SR Cl(-) and K(+) currents, and the density of SERCA, Cl(-), and K(+) channels in cardiac SR membranes.
Collapse
Affiliation(s)
- Sanja Beca
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Long C, Cook LG, Wu GY, Mitchell BM. Removal of FKBP12/12.6 from endothelial ryanodine receptors leads to an intracellular calcium leak and endothelial dysfunction. Arterioscler Thromb Vasc Biol 2007; 27:1580-6. [PMID: 17478757 DOI: 10.1161/atvbaha.107.144808] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES FK506 Binding Protein 12 and its related isoform 12.6 (FKBP12/12.6) stabilize a closed state of intracellular Ca2+ release channels (ryanodine receptors [RyRs]), and in myocytes removal of FKBP12/12.6 from RyRs alters intracellular Ca2+ levels. The immunosuppressive drugs rapamycin and FK506 bind and displace FKBP12/12.6 from RyRs, and can also cause endothelial dysfunction and hypertension. We tested whether rapamycin and FK506 cause an intracellular Ca2+ leak in endothelial cells and whether this affects endothelial function and blood pressure regulation. METHODS AND RESULTS Rapamycin or FK506 concentration-dependently caused a Ca2+ leak in isolated endothelial cells, decreased aortic NO production and endothelium-dependent dilation, and increased systolic blood pressure in control mice. Rapamycin or FK506 at 10 micromol/L abolished aortic NO production and endothelium-dependent dilation. Similar results were obtained in isolated endothelial cells and aortas from FKBP12.6-/- mice after displacement of FKBP12 with 1 micromol/L rapamycin or FK506. In hypertensive FKBP12.6-/- mice, systolic blood pressures were further elevated after treatment with either rapamycin or FK506. Blockade of the Ca2+ leak with ryanodine normalized NO production and endothelium-dependent dilation. CONCLUSIONS Complete removal of FKBP12 and 12.6 from endothelial RyRs induces an intracellular Ca2+ leak which may contribute to the pathogenesis of endothelial dysfunction and hypertension caused by rapamycin or FK506.
Collapse
Affiliation(s)
- Cheng Long
- Dept. of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Dulhunty AF, Beard NA, Pouliquin P, Casarotto MG. Agonists and antagonists of the cardiac ryanodine receptor: Potential therapeutic agents? Pharmacol Ther 2007; 113:247-63. [PMID: 17055586 DOI: 10.1016/j.pharmthera.2006.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
This review addresses the potential use of the intracellular ryanodine receptor (RyR) Ca(2+) release channel as a therapeutic target in heart disease. Heart disease encompasses a wide range of conditions with the major contributors to mortality and morbidity being ischaemic heart disease and heart failure (HF). In addition there are many rare, but devastating conditions, some of which are either genetically linked to the RyR and its regulatory proteins or involve drug-induced modification of the proteins. The defects in Ca(2+) signalling vary with the nature of the heart disease and the stage in its progress and therefore specific corrections require different modifications of Ca(2+) signalling. Compounds that activate the RyR are potential inotropic agents to increase the Ca(2+) transient and strength of contraction. Compounds that reduce RyR activity are potentially useful in conditions where excess RyR activity initiates arrhythmias, or depletes the Ca(2+) store, as in end stage HF. It has recently been discovered that the cardio-protective action of the drug JTV519 can be attributed partly to its ability to stabilise the interaction between the RyR and the 12.6 kDa binding protein for the commonly used immunosuppressive drug FK506 (FKBP12.6, known as tacrolimus). This has established the credibility of the RyR as a therapeutic target. We explore the possibility that mutations causing the rare RyR-linked arrhythmias will open the door to identification of novel RyR-based therapeutic agents. The use of regulatory binding sites within the RyR complex or on its associated proteins as templates for drug design is discussed.
Collapse
Affiliation(s)
- Angela F Dulhunty
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, P.O. Box 334, ACT, 2601, Australia
| | | | | | | |
Collapse
|
43
|
Abdellatif Y, Liu D, Gallant EM, Gage PW, Board PG, Dulhunty AF. The Mu class glutathione transferase is abundant in striated muscle and is an isoform-specific regulator of ryanodine receptor calcium channels. Cell Calcium 2006; 41:429-40. [PMID: 17023043 DOI: 10.1016/j.ceca.2006.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/14/2006] [Accepted: 08/10/2006] [Indexed: 11/20/2022]
Abstract
Members of the glutathione transferase (GST) structural family are novel regulators of cardiac ryanodine receptor (RyR) calcium channels. We present the first detailed report of the effect of endogenous muscle GST on skeletal and cardiac RyRs. An Mu class glutathione transferase is specifically expressed in human muscle. An hGSTM2-2-like protein was isolated from rabbit skeletal muscle and sheep heart, at concentrations of approximately 17-93 microM. When added to the cytoplasmic side of RyRs, hGSTM2-2 and GST isolated from skeletal or cardiac muscle, modified channel activity in an RyR isoform-specific manner. High activity skeletal RyR1 channels were inactivated at positive potentials or activated at negative potentials by hGSTM2-2 (8-30 microM). Inactivation became faster as the positive voltage was increased. Channels recovered from inactivation when the voltage was reversed, but recovery times were significantly slowed in the presence of hGSTM2-2 and muscle GSTs. Low activity RyR1 channels were activated at both potentials. In contrast, hGSTM2-2 and GSTs isolated from muscle (1-30 microM) in the cytoplasmic solution, caused a voltage-independent inhibition of cardiac RyR2 channels. The results suggest that the major GST isoform expressed in muscle regulates Ca2+ signalling in skeletal and cardiac muscle and conserves Ca2+ stores in the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Yasser Abdellatif
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra City, ACT 2601, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Dulhunty AF, Beard NA, Pouliquin P, Kimura T. Novel regulators of RyR Ca2+ release channels: insight into molecular changes in genetically-linked myopathies. J Muscle Res Cell Motil 2006; 27:351-65. [PMID: 16909197 DOI: 10.1007/s10974-006-9086-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
There are many mutations in the ryanodine receptor (RyR) Ca2+ release channel that are implicated in skeletal muscle disorders and cardiac arrhythmias. More than 80 mutations in the skeletal RyR1 have been identified and linked to malignant hyperthermia, central core disease or multi-minicore disease, while more than 40 mutations in the cardiac RyR2 lead to ventricular arrhythmias and sudden cardiac death in patients with structurally normal hearts. These RyR mutations cause diverse changes in RyR activity which either excessively activate or block the channel in a manner that disrupts Ca2+ signalling in the muscle fibres. In a different myopathy, myotonic dystrophy (DM), a juvenile isoform of the skeletal RyR is preferentially expressed in adults. There are two regions of RyR1 that are variably spiced and developmentally regulated (ASI and ASII). The juvenile isoform (ASI(-)) is less active than the adult isoform (ASI(+)) and its over-expression in adults with DM may contribute to functional changes. Finally, mutations in an important regulator of the RyR, the Ca2+ binding protein calsequestrin (CSQ), have been linked to a disruption of Ca2+ homeostasis in cardiac myocytes that results in arrhythmias. We discuss evidence supporting the hypothesis that mutations in each of these situations alter protein/protein interactions within the RyR complex or between the RyR and its associated proteins. The disruption of these protein-protein interactions can lead either to excess Ca2+ release or reduced Ca2+ release and thus to abnormal Ca2+ homeostasis. Much of the evidence for disruption of protein-protein interactions has been provided by the actions of a group of novel RyR regulators, domain peptides with sequences that correspond to sequences within the RyR and which compete with the endogenous residues for their interaction sites.
Collapse
Affiliation(s)
- A F Dulhunty
- Division of Molecular Bioscience, JCSMR and RSC, ANU, Canberra, ACT, 2601, Australia.
| | | | | | | |
Collapse
|
45
|
Wei L, Varsányi M, Dulhunty AF, Beard NA. The conformation of calsequestrin determines its ability to regulate skeletal ryanodine receptors. Biophys J 2006; 91:1288-301. [PMID: 16698782 PMCID: PMC1518631 DOI: 10.1529/biophysj.106.082610] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca2+ efflux from the sarcoplasmic reticulum decreases when store Ca2+ concentration falls, particularly in skinned fibers and isolated vesicles where luminal Ca2+ can be reduced to very low levels. However ryanodine receptor activity in many single channel studies is higher when the luminal free Ca2+ concentration is reduced. We investigated the hypothesis that prolonged exposure to low luminal Ca2+ causes conformational changes in calsequestrin and deregulation of ryanodine receptors, allowing channel activity to increase. Lowering of luminal Ca2+ from 1 mM to 100 microM for several minutes resulted in conformational changes with dissociation of 65-75% of calsequestrin from the junctional face membrane. The calsequestrin remaining associated no longer regulated channels. In the absence of this regulation, ryanodine receptors were more active when luminal Ca2+ was lowered from 1 mM to 100 microM. In contrast, when ryanodine receptors were calsequestrin regulated, lowering luminal Ca2+ either did not alter or decreased activity. Ryanodine receptors are regulated by calsequestrin under physiological conditions where calsequestrin is polymerized. Since depolymerization occurs slowly, calsequestrin can regulate the ryanodine receptor and prevent excess Ca2+ release when the store is transiently depleted, for example, during high frequency activity or early stages of muscle fatigue.
Collapse
Affiliation(s)
- Lan Wei
- John Curtin School of Medical Research, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
46
|
Pouliquin P, Pace SM, Curtis SM, Harvey PJ, Gallant EM, Zorzato F, Casarotto MG, Dulhunty AF. Effects of an alpha-helical ryanodine receptor C-terminal tail peptide on ryanodine receptor activity: modulation by Homer. Int J Biochem Cell Biol 2006; 38:1700-15. [PMID: 16725367 DOI: 10.1016/j.biocel.2006.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/22/2006] [Accepted: 03/29/2006] [Indexed: 11/30/2022]
Abstract
We have determined the structure of a domain peptide corresponding to the extreme 19 C-terminal residues of the ryanodine receptor Ca2+ release channel. We examined functional interactions between the peptide and the channel, in the absence and in the presence of the regulatory protein Homer. The peptide was partly alpha-helical and structurally homologous to the C-terminal end of the T1 domain of voltage-gated K+ channels. The peptide (0.1-10 microM) inhibited skeletal ryanodine receptor channels when the cytoplasmic Ca2+ concentration was 1 microM; but with 10 microM cytoplasmic Ca2+, skeletal ryanodine receptors were activated by < or = 1.0 microM peptide and inhibited by 10 microM peptide. Cardiac ryanodine receptors on the other hand were inhibited by all peptide concentrations, at both Ca2+ concentrations. When channels did open in the presence of the peptide, they were more likely to open to substate levels. The inhibition and increased fraction of openings to subconductance levels suggested that the domain peptide might destabilise inter-domain interactions that involve the C-terminal tail. We found that Homer 1b not only interacts with the channels, but reduces the inhibitory action of the C-terminal tail peptide, perhaps by stabilizing inter-domain interactions and preventing their disruption.
Collapse
Affiliation(s)
- Pierre Pouliquin
- Division of Molecular Bioscience, JCSMR and RSC, ANU, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Samsó M, Shen X, Allen PD. Structural Characterization of the RyR1–FKBP12 Interaction. J Mol Biol 2006; 356:917-27. [PMID: 16405911 DOI: 10.1016/j.jmb.2005.12.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/05/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
The 12 kDa FK506-binding protein (FKBP12) constitutively binds to the calcium release channel RyR1. Removal of FKBP12 using FK506 or rapamycin causes an increased open probability and an increase in the frequency of sub-conductance states in RyR1. Using cryo-electron microscopy and single-particle image processing, we have determined the 3D difference map of FKBP12 associated with RyR1 at 16 A resolution that can be fitted with the atomic model of FKBP12 in a unique orientation. This has allowed us to better define the surfaces of close apposition between FKBP12 and RyR1. Our results shed light on the role of several FKBP12 residues that had been found critical for the specificity of the RyR1-FKBP12 interaction. As predicted from previous immunoprecipitation studies, our results suggest that Gln3 participates directly in this interaction. The orientation of RyR1-bound FKBP12, with part of its FK506 binding site facing towards RyR1, allows us to propose how FK506 is involved in the dissociation of FKBP12 from RyR1.
Collapse
Affiliation(s)
- Montserrat Samsó
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
48
|
Dulhunty AF, Pouliquin P, Coggan M, Gage PW, Board PG. A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Biochem J 2005; 390:333-43. [PMID: 15916532 PMCID: PMC1184587 DOI: 10.1042/bj20042113] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recently discovered CLIC-2 protein (where CLIC stands for chloride intracellular channel), which belongs to the ubiquitous glutathione transferase structural family and is expressed in the myocardium, is a regulator of native cardiac RyR2 (ryanodine receptor 2) channels. Here we show that recombinant CLIC-2 increases [3H]ryanodine binding to native and purified RyR channels, enhances substate activity in individual channels, increases the number of rare coupled gating events between associated RyRs, and reduces activation of the channels by their primary endogenous cytoplasmic ligands, ATP and Ca2+. CLIC-2 (0.2-10 microM) added to the cytoplasmic side of RyR2 channels in lipid bilayers depressed activity in a reversible, voltage-independent, manner in the presence of activating (10-100 microM) or sub-activating (100 nM) cytoplasmic Ca2+ concentrations. Although the number of channel openings to all levels was reduced, the fraction and duration of openings to substate levels were increased after exposure to CLIC-2. CLIC-2 reduced increases in activity induced by ATP or adenosine 5'-[beta,gamma-imido]triphosphate. Depression of channel activity by CLIC-2 was greater in the presence of 100 microM cytoplasmic Ca2+ than with 100 nM or 10 microM Ca2+. Further, CLIC-2 prevented the usual approximately 50-fold increase in activity when the cytoplasmic Ca2+ concentration was increased from 100 nM to 100 microM. The results show that CLIC-2 interacts with the RyR protein by a mechanism that does not require oxidation, but is influenced by a conserved Cys residue at position 30. CLIC-2 is one of only a few cytosolic inhibitors of cardiac RyR2 channels, and may suppress their activity during diastole and during stress. CLIC-2 provides a unique probe for substate activity, coupled gating and ligand-induced activation of cardiac RyR channels.
Collapse
Affiliation(s)
- Angela F Dulhunty
- Division of Molecular Bioscience, John Curtin School of Medical Research, P.O. Box 334, Canberra, ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
49
|
Haarmann C, Dulhunty A, Laver D. Regulation of skeletal ryanodine receptors by dihydropyridine receptor II-III loop C-region peptides: relief of Mg2+ inhibition. Biochem J 2005; 387:429-36. [PMID: 15530142 PMCID: PMC1134971 DOI: 10.1042/bj20040786] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to explore interactions between surface-membrane DHPR (dihydropyridine receptor) Ca2+ channels and RyR (ryanodine receptor) Ca2+ channels in skeletal-muscle sarcoplasmic reticulum. The C region (725Phe-Pro742) of the linker between the 2nd and 3rd repeats (II-III loop) of the a1 subunit of skeletal DHPRs is essential for skeletal excitation-contraction coupling, which requires a physical interaction between the DHPR and RyR and is independent of external Ca2+. Little is known about the regulatory processes that might take place when the two Ca2+ channels interact. Indeed, interactions between C fragments of the DHPR (C peptides) and RyR have different reported effects on Ca2+ release from the sarcoplasmic reticulum and on RyR channels in lipid bilayers. To gain insight into functional interactions between the proteins and to explore different reported effects, we examined the actions of C peptides on RyR1 channels in lipid bilayers with three key RyR regulators, Ca2+, Mg2+ and ATP. We identified four discrete actions: two novel, low-affinity (>10 microM), rapidly reversible effects (fast inhibition and decreased sensitivity to Mg2+ inhibition) and two slowly reversible effects (high-affinity activation and a slow-onset, low-affinity inhibition). Fast inhibition and high-affinity activation were decreased by ATP. Therefore peptide activation in the presence of ATP and Mg2+, used with Ca2+ release assays, depends on a mechanism different from that seen when Ca2+ is the sole agonist. The relief of Mg2+ inhibition was particularly important since RyR activation during excitation-contraction coupling depends on a similar decrease in Mg2+ inhibition.
Collapse
Affiliation(s)
- Claudia S. Haarmann
- *School of Biomedical Sciences, Faculty of Health, University of Newcastle, NSW 2308, Australia
- †Muscle Research Group, John Curtin School of Medical Research, PO Box 334, Canberra, ACT 2601, Australia
| | - Angela F. Dulhunty
- †Muscle Research Group, John Curtin School of Medical Research, PO Box 334, Canberra, ACT 2601, Australia
| | - Derek R. Laver
- *School of Biomedical Sciences, Faculty of Health, University of Newcastle, NSW 2308, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
50
|
Sharma MR, Jeyakumar LH, Fleischer S, Wagenknecht T. Three-dimensional visualization of FKBP12.6 binding to an open conformation of cardiac ryanodine receptor. Biophys J 2005; 90:164-72. [PMID: 16214874 PMCID: PMC1367015 DOI: 10.1529/biophysj.105.063503] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cardiac isoform of the ryanodine receptor (RyR2) from dog binds predominantly a 12.6-kDa isoform of the FK506-binding protein (FKBP12.6), whereas RyR2 from other species binds both FKBP12.6 and the closely related isoform FKBP12. The role played by FKBP12.6 in modulating calcium release by RyR2 is unclear at present. We have used cryoelectron microscopy and three-dimensional (3D) reconstruction techniques to determine the binding position of FKBP12.6 on the surface of canine RyR2. Buffer conditions that should favor the "open" state of RyR2 were used. Quantitative comparison of 3D reconstructions of RyR2 in the presence and absence of FKBP12.6 reveals that FKBP12.6 binds along the sides of the square-shaped cytoplasmic region of the receptor, adjacent to domain 9, which forms part of the four clamp (corner-forming) structures. The location of the FKBP12.6 binding site on "open" RyR2 appears similar, but slightly displaced (by 1-2 nm) from that found previously for FKBP12 binding to the skeletal muscle ryanodine receptor that was in the buffer that favors the "closed" state. The conformation of RyR2 containing bound FKBP12.6 differs considerably from that depleted of FKBP12.6, particularly in the transmembrane region and in the clamp structures. The x-ray structure of FKBP12.6 was docked into the region of the 3D reconstruction that is attributable to bound FKBP12.6, to show the relative orientations of amino acid residues (Gln-31, Asn-32, Phe-59) that have been implicated as being critical in interactions with RyR2. A thorough understanding of the structural basis of RyR2-FKBP12.6 interaction should aid in understanding the roles that have been proposed for FKBP12.6 in heart failure and in certain forms of sudden cardiac death.
Collapse
Affiliation(s)
- Manjuli Rani Sharma
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York at Albany, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|