1
|
Kurmanbayeva A, Bekturova A, Soltabayeva A, Oshanova D, Nurbekova Z, Srivastava S, Tiwari P, Dubey AK, Sagi M. Active O-acetylserine-(thiol) lyase A and B confer improved selenium resistance and degrade l-Cys and l-SeCys in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2525-2539. [PMID: 35084469 DOI: 10.1093/jxb/erac021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The roles of cytosolic O-acetylserine-(thiol)-lyase A (OASTLA), chloroplastic OASTLB, and mitochondrial OASTLC in plant selenate resistance were studied in Arabidopsis. Impairment in OASTLA and OASTLB resulted in reduced biomass, chlorophyll and soluble protein content compared with selenate-treated OASTLC-impaired and wild-type plants. The generally lower total selenium (Se), protein-Se, organic-sulfur and protein-sulfur (S) content in oastlA and oastlB compared with wild-type and oastlC leaves indicated that Se accumulation was not the main cause for the stress symptoms in these mutants. Notably, the application of selenate positively induced S-starvation markers and the OASTLs, followed by increased sulfite reductase, sulfite oxidase activities, and increased sulfite and sulfide concentrations. Taken together, our results indicate a futile anabolic S-starvation response that resulted in lower glutathione and increased oxidative stress symptoms in oastlA and oastlB mutants. In-gel assays of l-cysteine and l-seleno-cysteine, desulfhydrase activities revealed that two of the three OASTL activity bands in each of the oastl single mutants were enhanced in response to selenate, whereas the impaired proteins exhibited a missing activity band. The absence of differently migrated activity bands in each of the three oastl mutants indicates that these OASTLs are major components of desulfhydrase activity, degrading l-cysteine and l-seleno-cysteine in Arabidopsis.
Collapse
Affiliation(s)
- Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L. N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Sudhakar Srivastava
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Poonam Tiwari
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Arvind Kumar Dubey
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| |
Collapse
|
2
|
Yuan Y, Song T, Yu J, Zhang W, Hou X, Kong Ling Z, Cui G. Genome-Wide Investigation of the Cysteine Synthase Gene Family Shows That Overexpression of CSase Confers Alkali Tolerance to Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 12:792862. [PMID: 35058952 PMCID: PMC8765340 DOI: 10.3389/fpls.2021.792862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Alfalfa is widely grown worldwide as a perennial high-quality legume forage and as a good ecological landcover. The cysteine synthase (CSase) gene family is actively involved in plant growth and development and abiotic stress resistance but has not been systematically investigated in alfalfa. We identified 39 MsCSase genes on 4 chromosomes of the alfalfa genome. Phylogenetic analysis demonstrated that these genes were clustered into six subfamilies, and members of the same subfamily had similar physicochemical properties and sequence structures. Overexpression of the CSase gene in alfalfa increased alkali tolerance. Compared with control plants, the overexpression lines presented higher proline, soluble sugars, and cysteine and reduced glutathione contents and superoxide dismutase and peroxidase activities as well as lower hydrogen peroxide and superoxide anion contents after alkali stress. The relative expression of γ-glutamyl cysteine synthetase gene (a downstream gene of CSase) in the overexpression lines was much higher than that in the control line. The CSase gene enhanced alkalinity tolerance by regulating osmoregulatory substances and improving antioxidant capacity. These results provide a reference for studying the CSase gene family in alfalfa and expanding the alkali tolerance gene resources of forage plants.
Collapse
|
3
|
Persulfidation of Nitrate Reductase 2 Is Involved in l-Cysteine Desulfhydrase-Regulated Rice Drought Tolerance. Int J Mol Sci 2021; 22:ijms222212119. [PMID: 34829996 PMCID: PMC8624084 DOI: 10.3390/ijms222212119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule that regulates diverse cellular signaling pathways through persulfidation. Our previous study revealed that H2S is involved in the improvement of rice drought tolerance. However, the corresponding enzymatic sources of H2S and its regulatory mechanism in response to drought stress are not clear. Here, we cloned and characterized a putative l-cysteine desulfhydrase (LCD) gene in rice, which encodes a protein possessing H2S-producing activity and was named OsLCD1. Overexpression of OsLCD1 results in enhanced H2S production, persulfidation of total soluble protein, and confers rice drought tolerance. Further, we found that nitrate reductase (NR) activity was decreased under drought stress, and the inhibition of NR activity was controlled by endogenous H2S production. Persulfidation of NIA2, an NR isoform responsible for the main NR activity, led to a decrease in total NR activity in rice. Furthermore, drought stress-triggered inhibition of NR activity and persulfidation of NIA2 was intensified in the OsLCD1 overexpression line. Phenotypical and molecular analysis revealed that mutation of NIA2 enhanced rice drought tolerance by activating the expression of genes encoding antioxidant enzymes and ABA-responsive genes. Taken together, our results showed the role of OsLCD1 in modulating H2S production and provided insight into H2S-regulated persulfidation of NIA2 in the control of rice drought stress.
Collapse
|
4
|
González-Gordo S, Palma JM, Corpas FJ. Appraisal of H 2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:579-588. [PMID: 32846393 DOI: 10.1016/j.plaphy.2020.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 05/15/2023]
Abstract
Hydrogen sulfide (H2S) has become a new signal molecule in higher plants which seems to be involved in almost all physiological processes from seed germination, root and plant growth until flowering and fruit ripening. Moreover, H2S also participates in the mechanism of response against adverse environmental stresses. However, its basic biochemistry in plant cells can be considered in a nascent stage. Using the available information of the model plant Arabidopsis thaliana, the goal of the present study is to provide a broad overview of H2S metabolism and to display an in silico analysis of the 26 enzymatic components involved in the metabolism of H2S and their subcellular compartmentation (cytosol, chloroplast and mitochondrion) thus providing a wide picture of the cross-talk inside the organelles and amongst them and, consequently, to get a better understanding of the cellular and tissue implications of H2S. This information will be also relevant for other crop species, especially those whose whole genome is not yet available.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
| |
Collapse
|
5
|
Wang Y, Zhong P, Zhang X, Liu J, Zhang C, Yang X, Wan C, Liu C, Zhou H, Yang B, Sun C, Deng X, Wang P. GRA78 encoding a putative S-sulfocysteine synthase is involved in chloroplast development at the early seedling stage of rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:321-329. [PMID: 30824011 DOI: 10.1016/j.plantsci.2018.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Cysteine functions not only as an amino acid in proteins but also as a precursor for a large number of essential biomolecules. Cysteine is synthesized via the incorporation of sulfide to O-acetylserine under the catalysis of O-acetylserine(thiol)lyase (OASTL). In dicotyledonous Arabidopsis, nine OASTL genes have been reported. However, in their null mutants, only the mutant of CS26 encoding S-sulfocysteine synthase showed the visible phenotypic changes, displaying significantly small plants and pale-green leaves under long-day condition but not short-day condition. Up to now, no OASTL gene or mutant has been identified in monocotyledon. In this study, we isolated a green-revertible albino mutant gra78 in rice (Oryza sativa). Its albino phenotype at the early seedling stage was sensitive to temperature but independent of photoperiod. Map-based cloning revealed that candidate gene LOC_Os01g59920 of GRA78 encodes a putative S-sulfocysteine synthase showing significant similarity with Arabidopsis CS26. Complementation experiment confirmed that mutation in LOC_Os01g59920 accounted for the mutant phenotype of gra78. GRA78 is constitutively expressed in all tissues and its encoded protein is targeted to the chloroplast. In addition, qRT-PCR suggested that expression levels of four OASTL homolog genes and five photosynthetic genes were remarkably down-regulated.
Collapse
Affiliation(s)
- Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiqing Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoyang Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaorong Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunmei Wan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuanqiang Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Zhou
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Liu D, Lu J, Li H, Wang J, Pei Y. Characterization of the O-acetylserine(thiol)lyase gene family in Solanum lycopersicum L. PLANT MOLECULAR BIOLOGY 2019; 99:123-134. [PMID: 30535734 DOI: 10.1007/s11103-018-0807-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/03/2018] [Indexed: 05/04/2023]
Abstract
This research demonstrated the conservation and diversification of the functions of the O-acetylserine-(thiol) lyase gene family genes in Solanum lycopersicum L. Cysteine is the first sulfur-containing organic molecule generated by plants and is the precursor of many important biomolecules and defense compounds. Cysteine and its derivatives are also essential in various redox signaling-related processes. O-acetylserine(thiol)lyase (OASTL) proteins catalyze the last step of cysteine biosynthesis. Previously, researches focused mainly on OASTL proteins which were the most abundant or possessed the authentic OASTL activity, whereas few studies have ever given a comprehensive view of the functions of all the OASTL members in one specific species. Here, we characterized 8 genes belonging to the OASTL gene family from tomato genome (SlOAS2 to SlOAS9), including the sequence analyses, subcellular localization, enzymatic activity assays, expression patterns, as well as the interaction property with SATs. Apart from SlOAS3, all the other genes encoded OASTL-like proteins. Tomato OASTLs were differentially expressed during the development of tomato plants, and their encoded proteins had diverse compartmental distributions and functions. SlOAS5 and SlOAS6 catalyzed the biogenesis of cysteine in chloroplasts and in the cytosol, respectively, and this was in consistent with their interaction abilities with SlSATs. SlOAS4 catalyzed the generation of hydrogen sulfide, similar to its Arabidopsis ortholog, DES1. SlOAS2 also functioned as an L-cysteine desulfhydrase, but its expression pattern was very different from that of SlOAS4. Additionally, SlOAS8 might be a β-cyanoalanine synthase in mitochondria, and the S-sulfocysteine synthase activity appeared lost in tomato plants. SlOAS7 exhibited a transactivational ability in yeast; while the subcellular localization of SlOAS9 was in the peroxisome and correlated with the process of leaf senescence, indicating that these two genes might have novel roles.
Collapse
Affiliation(s)
- Danmei Liu
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Juanjuan Lu
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Hui Li
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Juanjuan Wang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
| | - Yanxi Pei
- College of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
7
|
Noda M, Nakamura M, Takamiya R, Tamura T, Ito T, Kodama H. A spinach O-acetylserine(thiol)lyase homologue, SoCSaseLP, suppresses cysteine biosynthesis catalysed by other enzyme isoforms. BIOCHIMIE OPEN 2016; 2:24-32. [PMID: 29632835 PMCID: PMC5889488 DOI: 10.1016/j.biopen.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/31/2016] [Indexed: 11/17/2022]
Abstract
An enzyme, O-acetylserine(thiol)lyase (OASTL), also known as O-acetylserine sulfhydrylase or cysteine synthase (CSase), catalyses the incorporation of sulfide into O-acetylserine and produces cysteine. We previously identified a cDNA encoding an OASTL-like protein from Spinacia oleracea, (SoCSaseLP), but a recombinant SoCSaseLP produced in Escherichia coli did not show OASTL activity. The exon-intron structure of the SoCSaseLP gene shared conserved structures with other spinach OASTL genes. The SoCSaseLP and a Beta vulgaris homologue protein, KMT13462, comprise a unique clade in the phylogenetic tree of the OASTL family. Interestingly, when the SoCSaseLP gene was expressed in tobacco plants, total OASTL activity in tobacco leaves was reduced. This reduction in total OASTL activity was most likely caused by interference by SoCSaseLP with cytosolic OASTL. To investigate the possible interaction of SoCSaseLP with a spinach cytosolic OASTL isoform SoCSaseA, a pull-down assay was carried out. The recombinant glutathione S-transferase (GST)-SoCSaseLP fusion protein was expressed in E. coli together with the histidine-tagged SoCSaseA protein, and the protein extract was subjected to glutathione affinity chromatography. The histidine-tagged SoCSaseA was co-purified with the GST-SoCSaseLP fusion protein, indicating the binding of SoCSaseLP to SoCSaseA. Consistent with this interaction, the OASTL activity of the co-purified SoCSaseA was reduced compared with the activity of SoCSaseA that was purified on its own. These results strongly suggest that SoCSaseLP negatively regulates the activity of other cytosolic OASTL family members by direct interaction. An enzyme, O-acetylserine(thiol)lyase (OASTL), catalyses cysteine synthesis. A member of spinach OASTL family, SoCSaseLP, did not show any OASTL activity. Ectopic expression of the SoCSaseLP gene caused a reduction of total OASTL activity. The SoCSaseLP inhibited cysteine synthesis by a spinach cytosolic OASTL protein. Negative regulation of cysteine synthesis by SoCSaseLP was proposed.
Collapse
Affiliation(s)
- Miki Noda
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
| | - Mika Nakamura
- Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryuichi Takamiya
- Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Tamura
- Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Toshiyuki Ito
- Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiroaki Kodama
- Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
8
|
Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. MOLECULAR PLANT 2014; 7:264-76. [PMID: 24285094 DOI: 10.1093/mp/sst168] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.
Collapse
Affiliation(s)
- Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Transgenic Approaches to Enhance Phytoremediation of Heavy Metal-Polluted Soils. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-35564-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Nguyen HC, Hoefgen R, Hesse H. Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5991-6001. [PMID: 23048130 DOI: 10.1093/jxb/ers253] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With the aim of increasing the cysteine level in rice (Oryza sativa L.) and thus improving its nutritional quality, transgenic rice plants were generated expressing an Escherichia coli serine acetyltransferase isoform (EcSAT), the enzyme synthesizing O-acetylserine, the precursor of cysteine. The gene was fused to the transit peptide of the Arabidopsis Rubisco and driven by a ubiquitin promoter to target the enzyme to plastids. Twenty-two transgenic plants were examined for transgene protein expression, and five lines with a high expression level and enzymatic activity, respectively, were selected for further analysis. In these lines, the contents of cysteine and glutathione increased 2.4-fold and 2-fold, respectively. More important is the increase in free methionine and methionine incorporated into the water-soluble protein fraction in seeds. Free methionine increased in leaves up to 2.7-fold, in seeds up to 1.4-fold, and bound to seed proteins up to 4.8-fold, respectively, while the bound methionine level remained constant or even decreased in leaves. Notably, the transgenic lines exhibited higher isoleucine, leucine, and valine contents (each up to 2-fold depending on tissue, free, or bound), indicating a potential conversion of methionine via methionine γ-lyase to isoleucine. As the transgenic rice plants overexpressing EcSAT had significantly higher levels of both soluble and protein-bound methionine, isoleucine, cysteine, and glutathione in rice they may represent a model and target system for improving the nutritional quality of cereal crops.
Collapse
Affiliation(s)
- Huu Cuong Nguyen
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
11
|
Álvarez C, Ángeles Bermúdez M, Romero LC, Gotor C, García I. Cysteine homeostasis plays an essential role in plant immunity. THE NEW PHYTOLOGIST 2012; 193:165-177. [PMID: 21988475 DOI: 10.1111/j.1469-8137.2011.03889.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
• Cysteine is the metabolic precursor of essential biomolecules such as vitamins, cofactors, antioxidants and many defense compounds. The last step of cysteine metabolism is catalysed by O-acetylserine(thiol)lyase (OASTL), which incorporates reduced sulfur into O-acetylserine to produce cysteine. In Arabidopsis thaliana, the main OASTL isoform OAS-A1 and the cytosolic desulfhydrase DES1, which degrades cysteine, contribute to the cytosolic cysteine homeostasis. • Meta-analysis of the transcriptomes of knockout plants for OAS-A1 and for DES1 show a high correlation with the biotic stress series in both cases. • The study of the response of knockout mutants to plant pathogens shows that des1 mutants behave as constitutive systemic acquired resistance mutants, with high resistance to biotrophic and necrotrophic pathogens, salicylic acid accumulation and WRKY54 and PR1 induction, while oas-a1 knockout mutants are more sensitive to biotrophic and necrotrophic pathogens. However, oas-a1 knockout mutants lack the hypersensitive response associated with the effector-triggered immunity elicited by Pseudomonas syringae pv. tomato DC3000 avrRpm1. • Our results highlight the role of cysteine as a crucial metabolite in the plant immune response.
Collapse
Affiliation(s)
- Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avda. Américo Vespucio, 49, ES-41092 Sevilla, Spain
| | - M Ángeles Bermúdez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avda. Américo Vespucio, 49, ES-41092 Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avda. Américo Vespucio, 49, ES-41092 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avda. Américo Vespucio, 49, ES-41092 Sevilla, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avda. Américo Vespucio, 49, ES-41092 Sevilla, Spain
| |
Collapse
|
12
|
Alvarez C, Lozano-Juste J, Romero LC, García I, Gotor C, León J. Inhibition of Arabidopsis O-acetylserine(thiol)lyase A1 by tyrosine nitration. J Biol Chem 2010; 286:578-86. [PMID: 21047785 DOI: 10.1074/jbc.m110.147678] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The last step of sulfur assimilation is catalyzed by O-acetylserine(thiol)lyase (OASTL) enzymes. OASTLs are encoded by a multigene family in the model plant Arabidopsis thaliana. Cytosolic OASA1 enzyme is the main source of OASTL activity and thus crucial for cysteine homeostasis. We found that nitrating conditions after exposure to peroxynitrite strongly inhibited OASTL activity. Among OASTLs, OASA1 was markedly sensitive to nitration as demonstrated by the comparative analysis of OASTL activity in nitrated crude protein extracts from wild type and different oastl mutants. Furthermore, nitration assays on purified recombinant OASA1 protein led to 90% reduction of the activity due to inhibition of the enzyme, as no degradation of the protein occurred under these conditions. The reduced activity was due to nitration of the protein because selective scavenging of peroxynitrite with epicatechin impaired OASA1 nitration and the concomitant inhibition of OASTL activity. Inhibition of OASA1 activity upon nitration correlated with the identification of a modified OASA1 protein containing 3-nitroTyr(302) residue. The essential role of the Tyr(302) residue for the catalytic activity was further demonstrated by the loss of OASTL activity of a Y302A-mutated version of OASA1. Inhibition caused by Tyr(302) nitration on OASA1 activity seems to be due to a drastically reduced O-acetylserine substrate binding to the nitrated protein, and also to reduced stabilization of the pyridoxal-5'-phosphate cofactor through hydrogen bonds. This is the first report identifying a Tyr nitration site of a plant protein with functional effect and the first post-translational modification identified in OASA1 enzyme.
Collapse
Affiliation(s)
- Consolación Alvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Yi H, Ravilious GE, Galant A, Krishnan HB, Jez JM. From sulfur to homoglutathione: thiol metabolism in soybean. Amino Acids 2010; 39:963-78. [PMID: 20364282 DOI: 10.1007/s00726-010-0572-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 03/16/2010] [Indexed: 12/11/2022]
Abstract
Sulfur is an essential plant nutrient and is metabolized into the sulfur-containing amino acids (cysteine and methionine) and into molecules that protect plants against oxidative and environmental stresses. Although studies of thiol metabolism in the model plant Arabidopsis thaliana (thale cress) have expanded our understanding of these dynamic processes, our knowledge of how sulfur is assimilated and metabolized in crop plants, such as soybean (Glycine max), remains limited in comparison. Soybean is a major crop used worldwide for food and animal feed. Although soybeans are protein-rich, they do not contain high levels of the sulfur-containing amino acids, cysteine and methionine. Ultimately, unraveling the fundamental steps and regulation of thiol metabolism in soybean is important for optimizing crop yield and quality. Here we review the pathways from sulfur uptake to glutathione and homoglutathione synthesis in soybean, the potential biotechnology benefits of understanding and modifying these pathways, and how information from the soybean genome may guide the next steps in exploring this biochemical system.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
14
|
Bermúdez MA, Páez-Ochoa MA, Gotor C, Romero LC. Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control. THE PLANT CELL 2010; 22:403-16. [PMID: 20179139 PMCID: PMC2845405 DOI: 10.1105/tpc.109.071985] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/27/2010] [Accepted: 02/11/2010] [Indexed: 05/20/2023]
Abstract
In bacteria, the biosynthesis of Cys is accomplished by two enzymes that are encoded by the cysK and cysM genes. CysM is also able to use thiosulfate as a substrate to produce S-sulfocysteine. In plant cells, the biosynthesis of Cys occurs in the cytosol, mitochondria, and chloroplasts. Chloroplasts contain two O-acetylserine(thiol)lyase homologs, which are encoded by the OAS-B and CS26 genes in Arabidopsis thaliana. An in vitro enzymatic analysis of the recombinant CS26 protein demonstrated that this isoform possesses S-sulfocysteine synthase activity and lacks O-acetylserine(thiol)lyase activity. In vivo functional analysis of this enzyme in knockout mutants demonstrated that mutation of CS26 suppressed the S-sulfocysteine synthase activity that was detected in the wild type; furthermore, the cs26 mutants exhibited a reduction in size and showed paleness, but penetrance of the growth phenotype depended on the light regime. The cs26 mutant plants also had reductions in chlorophyll content and photosynthetic activity (neither of which were observed in oas-b mutants) as well as elevated glutathione levels. However, cs26 leaves were not able to properly detoxify reactive oxygen species, which accumulated to high levels under long-day growth conditions. The transcriptional profile of the cs26 mutant revealed that the mutation had a pleiotropic effect on many cellular and metabolic processes. Our findings reveal that S-sulfocysteine and the activity of S-sulfocysteine synthase play important roles in chloroplast function and are essential for light-dependent redox regulation within the chloroplast.
Collapse
|
15
|
Álvarez C, Calo L, Romero LC, García I, Gotor C. An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:656-69. [PMID: 19955263 PMCID: PMC2815857 DOI: 10.1104/pp.109.147975] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/28/2009] [Indexed: 05/20/2023]
Abstract
Cysteine (Cys) occupies a central position in plant metabolism due to its biochemical functions. Arabidopsis (Arabidopsis thaliana) cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes that catalyze the biosynthesis of Cys. Because they are localized in the cytosol, plastids, and mitochondria, this results in multiple subcellular Cys pools. Much progress has been made on the most abundant OASTL enzymes; however, information on the less abundant OASTL-like proteins has been scarce. To unequivocally establish the enzymatic reaction catalyzed by the minor cytosolic OASTL isoform CS-LIKE (for Cys synthase-like; At5g28030), we expressed this enzyme in bacteria and characterized the purified recombinant protein. Our results demonstrate that CS-LIKE catalyzes the desulfuration of L-Cys to sulfide plus ammonia and pyruvate. Thus, CS-LIKE is a novel L-Cys desulfhydrase (EC 4.4.1.1), and we propose to designate it DES1. The impact and functionality of DES1 in Cys metabolism was revealed by the phenotype of the T-DNA insertion mutants des1-1 and des1-2. Mutation of the DES1 gene leads to premature leaf senescence, as demonstrated by the increased expression of senescence-associated genes and transcription factors. Also, the absence of DES1 significantly reduces the total Cys desulfuration activity in leaves, and there is a concomitant increase in the total Cys content. As a consequence, the expression levels of sulfur-responsive genes are deregulated, and the mutant plants show enhanced antioxidant defenses and tolerance to conditions that promote oxidative stress. Our results suggest that DES1 from Arabidopsis is an L-Cys desulfhydrase involved in maintaining Cys homeostasis, mainly at late developmental stages or under environmental perturbations.
Collapse
|
16
|
Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 2009; 27:799-810. [DOI: 10.1016/j.biotechadv.2009.06.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/16/2009] [Accepted: 06/20/2009] [Indexed: 11/22/2022]
|
17
|
Raspanti E, Cacciola SO, Gotor C, Romero LC, García I. Implications of cysteine metabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species. CHEMOSPHERE 2009; 76:48-54. [PMID: 19298998 DOI: 10.1016/j.chemosphere.2009.02.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 05/27/2023]
Abstract
We studied the ability of four different fungal species, Trichoderma harzianum, Fusarium antophyllum, Fusarium compactum and Fusarium phyllophilum, to grow in the presence of heavy metals, and monitored their cysteine and glutathione content and the activity of O-acetylserine(thiol)lyase (OASTL), which is involved in cysteine biosynthesis. Zn and Pb did not affect fungal growth or sporulation at the concentrations used, whereas Cd and Hg did. In most cases, cysteine and glutathione content was higher when fungi were grown in the presence of toxic metals. As T. harzianum and F. phyllophilum presented the best growth rate on Cd and Hg, they were selected to further analyse the accumulation of toxic metals. Both species accumulated the four metals in large amounts. Using degenerate oligonucleotides based on fungal OASTL genes present in databases, partial OASTL DNA sequences were cloned by PCR from T. harzianum and F. phyllophilum, and the regulation of the OASTL genes under metal stress was analyzed. Cd produced the strongest increase in OASTL activity and mRNA levels in both fungi. The results suggest a possible correlation between cysteine metabolism and the heavy metal response in fungi.
Collapse
Affiliation(s)
- Estellita Raspanti
- Dipartimento di Scienze Entomologiche, Fitopatologiche, Microbiologiche agrarie e Zootecniche, Università degli Studi di Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
18
|
López-Martín MC, Becana M, Romero LC, Gotor C. Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:562-72. [PMID: 18441224 PMCID: PMC2409041 DOI: 10.1104/pp.108.117408] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/22/2008] [Indexed: 05/20/2023]
Abstract
Plant cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes involved in cysteine (Cys) biosynthesis and located in different subcellular compartments. These enzymes are made up of a complex variety of isoforms resulting in different subcellular Cys pools. To unravel the contribution of cytosolic Cys to plant metabolism, we characterized the knockout oas-a1.1 and osa-a1.2 mutants, deficient in the most abundant cytosolic OASTL isoform in Arabidopsis (Arabidopsis thaliana). Total intracellular Cys and glutathione concentrations were reduced, and the glutathione redox state was shifted in favor of its oxidized form. Interestingly, the capability of the mutants to chelate heavy metals did not differ from that of the wild type, but the mutants have an enhanced sensitivity to cadmium. With the aim of establishing the metabolic network most influenced by the cytosolic Cys pool, we used the ATH1 GeneChip for evaluation of differentially expressed genes in the oas-a1.1 mutant grown under nonstress conditions. The transcriptomic footprints of mutant plants had predicted functions associated with various physiological responses that are dependent on reactive oxygen species and suggested that the mutant was oxidatively stressed. Evidences that the mutation caused a perturbation in H2O2 homeostasis are that, in the knockout, H2O2 production was localized in shoots and roots; spontaneous cell death lesions occurred in the leaves; and lignification and guaiacol peroxidase activity were significantly increased. All these findings indicate that a deficiency of OAS-A1 in the cytosol promotes a perturbation in H2O2 homeostasis and that Cys is an important determinant of the antioxidative capacity of the cytosol in Arabidopsis.
Collapse
Affiliation(s)
- M Carmen López-Martín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | | | | | | |
Collapse
|
19
|
Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K. Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis. PLANT PHYSIOLOGY 2008; 146:310-20. [PMID: 18024555 PMCID: PMC2230570 DOI: 10.1104/pp.107.106831] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 11/02/2007] [Indexed: 05/18/2023]
Abstract
The beta-substituted alanine (Ala) synthase (Bsas) family in the large superfamily of pyridoxal 5'-phosphate-dependent enzymes comprises cysteine (Cys) synthase (CSase) [O-acetyl-serine (thiol) lyase] and beta-cyano-Ala synthase (CASase) in plants. Nine genomic sequences encode putative Bsas proteins in Arabidopsis thaliana. The physiological roles of these Bsas isoforms in vivo were investigated by the characterization of T-DNA insertion mutants. Analyses of gene expression, activities of CSase and CASase, and levels of Cys and glutathione in the bsas mutants indicated that cytosolic Bsas1;1, plastidic Bsas2;1, and mitochondrial Bsas2;2 play major roles in Cys biosynthesis. Cytosolic Bsas1;1 has the most dominant contribution both in leaf and root, and mitochondrial Bsas2;2 plays a significant role in root. Mitochondrial Bsas3;1 is a genuine CASase. Nontargeted metabolome analyses of knockout mutants were carried out by a combination of gas chromatography time-of-flight mass spectrometry and capillary electrophoresis time-of-flight mass spectrometry. The level of gamma-glutamyl-beta-cyano-Ala decreased in the mutant bsas3;1, indicating the crucial role of Bsas3;1 in beta-cyano-Ala metabolism in vivo.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Freeman JL, Salt DE. The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC PLANT BIOLOGY 2007; 7:63. [PMID: 18045473 PMCID: PMC2233625 DOI: 10.1186/1471-2229-7-63] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 11/28/2007] [Indexed: 05/08/2023]
Abstract
BACKGROUND The Ni hyperaccumulator Thlaspi goesingense is tolerant to Ni congruent with Zn, congruent with Co and slightly resistant to > Cd. We previously observed that elevated glutathione, driven by constitutive activation of serine acetyltransferase (SAT), plays a role in the Ni tolerance of T. goesingense. RESULTS Here we show that the elevated shoot concentration of glutathione, previously shown to cause elevated Ni tolerance in Arabidopsis thaliana heterologously expressing T. goesingense mitochondrial serine acetyltransferase (SATm), also causes tolerance to Co and Zn while slightly enhancing resistance to Cd. The level of tolerance afforded to each metal is ranked Ni congruent with Co, > Zn > Cd. The Ni congruent with Co, > Zn tolerances are positively correlated with both the accumulation of glutathione (GSH) and the ability to resist the oxidative damage induced by these different metals. Based on the relative concentrations of each metal used a relatively low level of resistance to Cd was observed in both T. goesingense and TgSATm expressing lines and Cd resistance was least correlated to GSH accumulation. CONCLUSION Such data supports the conclusion that elevated glutathione levels, driven by constitutively enhanced SAT activity in the hyperaccumulator T. goesingense, plays an important role in the Ni, Co and Zn tolerance of this and other Thlaspi species. The hyper-activation of S assimilation through SAT is an excellent strategy for engineering enhanced metal tolerance in transgenic plants potentially used for phytoremediation.
Collapse
Affiliation(s)
- John L Freeman
- Center for Plant Environmental Stress Physiology, Purdue University, Horticulture and Landscape Architecture Department. West Lafayette, Indiana 47907, USA
- Biology Department, Colorado State University, Program in Molecular Plant Biology, Fort Collins, Colorado 80523, USA
| | - David E Salt
- Center for Plant Environmental Stress Physiology, Purdue University, Horticulture and Landscape Architecture Department. West Lafayette, Indiana 47907, USA
| |
Collapse
|
21
|
Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C. Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:672-81. [PMID: 17853367 DOI: 10.1055/s-2007-965439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The metal phytoextraction potential of three legumes belonging to different genera has been studied under greenhouse conditions. Legumes accumulate As and metals mainly in roots, although translocation to shoot is observed. Alfalfa did accumulate the highest concentrations of As and metals in shoots and aerial biomass was less affected by the toxic elements, indicating its good behaviour in phytoextraction. Clover accumulated less metal, but showed larger biomass. EDTA addition enhanced Pb phytoextraction up to levels similar to those described for plants proposed in phytoremediation. The regulation of O-acetylserine (thiol)lyase from legumes under metal stress has been analysed to test the possibility of establishing a possible correlation between the expression of OASTL in the presence of the metals and the metal accumulation in legume plant tissues. Cd and Pb(EDTA) produce the strongest increases of OASTL activity, with the higher enhancement seen in roots, in parallel with the higher metal accumulation. Arsenic produced an increase of root enzyme activity, whereas Cu produced a decrease, mainly in shoots. Western blots using antibodies against an A. THALIANA cytosolic OAS-TL recognised up to five protein bands in crude extracts from LOTUS and clover. A low molecular weight isoform of 32 kDa was induced in the presence of Cd and Pb. A partial RT-PCR sequence from clover has been obtained, showing 86 - 97 % identity with other described OASTLs. The PCR fragment has been used to analyse OASTL mRNA levels of legumes under metal stress. OASTL transcripts were increased by As, Cd, and Pb, especially in roots, where metal accumulation was maximal, while Cu produced a decrease in the transcript levels.
Collapse
Affiliation(s)
- E Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González, 2, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
22
|
Bonner ER, Cahoon RE, Knapke SM, Jez JM. Molecular Basis of Cysteine Biosynthesis in Plants. J Biol Chem 2005; 280:38803-13. [PMID: 16166087 DOI: 10.1074/jbc.m505313200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent conversion of O-acetylserine into cysteine. Here we describe the 2.2 A resolution crystal structure of OASS from Arabidopsis thaliana (AtOASS) and the 2.7 A resolution structure of the AtOASS K46A mutant with PLP and methionine covalently linked as an external aldimine in the active site. Although the plant and bacterial OASS share a conserved set of amino acids for PLP binding, the structure of AtOASS reveals a difference from the bacterial enzyme in the positioning of an active site loop formed by residues 74-78 when methionine is bound. Site-directed mutagenesis, kinetic analysis, and ligand binding titrations probed the functional roles of active site residues. These experiments indicate that Asn(77) and Gln(147) are key amino acids for O-acetylserine binding and that Thr(74) and Ser(75) are involved in sulfur incorporation into cysteine. In addition, examination of the AtOASS structure and nearly 300 plant and bacterial OASS sequences suggest that the highly conserved beta8A-beta9A surface loop may be important for interaction with serine acetyltransferase, the other enzyme in cysteine biosynthesis. Initial protein-protein interaction experiments using AtOASS mutants targeted to this loop support this hypothesis.
Collapse
Affiliation(s)
- Eric R Bonner
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | | | | |
Collapse
|
23
|
Gutiérrez-Alcalá G, Calo L, Gros F, Caissard JC, Gotor C, Romero LC. A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2487-94. [PMID: 16014363 DOI: 10.1093/jxb/eri241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A DNA regulatory fragment was isolated from the promoter region of the OASA1 gene, encoding the cytosolic O-acetylserine(thiol)lyase enzyme that is highly expressed in Arabidopsis thaliana trichomes. This DNA fragment has been named an ATP fragment and comprises 1435 bp of the genomic region upstream of the OASA1 gene and 375 bp of the transcriptional initiation start site containing the first intron of the gene. The ATP fragment, fused to the green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes, is able to drive high-level gene expression in A. thaliana trichomes. Deletion analysis of the ATP fragment determined that the region from -266 to -66 contains regulatory elements required for trichome expression. In addition, the region from +112 to +375, comprising the first intronic region of the gene, is also essential for trichome gene expression. Expression of the full-length ATP fragment in tobacco and peppermint shows that this fragment is also able to drive expression in glandular trichomes and suggests additional biotechnological applications for this promoter.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Alcalá
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, CSIC-Universidad de Sevilla, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Sugimoto M, Yamaguchi Y, Nakamura K, Tatsumi Y, Sano H. A hypersensitive response-induced ATPase associated with various cellular activities (AAA) protein from tobacco plants. PLANT MOLECULAR BIOLOGY 2004; 56:973-85. [PMID: 15821994 DOI: 10.1007/s11103-004-6459-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Accepted: 11/19/2004] [Indexed: 05/24/2023]
Abstract
The hypersensitive response (HR) is one of the most critical defense systems in higher plants. In order to understand its molecular basis, we have screened tobacco genes that are transcriptionally activated during the early stage of the HR by the differential display method. Among six genes initially identified, one was found encoding a 57 kDa polypeptide with 497 amino acids not showing significant similarity to any reported proteins except for the AAA domain (ATPase associated with various cellular activities) spanning over 230 amino acids. The bacterially expressed protein exhibited ATP hydrolysis activity, and a green fluorescent protein-fusion protein localized in the cytoplasm of onion epidermis cells. The protein was subsequently designated as NtAAA1 (Nicotiana tabacum AAA1). NtAAA1 transcripts were induced 6 h after HR onset not only by TMV but also by incompatible Psuedomonas syringae, indicating that NtAAA1 is under the control of the N-gene with a common role in pathogen responses. Expression of NtAAA1 was induced by jasmonic acid and ethylene, but not by salicylic acid (SA). It also occurred at a high level in SA-deficient tobacco plants upon TMV infection. When NtAAA1 was silenced by the RNAi method, accumulation of transcripts for PR-1a significantly increased during the HR. Treatments with SA induced higher expression of PR-1a and acidic PR-2 in RNAi transgenic plants than in wild-type counterparts. These results suggest that NtAAA1 mitigates the SA signaling pathway, and therefore that NtAAA1 modulates the pathogen response of the host plants by adjusting the HR to an appropriate level.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Amino Acid Sequence
- Base Sequence
- Cells, Cultured
- Cyclopentanes/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Ethylenes/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Onions/cytology
- Onions/metabolism
- Oxylipins
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Diseases/virology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Pseudomonas syringae/growth & development
- RNA Interference
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Temperature
- Nicotiana/genetics
- Nicotiana/microbiology
- Nicotiana/virology
- Tobacco Mosaic Virus/growth & development
Collapse
Affiliation(s)
- Megumi Sugimoto
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
25
|
Domínguez-Solís JR, López-Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C. Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:469-76. [PMID: 17147619 DOI: 10.1111/j.1467-7652.2004.00092.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Employing genetic transformation using an Atcys-3A cDNA construct expressing the cytosolic O-acetylserine(thiol)lyase (OASTL), we obtained two Arabidopsis lines with different capabilities for supplying cysteine under metal stress conditions. Lines 1-2 and 10-10, grown under standard conditions, showed similar levels of cysteine and glutathione (GSH) to those of the wild-type. However, in the presence of cadmium, line 10-10 showed significantly higher levels. The increased thiol content allowed line 10-10 to survive under severe heavy metal stress conditions (up to 400 microm of cadmium in the growth medium), and resulted in an accumulation of cadmium in the leaves to a level similar to that of metal hyperaccumulator plants. Investigation of the epidermal leaf surface clearly showed that most of the cadmium had accumulated in the trichomes. Furthermore, line 10-10 was able to accumulate more cadmium in its trichomes than the wild-type, whereas line 1-2 showed a reduced capacity for cadmium accumulation. Our results suggest that an increased rate of cysteine biosynthesis is responsible for the enhanced cadmium tolerance and accumulation in trichome leaves. Thus, molecular engineering of the cysteine biosynthesis pathway, together with modification of the number of leaf trichomes, may have considerable potential in increasing heavy metal accumulation for phytoremediation purposes.
Collapse
Affiliation(s)
- José R Domínguez-Solís
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Dominguez-Solís JR, Gutierrez-Alcalá G, Vega JM, Romero LC, Gotor C. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 2001; 276:9297-302. [PMID: 11121418 DOI: 10.1074/jbc.m009574200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of the expression of the cytosolic O-acetylserine(thiol)lyase gene (Atcys-3A) from Arabidopsis thaliana under heavy metal stress conditions has been investigated. Northern blot analysis of Atcys-3A expression shows a 7-fold induction after 18 h of cadmium treatment. Addition of 50 microm CdCl(2) to the irrigation medium of mature Arabidopsis plants induces a rapid accumulation of the mRNA throughout the leaf lamina, the root and stem cortex, and stem vascular tissues when compared with untreated plants, as observed by in situ hybridization. High pressure liquid chromatography analysis of GSH content shows a transient increase after 18 h of metal treatment. Our results are compatible with a high cysteine biosynthesis rate under heavy metal stress required for the synthesis of GSH and phytochelatins, which are involved in the plant detoxification mechanism. Arabidopsis-transformed plants overexpressing the Atcys-3A gene by up to 9-fold show increased tolerance to cadmium when grown in medium containing 250 microm CdCl(2), suggesting that increased cysteine availability is responsible for cadmium tolerance. In agreement with these results, exogenous addition of cystine can, to some extent, also favor the growth of wild-type plants in cadmium-containing medium. Cadmium accumulates to higher levels in leaves of tolerant transformed lines than in wild-type plants.
Collapse
Affiliation(s)
- J R Dominguez-Solís
- Instituto de Bioquimica Vegetal y Fotosintesis, Centro de Investigaciones Cientificas Isla de la Cartuja, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Avda Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | | | | | |
Collapse
|
27
|
Urano Y, Manabe T, Noji M, Saito K. Molecular cloning and functional characterization of cDNAs encoding cysteine synthase and serine acetyltransferase that may be responsible for high cellular cysteine content in Allium tuberosum. Gene 2000; 257:269-77. [PMID: 11080593 DOI: 10.1016/s0378-1119(00)00399-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plants belonging to the genus Allium are known to accumulate sulfur-containing secondary compounds that are derived from cysteine. Here, we report on molecular cloning and functional characterization of two cDNAs that encode serine acetyltransferase and cysteine synthase from A. tuberosum (Chinese chive). The cDNA for serine acetyltransferase encodes an open reading frame of 289 amino acids, of which expression could complement the lacking of cysE gene for endogenous serine acetyltransferase in Escherichia coli. The cDNA for cysteine synthase encodes an open reading frame of 325 amino acids, of which expression in the E. coli lacking endogenous cysteine synthase genes could functionally rescue the growth without addition of cysteine. Both deduced proteins seem to be localized in cytosol, judging from their primary structures. Northern blot analysis indicated that both transcripts accumulated in almost equal levels in leaves and root of green and etiolated seedlings of A. tuberosum. The activity of recombinant serine acetyltransferase produced from the cDNA was inhibited by L-cysteine, which is the end-product of the pathway; however, the sensitivity to cysteine (48.7 microM of the concentration for 50% inhibition, IC(50)) was fairly low compared with that of previously reported serine acetyltransferases ( approximately 5 microM IC(50)) from various plants. In A. tuberosum, the cellular content of cysteine was several-fold higher than those in Arabidopsis thaliana and tobacco. This higher concentration of cysteine in A. tuberosum is likely due to the lower sensitivity of feedback inhibition of serine acetyltransferase to cysteine.
Collapse
Affiliation(s)
- Y Urano
- Laboratory of Molecular Biology and Biotechnology, Research Center of Medicinal Resources, Faculty of Pharmaceutical Sciences, Chiba University, Inage-ku, 263-8522, Chiba, Japan
| | | | | | | |
Collapse
|
28
|
Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ, Hell R. Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 2000; 253:237-47. [PMID: 10940562 DOI: 10.1016/s0378-1119(00)00261-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The final step of cysteine biosynthesis in plants is catalyzed by O-acetylserine (thiol) lyase (OAS-TL), which occurs as several isoforms found in the cytosol, the plastids and the mitochondria. Genomic DNA blot hybridization and isolation of genomic clones indicate single copy genes (oasA1, oasA2, oasB and oasC) that encode the activities of OAS-TL A, B and C found in separate subcellular compartments in the model plant Arabidopsis thaliana. Sequence analysis reveals that the newly discovered oasA2 gene represents a pseudogene that is still transcribed, but is not functionally translated. The comparison of gene structures suggests that oasA1/oasA2 and oasB/oasC are closely related and may be derived from a common ancestor by subsequent duplications. OAS-TL A, B and C were overexpressed in an Escherichia coli mutant lacking cysteine synthesis and exhibited bifunctional OAS-TL and beta-cyanoalanine synthase (CAS) activities. However, all three proteins represent true OAS-TLs according to kinetic analysis and are unlikely to function in cyanide detoxification or secondary metabolism. In addition, it was demonstrated that the mitochondrial OAS-TL C exhibits in vivo protein-protein interaction capabilities with respect to cysteine synthase complex formation similar to cytosolic OAS-TL A and plastid OAS-TL B. Multiple database accessions for each of the A. thaliana OAS-TL isoforms can thus be attributed to a specified number of oas genes to which functionally defined gene products are assigned, and which are responsible for compartment-specific cysteine synthesis.
Collapse
Affiliation(s)
- R Jost
- Institute for Plant Genetics and Crop Plant Research (IPK), Molecular Cell Biology Department, 06466, Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Nozaki T, Tokoro M, Imada M, Saito Y, Abe Y, Shigeta Y, Takeuchi T. Cloning and biochemical characterization of genes encoding two isozymes of cysteine synthase from Entamoeba dispar. Mol Biochem Parasitol 2000; 107:129-33. [PMID: 10717309 DOI: 10.1016/s0166-6851(00)00177-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- T Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ravina CG, Barroso C, Vega JM, Gotor C. Cysteine biosynthesis in Chlamydomonas reinhardtii. Molecular cloning and regulation of O-acetylserine(thiol)lyase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:848-53. [PMID: 10491132 DOI: 10.1046/j.1432-1327.1999.00676.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA, Cys1ACr, encoding an isoform of O-acetylserine(thiol) lyase has been isolated from Chlamydomonas reinhardtii, using a PCR-based approach. The inclusion of dimethylsulfoxide in the PCR reaction has been demonstrated to be essential for the correct amplification of C. reinhardtii templates with complex secondary structures caused by a high G + C content. The deduced amino acid sequence exhibited highest similarity with plant O-acetylserine(thiol)lyase isoforms, indicating that the C. reinhardtii enzyme was structurally more similar to higher plant O-acetylserine(thiol)lyase than to the corresponding prokaryotic enzymes. The N-terminal extension present in Cys1ACr showed several characteristics of an organellar transit peptide, with a length typical for C. reinhardtii. Southern blot analysis suggested that the C. reinhardtii genome may contain a single copy of the organellar O-acetylserine(thiol)lyase gene. O-acetylserine(thiol)lyase activity was strongly induced by sulfur-deficient conditions (up to sevenfold the level observed in a sulfur-repleted cell culture) and required the presence of a nitrogen source. Northern blot analysis showed a different pattern of regulation of Cys1ACr to that observed at the activity level. To obtain an increase of transcript abundance a longer period of sulfur limitation was required, reaching a maximum level of approximately threefold Cys1ACr mRNA when compared with the level of a sulfate-grown culture.
Collapse
Affiliation(s)
- C G Ravina
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC y Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
31
|
Nakamura T, Yamaguchi Y, Sano H. Four rice genes encoding cysteine synthase: isolation and differential responses to sulfur, nitrogen and light. Gene 1999; 229:155-61. [PMID: 10095115 DOI: 10.1016/s0378-1119(99)00019-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four cDNA clones, rcs1, rcs2, rcs3 and rcs4, encoding cysteine synthase [O-acetylserine(thiol)lyase] were isolated from rice. The predicted amino acid sequences contain the conserved PXXSVKDR region characteristic of cysteine synthase, which includes the lysine residue that binds the cofactor, pyridoxal 5'-phosphate. Molecular phylogenic analysis suggests that, whereas rcs1 and rcs3 belong to the cytosolic isoform family, rcs2 and rcs4 form a new family of cysteine synthase. Transcript accumulation of each gene was examined for organ specificity, and also for response to sulfur, nitrogen and light. The rcs1 transcript accumulated in all organs examined, and was induced in shoots and roots upon sulfur starvation under non-limiting nitrogen conditions. The rcs2 transcript accumulated in shoots grown in the light, but disappeared almost completely by dark treatment. The rcs3 transcript was found more abundantly in roots than in shoots, and was reduced in the dark, as well as under sulfur and nitrogen deprivation. The rcs4 transcript was scarce in all organs examined. These observations indicate that cysteine synthase genes encode functionally distinct cysteine synthase isoforms, and that they are coordinately regulated by the availability of sulfur, nitrogen, and light.
Collapse
Affiliation(s)
- T Nakamura
- Nara Institute of Science and Technology, Research and Education Center for Genetic Information, Ikoma, Nara, Japan
| | | | | |
Collapse
|
32
|
|
33
|
Azevedo RA, Arruda P, Turner WL, Lea PJ. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. PHYTOCHEMISTRY 1997; 46:395-419. [PMID: 9332022 DOI: 10.1016/s0031-9422(97)00319-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The essential amino acids lysine, threonine, methionine and isoleucine are synthesised in higher plants via a common pathway starting with aspartate. The regulation of the pathway is discussed in detail, and the properties of the key enzymes described. Recent data obtained from studies of regulation at the gene level and information derived from mutant and transgenic plants are also discussed. The herbicide target enzyme acetohydroxyacid synthase involved in the synthesis of the branched chain amino acids is reviewed.
Collapse
Affiliation(s)
- R A Azevedo
- Departamento de Genética, Universidade de São Paulo, Piracicaba, SP, Brasil
| | | | | | | |
Collapse
|
34
|
Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JA, Engler G, Van Montagu M, Saito K. Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1997; 94:11102-7. [PMID: 9380766 PMCID: PMC23632 DOI: 10.1073/pnas.94.20.11102] [Citation(s) in RCA: 271] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/1997] [Indexed: 02/05/2023] Open
Abstract
Proton/sulfate cotransporters in the plasma membranes are responsible for uptake of the environmental sulfate used in the sulfate assimilation pathway in plants. Here we report the cloning and characterization of an Arabidopsis thaliana gene, AST68, a new member of the sulfate transporter gene family in higher plants. Sequence analysis of cDNA and genomic clones of AST68 revealed that the AST68 gene is composed of 10 exons encoding a 677-aa polypeptide (74.1 kDa) that is able to functionally complement a Saccharomyces cerevisiae mutant lacking a sulfate transporter gene. Southern hybridization and restriction fragment length polymorphism mapping confirmed that AST68 is a single-copy gene that maps to the top arm of chromosome 5. Northern hybridization analysis of sulfate-starved plants indicated that the steady-state mRNA abundance of AST68 increased specifically in roots up to 9-fold by sulfate starvation. In situ hybridization experiments revealed that AST68 transcripts were accumulated in the central cylinder of sulfate-starved roots, but not in the xylem, endodermis, cortex, and epidermis. Among all the structural genes for sulfate assimilation, sulfate transporter (AST68), APS reductase (APR1), and serine acetyltransferase (SAT1) were inducible by sulfate starvation in A. thaliana. The sulfate transporter (AST68) exhibited the most intensive and specific response in roots, indicating that AST68 plays a central role in the regulation of sulfate assimilation in plants.
Collapse
Affiliation(s)
- H Takahashi
- Laboratory of Molecular Biology and Biotechnology, Research Center of Medicinal Resources, Faculty of Pharmaceutical Sciences, Chiba University, Chiba 263, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Howarth JR, Roberts MA, Wray JL. Cysteine biosynthesis in higher plants: a new member of the Arabidopsis thaliana serine acetyltransferase small gene-family obtained by functional complementation of an Escherichia coli cysteine auxotroph. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:123-7. [PMID: 9048879 DOI: 10.1016/s0167-4781(96)00213-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cDNA clone, Sat-52, encoding a novel isoform of serine acetyltransferase (EC 2.3.1.30) was isolated by functional complementation of an Escherichia coli cysE mutant defective in serine acetyltransferase. The 1158 base pair clone contains a full-length open reading frame encoding a deduced protein of 312 amino acids with an M(r) of 32.77 kDa. Northern analysis revealed a single transcript of ca 1.19 kb that did not increase in abundance under sulfate limitation. Genomic Southern hybridization suggests the presence of a single copy of the Sat-52 gene.
Collapse
Affiliation(s)
- J R Howarth
- Plant Sciences Laboratory, University of St. Andrews, UK
| | | | | |
Collapse
|