1
|
Bergwik J, Kristiansson A, Larsson J, Ekström S, Åkerström B, Allhorn M. Binding of the human antioxidation protein α 1-microglobulin (A1M) to heparin and heparan sulfate. Mapping of binding site, molecular and functional characterization, and co-localization in vivo and in vitro. Redox Biol 2021; 41:101892. [PMID: 33607500 PMCID: PMC7900767 DOI: 10.1016/j.redox.2021.101892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
Heparin and heparan sulfate (HS) are linear sulfated disaccharide polymers. Heparin is found mainly in mast cells, while heparan sulfate is found in connective tissue, extracellular matrix and on cell membranes in most tissues. α1-microglobulin (A1M) is a ubiquitous protein with thiol-dependent antioxidant properties, protecting cells and matrix against oxidative damage due to its reductase activities and radical- and heme-binding properties. In this work, it was shown that A1M binds to heparin and HS and can be purified from human plasma by heparin affinity chromatography and size exclusion chromatography. The binding strength is inversely dependent of salt concentration and proportional to the degree of sulfation of heparin and HS. Potential heparin binding sites, located on the outside of the barrel-shaped A1M molecule, were determined using hydrogen deuterium exchange mass spectrometry (HDX-MS). Immunostaining of endothelial cells revealed pericellular co-localization of A1M and HS and the staining of A1M was almost completely abolished after treatment with heparinase. A1M and HS were also found to be co-localized in vivo in the lungs, aorta, kidneys and skin of mice. The redox-active thiol group of A1M was unaffected by the binding to HS, and the cell protection and heme-binding abilities of A1M were slightly affected. The discovery of the binding of A1M to heparin and HS provides new insights into the biological role of A1M and represents the basis for a novel method for purification of A1M from plasma.
Collapse
Affiliation(s)
- Jesper Bergwik
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Amanda Kristiansson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jörgen Larsson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Simon Ekström
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Allhorn
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Bergwik J, Kristiansson A, Allhorn M, Gram M, Åkerström B. Structure, Functions, and Physiological Roles of the Lipocalin α 1-Microglobulin (A1M). Front Physiol 2021; 12:645650. [PMID: 33746781 PMCID: PMC7965949 DOI: 10.3389/fphys.2021.645650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
α1-microglobulin (A1M) is found in all vertebrates including humans. A1M was, together with retinol-binding protein and β-lactoglobulin, one of the three original lipocalins when the family first was proposed in 1985. A1M is described as an antioxidant and tissue cleaning protein with reductase, heme- and radical-binding activities. These biochemical properties are driven by a strongly electronegative surface-exposed thiol group, C34, on loop 1 of the open end of the lipocalin barrel. A1M has been shown to have protective effects in vitro and in vivo in cell-, organ-, and animal models of oxidative stress-related medical conditions. The gene coding for A1M is unique among lipocalins since it is flanked downstream by four exons coding for another non-lipocalin protein, bikunin, and is consequently named α1-microglobulin-bikunin precursor gene (AMBP). The precursor is cleaved in the Golgi, and A1M and bikunin are secreted from the cell separately. Recent publications have suggested novel physiological roles of A1M in regulation of endoplasmic reticulum activities and erythrocyte homeostasis. This review summarizes the present knowledge of the structure and functions of the lipocalin A1M and presents a current model of its biological role(s).
Collapse
Affiliation(s)
- Jesper Bergwik
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Amanda Kristiansson
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden.,Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Allhorn
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Magnus Gram
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
α 1-Microglobulin (A1M) Protects Human Proximal Tubule Epithelial Cells from Heme-Induced Damage In Vitro. Int J Mol Sci 2020; 21:ijms21165825. [PMID: 32823731 PMCID: PMC7461577 DOI: 10.3390/ijms21165825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is associated with many renal disorders, both acute and chronic, and has also been described to contribute to the disease progression. Therefore, oxidative stress is a potential therapeutic target. The human antioxidant α1-microglobulin (A1M) is a plasma and tissue protein with heme-binding, radical-scavenging and reductase activities. A1M can be internalized by cells, localized to the mitochondria and protect mitochondrial function. Due to its small size, A1M is filtered from the blood into the glomeruli, and taken up by the renal tubular epithelial cells. A1M has previously been described to reduce renal damage in animal models of preeclampsia, radiotherapy and rhabdomyolysis, and is proposed as a pharmacological agent for the treatment of kidney damage. In this paper, we examined the in vitro protective effects of recombinant human A1M (rA1M) in human proximal tubule epithelial cells. Moreover, rA1M was found to protect against heme-induced cell-death both in primary cells (RPTEC) and in a cell-line (HK-2). Expression of stress-related genes was upregulated in both cell cultures in response to heme exposure, as measured by qPCR and confirmed with in situ hybridization in HK-2 cells, whereas co-treatment with rA1M counteracted the upregulation. Mitochondrial respiration, analyzed with the Seahorse extracellular flux analyzer, was compromised following exposure to heme, but preserved by co-treatment with rA1M. Finally, heme addition to RPTE cells induced an upregulation of the endogenous cellular expression of A1M, via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway. Overall, data suggest that A1M/rA1M protects against stress-induced damage to tubule epithelial cells that, at least partly, can be attributed to maintaining mitochondrial function.
Collapse
|
4
|
Carlsson MLR, Kristiansson A, Bergwik J, Kanagarajan S, Bülow L, Åkerström B, Zhu LH. Expression, Purification and Initial Characterization of Functional α 1-Microglobulin (A1M) in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2020; 11:593773. [PMID: 33363557 PMCID: PMC7752767 DOI: 10.3389/fpls.2020.593773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
α1-Microglobulin (A1M) is a small glycoprotein that belongs to the lipocalin protein family. A major biological role of A1M is to protect cells and tissues against oxidative damage by clearing free heme and reactive oxygen species. Because of this, the protein has attracted great interest as a potential pharmaceutical candidate for treatment of acute kidney injury and preeclampsia. The aim of this study was to explore the possibility of expressing human A1M in plants through transient gene expression, as an alternative or complement to other expression systems. E. coli, insect and mammalian cell culture have previously been used for recombinant A1M (rA1M) or A1M production, but these systems have various drawbacks, including additional complication and expense in refolding for E. coli, while insect produced rA1M is heavily modified with chromophores and mammalian cell culture has been used only in analytical scale. For that purpose, we have used a viral vector (pJL-TRBO) delivered by Agrobacterium for expression of three modified A1M gene variants in the leaves of N. benthamiana. The results showed that these modified rA1M protein variants, A1M-NB1, A1M-NB2 and A1M-NB3, targeted to the cytosol, ER and extracellular space, respectively, were successfully expressed in the leaves, which was confirmed by SDS-PAGE and Western blot analysis. The cytosol accumulated A1M-NB1 was selected for further analysis, as it appeared to have a higher yield than the other variants, and was purified with a yield of ca. 50 mg/kg leaf. The purified protein had the expected structural and functional properties, displaying heme-binding capacity and capacity of protecting red blood cells against stress-induced cell death. The protein also carried bound chromophores, a characteristic feature of A1M and an indicator of a capacity to bind small molecules. The study showed that expression of the functional protein in N. benthamiana may be an attractive alternative for production of rA1M for pharmaceutical purposes and a basis for future research on A1M structure and function.
Collapse
Affiliation(s)
- Magnus L. R. Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Amanda Kristiansson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jesper Bergwik
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- *Correspondence: Li-Hua Zhu,
| |
Collapse
|
5
|
Murtoniemi K, Kalapotharakos G, Vahlberg T, Räikkonen K, Kajantie E, Hämäläinen E, Åkerström B, Villa PM, Hansson SR, Laivuori H. Longitudinal changes in plasma hemopexin and alpha-1-microglobulin concentrations in women with and without clinical risk factors for pre-eclampsia. PLoS One 2019; 14:e0226520. [PMID: 31841544 PMCID: PMC6913989 DOI: 10.1371/journal.pone.0226520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown increased concentration of fetal hemoglobin (HbF) in pre-eclamptic women. Plasma hemopexin (Hpx) and alpha-1-microglobulin (A1M) are hemoglobin scavenger proteins that protect against toxic effects of free heme released in the hemoglobin degradation process. We used an enzyme-linked immunosorbent assay to analyze maternal plasma Hpx and A1M concentrations at 12–14, 18–20 and 26–28 weeks of gestation in three groups: 1) 51 women with a low risk for pre-eclampsia (LRW), 2) 49 women with a high risk for pre-eclampsia (PE) who did not develop PE (HRW) and 3) 42 women with a high risk for PE who developed PE (HRPE). The study had three aims: 1) to investigate whether longitudinal differences exist between study groups, 2) to examine if Hpx and A1M concentrations develop differently in pre-eclamptic women with small for gestational age (SGA) fetuses vs. pre-eclamptic women with appropriate for gestational age fetuses, and 3) to examine if longitudinal Hpx and A1M profiles differ by PE subtype (early-onset vs. late-onset and severe vs. non-severe PE). Repeated measures analysis of variance was used to analyze differences in Hpx and A1M concentrations between the groups. We found that the differences in longitudinal plasma Hpx and A1M concentrations in HRW compared to HRPE and to LRW may be associated with reduced risk of PE regardless of clinical risk factors. In women who developed PE, a high A1M concentration from midgestation to late second trimester was associated with SGA. There were no differences in longitudinal Hpx and A1M concentrations from first to late second trimester in high-risk women who developed early-onset or. late-onset PE or in women who developed severe or. non-severe PE.
Collapse
Affiliation(s)
- Katja Murtoniemi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Finland
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland
- * E-mail:
| | - Grigorios Kalapotharakos
- Skåne University Hospital, Department of Clinical Sciences Lund, Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Tero Vahlberg
- Department of Clinical Medicine, Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Katri Räikkonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Kajantie
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Children`s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Esa Hämäläinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pia M. Villa
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stefan R. Hansson
- Skåne University Hospital, Department of Clinical Sciences Lund, Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| |
Collapse
|
6
|
Kalapotharakos G, Murtoniemi K, Åkerström B, Hämäläinen E, Kajantie E, Räikkönen K, Villa P, Laivuori H, Hansson SR. Plasma Heme Scavengers Alpha-1-Microglobulin and Hemopexin as Biomarkers in High-Risk Pregnancies. Front Physiol 2019; 10:300. [PMID: 31019465 PMCID: PMC6458234 DOI: 10.3389/fphys.2019.00300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
Women with established preeclampsia (PE) have increased plasma concentration of free fetal hemoglobin. We measured two hemoglobin scavenger system proteins, hemopexin (Hpx) and alpha-1-microglobulin (A1M) in maternal plasma using enzyme-linked immunosorbent assay during the late second trimester of pregnancy in women with high and low risk of developing PE. In total 142 women were included in nested case-control study: 42 women diagnosed with PE and 100 controls (49 randomly selected high-risk and 51 low-risk controls). The concentration of plasma A1M in high-risk controls was higher compared to low-risk controls. Women with severe PE had higher plasma A1M levels compared to women with non-severe PE. In conclusion, the concentration of plasma A1M is increased in the late second trimester in high-risk controls, suggesting activation of endogenous protective system against oxidative stress.
Collapse
Affiliation(s)
- Grigorios Kalapotharakos
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden.,Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Katja Murtoniemi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Esa Hämäläinen
- HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Unit for Pediatrics, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Villa
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stefan R Hansson
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden.,Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Matuła K, Richter Ł, Adamkiewicz W, Åkerström B, Paczesny J, Hołyst R. Influence of nanomechanical stress induced by ZnO nanoparticles of different shapes on the viability of cells. SOFT MATTER 2016; 12:4162-4169. [PMID: 27074722 DOI: 10.1039/c6sm00336b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is growing interest in nanostructures interacting with living organisms. However, there are still no general rules for the design of biocompatible nanodevices. Here, we present a step towards understanding the interactions between nanostructures and living cells. We study the influence of nanomechanical stress induced by zinc oxide (ZnO) nanostructures of different shapes on the viability of both prokaryotic (Gram-negative bacteria: Escherichia coli and Enterobacter aerogenes, and Gram-positive bacteria: Staphylococcus epidermidis and Corynebacterium glutamicum) and eukaryotic cells (yeast Saccharomyces cerevisiae and liver cancer cell line HepG2). Nanoparticles (NPs) and nanorods (NRs) of matching crystallographic structure (P63mc) and active surface area (in the order of 5 × 10(-2)μm(2)) are almost non-toxic for cells under static conditions. However, under conditions that enable collisions between ZnO nanostructures and cells, NRs appear to be more damaging compared to NPs. This is due to the increased probability of mechanical damage caused by nanorods upon puncturing of the cell wall and membranes. Gram-positive bacteria, which have thicker cell walls, are more resistant to nanomechanical stress induced by NRs compared to Gram-negative strains and eukaryotic cells. The presented results may be exploited to improve the properties of nanotechnology based products such as implants, drug delivery systems, antibacterial emulsions and cosmetics.
Collapse
Affiliation(s)
- Kinga Matuła
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
8
|
Gram M, Dolberg Anderson U, Johansson ME, Edström-Hägerwall A, Larsson I, Jälmby M, Hansson SR, Åkerström B. The Human Endogenous Protection System against Cell-Free Hemoglobin and Heme Is Overwhelmed in Preeclampsia and Provides Potential Biomarkers and Clinical Indicators. PLoS One 2015; 10:e0138111. [PMID: 26368565 PMCID: PMC4569570 DOI: 10.1371/journal.pone.0138111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/26/2015] [Indexed: 01/27/2023] Open
Abstract
Preeclampsia (PE) complicates 3-8% of all pregnancies and manifests clinically as hypertension and proteinuria in the second half of gestation. The pathogenesis of PE is not fully understood but recent studies have described the involvement of cell-free fetal hemoglobin (HbF). Hypothesizing that PE is associated with prolonged hemolysis we have studied the response of the cell-free Hb- and heme defense network. Thus, we have investigated the levels of cell-free HbF (both free, denoted HbF, and in complex with Hp, denoted Hp-HbF) as well as the major human endogenous Hb- and heme-scavenging systems: haptoglobin (Hp), hemopexin (Hpx), α1-microglobulin (A1M) and CD163 in plasma of PE women (n = 98) and women with normal pregnancies (n = 47) at term. A significant increase of the mean plasma HbF concentration was observed in women with PE. Plasma levels of Hp and Hpx were statistically significantly reduced, whereas the level of the extravascular heme- and radical scavenger A1M was significantly increased in plasma of women with PE. The Hpx levels significantly correlated with maternal blood pressure. Furthermore, HbF and the related scavenger proteins displayed a potential to be used as clinical biomarkers for more precise diagnosis of PE and are candidates as predictors of identifying pregnancies with increased risk of obstetrical complications. The results support that PE pathophysiology is associated with increased HbF-concentrations and an activation of the physiological Hb-heme defense systems.
Collapse
Affiliation(s)
- Magnus Gram
- Lund University, Department of Clinical Sciences Lund, Infection Medicine, Lund, Sweden
- * E-mail:
| | - Ulrik Dolberg Anderson
- Lund University, Department of Clinical Sciences Lund, Obstetrics and Gynecology, Lund, Sweden
| | - Maria E. Johansson
- Lund University, Department of Clinical Sciences Lund, Infection Medicine, Lund, Sweden
| | | | - Irene Larsson
- Lund University, Department of Clinical Sciences Lund, Obstetrics and Gynecology, Lund, Sweden
| | - Maya Jälmby
- Lund University, Department of Clinical Sciences Lund, Obstetrics and Gynecology, Lund, Sweden
| | - Stefan R. Hansson
- Lund University, Department of Clinical Sciences Lund, Obstetrics and Gynecology, Lund, Sweden
| | - Bo Åkerström
- Lund University, Department of Clinical Sciences Lund, Infection Medicine, Lund, Sweden
| |
Collapse
|
9
|
Åkerström B, Gram M. A1M, an extravascular tissue cleaning and housekeeping protein. Free Radic Biol Med 2014; 74:274-82. [PMID: 25035076 DOI: 10.1016/j.freeradbiomed.2014.06.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 02/02/2023]
Abstract
Alpha-1-microglobulin (A1M) is a small protein found intra- and extracellularly in all tissues of vertebrates. The protein was discovered 40 years ago and its physiological role remained unknown for a long time. A series of recent publications have demonstrated that A1M is a vital part of tissue housekeeping. A strongly electronegative free thiol group forms the structural basis of heme-binding, reductase, and radical-trapping properties. A rapid flow of liver-produced A1M through blood and extravascular compartments ensures clearing of biological fluids from heme and free radicals and repair of oxidative lesions. After binding, both the radicals and the A1M are electroneutral and therefore do not present any further oxidative stress to tissues. The biological cleaning cycle is completed by glomerular filtration, renal degradation, and urinary excretion of A1M heavily modified by covalently linked radicals and heme groups. Based on its role as a tissue housekeeping cleaning factor, A1M constitutes a potential therapeutic drug candidate in treatment or prophylaxis of diseases or conditions that are associated with pathological oxidative stress elements.
Collapse
Affiliation(s)
- Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Magnus Gram
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Rutardottir S, Nilsson EJC, Pallon J, Gram M, Åkerström B. The cysteine 34 residue of A1M/α1-microglobulin is essential for protection of irradiated cell cultures and reduction of carbonyl groups. Free Radic Res 2013; 47:541-50. [DOI: 10.3109/10715762.2013.801555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Olsson MG, Allhorn M, Bülow L, Hansson SR, Ley D, Olsson ML, Schmidtchen A, Akerström B. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin. Antioxid Redox Signal 2012; 17:813-46. [PMID: 22324321 DOI: 10.1089/ars.2011.4282] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hemoglobin (Hb) is the major oxygen (O(2))-carrying system of the blood but has many potentially dangerous side effects due to oxidation and reduction reactions of the heme-bound iron and O(2). Extracellular Hb, resulting from hemolysis or exogenous infusion, is shown to be an important pathogenic factor in a growing number of diseases. This review briefly outlines the oxidative/reductive toxic reactions of Hb and its metabolites. It also describes physiological protection mechanisms that have evolved against extracellular Hb, with a focus on the most recently discovered: the heme- and radical-binding protein α(1)-microglobulin (A1M). This protein is found in all vertebrates, including man, and operates by rapidly clearing cytosols and extravascular fluids of heme groups and free radicals released from Hb. Five groups of pathological conditions with high concentrations of extracellular Hb are described: hemolytic anemias and transfusion reactions, the pregnancy complication pre-eclampsia, cerebral intraventricular hemorrhage of premature infants, chronic inflammatory leg ulcers, and infusion of Hb-based O(2) carriers as blood substitutes. Finally, possible treatments of these conditions are discussed, giving a special attention to the described protective effects of A1M.
Collapse
|
12
|
Olsson MG, Nilsson EJC, Rutardóttir S, Paczesny J, Pallon J, Åkerström B. Bystander Cell Death and Stress Response is Inhibited by the Radical Scavenger α1-Microglobulin in Irradiated Cell Cultures. Radiat Res 2010; 174:590-600. [DOI: 10.1667/rr2213.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Akerström B, Maghzal GJ, Winterbourn CC, Kettle AJ. The Lipocalin α1-Microglobulin Has Radical Scavenging Activity. J Biol Chem 2007; 282:31493-503. [PMID: 17766242 DOI: 10.1074/jbc.m702624200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipocalin alpha(1)-microglobulin (alpha(1)m) is a 26-kDa glycoprotein present in plasma and in interstitial fluids of all tissues. The protein was recently shown to have reductase properties, reducing heme-proteins and other substrates, and was also reported to be involved in binding and scavenging of heme and tryptophan metabolites. To investigate its possible role as a reductant of organic radicals, we have studied the interaction of alpha(1)m with the synthetic radical, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS radical). The lipocalin readily reacted with the ABTS radical forming reduced ABTS. The apparent rate constant for this reaction was 6.3 +/- 2.5 x 10(3) M(-1) s(-1). A second reaction product with an intense purple color and an absorbance maximum at 550 nm was formed at a similar rate. This was shown by liquid chromatography/mass spectrometry to be derived from covalent attachment of a portion of ABTS radical to tyrosine residues on alpha(1)m. The relative yields of reduced ABTS and the purple ABTS derivative bound to alpha(1)m were approximately 2:1. Both reactions were dependent on the thiolate group of the cysteine residue in position 34 of the alpha(1)m polypeptide. Our results indicate that alpha(1)m is involved in a sequential reduction of ABTS radicals followed by trapping of these radicals by covalent attachment. In combination with the reported physiological properties of the protein, our results suggest that alpha(1)m may be a radical reductant and scavenger in vivo.
Collapse
Affiliation(s)
- Bo Akerström
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden.
| | | | | | | |
Collapse
|
14
|
Nordberg J, Allhorn M, Winqvist I, Akerström B, Olsson ML. Quantitative and qualitative evaluation of plasma and urine alpha1-microglobulin in healthy donors and patients with different haemolytic disorders and haemochromatosis. Clin Chim Acta 2007; 386:31-7. [PMID: 17706626 DOI: 10.1016/j.cca.2007.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/27/2022]
Abstract
BACKGROUND The haem-binding protein alpha(1)-microglobulin (alpha(1)m) is involved in protection against oxidative damage induced by extracellular haem/haemoglobin. A carboxy-terminally truncated form of alpha(1)m (t-alpha(1)m), formed by reactions with haemoglobin, degrades haem into a yellow-brown chromophore linked to the protein. The aim of this work was to investigate if t-alpha(1)m is present in urine from a large cohort and if urinary and plasma alpha(1)m/t-alpha(1)m concentrations are changed in patients with haemolytic disorders and haemochromatosis. METHODS Urine and blood from patients (n=20) and a control group (n=22) were investigated for alpha(1)m and t-alpha(1)m by gel electrophoresis, Western blotting and radioimmunoassay. Data were compared to clinical chemistry data and medical records. RESULTS Two thirds of all studied subjects displayed t-alpha(1)m in urine but the t-alpha(1)m/alpha(1)m ratio was not increased in patients. Instead, significantly elevated ratios were found in females compared to males. Patients with intravascular or extravascular haemolysis showed higher alpha(1)m, albumin and beta(2)-microglobulin/creatinine ratios in urine indicating glomerulo-tubular dysfunction. CONCLUSIONS The demonstration of t-alpha(1)m in urine of this cohort may be of importance in quantitative clinical chemistry. Whilst impaired kidney function due to intravascular haemolysis is well-known to occur, it is an unexpected finding in a group of patients with extravascular haemolysis.
Collapse
|
15
|
Mazhul VM, Kananovich SZ, Serchenya TS, Sviridov OV. Luminescence analysis of the structure of human alpha-1-microglobulin. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907030025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Olsson MG, Allhorn M, Olofsson T, Akerström B. Up-regulation of alpha1-microglobulin by hemoglobin and reactive oxygen species in hepatoma and blood cell lines. Free Radic Biol Med 2007; 42:842-51. [PMID: 17320766 DOI: 10.1016/j.freeradbiomed.2006.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 11/27/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
alpha(1)-Microglobulin is a 26-kDa glycoprotein synthesized in the liver, secreted to the blood, and rapidly distributed to the extravascular compartment of all tissues. Recent results show that alpha(1)-microglobulin has heme-binding and heme-degrading properties and it has been suggested that the protein is involved in the defense against oxidation by heme and reactive oxygen species. In the present study the influence of hemoglobin and reactive oxygen species (ROS) on the cellular expression of alpha(1)-microglobulin was investigated. Oxy- and methemoglobin, free heme, and Fenton reaction-induced hydroxyl radicals induced a dose-dependent up-regulation of alpha(1)-microglobulin on both mRNA and protein levels in hepatoma cells and an increased secretion of alpha(1)-microglobulin. The up-regulation was reversed by the addition of catalase and ascorbate, and by reacting hemoglobin with cyanide which prevents redox reactions. Furthermore, the blood cell lines U937 and K562 expressed alpha(1)-microglobulin at low levels, and this expression increased up to 11-fold by the addition of hemoglobin. These results suggest that alpha(1)-microglobulin expression is induced by ROS, arising from redox reactions of hemoglobin or from other sources and are consistent with the hypothesis that alpha(1)-microglobulin participates in the defense against oxidation by hemoglobin, heme, and reactive oxygen species.
Collapse
Affiliation(s)
- Magnus G Olsson
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, BMC, B14, S-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
17
|
Kwasek A, Osmark P, Allhorn M, Lindqvist A, Akerström B, Wasylewski Z. Production of recombinant human alpha1-microglobulin and mutant forms involved in chromophore formation. Protein Expr Purif 2006; 53:145-52. [PMID: 17169572 DOI: 10.1016/j.pep.2006.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Alpha(1)-Microglobulin, a 26 kDa lipocalin present in plasma and tissues, carries a set of unknown chromophores, bound to C34, K92, K118 and K130, which cause its charge and size heterogeneity. In man, the protein is found in two forms, full length and lacking the C-terminal tetrapeptide LIPR (t-alpha(1)-microglobulin), both which are heme-binding and the latter with heme-degrading properties. We report cloning and overexpression of full length alpha(1)-microglobulin (wt protein), t-alpha(1)-microglobulin (wtdeltaLIPR) and the mutants C34S, K(92,118,130)T and C34S/K(92,118,130)T, the latter subsequently abbreviated as K(3)T and C34S/K(3)T, in Escherichia coli. After purification and refolding from inclusion bodies, all proteins were correctly folded as determined by far-UV circular dichroism and radioimmunoassay. As revealed by gel filtration, recombinant alpha(1)-microglobulins had lower tendencies to form dimers than human plasma or urine analogues. All alpha(1)-microglobulin forms displayed higher amounts of the chromophore than bovine serum albumin but significantly lower than the human urine or plasma counterparts. Differences in the absorbance and fluorescence profiles are consistent with a model where the chromophore is formed by a series of reactions with heme or other chromophore precursors and where C34 is essential for binding of the ligand, K92, K118 and K130 are involved in transformation into the chromophore and LIPR inhibits the latter reaction.
Collapse
Affiliation(s)
- Anna Kwasek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
18
|
Grewal JS, Tsai JY, Khan SR. Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem J 2006; 387:609-16. [PMID: 15533056 PMCID: PMC1134990 DOI: 10.1042/bj20041465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The AMBP [A1M (alpha1-microglobulin)/bikunin precursor] gene encodes two plasma glycoproteins: A1M, an immunosuppressive lipocalin, and bikunin, a member of plasma serine proteinase inhibitor family with prototypical Kunitz-type domain. Although previously believed to be constitutively expressed exclusively in liver, the present study demonstrates the induction of this gene by oxalate in porcine proximal tubular LLC-PK1 cells and rat kidney. In liver, the precursor protein is cleaved in the Golgi network by a furin-like enzyme to release constituent proteins, which undergo glycosylation before their export from the cell. In the renal tubular cells, A1M and bikunin co-precipitate, indicating lack of cleavage of the precursor protein. As the expression of the AMBP gene is regulated by A1M-specific cis elements and transcription factors, A1M protein was studied as a representative of AMBP gene expression in renal cells. Oxalate treatment (500 microM) resulted in a time- and dose-dependent induction of A1M protein in LLC-PK1 cells. Of the four transcription factors, HNF-4 (hepatocyte nuclear factor-4) has been reported previously to be a major regulator of AMBP gene expression in liver. Electrophoretic mobility-shift assay, supershift assay, immunoreactivity assay and transfection-based studies showed the presence of an HNF-4 or an HNF-4-like protein in the kidney, which can affect the expression of the AMBP gene. In situ hybridization and immunocytochemical studies showed that the expression of this gene in kidney was mainly restricted to cells lining the renal tubular system.
Collapse
Affiliation(s)
- Jasjit S Grewal
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610-0275, USA.
| | | | | |
Collapse
|
19
|
Allhorn M, Klapyta A, Akerström B. Redox properties of the lipocalin alpha1-microglobulin: reduction of cytochrome c, hemoglobin, and free iron. Free Radic Biol Med 2005; 38:557-67. [PMID: 15683711 DOI: 10.1016/j.freeradbiomed.2004.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 10/26/2004] [Accepted: 12/01/2004] [Indexed: 10/26/2022]
Abstract
alpha1-Microglobulin (alpha1m) is a 26-kDa plasma and tissue glycoprotein. The protein has a heterogeneous yellow-brown chromophore consisting of small unidentified prosthetic groups localized to a free thiol group (C34) and three lysyl residues (K92, K118, and K130) around the entrance to a hydrophobic pocket. It was recently reported that alpha1m can bind heme and that a C-terminally processed form of alpha1m degrades heme. It is shown here that alpha1m has catalytic reductase and NADH-dehydrogenase-like activities. Cytochrome c, nitroblue tetrazolium (NBT), methemoglobin, and ferricyanide were reduced by alpha1m. Comparison of the reduction rates suggests that methemoglobin is a better substrate than cytochrome c, NBT, and ferricyanide. The reactions with cytochrome c and NBT were mediated by superoxide anions since they were inhibited by superoxide dismutase. The addition of the biological electron donors NADH, NADPH, or ascorbate enhanced the reduction rate of cytochrome c approximately 30-fold. Recombinant alpha1m, which has much less chromophore than plasma and urine alpha1m, was a stronger reductant than the latter alpha1m forms. Site-directed mutagenesis of C34, K92, K118, and K130 and thiol group chemistry showed that the C34 thiol group was involved in the redox reaction but relies upon cooperation with the lysyl residues. The redox properties of alpha1m may provide a physiological protection mechanism against extracellularly exposed heme groups and other oxidants.
Collapse
Affiliation(s)
- Maria Allhorn
- Department of Cell and Molecular Biology, Lund University, BMC, B14, 221 84 Lund, Sweden
| | | | | |
Collapse
|
20
|
Larsson J, Allhorn M, Kerström B. The lipocalin α1-microglobulin binds heme in different species. Arch Biochem Biophys 2004; 432:196-204. [PMID: 15542058 DOI: 10.1016/j.abb.2004.09.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/21/2004] [Indexed: 11/20/2022]
Abstract
The lipocalin alpha(1)-microglobulin (alpha(1)m), found in plasma and tissues of various vertebrates, is brown, forms complexes with other proteins and has immunomodulatory effects in vitro, but the physiological function is not yet established. Human alpha(1)m was recently shown to bind heme and, after cleavage of a C-terminal tetrapeptide, initiate heme degradation, thus suggesting a heme-scavenger function. In this work the heme-binding of alpha(1)m was characterized using heme immobilized on agarose beads, spectrophotometry, and electrophoresis. alpha(1)m, both in plasma and in purified form, displayed a concentration-dependent binding to heme-agarose. The apparent dissociation-constant was estimated to be around 2 x 10(-6)M for both free alpha(1)m and the IgA-alpha(1)m complex. Incubation with free heme resulted in two forms of alpha(1)m with different electrophoretic mobility. alpha(1)m, identified on Western blotting, was found in eluates from heme-agarose after incubation with human biological fluids as well as sera from non-human species, indicating evolutionary conservation of the heme-binding property. Heme-binding could be instrumental for isolating new alpha(1)m-homologues.
Collapse
Affiliation(s)
- Jörgen Larsson
- Department of Cell and Molecular Biology, University of Lund, Lund, Sweden
| | | | | |
Collapse
|
21
|
Allhorn M, Lundqvist K, Schmidtchen A, Akerström B. Heme-scavenging role of alpha1-microglobulin in chronic ulcers. J Invest Dermatol 2003; 121:640-6. [PMID: 12925227 DOI: 10.1046/j.1523-1747.2003.12409.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic venous ulcers are characterized by chronic inflammation. Heme and iron, originating from blood cell hemolysis as well as extravascular necrosis, have been implicated as important pathogenic factors due to their promotion of oxidative stress. It was recently reported that the plasma and tissue protein alpha1-microglobulin is involved in heme metabolism. The protein binds heme, and a carboxy-terminally processed form, truncated alpha1-microglobulin, also degrades heme. Here, we show the presence of micromolar levels of heme and free iron in chronic leg ulcer fluids. Micromolar amounts of alpha1-microglobulin was also present in the ulcer fluids and bound to added radiolabeled heme. Truncated alpha1-microglobulin was found in the ulcer fluids and exogenously added alpha1-microglobulin was processed into the truncated alpha1-microglobulin form. Histochemical analysis of chronic wound tissue showed the presence of iron deposits, heme/porphyrins in infiltrating cells basement membranes and fibrin cuffs around vessels, and alpha1-microglobulin ubiquitously distributed but especially abundant in basement membranes around vessels and at fibrin cuffs. Our results suggest that alpha1-microglobulin constitutes a previously unknown defense mechanism against high heme and iron levels during skin wound healing. Excessive heme and iron, which are not buffered by alpha1-microglobulin, may underlie the chronic inflammation in chronic ulcers.
Collapse
Affiliation(s)
- Maria Allhorn
- Department of Cell and Molecular Biology, Lund University, SE-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
22
|
Allhorn M, Berggård T, Nordberg J, Olsson ML, Akerström B. Processing of the lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties. Blood 2002; 99:1894-901. [PMID: 11877257 DOI: 10.1182/blood.v99.6.1894] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha(1)-microglobulin is a 26-kd protein, widespread in plasma and tissues and well-conserved among vertebrates. Alpha(1)-microglobulin belongs to the lipocalins, a protein superfamily with highly conserved 3-dimensional structures, forming an internal ligand binding pocket. The protein, isolated from urine, has a heterogeneous yellow-brown chromophore bound covalently to amino acid side groups around the entrance of the lipocalin pocket. Alpha(1)-microglobulin is found in blood both in free form and complex-bound to immunoglobulin A (IgA) via a half-cystine residue at position 34. It is shown here that an alpha(1)-microglobulin species, which we name t-alpha(1)-microglobulin (t = truncated), with a free Cys34 thiol group, lacking its C-terminal tetrapeptide, LIPR, and with a more polar environment around the entrance of the lipocalin pocket, is released from IgA-alpha(1)-microglobulin as well as from free alpha(1)-microglobulin when exposed to the cytosolic side of erythrocyte membranes or to purified oxyhemoglobin. The processed t-alpha(1)-microglobulin binds heme and the alpha(1)-microglobulin-heme complex shows a time-dependent spectral rearrangement, suggestive of degradation of heme concomitantly with formation of a heterogeneous chromophore associated with the protein. The processed t-alpha(1)-microglobulin is found in normal and pathologic human urine, indicating that the cleavage process occurs in vivo. The results suggest that alpha(1)-microglobulin is involved in extracellular heme catabolism.
Collapse
Affiliation(s)
- Maria Allhorn
- Department of Cell and Molecular Biology, University Hospital, Lund University, S-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
23
|
Lögdberg LE, Akerström B, Badve S. Tissue distribution of the lipocalin alpha-1 microglobulin in the developing human fetus. J Histochem Cytochem 2000; 48:1545-52. [PMID: 11036097 DOI: 10.1177/002215540004801111] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alpha-1 microglobulin (alpha(1)m), a lipocalin, is an evolutionarily conserved immunomodulatory plasma protein. In all species studied, alpha(1)m is synthesized by hepatocytes and catabolized in the renal proximal tubular cells. alpha(1)m deficiency has not been reported in any species, suggesting that its absence is lethal and indicating an important physiological role for this protein To clarify its functional role, tissue distribution studies are crucial. Such studies in humans have been restricted largely to adult fresh/frozen tissue. Formalin-fixed, paraffin-embedded multi-organ block tissue from aborted fetuses (gestational age range 7-22 weeks) was immunohistochemically examined for alpha(1)m reactivity. Moderate to strong reactivity was seen at all ages in hepatocytes, renal proximal tubule cells, and a subset of pancreatic islet cells. Muscle (cardiac, skeletal, or smooth), adrenal cortex, a scattered subset of intestinal mucosal cells, tips of small intestinal villi, and Leydig cells showed weaker and/or variable levels of reactivity. Connective tissue stained with variable location and intensity. The following cells/sites were consistently negative: thymus, spleen, hematopoietic cells, lung parenchyma, glomeruli, exocrine pancreas, epidermis, cartilage/bone, ovary, seminiferous tubules, epididymis, thyroid, and parathyroid. The results underscore the dominant role of liver and kidney in fetal alpha(1)m metabolism and provide a framework for understanding the functional role of this immunoregulatory protein.
Collapse
Affiliation(s)
- L E Lögdberg
- Department of Pathology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA.
| | | | | |
Collapse
|
24
|
Akerström B, Lögdberg L, Berggård T, Osmark P, Lindqvist A. alpha(1)-Microglobulin: a yellow-brown lipocalin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:172-84. [PMID: 11058759 DOI: 10.1016/s0167-4838(00)00157-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
alpha(1)-Microglobulin, also called protein HC, is a lipocalin with immunosuppressive properties. The protein has been found in a number of vertebrate species including frogs and fish. This review summarizes the present knowledge of its structure, biosynthesis, tissue distribution and immunoregulatory properties. alpha(1)-Microglobulin has a yellow-brown color and is size and charge heterogeneous. This is caused by an array of small chromophore prosthetic groups, attached to amino acid residues at the entrance of the lipocalin pocket. A gene in the lipocalin cluster encodes alpha(1)-microglobulin together with a Kunitz-type proteinase inhibitor, bikunin. The gene is translated into the alpha(1)-microglobulin-bikunin precursor, which is subsequently cleaved and the two proteins secreted to the blood separately. alpha(1)-Microglobulin is found in blood and in connective tissue in most organs. It is most abundant at interfaces between the cells of the body and the environment, such as in lungs, intestine, kidneys and placenta. alpha(1)-Microglobulin inhibits immunological functions of white blood cells in vitro, and its distribution is consistent with an anti-inflammatory and protective role in vivo.
Collapse
Affiliation(s)
- B Akerström
- Department of Cell and Molecular Biology, University of Lund, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Wester L, Fast J, Labuda T, Cedervall T, Wingårdh K, Olofsson T, Akerström B. Carbohydrate groups of alpha1-microglobulin are important for secretion and tissue localization but not for immunological properties. Glycobiology 2000; 10:891-900. [PMID: 10988251 DOI: 10.1093/glycob/10.9.891] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of the carbohydrates for the structure and functions of the plasma and tissue protein alpha1-microglobulin (alpha1m) was investigated by deletion of the sites for N-glycosylation by site-directed mutagenesis (N17,96-->Q). The mutated cDNA was expressed in a baculovirus-insect cell system resulting in a nonglycosylated protein. The biochemical properties of N17,96Q-alpha1m were compared to nonmutated alpha1m, which carries two short non-sialylated N-linked oligosaccharides when expressed in the same system. Both proteins carried a yellow-brown chromophore and were heterogeneous in charge. Circular dichroism spectra and antibody binding indicated a similar overall structure. However, the secretion of N17,96Q-alpha1m was significantly reduced and approximately 75% of the protein were found accumulated intracellularly. The in vitro immunological effects of recombinant nonmutated alpha1m and N17,96Q-alpha1m were compared to the effects of alpha1m isolated from plasma, which is sialylated and carries an additional O-linked oligosaccharide. All three alpha1m variants bound to human peripheral lymphocytes and mouse T cell hybridomas to the same extent. They also inhibited the antigen-stimulated proliferation of peripheral lymphocytes and antigen-stimulated interleukin 2-secretion of T cell hybridomas in a similar manner. After injection of rats intravenously, the blood clearance of recombinant nonmutated and N17,96Q-alpha1m was faster than that of plasma alpha1m. Nonmutated alpha1m was located primarily to the liver, most likely via binding to asialoglycoprotein receptors, and N17,96Q-alpha1m was located mainly to the kidneys. It is concluded that the carbohydrates of alpha1m are important for the secretion and the in vivo turnover of the protein, but not for the structure or immunological properties.
Collapse
Affiliation(s)
- L Wester
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Berggård T, Cohen A, Persson P, Lindqvist A, Cedervall T, Silow M, Thøgersen IB, Jönsson JA, Enghild JJ, Akerström B. Alpha1-microglobulin chromophores are located to three lysine residues semiburied in the lipocalin pocket and associated with a novel lipophilic compound. Protein Sci 1999; 8:2611-20. [PMID: 10631976 PMCID: PMC2144230 DOI: 10.1110/ps.8.12.2611] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alpha1-microglobulin (alpha1m) is an electrophoretically heterogeneous plasma protein. It belongs to the lipocalin superfamily, a group of proteins with a three-dimensional (3D) structure that forms an internal hydrophobic ligand-binding pocket. Alpha1m carries a covalently linked unidentified chromophore that gives the protein a characteristic brown color and extremely heterogeneous optical properties. Twenty-one different colored tryptic peptides corresponding to residues 88-94, 118-121, and 122-134 of human alpha1m were purified. In these peptides, the side chains of Lys92, Lys118, and Lys130 carried size heterogeneous, covalently attached, unidentified chromophores with molecular masses between 122 and 282 atomic mass units (amu). In addition, a previously unknown uncolored lipophilic 282 amu compound was found strongly, but noncovalently associated with the colored peptides. Uncolored tryptic peptides containing the same Lys residues were also purified. These peptides did not carry any additional mass (i.e., chromophore) suggesting that only a fraction of the Lys92, Lys118, and Lys130 are modified. The results can explain the size, charge, and optical heterogeneity of alpha1m. A 3D model of alpha1m, based on the structure of rat epididymal retinoic acid-binding protein (ERABP), suggests that Lys92, Lys118, and Lys130 are semiburied near the entrance of the lipocalin pocket. This was supported by the fluorescence spectra of alpha1m under native and denatured conditions, which indicated that the chromophores are buried, or semiburied, in the interior of the protein. In human plasma, approximately 50% of alpha1m is complex bound to IgA. Only the free alpha1m carried colored groups, whereas alpha1m linked to IgA was uncolored.
Collapse
Affiliation(s)
- T Berggård
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Berggård T, Oury TD, Thogersen IB, Akerström B, Enghild JJ. Alpha1-microglobulin is found both in blood and in most tissues. J Histochem Cytochem 1998; 46:887-94. [PMID: 9671439 DOI: 10.1177/002215549804600803] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study we demonstrate that, in addition to blood, alpha1-microglobulin (alpha1m) is present in most tissues, including liver, heart, eye, kidney, lung, pancreas, and skeletal muscle. Western blotting of perfused and homogenized rat tissue supernatants revealed alpha1m in its free, monomeric form and in high molecular weight forms, corresponding to the complexes fibronectin-alpha1m and alpha1-inhibitor-3-alpha1m, which have previously been identified in plasma. The liver also contained a series of alpha1m isoforms with apparent molecular masses between 40 and 50 kD. These bands did not react with anti-inter-alpha-inhibitor antibodies, indicating that they do not represent the alpha1m-bikunin precursor protein. Similarly, the heart contained a 45-kD alpha1m band and the kidney a 50-kD alpha1m band. None of these alpha1m isoforms was present in plasma. Immunohistochemical analysis of human tissue demonstrated granular intracellular labeling of alpha1m in hepatocytes and in the proximal epithelial cells of the kidney. In addition, alpha1m immunoreactivity was detected in the interstitial connective tissue of heart and lung and in the adventitia of blood vessels as well as on cell surfaces of cardiocytes. alpha1m mRNA was found in the liver and pancreas by polymerase chain reaction, suggesting that the protein found in other tissues is transported via the bloodstream from the production sites in liver and pancreas. The results of this study indicate that in addition to its role in plasma, alpha1m may have important functions in the interstitium of several tissues. (J Histochem Cytochem 46:887-893, 1998)
Collapse
Affiliation(s)
- T Berggård
- Section for Molecular Signaling, Department of Cell and Molecular Biology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
28
|
Wester L, Michaëlsson E, Holmdahl R, Olofsson T, Akerström B. Receptor for alpha1-microglobulin on T lymphocytes: inhibition of antigen-induced interleukin-2 production. Scand J Immunol 1998; 48:1-7. [PMID: 9714404 DOI: 10.1046/j.1365-3083.1998.00378.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human plasma protein alpha1-microglobulin (alpha1m) was found to inhibit the antigen-induced interleukin-2 (IL-2) production of two different mouse T-helper cell hybridomas. Alpha1m isolated from human plasma and recombinant alpha1m isolated from baculovirus-infected insect cell cultures had similar inhibitory effects. Flow cytometric analysis showed a binding of plasma and recombinant alpha1m to the T-cell hybridomas as well as to a human T-cell line. Radiolabelled plasma and recombinant alpha1m bound to the T-cell hybridomas in a saturable manner and the binding could be eliminated by trypsination of the cells. The affinity constants for the cell binding were calculated to be 0.4-1 x 10(5) M(-1) using Scatchard plotting, and the number of binding sites per cell was estimated to be 5 x 10(5)-1 x 10(6). The cell-surface proteins of one of the T-cell hybridomas were radiolabelled, the cells lysed and alpha1m-binding proteins isolated by affinity chromatography. SDS-PAGE and autoradiography analysis of the eluate revealed major bands with Mr-values around 70, 35 and 15 kDa. The results thus suggest that alpha1m binds to a specific receptor on T cells and that the binding leads to inhibition of antigen-stimulated IL-2 production by T-helper cells.
Collapse
Affiliation(s)
- L Wester
- Section for Molecular Signalling, Lund University, Sweden
| | | | | | | | | |
Collapse
|
29
|
Wester L, Johansson MU, Akerström B. Physicochemical and biochemical characterization of human alpha 1-microglobulin expressed in baculovirus-infected insect cells. Protein Expr Purif 1997; 11:95-103. [PMID: 9325144 DOI: 10.1006/prep.1997.0760] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA encoding the signal peptide and the alpha 1-microglobulin part of the human alpha 1-microglobulin-bikunin gene was expressed in baculovirus-infected insect cells. Recombinant alpha 1-microglobulin was secreted and could be purified from the medium with a yield of 20-30 mg/ L. Biochemical and physicochemical characterization showed that the recombinant protein was very similar to alpha 1-microglobulin isolated from human urine and plasma, except that the recombinant protein had smaller N-linked oligosaccharides, lacked the O-linked oligosaccharide, and was devoid of sialic acid. Recombinant alpha 1-microglobulin migrated upon SDS-PAGE as two bands, 27 and 29 kDa, representing alpha 1-microglobulin with one and two N-linked carbohydrates, respectively. An overall structural similarity was indicated as antibodies raised against human urinary alpha 1-microglobulin were found to recognize recombinant, plasma, and urinary alpha 1-microglobulin in a similar manner. CD studies suggested an almost identical secondary structure for recombinant and urinary alpha 1-microglobulin but a slightly different structure for plasma alpha 1-microglobulin. The absorbance spectrum as well as visual examination demonstrated that recombinant, urinary, and plasma alpha 1-microglobulin carried a yellow-brown chromophore, but that plasma alpha 1-microglobulin was slightly less intensely colored. Although it is still a puzzle why the immunosuppressive plasma protein alpha 1-microglobulin and the protease inhibitor bikunin, which have no known function in common, are cotranslated from the same mRNA, it can be concluded that bikunin is not necessary for an adequate translation, folding, and secretion of alpha 1-microglobulin. Furthermore, since recombinant alpha 1-microglobulin was produced in large amounts and found to be very similar to plasma and urinary alpha 1-microglobulin, it may prove to be useful in structural and functional studies of the protein.
Collapse
Affiliation(s)
- L Wester
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | |
Collapse
|
30
|
Abstract
The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds.
Collapse
Affiliation(s)
- D R Flower
- Department of Physical Chemistry and BioAnalysis, Astra Charnwood, Loughborough, Leics, U.K
| |
Collapse
|
31
|
Lindqvist A, Akerström B. Bovine alpha 1-microglobulin/bikunin. Isolation and characterization of liver cDNA and urinary alpha 1-microglobulin. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1306:98-106. [PMID: 8611630 DOI: 10.1016/0167-4781(95)00235-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
cDNA coding for alpha 1-microglobulin, an immunoregulatory plasmaprotein, was isolated from bovine liver. The sequence of a total of 1258 nucleotides revealed an open reading frame of 352 amino acids. This included alpha 1-microglobulin, 182 amino acids, and bikunin, the light chain of the plasmaprotein inter-alpha-inhibitor, 147 amino acids. The two proteins were connected by a basic tetrapeptide, R-A-R-R, which conforms to the consensus sequence recognized by endoproteolytic cleavage enzymes. The deduced amino acid sequence showed a high degree of identity with alpha 1-microglobulin and bikunin sequences from other species, and the alpha 1-microglobulin part displayed sequence motifs typical for members of the lipocalin protein superfamily. A single alpha 1-microglobulin/bikunin mRNA with a size of around 1300 nt was found in bovine liver. The mature alpha 1-microglobulin protein was isolated from bovine urine, and partly characterized. It was found to be a globular molecule with an apparent molecular weight of 23,300, containing one N-linked and at least on O-linked oligosaccharide, one intra-chain disulfide bridge and an electrophoretic heterogeniety with a pI-value of 4.1-5.2.
Collapse
Affiliation(s)
- A Lindqvist
- Department of Cell and Molecular Biology, Lund University, Sweden.
| | | |
Collapse
|