1
|
Joshi N, Joshi S. Fatty acid metabolism in the placentae of gestational diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2025; 205:102682. [PMID: 40209642 DOI: 10.1016/j.plefa.2025.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
The prevalence of gestational diabetes mellitus (GDM), a metabolic complication during pregnancy is increasing rapidly. It exerts various short and long term effects on the mother and the child. Nonetheless, the mechanisms underlying the pathophysiology of GDM are still not clear. Placenta is a key 'programming' agent and any impairment in placental structure and function may hamper the fetal growth and development. Omega-3 and omega-6 fatty acids are key nutrients involved in placental and fetal development. The fatty acids transport from maternal circulation towards the fetus depends on the fatty acid status of the mother, fatty acid metabolism of the placenta and placental transport of fatty acids. Alteration in any of these could influence the fatty acids transport towards the fetus thereby affecting the fetal brain development and leading to impairment in cognitive function in the off-spring. We propose a role for placental fatty acid metabolism in influencing fetal growth and development which in turn can have an impact on cognitive development of the offspring born to GDM women.
Collapse
Affiliation(s)
- Nikita Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
2
|
Rodríguez-Rodríguez R, Baena M, Zagmutt S, Paraiso WK, Reguera AC, Fadó R, Casals N. International Union of Basic and Clinical Pharmacology: Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes. Pharmacol Rev 2025; 77:100051. [PMID: 40106976 DOI: 10.1016/j.pharmr.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel Baena
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Sebastián Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - West Kristian Paraiso
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Ana Cristina Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Deogharia M, Gurha P. Fueling cardiac myocyte proliferation. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:2. [PMID: 38455511 PMCID: PMC10919903 DOI: 10.20517/jca.2023.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Chang JS. Recent insights into the molecular mechanisms of simultaneous fatty acid oxidation and synthesis in brown adipocytes. Front Endocrinol (Lausanne) 2023; 14:1106544. [PMID: 36896177 PMCID: PMC9989468 DOI: 10.3389/fendo.2023.1106544] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Brown adipocytes is a specialized fat cell that dissipates nutrient-derived chemical energy in the form of heat, instead of ATP synthesis. This unique feature provides a marked capacity for brown adipocyte mitochondria to oxidize substrates independent of ADP availability. Upon cold exposure, brown adipocytes preferentially oxidize free fatty acids (FFA) liberated from triacylglycerol (TAG) in lipid droplets to support thermogenesis. In addition, brown adipocytes take up large amounts of circulating glucose, concurrently increasing glycolysis and de novo FA synthesis from glucose. Given that FA oxidation and glucose-derived FA synthesis are two antagonistic mitochondrial processes in the same cell, it has long been questioned how brown adipocytes run FA oxidation and FA synthesis simultaneously. In this review, I summarize mechanisms regulating mitochondrial substrate selection and describe recent findings of two distinct populations of brown adipocyte mitochondria with different substrate preferences. I further discuss how these mechanisms may permit a concurrent increase in glycolysis, FA synthesis, and FA oxidation in brown adipocytes.
Collapse
|
5
|
He W, Gao M, Yang R, Zhao Z, Mi J, Sun H, Xiao H, Fang X. The effect of CPT1B gene on lipid metabolism and its polymorphism analysis in Chinese Simmental cattle. Anim Biotechnol 2022; 33:1428-1440. [PMID: 33827354 DOI: 10.1080/10495398.2021.1904966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carnitine palmitoyltransferase 1B (CPT1B) is a candidate gene that regulates livestock animal lipid metabolism and encodes the rate-limiting enzyme in fatty acid β-oxidation. To explore the effect of this gene on lipid metabolism in cattle, this study examined CPT1B gene polymorphism in Chinese Simmental cattle and the effect of CPT1B on lipid metabolism. The results showed that the triglyceride content increased significantly with increasing CPT1B gene expression in bovine fetal fibroblasts (BFFs) (p < 0.05), while CPT1B knockout led to decreased CPT1B expression and a downward trend in triglyceride levels. Correlation analysis showed a significant association between the g.119896238 G > C locus and Chinese Simmental cattle backfat thickness (p < 0.05). Backfat thickness was significantly greater in individuals with the GC genotype (0.93 ± 0.67 cm) than in those with the CC genotype (0.84 ± 0.60 cm). The g.119889302 T > C locus was significantly correlated with arachidonic acid content in Chinese Simmental cattle (p < 0.05). The arachidonic acid content in the longissimus muscle was significantly higher in CC genotype beef cattle (0.054 g/100 g) than in those with the other two genotypes (0.046 g/100 g, 0.049 g/100 g). These molecular markers can be effectively used for marker-assisted selection in cattle breeding.
Collapse
Affiliation(s)
- Wei He
- College of Animal Sciences, Jilin University, Changchun, China
| | - Ming Gao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Runjun Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jiaqi Mi
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Sun
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hang Xiao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xibi Fang
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Martínez-Gayo A, Félix-Soriano E, Sáinz N, González-Muniesa P, Moreno-Aliaga MJ. Changes Induced by Aging and Long-Term Exercise and/or DHA Supplementation in Muscle of Obese Female Mice. Nutrients 2022; 14:nu14204240. [PMID: 36296923 PMCID: PMC9610919 DOI: 10.3390/nu14204240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and aging promote chronic low-grade systemic inflammation. The aim of the study was to analyze the effects of long-term physical exercise and/or omega-3 fatty acid Docosahexaenoic acid (DHA) supplementation on genes or proteins related to muscle metabolism, inflammation, muscle damage/regeneration and myokine expression in aged and obese mice. Two-month-old C57BL/6J female mice received a control or a high-fat diet for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA, DIO + EX (treadmill training) and DIO + DHA + EX up to 18 months. Mice fed a control diet were sacrificed at 2, 6 and 18 months. Aging increased the mRNA expression of Tnf-α and decreased the expression of genes related to glucose uptake (Glut1, Glut4), muscle atrophy (Murf1, Atrogin-1, Cas-9) and myokines (Metrnl, Il-6). In aged DIO mice, exercise restored several of these changes. It increased the expression of genes related to glucose uptake (Glut1, Glut4), fatty acid oxidation (Cpt1b, Acox), myokine expression (Fndc5, Il-6) and protein turnover, decreased Tnf-α expression and increased p-AKT/AKT ratio. No additional effects were observed when combining exercise and DHA. These data suggest the effectiveness of long-term training to prevent the deleterious effects of aging and obesity on muscle dysfunction.
Collapse
Affiliation(s)
- Alejandro Martínez-Gayo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| | - María J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| |
Collapse
|
7
|
L-Carnitine in Drosophila: A Review. Antioxidants (Basel) 2020; 9:antiox9121310. [PMID: 33371457 PMCID: PMC7767417 DOI: 10.3390/antiox9121310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
L-Carnitine is an amino acid derivative that plays a key role in the metabolism of fatty acids, including the shuttling of long-chain fatty acyl CoA to fuel mitochondrial β-oxidation. In addition, L-carnitine reduces oxidative damage and plays an essential role in the maintenance of cellular energy homeostasis. L-carnitine also plays an essential role in the control of cerebral functions, and the aberrant regulation of genes involved in carnitine biosynthesis and mitochondrial carnitine transport in Drosophila models has been linked to neurodegeneration. Drosophila models of neurodegenerative diseases provide a powerful platform to both unravel the molecular pathways that contribute to neurodegeneration and identify potential therapeutic targets. Drosophila can biosynthesize L-carnitine, and its carnitine transport system is similar to the human transport system; moreover, evidence from a defective Drosophila mutant for one of the carnitine shuttle genes supports the hypothesis of the occurrence of β-oxidation in glial cells. Hence, Drosophila models could advance the understanding of the links between L-carnitine and the development of neurodegenerative disorders. This review summarizes the current knowledge on L-carnitine in Drosophila and discusses the role of the L-carnitine pathway in fly models of neurodegeneration.
Collapse
|
8
|
Wang Y, Yin C, Chen Z, Li Y, Zou Y, Wang X, An Y, Wu F, Zhang G, Yang C, Tang H, Zou Y, Gong H. Cardiac-specific LRP6 knockout induces lipid accumulation through Drp1/CPT1b pathway in adult mice. Cell Tissue Res 2019; 380:143-153. [PMID: 31811407 DOI: 10.1007/s00441-019-03126-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
We recently reported low-density lipoprotein receptor-related protein 6 (LRP6) decreased in dilated cardiomyopathy hearts, and cardiac-specific knockout mice displayed lethal heart failure through activation of dynamin-related protein 1 (Drp1). We also observed lipid accumulation in LRP6 deficiency hearts, but the detailed molecular mechanisms are unclear. Here, we detected fatty acids components in LRP6 deficiency hearts and explored the potential molecular mechanisms. Fatty acid analysis by GC-FID/MS revealed cardiac-specific LRP6 knockout induced the higher level of total fatty acids and some medium-long-chain fatty acids (C16:0, C18:1n9 and C18:2n6) than in control hearts. Carnitine palmitoyltransferase 1b (CPT1b), a rate-limiting enzyme of mitochondrial β-oxidation in adult heart, was sharply decreased in LRP6 deficiency hearts, coincident with the activation of Drp1. Drp1 inhibitor greatly improved cardiac dysfunction and attenuated the increase in total fatty acids and fatty acids C16:0, C18:1n9 in LRP6 deficiency hearts. It also greatly inhibited the decrease in the cardiac expression of CPT1b and the transcriptional factors CCCTC-binding factor (CTCF) and c-Myc induced by cardiac-specific LRP6 knockout in mice. C-Myc but not CTCF was identified to regulate CPT1b expression and lipid accumulation in cardiomyocytes in vitro. The present study indicated cardiac-specific LRP6 knockout induced lipid accumulation by Drp1/CPT1b pathway in adult mice, and c-Myc is involved in the process. It suggests that LRP6 regulates fatty acid metabolism in adult heart.
Collapse
Affiliation(s)
- Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Zhidan Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yan Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Feizhen Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
9
|
Melone MAB, Valentino A, Margarucci S, Galderisi U, Giordano A, Peluso G. The carnitine system and cancer metabolic plasticity. Cell Death Dis 2018; 9:228. [PMID: 29445084 PMCID: PMC5833840 DOI: 10.1038/s41419-018-0313-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Abstract
Metabolic flexibility describes the ability of cells to respond or adapt its metabolism to support and enable rapid proliferation, continuous growth, and survival in hostile conditions. This dynamic character of the cellular metabolic network appears enhanced in cancer cells, in order to increase the adaptive phenotype and to maintain both viability and uncontrolled proliferation. Cancer cells can reprogram their metabolism to satisfy the energy as well as the biosynthetic intermediate request and to preserve their integrity from the harsh and hypoxic environment. Although several studies now recognize these reprogrammed activities as hallmarks of cancer, it remains unclear which are the pathways involved in regulating metabolic plasticity. Recent findings have suggested that carnitine system (CS) could be considered as a gridlock to finely trigger the metabolic flexibility of cancer cells. Indeed, the components of this system are involved in the bi-directional transport of acyl moieties from cytosol to mitochondria and vice versa, thus playing a fundamental role in tuning the switch between the glucose and fatty acid metabolism. Therefore, the CS regulation, at both enzymatic and epigenetic levels, plays a pivotal role in tumors, suggesting new druggable pathways for prevention and treatment of human cancer.
Collapse
Affiliation(s)
- Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Anna Valentino
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Institute of Agro-Environmental and Forest Biology, National Research Council, IBAF-CNR, Naples, Italy
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Gianfranco Peluso
- Institute of Agro-Environmental and Forest Biology, National Research Council, IBAF-CNR, Naples, Italy.
| |
Collapse
|
10
|
Yuan CC, Kazmierczak K, Liang J, Kanashiro-Takeuchi R, Irving TC, Gomes AV, Wang Y, Burghardt TP, Szczesna-Cordary D. Hypercontractile mutant of ventricular myosin essential light chain leads to disruption of sarcomeric structure and function and results in restrictive cardiomyopathy in mice. Cardiovasc Res 2017; 113:1124-1136. [PMID: 28371863 PMCID: PMC5852631 DOI: 10.1093/cvr/cvx060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 01/13/2023] Open
Abstract
AIMS The E143K (Glu → Lys) mutation in the myosin essential light chain has been associated with restrictive cardiomyopathy (RCM) in humans, but the mechanisms that underlie the development of defective cardiac function are unknown. Using transgenic E143K-RCM mice, we sought to determine the molecular and cellular triggers of E143K-induced heart remodelling. METHODS AND RESULTS The E143K-induced abnormalities in cardiac function and morphology observed by echocardiography and invasive haemodynamics were paralleled by augmented active and passive tension measured in skinned papillary muscle fibres compared with wild-type (WT)-generated force. In vitro, E143K-myosin had increased duty ratio and binding affinity to actin compared with WT-myosin, increased actin-activated ATPase activity and slower rates of ATP-dependent dissociation of the acto-myosin complex, indicating an E143K-induced myosin hypercontractility. E143K was also observed to reduce the level of myosin regulatory light chain phosphorylation while that of troponin-I remained unchanged. Small-angle X-ray diffraction data showed a decrease in the filament lattice spacing (d1,0) with no changes in the equatorial reflections intensity ratios (I1,1/I1,0) in E143K vs. WT skinned papillary muscles. The hearts of mutant-mice demonstrated ultrastructural defects and fibrosis that progressively worsened in senescent animals and these changes were hypothesized to contribute to diastolic disturbance and to mild systolic dysfunction. Gene expression profiles of E143K-hearts supported the histopathology results and showed an upregulation of stress-response and collagen genes. Finally, proteomic analysis evidenced RCM-dependent metabolic adaptations and higher energy demands in E143K vs. WT hearts. CONCLUSIONS As a result of the E143K-induced myosin hypercontractility, the hearts of RCM mice model exhibited cardiac dysfunction, stiff ventricles and physiological, morphologic, and metabolic remodelling consistent with the development of RCM. Future efforts should be directed toward normalization of myosin motor function and the use of myosin-specific therapeutics to avert the hypercontractile state of E143K-myosin and prevent pathological cardiac remodelling.
Collapse
MESH Headings
- Actins/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Cardiomyopathy, Restrictive/genetics
- Cardiomyopathy, Restrictive/metabolism
- Cardiomyopathy, Restrictive/pathology
- Cardiomyopathy, Restrictive/physiopathology
- Collagen/metabolism
- Disease Models, Animal
- Energy Metabolism
- Female
- Fibrosis
- Genetic Predisposition to Disease
- Humans
- Male
- Mice, Transgenic
- Mutation
- Myocardial Contraction/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/ultrastructure
- Myosin Light Chains/genetics
- Myosin Light Chains/metabolism
- Phenotype
- Phosphorylation
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
- Ventricular Function, Left/genetics
- Ventricular Myosins/genetics
- Ventricular Myosins/metabolism
- Ventricular Remodeling/genetics
Collapse
Affiliation(s)
- Chen-Ching Yuan
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Katarzyna Kazmierczak
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jingsheng Liang
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Yihua Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Thomas P. Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Danuta Szczesna-Cordary
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
11
|
Calderon-Dominguez M, Mir JF, Fucho R, Weber M, Serra D, Herrero L. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte 2016; 5:98-118. [PMID: 27386151 PMCID: PMC4916887 DOI: 10.1080/21623945.2015.1122857] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy.
Collapse
Affiliation(s)
- María Calderon-Dominguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan F. Mir
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Fucho
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Minéia Weber
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Comparison of the catalytic activities of three isozymes of carnitine palmitoyltransferase 1 expressed in COS7 cells. Appl Biochem Biotechnol 2013; 172:1486-96. [PMID: 24222496 DOI: 10.1007/s12010-013-0619-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/30/2013] [Indexed: 12/30/2022]
Abstract
The enzyme carnitine palmitoyltransferase 1 (CPT1) catalyzes the transfer of an acyl group from acyl-CoA to carnitine to form acylcarnitine, and three isozymes of it, 1a, 1b, and 1c, have been identified. Interestingly, the 1c isozyme was reported to show no enzymatic activity, but it was not clearly demonstrated whether this inactivity was due to its dysfunction or due to its poor expression. In the present study, we (a) expressed individual CPT1 isozymes in COS7 cells, (b) evaluated quantitatively their expression levels by Western blotting using the three bacterially expressed CPT1 isozymes as standards, and (c) evaluated their catalytic activities. With these experiments, we successfully demonstrated that the absence of the enzymatic activity of the 1c isozyme was due to its dysfunction. In addition, experiments on the preparation of standard CPT1 isozymes revealed that the 1c isozyme did not show the standard relationship between migration in an SDS-PAGE gel and molecular size. We further tried to determine why the 1c isozyme was inert by preparing chimeric CPT1 between 1a and 1c, but no clear conclusion could be drawn because one of the chimeric CPT1s was not sufficiently expressed.
Collapse
|
13
|
Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver. PLoS One 2013; 8:e68933. [PMID: 23894377 PMCID: PMC3718809 DOI: 10.1371/journal.pone.0068933] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/05/2013] [Indexed: 01/30/2023] Open
Abstract
Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production.
Collapse
|
14
|
Serra D, Mera P, Malandrino MI, Mir JF, Herrero L. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 2013; 19:269-84. [PMID: 22900819 PMCID: PMC3691913 DOI: 10.1089/ars.2012.4875] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. RECENT ADVANCES Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. CRITICAL ISSUES This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. FUTURE DIRECTIONS The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.
Collapse
Affiliation(s)
- Dolors Serra
- Department of Biochemistry and Molecular Biology, Facultat de Farmàcia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
15
|
He L, Kim T, Long Q, Liu J, Wang P, Zhou Y, Ding Y, Prasain J, Wood PA, Yang Q. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 2012; 126:1705-16. [PMID: 22932257 DOI: 10.1161/circulationaha.111.075978] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Carnitine palmitoyltransferase-1 (CPT1) is a rate-limiting step of mitochondrial β-oxidation by controlling the mitochondrial uptake of long-chain acyl-CoAs. The muscle isoform, CPT1b, is the predominant isoform expressed in the heart. It has been suggested that inhibiting CPT1 activity by specific CPT1 inhibitors exerts protective effects against cardiac hypertrophy and heart failure. However, clinical and animal studies have shown mixed results, thereby creating concerns about the safety of this class of drugs. Preclinical studies using genetically modified animal models should provide a better understanding of targeting CPT1 to evaluate it as a safe and effective therapeutic approach. METHODS AND RESULTS Heterozygous CPT1b knockout (CPT1b(+/-)) mice were subjected to transverse aorta constriction-induced pressure overload. These mice showed overtly normal cardiac structure/function under the basal condition. Under a severe pressure-overload condition induced by 2 weeks of transverse aorta constriction, CPT1b(+/-) mice were susceptible to premature death with congestive heart failure. Under a milder pressure-overload condition, CPT1b(+/-) mice exhibited exacerbated cardiac hypertrophy and remodeling compared with wild-type littermates. There were more pronounced impairments of cardiac contraction with greater eccentric cardiac hypertrophy in CPT1b(+/-) mice than in control mice. Moreover, the CPT1b(+/-) heart exhibited exacerbated mitochondrial abnormalities and myocardial lipid accumulation with elevated triglycerides and ceramide content, leading to greater cardiomyocyte apoptosis. CONCLUSIONS CPT1b deficiency can cause lipotoxicity in the heart under pathological stress, leading to exacerbation of cardiac pathology. Therefore, caution should be exercised in the clinical use of CPT1 inhibitors.
Collapse
Affiliation(s)
- Lan He
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Webb 435, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Carrasco P, Sahún I, McDonald J, Ramírez S, Jacas J, Gratacós E, Sierra AY, Serra D, Herrero L, Acker-Palmer A, Hegardt FG, Dierssen M, Casals N. Ceramide levels regulated by carnitine palmitoyltransferase 1C control dendritic spine maturation and cognition. J Biol Chem 2012; 287:21224-32. [PMID: 22539351 DOI: 10.1074/jbc.m111.337493] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The brain-specific isoform carnitine palmitoyltransferase 1C (CPT1C) has been implicated in the hypothalamic regulation of food intake and energy homeostasis. Nevertheless, its molecular function is not completely understood, and its role in other brain areas is unknown. We demonstrate that CPT1C is expressed in pyramidal neurons of the hippocampus and is located in the endoplasmic reticulum throughout the neuron, even inside dendritic spines. We used molecular, cellular, and behavioral approaches to determine CPT1C function. First, we analyzed the implication of CPT1C in ceramide metabolism. CPT1C overexpression in primary hippocampal cultured neurons increased ceramide levels, whereas in CPT1C-deficient neurons, ceramide levels were diminished. Correspondingly, CPT1C knock-out (KO) mice showed reduced ceramide levels in the hippocampus. At the cellular level, CPT1C deficiency altered dendritic spine morphology by increasing immature filopodia and reducing mature mushroom and stubby spines. Total protrusion density and spine head area in mature spines were unaffected. Treatment of cultured neurons with exogenous ceramide reverted the KO phenotype, as did ectopic overexpression of CPT1C, indicating that CPT1C regulation of spine maturation is mediated by ceramide. To study the repercussions of the KO phenotype on cognition, we performed the hippocampus-dependent Morris water maze test on mice. Results show that CPT1C deficiency strongly impairs spatial learning. All of these results demonstrate that CPT1C regulates the levels of ceramide in the endoplasmic reticulum of hippocampal neurons, and this is a relevant mechanism for the correct maturation of dendritic spines and for proper spatial learning.
Collapse
Affiliation(s)
- Patricia Carrasco
- From the Department of Basic Sciences, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hada T, Kato Y, Obana E, Yamamoto A, Yamazaki N, Hashimoto M, Yamamoto T, Shinohara Y. Comparison of two expression systems using COS7 cells and yeast cells for expression of heart/muscle-type carnitine palmitoyltransferase 1. Protein Expr Purif 2012; 82:192-6. [DOI: 10.1016/j.pep.2012.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/24/2022]
|
18
|
Obana E, Hada T, Yamamoto T, Kakuhata R, Saze T, Miyoshi H, Hori T, Shinohara Y. Properties of signal intensities observed with individual probes of GeneChip Rat Gene 1.0 ST Array, an affymetric microarray system. Biotechnol Lett 2012; 34:213-9. [DOI: 10.1007/s10529-011-0776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/05/2011] [Indexed: 11/30/2022]
|
19
|
Fontaine M, Dessein AF, Douillard C, Dobbelaere D, Brivet M, Boutron A, Zater M, Mention-Mulliez K, Martin-Ponthieu A, Vianey-Saban C, Briand G, Porchet N, Vamecq J. A Novel Mutation in CPT1A Resulting in Hepatic CPT Deficiency. JIMD Rep 2012; 6:7-14. [PMID: 23430932 DOI: 10.1007/8904_2011_94] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 11/26/2022] Open
Abstract
The present work presents a "from gene defect to clinics" pathogenesis study of a patient with a hitherto unreported mutation in the CPT1A gene. In early childhood, the patient developed a life-threatening episode (hypoketotic hypoglycemia, liver cytolysis, and hepatomegaly) evocative of a mitochondrial fatty acid oxidation disorder, and presented deficient fibroblast carnitine palmitoyltransferase 1 (CPT1) activity and homozygosity for the c.1783 C > T nucleotide substitution on exon 15 of CPT1A (p.R595W mutant). While confirming CPT1A deficiency, whole blood de novo acylcarnitine synthesis and the levels of carnitine and its esters formally linked intracellular free-carnitine depletion to intracellular carnitine esterification. Sequence alignment and modeling of wild-type and p.*R595W CPT1A proteins indicated that the Arg595 targeted by the mutated codon is phylogenetically well conversed. It contributes to a hydrogen bond network with neighboring residues Cys304 and Met593 but does not participate in the catalysis and carnitine pocket. Its replacement by tryptophan induces steric hindrance with the side chain of Ile480 located in α-helix 12, affecting protein architecture and function. This hindrance with Ile480 is also originally described with tryptophan 304 in the known mutant p.C304W CPT1A, suggesting that the mechanisms that invalidate CPT1A activity and underlie pathogenesis could be common in both the new (p.R595W) and previously described (p.C304W) mutants.
Collapse
Affiliation(s)
- Monique Fontaine
- Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology, CHRU Lille, 59037, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Saini-Chohan HK, Mitchell RW, Vaz FM, Zelinski T, Hatch GM. Delineating the role of alterations in lipid metabolism to the pathogenesis of inherited skeletal and cardiac muscle disorders: Thematic Review Series: Genetics of Human Lipid Diseases. J Lipid Res 2011; 53:4-27. [PMID: 22065858 DOI: 10.1194/jlr.r012120] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As the specific composition of lipids is essential for the maintenance of membrane integrity, enzyme function, ion channels, and membrane receptors, an alteration in lipid composition or metabolism may be one of the crucial changes occurring during skeletal and cardiac myopathies. Although the inheritance (autosomal dominant, autosomal recessive, and X-linked traits) and underlying/defining mutations causing these myopathies are known, the contribution of lipid homeostasis in the progression of these diseases needs to be established. The purpose of this review is to present the current knowledge relating to lipid changes in inherited skeletal muscle disorders, such as Duchenne/Becker muscular dystrophy, myotonic muscular dystrophy, limb-girdle myopathic dystrophies, desminopathies, rostrocaudal muscular dystrophy, and Dunnigan-type familial lipodystrophy. The lipid modifications in familial hypertrophic and dilated cardiomyopathies, as well as Barth syndrome and several other cardiac disorders associated with abnormal lipid storage, are discussed. Information on lipid alterations occurring in these myopathies will aid in the design of improved methods of screening and therapy in children and young adults with or without a family history of genetic diseases.
Collapse
Affiliation(s)
- Harjot K Saini-Chohan
- Department of Pharmacology and Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Lemas DJ, Wiener HW, O'Brien DM, Hopkins S, Stanhope KL, Havel PJ, Allison DB, Fernandez JR, Tiwari HK, Boyer BB. Genetic polymorphisms in carnitine palmitoyltransferase 1A gene are associated with variation in body composition and fasting lipid traits in Yup'ik Eskimos. J Lipid Res 2011; 53:175-84. [PMID: 22045927 DOI: 10.1194/jlr.p018952] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Variants of carnitine palmitoyltransferase 1A (CPT1A), a key hepatic lipid oxidation enzyme, may influence how fatty acid oxidation contributes to obesity and metabolic outcomes. CPT1A is regulated by diet, suggesting interactions between gene variants and diet may influence outcomes. The objective of this study was to test the association of CPT1A variants with body composition and lipids, mediated by consumption of polyunsaturated fatty acids (PUFA). Obesity phenotypes and fasting lipids were measured in a cross-sectional sample of Yup'ik Eskimo individuals (n = 1141) from the Center of Alaska Native Health Research (CANHR) study. Twenty-eight tagging CPT1A SNPs were evaluated with outcomes of interest in regression models accounting for family structure. Several CPT1A polymorphisms were associated with HDL-cholesterol and obesity phenotypes. The P479L (rs80356779) variant was associated with all obesity-related traits and fasting HDL-cholesterol. Interestingly, the association of P479L with HDL-cholesterol was still significant after correcting for body mass index (BMI), percentage body fat (PBF), or waist circumference (WC). Our findings are consistent with the hypothesis that the L479 allele of the CPT1A P479L variant confers a selective advantage that is both cardioprotective (through increased HDL-cholesterol) and associated with reduced adiposity.
Collapse
Affiliation(s)
- Dominick J Lemas
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Differential Effects of Cold Exposure on Gene Expression Profiles in White Versus Brown Adipose Tissue. Appl Biochem Biotechnol 2011; 165:538-47. [DOI: 10.1007/s12010-011-9273-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/25/2011] [Indexed: 11/25/2022]
|
23
|
Replacement of C305 in Heart/Muscle-Type Isozyme of Human Carnitine Palmitoyltransferase I with Aspartic Acid and Other Amino Acids. Biochem Genet 2009; 48:193-201. [DOI: 10.1007/s10528-009-9301-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
24
|
Sebastián D, Guitart M, García-Martínez C, Mauvezin C, Orellana-Gavaldà JM, Serra D, Gómez-Foix AM, Hegardt FG, Asins G. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells. J Lipid Res 2009; 50:1789-99. [PMID: 19429947 PMCID: PMC2724792 DOI: 10.1194/jlr.m800535-jlr200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carnitine palmitoyltransferase 1 (CPT1) catalyzes the first step in long-chain fatty acid import into mitochondria, and it is believed to be rate limiting for β-oxidation of fatty acids. However, in muscle, other proteins may collaborate with CPT1. Fatty acid translocase/CD36 (FAT/CD36) may interact with CPT1 and contribute to fatty acid import into mitochondria in muscle. Here, we demonstrate that another membrane-bound fatty acid binding protein, fatty acid transport protein 1 (FATP1), collaborates with CPT1 for fatty acid import into mitochondria. Overexpression of FATP1 using adenovirus in L6E9 myotubes increased both fatty acid oxidation and palmitate esterification into triacylglycerides. Moreover, immunocytochemistry assays in transfected L6E9 myotubes showed that FATP1 was present in mitochondria and coimmunoprecipitated with CPT1 in L6E9 myotubes and rat skeletal muscle in vivo. The cooverexpression of FATP1 and CPT1 also enhanced mitochondrial fatty acid oxidation, similar to the cooverexpression of FAT/CD36 and CPT1. However, etomoxir, an irreversible inhibitor of CPT1, blocked all these effects. These data reveal that FATP1, like FAT/CD36, is associated with mitochondria and has a role in mitochondrial oxidation of fatty acids.
Collapse
Affiliation(s)
- David Sebastián
- Departments of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sierra AY, Gratacós E, Carrasco P, Clotet J, Ureña J, Serra D, Asins G, Hegardt FG, Casals N. CPT1c Is Localized in Endoplasmic Reticulum of Neurons and Has Carnitine Palmitoyltransferase Activity. J Biol Chem 2008; 283:6878-85. [DOI: 10.1074/jbc.m707965200] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Ji S, You Y, Kerner J, Hoppel CL, Schoeb TR, Chick WS, Hamm DA, Sharer JD, Wood PA. Homozygous carnitine palmitoyltransferase 1b (muscle isoform) deficiency is lethal in the mouse. Mol Genet Metab 2008; 93:314-22. [PMID: 18023382 PMCID: PMC2270477 DOI: 10.1016/j.ymgme.2007.10.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 10/06/2007] [Indexed: 11/29/2022]
Abstract
Carnitine palmitoyltransferase-1 (CPT-1) catalyzes the rate-limiting step of mitochondrial beta-oxidation of long chain fatty acids (LCFA), the most abundant fatty acids in mammalian membranes and in energy metabolism. Human deficiency of the muscle isoform CPT-1b is poorly understood. In the current study, embryos with a homozygous knockout of Cpt-1b were lost before embryonic day 9.5-11.5. Also, while there were normal percentages of CPT-1b+/- pups born from both male and female CPT-1b+/- mice crossed with wild-type mates, the number of CPT-1b+/- pups from CPT-1b+/- breeding pairs was under-represented (63% of the expected number). Northern blot analysis demonstrated approximately 50% Cpt-1b mRNA expression in brown adipose tissue (BAT), heart and skeletal muscles in the CPT-1b+/- male mice. Consistent with tissue-specific expression of Cpt-1b mRNA in muscle but not liver, CPT-1+/- mice had approximately 60% CPT-1 activity in skeletal muscle and no change in total liver CPT-1 activity. CPT-1b+/- mice had normal fasting blood glucose concentration. Consistent with expression of CPT-1b in BAT and muscle, approximately 7% CPT-1b+/- mice (n=30) developed fatal hypothermia following a 3h cold challenge, while none of the CPT-1b+/+ mice (n=30) did. With a prolonged cold challenge (6h), significantly more CPT-1b+/- mice developed fatal hypothermia (52% CPT-1b+/- mice vs. 21% CPT-1b+/+ mice), with increased frequency in females of both genotypes (67% female vs. 38% male CPT-1b+/- mice, and 33% female vs. 8% male CPT-1b+/+ mice). Therefore, lethality of homozygous CPT-1b deficiency in the mice is consistent with paucity of human cases.
Collapse
Affiliation(s)
- Shaonin Ji
- Department of Genetics, University of Alabama at Birmingham, USA
| | - Yun You
- Mammalian Genetics & Genomics, Life Sciences Division, Oak Ridge National Laboratory, USA
| | - Janos Kerner
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Charles L. Hoppel
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | | | - Wallace S.H. Chick
- Mammalian Genetics & Genomics, Life Sciences Division, Oak Ridge National Laboratory, USA
| | - Doug A. Hamm
- Department of Genetics, University of Alabama at Birmingham, USA
| | - J. Daniel Sharer
- Department of Genetics, University of Alabama at Birmingham, USA
| | - Philip A. Wood
- Department of Genetics, University of Alabama at Birmingham, USA
- Corresponding author. FAX: 205−975−4418 Telephone: 205−934−1303 e-mail: web: www.uab.edu/genetics
| |
Collapse
|
27
|
Watanabe M, Yamamoto T, Kakuhata R, Okada N, Kajimoto K, Yamazaki N, Kataoka M, Baba Y, Tamaki T, Shinohara Y. Synchronized changes in transcript levels of genes activating cold exposure-induced thermogenesis in brown adipose tissue of experimental animals. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:104-12. [PMID: 18036333 DOI: 10.1016/j.bbabio.2007.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/23/2022]
Abstract
To identify genes whose expression in brown adipose tissue (BAT) is up- or down-regulated in cold-exposed rats, we performed microarray analysis of RNA samples prepared from the BAT of cold-exposed rats and of rats kept at room temperature. Previously reported elevations of transcript levels of uncoupling protein (UCP1), type II iodothyronine deiodinase (DIO2), and type III adenylate cyclase (AC3) in the BAT of cold-exposed rats over those in that of rats maintained at room temperature were confirmed. In addition to these changes, remarkable elevations of the transcript levels of several genes that seemed to be associated with the processes of cell-cycle regulation and DNA replication were detected in the BAT of cold-exposed rats, possibly reflecting the significant proliferation of brown adipocytes in response to cold exposure. Up-regulation of the gene encoding sarcomeric mitochondrial type creatine kinase in the BAT of cold-exposed rats was also detected by microarray analysis, but subsequent Northern analysis revealed that the expression of not only the sarcomeric mitochondrial type enzyme, but also that of 2 other subtypes, i.e., cytoplasmic brain type and cytoplasmic muscle type, was elevated in the BAT of cold-exposed rats. Microarray analysis also revealed a significant expression of myoglobin in BAT and its elevation in the BAT of cold-exposed rats, and this result was supported by calibrated Northern analysis. On the contrary, several genes such as regulator of G-protein signaling 2 and IMP dehydrogenase 1 were down-regulated in the BAT of cold-exposed rats. The physiological meaning of these changes accompanying cold exposure was discussed.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Institute for Genome Research, University of Tokushima, Kuramotocho-3, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Watanabe M, Yamamoto T, Mori C, Okada N, Yamazaki N, Kajimoto K, Kataoka M, Shinohara Y. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue: Implications for the Activation of Thermogenesis. Biol Pharm Bull 2008; 31:775-84. [DOI: 10.1248/bpb.31.775] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masahiro Watanabe
- Institute for Genome Research, University of Tokushima
- Faculty of Pharmaceutical Sciences, University of Tokushima
| | | | - Chihiro Mori
- Institute for Genome Research, University of Tokushima
- Faculty of Pharmaceutical Sciences, University of Tokushima
| | - Naoto Okada
- Institute for Genome Research, University of Tokushima
- Faculty of Pharmaceutical Sciences, University of Tokushima
| | | | | | - Masatoshi Kataoka
- Health Technology Research Center, National Institute for Advanced Industrial Science and Technology (AIST)
| | - Yasuo Shinohara
- Institute for Genome Research, University of Tokushima
- Faculty of Pharmaceutical Sciences, University of Tokushima
| |
Collapse
|
29
|
Yamazaki N, Matsuo T, Kurata M, Suzuki M, Fujiwaki T, Yamaguchi S, Terada H, Shinohara Y. Substitutions of three amino acids in human heart/muscle type carnitine palmitoyltransferase I caused by single nucleotide polymorphisms. Biochem Genet 2007; 46:54-63. [PMID: 17987377 DOI: 10.1007/s10528-007-9129-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
Heart/muscle type carnitine palmitoyltransferase I (M-CPTI) catalyzes the rate-limiting step of mitochondrial long-chain fatty acid (LCFA) oxidation in muscle and adipose tissue. Three replacements of nucleotides resulting in missense mutations of I66V, S427C, and E531K were observed in the M-CPTI gene of patients showing abnormal fatty acid metabolism. These nucleotide replacements were found to be common single nucleotide polymorphisms (SNPs) of this gene and not specific to patients. The question of whether these missense mutations caused by SNPs alter the functional properties of M-CPTI remains unanswered. Thus, we examined whether these missense mutations are associated with any changes in the enzymatic properties of M-CPTI. None of these mutations was found to cause remarkable alteration of its enzymatic properties. Based on the comparison of amino acid sequences of M-CPTI among different animal species, the roles of these amino acids in the enzyme are discussed.
Collapse
Affiliation(s)
- Naoshi Yamazaki
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu HY, Zheng G, Zhu H, Woldegiorgis G. Hormonal and nutritional regulation of muscle carnitine palmitoyltransferase I gene expression in vivo. Arch Biochem Biophys 2007; 465:437-42. [PMID: 17673163 DOI: 10.1016/j.abb.2007.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/29/2022]
Abstract
Transgenic mice carrying the human heart muscle carnitine palmitoyltransferase I (M-CPTI) gene fused to a CAT reporter gene were generated to study the regulation of M-CPTI gene expression. When the mice were fasted for 48 h, CAT activity and mRNA levels increased by more than 2-fold in heart and skeletal muscle, but not liver or kidney. In the diabetic transgenic mice, there was a 2- to 3-fold increase in CAT activity and CAT mRNA levels in heart and skeletal muscle which upon insulin administration reverted to that observed with the control insulin sufficient transgenic mice. Feeding a high fat diet increased CAT activity and mRNA levels by 2- to 4-fold in heart and skeletal muscle of the transgenic mice compared to the control transgenic mice on regular diet. Overall, the M-CPTI promoter was found to be necessary for the tissue-specific hormonal and dietary regulation of the gene expression.
Collapse
Affiliation(s)
- Hong Yan Liu
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006-8921, USA
| | | | | | | |
Collapse
|
31
|
López-Viñas E, Bentebibel A, Gurunathan C, Morillas M, de Arriaga D, Serra D, Asins G, Hegardt FG, Gómez-Puertas P. Definition by functional and structural analysis of two malonyl-CoA sites in carnitine palmitoyltransferase 1A. J Biol Chem 2007; 282:18212-18224. [PMID: 17452323 DOI: 10.1074/jbc.m700885200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Carnitine palmitoyltransferase 1 (CPT1) catalyzes the conversion of palmitoyl-CoA to palmitoylcarnitine in the presence of l-carnitine, thus facilitating the entry of fatty acids to mitochondria, in a process that is physiologically inhibited by malonyl-CoA. To examine the mechanism of CPT1 liver isoform (CPT1A) inhibition by malonyl-CoA, we constructed an in silico model of both its NH2- and COOH-terminal domains. Two malonyl-CoA binding sites were found. One of these, the "CoA site" or "A site," is involved in the interactions between NH2- and COOH-terminal domains and shares the acyl-CoA hemitunnel. The other, the "opposite-to-CoA site" or "O site," is on the opposite side of the enzyme, in the catalytic channel. The two sites share the carnitine-binding locus. To prevent the interaction between NH2- and COOH-terminal regions, we produced CPT1A E26K and K561E mutants. A double mutant E26K/K561E (swap), which was expected to conserve the interaction, was also produced. Inhibition assays showed a 12-fold decrease in the sensitivity (IC50) toward malonyl-CoA for CPT1A E26K and K561E single mutants, whereas swap mutant reverts to wild-type IC50 value. We conclude that structural interaction between both domains is critical for enzyme sensitivity to malonyl-CoA inhibition at the "A site." The location of the "O site" for malonyl-CoA binding was supported by inhibition assays of expressed R243T mutant. The model is also sustained by kinetic experiments that indicated linear mixed type malonyl-CoA inhibition for carnitine. Malonyl-CoA alters the affinity of carnitine, and there appears to be an exponential inverse relation between carnitine Km and malonyl-CoA IC50.
Collapse
Affiliation(s)
- Eduardo López-Viñas
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, E-28049 Madrid, Spain; CIBER Institute of Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Assia Bentebibel
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain; CIBER Institute of Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Chandrashekaran Gurunathan
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain; CIBER Institute of Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Montserrat Morillas
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain; CIBER Institute of Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Dolores de Arriaga
- Departamento de Biología Molecular, Universidad de León, E-24071 León, Spain
| | - Dolors Serra
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain; CIBER Institute of Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Guillermina Asins
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain; CIBER Institute of Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Fausto G Hegardt
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain; CIBER Institute of Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28049 Madrid, Spain.
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, E-28049 Madrid, Spain; CIBER Institute of Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28049 Madrid, Spain
| |
Collapse
|
32
|
Kakuhata R, Watanabe M, Yamamoto T, Akamine R, Yamazaki N, Kataoka M, Fukuoka S, Ishikawa M, Ooie T, Baba Y, Hori T, Shinohara Y. Possible utilization of in vitro synthesized mRNAs specifically expressed in certain tissues as standards for quantitative evaluation of the results of microarray analysis. ACTA ACUST UNITED AC 2007; 70:755-60. [PMID: 17512601 DOI: 10.1016/j.jbbm.2007.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/07/2007] [Accepted: 04/17/2007] [Indexed: 11/28/2022]
Abstract
To examine the possible usefulness of in vitro synthesized RNA as standards in microarray analysis, we prepared full-length mRNAs encoded by 3 rat metabolic genes for heart/muscle type carnitine palmitoyltransferase I (M-CPTI), uncoupling protein (UCP1), and heart/muscle type fatty acid-binding protein (H-FABP). Artificial RNA samples were prepared by adding known amounts of these synthetic mRNAs to total RNA from rat liver, and transcript levels of various genes were compared between the prepared artificial RNA samples and total RNA samples of rat liver by using an Agilent oligo microarray system. Upon the addition of these synthetic RNAs, signals from the DNA spots corresponding to these 3 genes were elevated, but those from the DNA spots representing other genes were not markedly influenced. Using the ratio of the increase in signal intensity of DNA spot to the amount of added RNA, we estimated the expression levels of several genes and compared them with the absolute expression levels determined by calibrated Northern analysis. As a result, the absolute transcript levels of 3 genes encoding acidic ribosomal phosphoprotein P0, type-1 voltage-dependent anion channel (VDAC1), and type-2 glucose transporter (GLUT2) were successfully estimated by this procedure. Furthermore, genes specifically expressed in certain tissues such as UCP1 were concluded to be good candidates as standards for use in microarray analysis.
Collapse
Affiliation(s)
- Rei Kakuhata
- Institute for Genome Research, University of Tokushima, Kuramotocho-3, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
van Vlies N, Ruiter JPN, Doolaard M, Wanders RJA, Vaz FM. An improved enzyme assay for carnitine palmitoyl transferase I in fibroblasts using tandem mass spectrometry. Mol Genet Metab 2007; 90:24-9. [PMID: 16935015 DOI: 10.1016/j.ymgme.2006.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Carnitine palmitoyl transferase I (CPTI), which converts acyl-CoA and carnitine into acyl-carnitine and free CoASH, is the rate limiting enzyme of hepatic mitochondrial beta-oxidation. CPTI-deficiency is a severe disorder characterized by Reye-like attacks with hypoketotic hypoglycemia, hepatomegaly, elevated liver enzymes and hyperammonemia. We developed a simple tandem-MS-based assay to measure CPTI activity in human fibroblasts. Surprisingly, a large part of the palmitoyl-carnitine formed in our assay by CPTI was degraded into C14- to C2-acyl-carnitines. Degradation of the product of CPTI leads to under estimation of the CPTI activity. When we used potassium cyanide to inhibit enzymes downstream of CPTI and thereby degradation of the product, we measured four times more CPTI activity than the previous methods. This inhibition is essential for correct calculation of CPTI activity. In fibroblasts of CPTI-deficient patients, CPTI activity was not detectable and this assay can be used for the diagnosis of CPTI-deficiency.
Collapse
Affiliation(s)
- Naomi van Vlies
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases (F0-224), Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Bentebibel A, Sebastián D, Herrero L, López-Viñas E, Serra D, Asins G, Gómez-Puertas P, Hegardt FG. Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation. Biochemistry 2006; 45:4339-50. [PMID: 16584169 DOI: 10.1021/bi052186q] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
C75 is a potential drug for the treatment of obesity. It was first identified as a competitive, irreversible inhibitor of fatty acid synthase (FAS). It has also been described as a malonyl-CoA analogue that antagonizes the allosteric inhibitory effect of malonyl-CoA on carnitine palmitoyltransferase I (CPT I), the main regulatory enzyme involved in fatty acid oxidation. On the basis of MALDI-TOF analysis, we now provide evidence that C75 can be transformed to its C75-CoA derivative. Unlike the activation produced by C75, the CoA derivative is a potent competitive inhibitor that binds tightly but reversibly to CPT I. IC50 values for yeast-overexpressed L- or M-CPT I isoforms, as well as for purified mitochondria from rat liver and muscle, were within the same range as those observed for etomoxiryl-CoA, a potent inhibitor of CPT I. When a pancreatic INS(823/13), muscle L6E9, or kidney HEK293 cell line was incubated directly with C75, fatty acid oxidation was inhibited. This suggests that C75 could be transformed in the cell to its C75-CoA derivative, inhibiting CPT I activity and consequently fatty acid oxidation. In vivo, a single intraperitoneal injection of C75 in mice produced short-term inhibition of CPT I activity in mitochondria from the liver, soleus, and pancreas, indicating that C75 could be transformed to its C75-CoA derivative in these tissues. Finally, in silico molecular docking studies showed that C75-CoA occupies the same pocket in CPT I as palmitoyl-CoA, suggesting an inhibiting mechanism based on mutual exclusion. Overall, our results describe a novel role for C75 in CPT I activity, highlighting the inhibitory effect of its C75-CoA derivative.
Collapse
Affiliation(s)
- Assia Bentebibel
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Doh KO, Kim YW, Park SY, Lee SK, Park JS, Kim JY. Interrelation between long-chain fatty acid oxidation rate and carnitine palmitoyltransferase 1 activity with different isoforms in rat tissues. Life Sci 2005; 77:435-43. [PMID: 15894012 DOI: 10.1016/j.lfs.2004.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022]
Abstract
This study examined the interrelation between the long-chain fatty acid (LCFA) oxidation rate and the carnitine palmitoyltransferase (CPT) 1 activity in various tissues containing L-CPT1 or M-CPT1. The Liver, kidney, heart, white and red gastrocnemius muscles, and white and brown adipose tissues obtained from Sprague-Dawley rats were examined. In the tissues containing L-CPT1 the liver showed a significantly higher (P<0.01) palmitate oxidation rate and CPT1 activity than the kidney. Among the tissues containing M-CPT1, the brown adipose tissue showed the highest palmitate oxidation rate and CPT1 activity. The tissues containing M-CPT1 (r2=0.907, p<0.001) showed a strong positive correlation between the palmitate oxidation rate and the CPT1 activity. The ratios of the palmitate oxidation rate to the CPT1 activity were calculated. The ratio in the liver was highest and the ratio in the kidney was lowest among the tissues. The ratios of the tissues containing M-CPT1 were similar. These results showed that the LCFA oxidation rates in the tissues containing M-CPT1 were directly proportional to the CPT1 activity, but not similarly proportional to the CPT1 activity in the tissues containing L-CPT1. In conclusion, CPT1 activity seems very important factor for LCFA oxidation, but it might be not the only rate-limiting step in LCFA oxidation.
Collapse
Affiliation(s)
- Kyung-Oh Doh
- Department of Physiology, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu 705-717, Korea
| | | | | | | | | | | |
Collapse
|
36
|
Yamazaki N. [Identification of muscle-type carnitine palmitoyltransferase I and characterization of its gene structure]. YAKUGAKU ZASSHI 2004; 124:893-908. [PMID: 15577262 DOI: 10.1248/yakushi.124.893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize energy metabolism in brown adipose tissue (BAT), differential screening of a cDNA library of rat BAT with a cDNA probe of rat white adipose tissue was carried out. We isolated one novel cDNA clone encoding a protein of 88.2 kDa consisting of 772 amino acids. The deduced amino acid sequence showed the highest homology (62.6%) with that of rat liver carnitine palmitoyltransferase I (CPTI). The transcript corresponding to this cDNA was abundantly expressed not only in BAT but also in the heart and skeletal muscle. CPTI is a protein necessary for the beta-oxidation of long-chain fatty acids in mammalian mitochondria, and it has been suggested that at least two isoforms, the liver type and muscle (M-CPTI) type, exist. Based on these observations, we concluded that the novel cDNA clone isolated from rat BAT encodes M-CPTI. Isolation and characterization of a genomic DNA clone revealed that the gene for human M-CPTI consists of two 5'-noncoding exons, 18 coding exons, and one 3'-noncoding exon spanning approximately 10 kbp, and a gene encoding choline/ethanolamine kinase-beta (CK/EK-beta) was located about 300 bp upstream from the M-CPTI gene with the same strand direction. Furthermore, we found atypical transcripts containing exons of both CK/EK-beta and M-CPTI genes in humans and rodents. The physiologic role(s) of these transcripts is still unknown. However, it is interesting that such transcripts are produced from two tightly arranged and functionally unrelated genes in mammalian tissues.
Collapse
Affiliation(s)
- Naoshi Yamazaki
- Faculty of Pharmaceutical Sciences, University of Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
37
|
Liu H, Zheng G, Treber M, Dai J, Woldegiorgis G. Cysteine-scanning mutagenesis of muscle carnitine palmitoyltransferase I reveals a single cysteine residue (Cys-305) is important for catalysis. J Biol Chem 2004; 280:4524-31. [PMID: 15579906 DOI: 10.1074/jbc.m400893200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carnitine palmitoyltransferase (CPT) I catalyzes the conversion of long-chain fatty acyl-CoAs to acyl carnitines in the presence of l-carnitine, a rate-limiting step in the transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix. To determine the role of the 15 cysteine residues in the heart/skeletal muscle isoform of CPTI (M-CPTI) on catalytic activity and malonyl-CoA sensitivity, we constructed a 6-residue N-terminal, a 9-residue C-terminal, and a 15-residue cysteineless M-CPTI by cysteine-scanning mutagenesis. Both the 9-residue C-terminal mutant enzyme and the complete 15-residue cysteineless mutant enzyme are inactive but that the 6-residue N-terminal cysteineless mutant enzyme had activity and malonyl-CoA sensitivity similar to those of wild-type M-CPTI. Mutation of each of the 9 C-terminal cysteines to alanine or serine identified a single residue, Cys-305, to be important for catalysis. Substitution of Cys-305 with Ala in the wild-type enzyme inactivated M-CPTI, and a single change of Ala-305 to Cys in the 9-residue C-terminal cysteineless mutant resulted in an 8-residue C-terminal cysteineless mutant enzyme that had activity and malonyl-CoA sensitivity similar to those of the wild type, suggesting that Cys-305 is the residue involved in catalysis. Sequence alignments of CPTI with the acyltransferase family of enzymes in the GenBank led to the identification of a putative catalytic triad in CPTI consisting of residues Cys-305, Asp-454, and His-473. Based on the mutagenesis and substrate labeling studies, we propose a mechanism for the acyltransferase activity of CPTI that uses a catalytic triad composed of Cys-305, His-473, and Asp-454 with Cys-305 serving as a probable nucleophile, thus acting as a site for covalent attachment of the acyl molecule and formation of a stable acyl-enzyme intermediate. This would in turn allow carnitine to act as a second nucleophile and complete the acyl transfer reaction.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006-8921, USA
| | | | | | | | | |
Collapse
|
38
|
Degrace P, Demizieux L, Gresti J, Tsoko M, André A, Demaison L, Clouet P. Fatty acid oxidation and related gene expression in heart depleted of carnitine by mildronate treatment in the rat. Mol Cell Biochem 2004; 258:171-82. [PMID: 15030182 DOI: 10.1023/b:mcbi.0000012853.20116.06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The metabolic and genic effects induced by a 20-fold lowering of carnitine content in the heart were studied in mildronate-treated rats. In the perfused heart, the proportion of palmitate taken up then oxidized was 5-10% lower, while the triacylglycerol (TAG) formation was 100% greater than in controls. The treatment was shown to increase the maximal capacity of heart homogenates to oxidize palmitate, the mRNA level of carnitine palmitoyltransferase I (CPT-I) isoforms, the specific activity of CPT-I in subsarcolemmal mitochondria and the total carnitine content of isolated mitochondria. Concomitantly, the increased mRNA expression of lipoprotein lipase, fatty acid translocase and enzymes of TAG synthesis was associated with a 5- and 2-times increase in serum TAG and free fatty acid contents, respectively. The compartmentation of carnitine at its main functional location was expected to allow the increased CPT-I activity to ensure in vivo correct fatty acid oxidation rates. All the inductions related to fatty acid transport, oxidation and esterification most likely stem from the abundance of blood lipids providing cardiomyocytes with more fatty acids.
Collapse
Affiliation(s)
- Pascal Degrace
- UPRES Lipides et Nutrition EA2422, Faculté des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Lavrentyev EN, He D, Cook GA. Expression of genes participating in regulation of fatty acid and glucose utilization and energy metabolism in developing rat hearts. Am J Physiol Heart Circ Physiol 2004; 287:H2035-42. [PMID: 15217797 DOI: 10.1152/ajpheart.00372.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heart is a unique organ that can use several fuels for energy production. During development, the heart undergoes changes in fuel supply, and it must be able to respond to these changes. We have examined changes in the expression of several genes that regulate fuel transport and metabolism in rat hearts during early development. At birth, there was increased expression of fatty acid transporters and enzymes of fatty acid metabolism that allow fatty acids to become the major source of energy for cardiac muscle during the first 2 wk of life. At the same time, expression of genes that control glucose transport and oxidation was downregulated. After 2 wk, expression of genes for glucose uptake and oxidation was increased, and expression of genes for fatty acid uptake and utilization was decreased. Expression of carnitine palmitoyltransferase I (CPT I) isoforms during development was different from published data obtained from rabbit hearts. CPT Iα and Iβ isoforms were both highly expressed in hearts before birth, and both increased further at birth. Only after the second week did CPT Iα expression decrease appreciably below the level of CPT Iβ expression. These results represent another example of different expression patterns of CPT I isoforms among various mammalian species. In rats, changes in gene expression followed nutrient availability during development and may render cardiac fatty acid oxidation less sensitive to factors that influence malonyl-CoA content (e.g., fluctuations in glucose concentration) and thereby favor fatty acid oxidation as an energy source for cardiomyocytes in early development.
Collapse
Affiliation(s)
- Eduard N Lavrentyev
- Dept. of Pharmacology, College of Medicine, Univ. of Tennessee Health Science Center, 874 Union Ave., Memphis, TN 38163, USA
| | | | | |
Collapse
|
40
|
Morillas M, López-Viñas E, Valencia A, Serra D, Gómez-Puertas P, Hegardt FG, Asins G. Structural model of carnitine palmitoyltransferase I based on the carnitine acetyltransferase crystal. Biochem J 2004; 379:777-84. [PMID: 14711372 PMCID: PMC1224103 DOI: 10.1042/bj20031373] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 01/05/2004] [Accepted: 01/08/2004] [Indexed: 12/20/2022]
Abstract
CPT I (carnitine palmitoyltransferase I) catalyses the conversion of palmitoyl-CoA into palmitoylcarnitine in the presence of L-carnitine, facilitating the entry of fatty acids into mitochondria. We propose a 3-D (three-dimensional) structural model for L-CPT I (liver CPT I), based on the similarity of this enzyme to the recently crystallized mouse carnitine acetyltransferase. The model includes 607 of the 773 amino acids of L-CPT I, and the positions of carnitine, CoA and the palmitoyl group were assigned by superposition and docking analysis. Functional analysis of this 3-D model included the mutagenesis of several amino acids in order to identify putative catalytic residues. Mutants D477A, D567A and E590D showed reduced L-CPT I activity. In addition, individual mutation of amino acids forming the conserved Ser685-Thr686-Ser687 motif abolished enzyme activity in mutants T686A and S687A and altered K(m) and the catalytic efficiency for carnitine in mutant S685A. We conclude that the catalytic residues are His473 and Asp477, while Ser687 probably stabilizes the transition state. Several conserved lysines, i.e. Lys455, Lys505, Lys560 and Lys561, were also mutated. Only mutants K455A and K560A showed decreases in activity of 50%. The model rationalizes the finding of nine natural mutations in patients with hereditary L-CPT I deficiencies.
Collapse
Affiliation(s)
- Montserrat Morillas
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Cordente AG, López-Viñas E, Vázquez MI, Swiegers JH, Pretorius IS, Gómez-Puertas P, Hegardt FG, Asins G, Serra D. Redesign of carnitine acetyltransferase specificity by protein engineering. J Biol Chem 2004; 279:33899-908. [PMID: 15155769 DOI: 10.1074/jbc.m402685200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In eukaryotes, L-carnitine is involved in energy metabolism by facilitating beta-oxidation of fatty acids. Carnitine acetyltransferases (CrAT) catalyze the reversible conversion of acetyl-CoA and carnitine to acetylcarnitine and free CoA. To redesign the specificity of rat CrAT toward its substrates, we mutated Met564. The M564G mutated CrAT showed higher activity toward longer chain acyl-CoAs: activity toward myristoyl-CoA was 1250-fold higher than that of the wild-type CrAT, and lower activity toward its natural substrate, acetyl-CoA. Kinetic constants of the mutant CrAT showed modification in favor of longer acyl-CoAs as substrates. In the reverse case, mutation of the orthologous glycine (Gly553) to methionine in carnitine octanoyltransferase (COT) decreased activity toward its natural substrates, medium- and long-chain acyl-CoAs, and increased activity toward short-chain acyl-CoAs. Another CrAT mutant, M564A, was prepared and tested in the same way, with similar results. We conclude that Met564 blocks the entry of medium- and long-chain acyl-CoAs to the catalytic site of CrAT. Three-dimensional models of wild-type and mutated CrAT and COT support this hypothesis. We show for the first time that a single amino acid is able to determine the substrate specificity of CrAT and COT.
Collapse
Affiliation(s)
- Antonio G Cordente
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kajimoto K, Yamazaki N, Kataoka M, Terada H, Shinohara Y. Identification of possible protein machinery involved in the thermogenic function of brown adipose tissue. THE JOURNAL OF MEDICAL INVESTIGATION 2004; 51:20-8. [PMID: 15000252 DOI: 10.2152/jmi.51.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Brown adipose tissue (BAT) is believed to function by dissipating excess energy in mammals. It is very important to understand the energy metabolism held in BAT since disorder of its energy-dissipating function may cause obesity or lifestyle-related diseases such as hypertension and diabetes. This function in BAT is mainly attributable to uncoupling protein (UCP), specifically expressed in its mitochondria. This protein consumes excess energy as heat by dissipating the H+ gradient across the inner mitochondrial membrane that is utilized as a driving force for ATP synthesis. In this review article, in addition to providing a brief introduction to the functional properties of BAT and UCP, we also describe and discuss properties of cultured brown adipocytes and the results of our exploratory studies on protein components involved in the energy-dissipating function in BAT.
Collapse
Affiliation(s)
- Kazuaki Kajimoto
- Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | | | | | | | | |
Collapse
|
43
|
Unami A, Shinohara Y, Kajimoto K, Baba Y. Comparison of gene expression profiles between white and brown adipose tissues of rat by microarray analysis. Biochem Pharmacol 2004; 67:555-64. [PMID: 15037207 DOI: 10.1016/j.bcp.2003.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 09/04/2003] [Indexed: 11/29/2022]
Abstract
To characterize the energy metabolism in brown adipose tissue (BAT), the differences in gene expression profiles between BAT and white adipose tissue (WAT) were analyzed using a high-density cDNA microarray. RNAs isolated from two adipose tissues were hybridized to an Agilent rat cDNA Microarray that contained about 14,500 cDNA probe sets. The expression levels of 499 cDNA/ESTs were found to be at least 5-fold higher or lower in BAT than in WAT. Consistent with our previous findings, high expression levels of genes encoding uncoupling protein 1, muscle-type carnitine palmitoyltransferase and some other proteins involved in energy metabolism in BAT were found. Most of the genes encoding mitochondrial proteins, such as subunits of ATP synthase, cytochrome c oxidase, and NADH dehydrogenase, were highly expressed, reflecting possible differences in the cellular content of mitochondria between BAT and WAT. However, the expression levels of several genes encoding mitochondrial protein, such as liver mitochondrial aldehyde dehydrogenase and dicarboxylate carrier, were remarkably lower in BAT. These results may give important clues to understand the unique energy metabolism in BAT.
Collapse
Affiliation(s)
- Akira Unami
- Faculty of Pharmaceutical Sciences, The University of Tokushima, Japan.
| | | | | | | |
Collapse
|
44
|
Yamazaki N. Identification of Muscle-Type Carnitine Palmitoyltransferase I and Characterization of Its Atypical Gene Structure. Biol Pharm Bull 2004; 27:1707-16. [PMID: 15516711 DOI: 10.1248/bpb.27.1707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize energy metabolism in rat brown adipose tissue (BAT), we carried out differential screening of a cDNA library of BAT with a cDNA probe of white adipose tissue and isolated one novel cDNA clone. It contained a single open-reading frame of 2316 bases, which encodes a protein of 88.2 kDa. The predicted amino acid sequence showed the highest homology (62.6%) with that of carnitine palmitoyltransferase I (CPTI) from rat liver. The transcript corresponding to this cDNA was found to be abundantly expressed not only in BAT but also in heart and skeletal muscle. CPTI is known to be a protein necessary for the beta-oxidation of long-chain fatty acids in mammalian mitochondria, and it has been suggested that at least two isoforms, the liver type and muscle type, exist. From these observations, a cDNA clone isolated from rat BAT was concluded to be encoding muscle-type CPTI (M-CPTI). Characterization of a genomic DNA clone revealed that the gene for human M-CPTI consists of two 5'-noncoding exons, 18 coding exons, and one 3'-noncoding exon spanning approximately 10 kbp, and a gene encoding choline/ethanolamine kinase-beta (CK/EK-beta) was located only about 300 bp upstream from the M-CPTI gene with the same strand direction. Furthermore, we found that unordinary transcripts containing exons of both CK/EK-beta and M-CPTI genes exist in human and rodent tissues. Although the physiologic role(s) of these transcripts is still unknown, it is interesting that such transcripts are produced from two tightly arranged and functionally unrelated genes.
Collapse
Affiliation(s)
- Naoshi Yamazaki
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan.
| |
Collapse
|
45
|
Napal L, Dai J, Treber M, Haro D, Marrero PF, Woldegiorgis G. A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme. J Biol Chem 2003; 278:34084-9. [PMID: 12826662 DOI: 10.1074/jbc.m305826200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the highly conserved C-terminal glutamate residue, Glu-590, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, lysine, glutamine, and aspartate. Substitution of Glu-590 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild-type enzyme, resulted in complete loss in the activity of the liver isoform of CPTI (L-CPTI). A change of Glu-590 to alanine, glutamine, and lysine caused a significant 9- to 16-fold increase in malonyl-CoA sensitivity but only a partial decrease in catalytic activity. Substitution of Glu-590 with neutral uncharged residues (alanine and glutamine) and/or a basic positively charged residue (lysine) significantly increased L-CPTI malonyl-CoA sensitivity to the level observed with the muscle isoform of the enzyme, suggesting the importance of neutral and/or positive charges in the switch of the kinetic properties of L-CPTI to the muscle isoform of CPTI. Since a conservative substitution of Glu-590 to aspartate but not glutamine resulted in complete loss in activity, we suggest that the longer side chain of glutamate is essential for catalysis and malonyl-CoA sensitivity. This is the first demonstration whereby a single residue mutation in the C-terminal region of the liver isoform of CPTI resulted in a change of its kinetic properties close to that observed with the muscle isoform of the enzyme and provides the rationale for the high malonyl-CoA sensitivity of muscle CPTI compared with the liver isoform of the enzyme.
Collapse
Affiliation(s)
- Laura Napal
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006-8921, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kajimoto K, Daikoku T, Kita F, Yamazaki N, Kataoka M, Baba Y, Terada H, Shinohara Y. PCR-select subtraction for characterization of messages differentially expressed in brown compared with white adipose tissue. Mol Genet Metab 2003; 80:255-61. [PMID: 14567975 DOI: 10.1016/j.ymgme.2003.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To understand the energy metabolism occurring in brown adipose tissue (BAT), we subtracted the messages expressed in white adipose tissue (WAT) from those in BAT. Thereby we succeeded in identifying 37 cDNA clones as being significantly expressed in BAT but not in WAT. Of these, 24 clones were found to code for mitochondrial proteins. Since BAT is well known to have a higher mitochondrial content than WAT, these results would seem to reflect simply the differences in mitochondrial content between BAT and WAT. To examine this possibility, we next measured the amount of mitochondrial DNA (mtDNA) in various rat tissues. As a result, the mtDNA copy number per cell was found to be markedly different among the tissues analyzed, and the highest value of about 5.3x10(4) copies per cell was observed with the rat brain. BAT showed a value similar to that of brain, but this value was only about 3.5-fold higher than that for WAT. Since observed differences in mitochondrial content between BAT and WAT was smaller than those observed with transcript levels of proteins, we conclude that the observed differences in the transcript levels of certain proteins between BAT and WAT reflect the functional differences between BAT and WAT, and do not reflect the differences in mitochondrial content between BAT and WAT.
Collapse
Affiliation(s)
- Kazuaki Kajimoto
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Washington L, Cook GA, Mansbach CM. Inhibition of carnitine palmitoyltransferase in the rat small intestine reduces export of triacylglycerol into the lymph. J Lipid Res 2003; 44:1395-403. [PMID: 12700347 DOI: 10.1194/jlr.m300123-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following digestion of dietary triacylglycerol (TAG), intestinal epithelial cells absorb fatty acids and monoacylglycerols that are resynthesized into TAG by enzymes located on the endoplasmic reticulum (ER). A study in rat liver (Abo-Hashema, K. A., M. H. Cake, G. W. Power, and D. J. Clarke. 1999. Evidence for TAG synthesis in the lumen of microsomes via a lipolysis-esterification pathway involving carnitine acyltransferases. J. Biol. Chem. 274: 35577-35582) showed that there is a carnitine-dependent ER lumenal synthesis of TAG. We wanted to test the hypothesis that a similar pathway was present in rat intestine by utilizing etomoxir, a specific inhibitor of carnitine palmitoyltransferase (CPT). Intraduodenal infusion of etomoxir inhibited CPT activity in the ER by 69%. Etomoxir did not affect either the uptake of intraduodenally infused [3H]glyceryltrioleate by the intestinal mucosa or the production of mucosal [3H]TAG, excluding the possibility that etomoxir interfered with TAG absorption or synthesis. Etomoxir did not inhibit protein synthesis, glucose, cholesterol or palmitate absorption or metabolism, or ATP concentrations. Etomoxir substantially (74%) diminished lymph TAG output from intralumenally infused glyceryltrioleate. In conclusion, these data strongly support the hypothesis that an ER CPT system exists and is necessary for processing dietary TAG into chylomicrons. The significant reduction in lymphatic output of chylomicron TAG on etomoxir treatment suggests that the major source of chylomicron TAG is a diacylglyceroltransferase on the lumenal surface of the ER.
Collapse
Affiliation(s)
- LaTonya Washington
- Department of Pharmacology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38104, USA
| | | | | |
Collapse
|
48
|
Price NT, Jackson VN, van der Leij FR, Cameron JM, Travers MT, Bartelds B, Huijkman NC, Zammit VA. Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1: residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme. Biochem J 2003; 372:871-9. [PMID: 12662154 PMCID: PMC1223454 DOI: 10.1042/bj20030086] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 03/07/2003] [Accepted: 03/28/2003] [Indexed: 11/17/2022]
Abstract
The nucleotide sequence data reported will appear in DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases; the sequences of ovine CPT1A and CPT1B cDNAs have the accession numbers Y18387 and AJ272435 respectively and the partial adipose tissue and liver CPT1A clones have the accession numbers Y18830 and Y18829 respectively. Fatty acid and ketone body metabolism differ considerably between monogastric and ruminant species. The regulation of the key enzymes involved may differ accordingly. Carnitine palmitoyltransferase 1 (CPT 1) is the key locus for the control of long-chain fatty acid beta-oxidation and liver ketogenesis. Previously we showed that CPT 1 kinetics in sheep and rat liver mitochondria differ. We cloned cDNAs for both isoforms [liver- (L-) and muscle- (M-)] of ovine CPT 1 in order to elucidate the structural features of these proteins and their genes ( CPT1A and CPT1B ). Their deduced amino acid sequences show a high degree of conservation compared with orthologues from other mammalian species, with the notable exception of the N-terminus of ovine M-CPT 1. These differences were also present in bovine M-CPT 1, whose N-terminal sequence we determined. In addition, the 5'-end of the sheep CPT1B cDNA suggested a different promoter architecture when compared with previously characterized CPT1B genes. Northern blotting revealed differences in tissue distribution for both CPT1A and CPT1B transcripts compared with other species. In particular, ovine CPT1B mRNA was less tissue restricted, and the predominant transcript in the pancreas was CPT1B. Expression in yeast allowed kinetic characterization of the two native enzymes, and of a chimaera in which the distinctive N-terminal segment of ovine M-CPT 1 was replaced with that from rat M-CPT 1. The ovine N-terminal segment influences the kinetics of the enzyme for both its substrates, such that the K (m) for palmitoyl-CoA is decreased and that for carnitine is increased for the chimaera, relative to the parental ovine M-CPT 1.
Collapse
|
49
|
Zhu H, Shi J, Treber M, Dai J, Arvidson DN, Woldegiorgis G. Substitution of glutamate-3, valine-19, leucine-23, and serine-24 with alanine in the N-terminal region of human heart muscle carnitine palmitoyltransferase I abolishes malonyl CoA inhibition and binding. Arch Biochem Biophys 2003; 413:67-74. [PMID: 12706342 DOI: 10.1016/s0003-9861(03)00081-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The muscle isoform of carnitine palmitoyltransferase I (M-CPTI) is 30- to 100-fold more sensitive to malonyl CoA inhibition than the liver isoform (L-CPTI). We have previously shown that deletion of the first 28 N-terminal amino acid residues in M-CPTI abolished malonyl CoA inhibition and high-affinity binding [Biochemistry 39 (2000) 712-717]. To determine the role of specific residues within the first 28 N-terminal amino acids of human heart M-CPTI on malonyl CoA sensitivity and binding, we constructed a series of substitution mutations and a mutant M-CPTI composed of deletion 18 combined with substitution mutations V19A, L23A, and S24A. All mutants had CPT activity similar to that of the wild type. A change of Glu3 to Ala resulted in a 60-fold decrease in malonyl CoA sensitivity and loss of high-affinity malonyl CoA binding. A change of His5 to Ala in M-CPTI resulted in only a 2-fold decrease in malonyl CoA sensitivity and a significant loss in the low- but not high-affinity malonyl CoA binding. Deletion of the first 18 N-terminal residues combined with substitution mutations V19A, L23A, and S24A resulted in a mutant M-CPTI with an over 140-fold decrease in malonyl CoA sensitivity and a significant loss in both high- and low-affinity malonyl CoA binding. This was further confirmed by a combined four-residue substitution of Glu3, Val19, Leu23, and Ser24 with alanine. Our site-directed mutagenesis studies demonstrate that Glu3, Val19, Leu23, and Ser24 in M-CPTI are important for malonyl CoA inhibition and binding, but not for catalysis.
Collapse
Affiliation(s)
- Hongfa Zhu
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton 97006-8921, USA
| | | | | | | | | | | |
Collapse
|
50
|
Treber M, Dai J, Woldegiorgis G. Identification by mutagenesis of conserved arginine and glutamate residues in the C-terminal domain of rat liver carnitine palmitoyltransferase I that are important for catalytic activity and malonyl-CoA sensitivity. J Biol Chem 2003; 278:11145-9. [PMID: 12540837 DOI: 10.1074/jbc.m210566200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the conserved glutamate residue, Glu-603, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, histidine, glutamine, and aspartate. Substitution of Glu-603 with alanine or histidine resulted in complete loss of L-CPTI activity. A change of Glu-603 to glutamine caused a significant decrease in catalytic activity and malonyl-CoA sensitivity. Substitution of Glu-603 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild type enzyme, resulted in partial loss in CPTI activity and a 15-fold decrease in malonyl-CoA sensitivity. The mutant L-CPTI with a replacement of the conserved Arg-601 or Arg-606 with alanine also showed over 40-fold decrease in malonyl-CoA sensitivity, suggesting that these two conserved residues may be important for substrate and inhibitor binding. Since a conservative substitution of Glu-603 to aspartate or glutamine resulted in partial loss of activity and malonyl-CoA sensitivity, it further suggests that the negative charge and the longer side chain of glutamate are essential for catalysis and malonyl-CoA sensitivity. We predict that this region of L-CPTI spanning these conserved C-terminal residues may be the region of the protein involved in binding the CoA moiety of palmitoyl-CoA and malonyl-CoA and/or the putative low affinity acyl-CoA/malonyl-CoA binding site.
Collapse
Affiliation(s)
- Michelle Treber
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006-8921
| | | | | |
Collapse
|