1
|
Nezami R, Otis C, Boyer A, Blanchard J, Moreau M, Pelletier JP, Martel-Pelletier J, Godoy P, Troncy E. Surveillance of Ancylostoma caninum in naturally infected dogs in Quebec, Canada, and assessment of benzimidazole anthelmintics reveal a variable efficacy with the presence of a resistant isolate in imported dogs. Vet Parasitol Reg Stud Reports 2024; 52:101036. [PMID: 38880561 DOI: 10.1016/j.vprsr.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/18/2024]
Abstract
Ancylostoma caninum is a widely prevalent parasitic nematode in dogs across the world. There has been a notable increase in reports of anthelmintic resistance in A. caninum within the United States of America in recent years, which has led us to investigate the potential of this scenario in Canada. The study objectives were to assess the prevalence of A. caninum in two different groups, including a colony of rescued dogs in Canada and three imported Greyhound dogs from USA, and to evaluate the efficacy of two benzimidazole (BZ) anthelmintics against A. caninum, complemented with a molecular genetic analysis adapted to low prevalence. Fecal samples were collected at pre- and post-treatment with fenbendazole for the native shelters-origin group, and a combination of anthelmintic formulations, including the pro-BZ febantel for the USA-origin group. The coprology analyses found several genera of internal parasites. Canine ancylostomiasis was the most prevalent parasitosis with 30.77% in the native group and 100% in the USA group, but with overall low average of A. caninum eggs per gram. Through the fecal egg count reduction test (FECRT), applying a cut-off at 90% as baseline of egg reduction for successful efficacy, BZ showed variable efficacy. Furthermore, molecular analysis confirmed the presence of A. caninum in both groups of dogs and found differences in the genetics linked to BZ resistance on the A. caninum β-tubulin isotype 1 gene. In the isolate from the native group, both codons 167 and 200 were homozygous without the presence of single nucleotide polymorphism (SNP). In contrast, the selected isolate from the USA group, showed a homozygous allele at position 200 and a heterozygous SNP at position 167. The latter was congruent with the low efficacy in FECRT and agrees with the recent findings of USA A. caninum isolate resistant phenotype to the BZ anthelmintics. The limitations of the study include an overall low eggs-per-gram in both canine groups, and the shortage of additional fecal samples from the USA group, restraining the molecular analysis only to one out of the three Greyhounds. This study provided some insights on the efficacy of BZs against A. caninum and revealed the presence of BZ resistant isolates in imported dogs in Quebec, Canada. All this information should be considered, for choosing the best strategy in the control of A. caninum using anthelmintic drugs.
Collapse
Affiliation(s)
- Roxana Nezami
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre Boyer
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Julie Blanchard
- Hôpital vétérinaire de Buckingham, Gatineau, QC, J8L 2H5, Canada
| | - Maxim Moreau
- Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | - Pablo Godoy
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada; Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
2
|
McClure CR, Patel R, Hallem EA. Invade or die: behaviours and biochemical mechanisms that drive skin penetration in Strongyloides and other skin-penetrating nematodes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220434. [PMID: 38008119 PMCID: PMC10676818 DOI: 10.1098/rstb.2022.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 11/28/2023] Open
Abstract
Skin-penetrating nematodes, including the human threadworm Strongyloides stercoralis and hookworms in the genera Necator and Ancylostoma, are gastrointestinal parasites that are a major cause of neglected tropical disease in low-resource settings worldwide. These parasites infect hosts as soil-dwelling infective larvae that navigate towards hosts using host-emitted sensory cues such as odorants and body heat. Upon host contact, they invade the host by penetrating through the skin. The process of skin penetration is critical for successful parasitism but remains poorly understood and understudied. Here, we review current knowledge of skin-penetration behaviour and its underlying mechanisms in the human parasite S. stercoralis, the closely related rat parasite Strongyloides ratti, and other skin-penetrating nematodes such as hookworms. We also highlight important directions for future investigations into this underexplored process and discuss how recent advances in molecular genetic and genomic tools for Strongyloides species will enable mechanistic investigations of skin penetration and other essential parasitic behaviours in future studies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Courtney R. McClure
- Molecular Toxicology Interdepartmental PhD Program, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Ruhi Patel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Berkhout BW, Budria A, Thieltges DW, Slabbekoorn H. Anthropogenic noise pollution and wildlife diseases. Trends Parasitol 2023; 39:181-190. [PMID: 36658057 DOI: 10.1016/j.pt.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023]
Abstract
There is a global rise in anthropogenic noise and a growing awareness of its negative effects on wildlife, but to date the consequences for wildlife diseases have received little attention. In this paper, we discuss how anthropogenic noise can affect the occurrence and severity of infectious wildlife diseases. We argue that there is potential for noise impacts at three main stages of pathogen transmission and disease development: (i) the probability of preinfection exposure, (ii) infection upon exposure, and (iii) severity of postinfection consequences. We identify potential repercussions of noise pollution effects for wildlife populations and call for intensifying research efforts. We provide an overview of knowledge gaps and outline avenues for future studies into noise impacts on wildlife diseases.
Collapse
Affiliation(s)
| | - Alexandre Budria
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands; Office Français de la Biodiversité, Direction générale déléguée 'Police, Connaissance, Expertise', rue du Bouchet, 45370 DRY, France
| | - David W Thieltges
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands; Groningen Institute for Evolutionary Life-Sciences, GELIFES, Nijenborgh 7, 9747 AG Groningen, University of Groningen, The Netherlands
| | | |
Collapse
|
4
|
Mendez P, Walsh B, Hallem EA. Using newly optimized genetic tools to probe Strongyloides sensory behaviors. Mol Biochem Parasitol 2022; 250:111491. [PMID: 35697205 PMCID: PMC9339661 DOI: 10.1016/j.molbiopara.2022.111491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The oft-neglected human-parasitic threadworm, Strongyloides stercoralis, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, S. stercoralis relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors - namely olfactory, gustatory, gas sensing, and thermosensory behaviors - in Strongyloides spp. We also highlight the ever-growing cache of genetic tools optimized for use in Strongyloides that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in Strongyloides sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis.
Collapse
Affiliation(s)
- Patricia Mendez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA.
| | - Breanna Walsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Eyck HJF, Brown GP, Rollins LA, Shine R. In an arms race between host and parasite, a lungworm's ability to infect a toad is determined by host susceptibility not parasite preference. Biol Lett 2022; 18:20210552. [PMID: 35259944 PMCID: PMC8905180 DOI: 10.1098/rsbl.2021.0552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary arms races can alter both parasite infectivity and host resistance, and it is difficult to separate the effects of these twin determinants of infection outcomes. We used a co-introduced, invasive host-parasite system (the lungworm Rhabdias pseudosphaerocephala and cane toads Rhinella marina), where rapid adaptation and dispersal have led to population differences in infection resistance. We quantified behavioural responses of parasite larvae to skin-chemical cues of toads from different invasive populations, and rates at which juvenile hosts became infected following standardized exposure to lungworms. Chemical cues from toad skin altered host-seeking behaviour by parasites, similarly among populations. The number of infection attempts (parasite larvae entering the host's body) also did not differ between populations, but rates of successful infection (establishment of adult worm in host lungs) were higher for range-edge toads than for range-core conspecifics. Thus, lower resistance to parasite infection in range-edge juvenile toads appears to be due to less effective immune defences of the host rather than differential behavioural responses of the parasite. In this ongoing host-parasite arms race, changing outcomes appear to be driven by shifts in host immunocompetence.
Collapse
Affiliation(s)
- Harrison J F Eyck
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, New South Wales, Australia
| | - Lee A Rollins
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, New South Wales, Australia
| |
Collapse
|
6
|
Bubrig LT, Fierst JL. REVIEW OF THE DAUER HYPOTHESIS: WHAT NON-PARASITIC SPECIES CAN TELL US ABOUT THE EVOLUTION OF PARASITISM. J Parasitol 2021; 107:717-725. [PMID: 34525204 DOI: 10.1645/21-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Parasitic lineages have acquired suites of new traits compared to their nearest free-living relatives. When and why did these traits arise? We can envision lineages evolving through multiple stable intermediate steps such as a series of increasingly exploitative species interactions. This view allows us to use non-parasitic species that approximate those intermediate steps to uncover the timing and original function of parasitic traits, knowledge critical to understanding the evolution of parasitism. The dauer hypothesis proposes that free-living nematode lineages evolved into parasites through two intermediate steps, phoresy and necromeny. Here we delve into the proposed steps of the dauer hypothesis by collecting and organizing data from genetic, behavioral, and ecological studies in a range of nematode species. We argue that hypotheses on the evolution of parasites will be strengthened by complementing comparative genomic studies with ecological studies on non-parasites that approximate intermediate steps.
Collapse
Affiliation(s)
- Louis T Bubrig
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, Virginia 22904
| | - Janna L Fierst
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, Alabama 35487-0344
| |
Collapse
|
7
|
Abstract
Nictation is a behaviour in which a nematode stands on its tail and waves its head in three dimensions. This activity promotes dispersal of dauer larvae by allowing them to attach to other organisms and travel on them to a new niche. In this review, we describe our understanding of nictation, including its diversity in nematode species, how it is induced by environmental factors, and neurogenetic factors that regulate nictation. We also highlight the known cellular and signalling factors that affect nictation, for example, IL2 neurons, insulin/IGF-1 signalling, TGF-β signalling, FLP neuropeptides and piRNAs. Elucidation of the mechanism of nictation will contribute to increased understanding of the conserved dispersal strategies in animals.
Collapse
Affiliation(s)
- Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Bo Yun Lee
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Hyunsoo Yim
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Jimenez Castro PD, Howell SB, Schaefer JJ, Avramenko RW, Gilleard JS, Kaplan RM. Multiple drug resistance in the canine hookworm Ancylostoma caninum: an emerging threat? Parasit Vectors 2019; 12:576. [PMID: 31818311 PMCID: PMC6902405 DOI: 10.1186/s13071-019-3828-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
Background The canine hookworm, Ancylostoma caninum is the most prevalent and important intestinal nematode parasite of dogs in the USA. Hookworms are typically well controlled by treatment with all commonly used anthelmintics that are approved for this use in dogs. However, in the past few years, cases of recurrent/persistent canine hookworm infections appear to have dramatically increased, suggesting that anthelmintic resistance (AR) may have evolved in this parasite. These cases are highly overrepresented by greyhounds, but multiple other breeds are also represented. The aim of this study was to characterize several of these suspected resistant isolates using in vitro, genetic and clinical testing to determine if these cases represent true anthelmintic resistance in A. caninum. Methods Fecal samples containing hookworm eggs from three cases of persistent hookworm infections; one from a greyhound, one from a miniature schnauzer and one from a hound-mix, were received by our laboratory. These were then used to establish infections in laboratory dogs and to perform egg hatch assays (EHA) and larval development assays (LDA) for detecting resistance to benzimidazoles and macrocyclic lactones, respectively. Additional EHA and LDA were performed on eggs recovered from the laboratory-induced infections. Fecal egg count reduction tests were performed to detect resistance to pyrantel. Deep amplicon sequencing assays were developed to measure the frequency of non-synonymous single nucleotide polymorphisms (SNP) at codons 167, 198 and 200 of the A. caninum isotype-1 β-tubulin gene. Results Resistance ratios for the three A. caninum isolates tested ranged from 6.0 to > 100 and 5.5 to 69.8 for the EHA and LDA, respectively. Following treatment with pyrantel, reduction in faecal egg counts was negative or 0%. Deep amplicon sequencing of the isotype-1 β-tubulin gene identified a high frequency of resistance-associated SNPs at codon 167 in all three resistant isolates and in two additional clinical cases. Conclusions These data conclusively demonstrate multiple anthelmintic resistance in multiple independent isolates of A. caninum, strongly suggesting that this is an emerging problem in the USA. Furthermore, evidence suggest that these resistant hookworms originate from racing greyhound farms and kennels, though additional research is needed to confirm this. ![]()
Collapse
Affiliation(s)
- Pablo D Jimenez Castro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA. .,Grupo de Parasitología Veterinaria, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Sue B Howell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - John J Schaefer
- School of Veterinary Medicine, Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Russell W Avramenko
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ray M Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Abstract
Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic and free-living nematodes. Many nematodes show context-dependent, experience-dependent and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also show a wide range of physiological responses to CO2. Here, we review the diverse responses of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive context-dependent and experience-dependent responses of nematodes to CO2.
Collapse
|
10
|
Bryant AS, Hallem EA. Terror in the dirt: Sensory determinants of host seeking in soil-transmitted mammalian-parasitic nematodes. Int J Parasitol Drugs Drug Resist 2018; 8:496-510. [PMID: 30396862 PMCID: PMC6287541 DOI: 10.1016/j.ijpddr.2018.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Infection with gastrointestinal parasitic nematodes is a major cause of chronic morbidity and economic burden around the world, particularly in low-resource settings. Some parasitic nematode species, including the human-parasitic threadworm Strongyloides stercoralis and human-parasitic hookworms in the genera Ancylostoma and Necator, feature a soil-dwelling infective larval stage that seeks out hosts for infection using a variety of host-emitted sensory cues. Here, we review our current understanding of the behavioral responses of soil-dwelling infective larvae to host-emitted sensory cues, and the molecular and cellular mechanisms that mediate these responses. We also discuss the development of methods for transgenesis and CRISPR/Cas9-mediated targeted mutagenesis in Strongyloides stercoralis and the closely related rat parasite Strongyloides ratti. These methods have established S. stercoralis and S. ratti as genetic model systems for gastrointestinal parasitic nematodes and are enabling more detailed investigations into the neural mechanisms that underlie the sensory-driven behaviors of this medically and economically important class of parasites.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Bryant AS, Hallem EA. Temperature-dependent behaviors of parasitic helminths. Neurosci Lett 2018; 687:290-303. [PMID: 30336196 PMCID: PMC6240462 DOI: 10.1016/j.neulet.2018.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Parasitic helminth infections are the most common source of neglected tropical disease among impoverished global communities. Many helminths infect their hosts via an active, sensory-driven process in which environmentally motile infective larvae position themselves near potential hosts. For these helminths, host seeking and host invasion can be divided into several discrete behaviors that are regulated by both host-emitted and environmental sensory cues, including heat. Thermosensation is a critical sensory modality for helminths that infect warm-blooded hosts, driving multiple behaviors necessary for host seeking and host invasion. Furthermore, thermosensory cues influence the host-seeking behaviors of both helminths that parasitize endothermic hosts and helminths that parasitize insect hosts. Here, we discuss the role of thermosensation in guiding the host-seeking and host-infection behaviors of a diverse group of helminths, including mammalian-parasitic nematodes, entomopathogenic nematodes, and schistosomes. We also discuss the neural circuitry and molecular pathways that underlie thermosensory responses in these species.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Bryant AS, Ruiz F, Gang SS, Castelletto ML, Lopez JB, Hallem EA. A Critical Role for Thermosensation in Host Seeking by Skin-Penetrating Nematodes. Curr Biol 2018; 28:2338-2347.e6. [PMID: 30017486 PMCID: PMC6091634 DOI: 10.1016/j.cub.2018.05.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are a major source of neglected tropical disease [1-6]. Their life cycle includes an infective third-larval (iL3) stage that searches for hosts to infect in a poorly understood process that involves both thermal and olfactory cues. Here, we investigate the temperature-driven behaviors of skin-penetrating iL3s, including the human-parasitic threadworm Strongyloides stercoralis and the human-parasitic hookworm Ancylostoma ceylanicum. We show that human-parasitic iL3s respond robustly to thermal gradients. Like the free-living nematode Caenorhabditis elegans, human-parasitic iL3s show both positive and negative thermotaxis, and the switch between them is regulated by recent cultivation temperature [7]. When engaging in positive thermotaxis, iL3s migrate toward temperatures approximating mammalian body temperature. Exposing iL3s to a new cultivation temperature alters the thermal switch point between positive and negative thermotaxis within hours, similar to the timescale of thermal plasticity in C. elegans [7]. Thermal plasticity in iL3s may enable them to optimize host finding on a diurnal temperature cycle. We show that temperature-driven responses can be dominant in multisensory contexts such that, when thermal drive is strong, iL3s preferentially engage in temperature-driven behaviors despite the presence of an attractive host odorant. Finally, targeted mutagenesis of the S. stercoralis tax-4 homolog abolishes heat seeking, providing the first evidence that parasitic host-seeking behaviors are generated through an adaptation of sensory cascades that drive environmental navigation in C. elegans [7-10]. Together, our results provide insight into the behavioral strategies and molecular mechanisms that allow skin-penetrating nematodes to target humans.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacqueline B Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Ruiz F, Castelletto ML, Gang SS, Hallem EA. Experience-dependent olfactory behaviors of the parasitic nematode Heligmosomoides polygyrus. PLoS Pathog 2017; 13:e1006709. [PMID: 29190282 PMCID: PMC5708605 DOI: 10.1371/journal.ppat.1006709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
Parasitic nematodes of humans and livestock cause extensive disease and economic loss worldwide. Many parasitic nematodes infect hosts as third-stage larvae, called iL3s. iL3s vary in their infection route: some infect by skin penetration, others by passive ingestion. Skin-penetrating iL3s actively search for hosts using host-emitted olfactory cues, but the extent to which passively ingested iL3s respond to olfactory cues was largely unknown. Here, we examined the olfactory behaviors of the passively ingested murine gastrointestinal parasite Heligmosomoides polygyrus. H. polygyrus iL3s were thought to reside primarily on mouse feces, and infect when mice consume feces containing iL3s. However, iL3s can also adhere to mouse fur and infect orally during grooming. Here, we show that H. polygyrus iL3s are highly active and show robust attraction to host feces. Despite their attraction to feces, many iL3s migrate off feces to engage in environmental navigation. In addition, H. polygyrus iL3s are attracted to mammalian skin odorants, suggesting that they migrate toward hosts. The olfactory preferences of H. polygyrus are flexible: some odorants are repulsive for iL3s maintained on feces but attractive for iL3s maintained off feces. Experience-dependent modulation of olfactory behavior occurs over the course of days and is mediated by environmental carbon dioxide (CO2) levels. Similar experience-dependent olfactory plasticity occurs in the passively ingested ruminant-parasitic nematode Haemonchus contortus, a major veterinary parasite. Our results suggest that passively ingested iL3s migrate off their original fecal source and actively navigate toward hosts or new host fecal sources using olfactory cues. Olfactory plasticity may be a mechanism that enables iL3s to switch from dispersal behavior to host-seeking behavior. Together, our results demonstrate that passively ingested nematodes do not remain inactive waiting to be swallowed, but rather display complex sensory-driven behaviors to position themselves for host ingestion. Disrupting these behaviors may be a new avenue for preventing infections. Many parasitic nematodes infect by passive ingestion when the host consumes food, water, or feces containing infective third-stage larvae (iL3s). Passively ingested nematodes that infect humans cause severe gastrointestinal distress and death in endemic regions, and those that infect livestock are a major cause of production loss worldwide. Because these parasites do not actively invade hosts but instead rely on being swallowed by hosts, it has been assumed that they show only limited sensory responses and do not engage in host-seeking behaviors. Here, we investigate the olfactory behaviors of the passively ingested murine parasite Heligmosomoides polygyrus and show that this assumption is incorrect; H. polygyrus iL3s show robust attraction to a diverse array of odorants found in mammalian skin, sweat, and feces. Moreover, the olfactory responses of H. polygyrus iL3s are experience-dependent: some odorants are repulsive to iL3s cultured on feces but attractive to iL3s removed from feces. Olfactory plasticity is also observed in the ruminant parasite Haemonchus contortus, and may enable iL3s to disperse in search of new hosts or host fecal sources. Our results suggest that passively ingested nematodes use olfactory cues to navigate their environments and position themselves where they are likely to be swallowed. By providing new insights into the olfactory behaviors of these parasites, our results may enable the development of new strategies for preventing infections.
Collapse
Affiliation(s)
- Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michelle L. Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Spencer S. Gang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Rivera MJ, Martini X, Khrimian A, Stelinski L. A weevil sex pheromone serves as an attractant for its entomopathogenic nematode predators. CHEMOECOLOGY 2017. [DOI: 10.1007/s00049-017-0246-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Lok JB. Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:186-197. [PMID: 28781934 PMCID: PMC5543980 DOI: 10.1007/s40588-016-0046-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling or communication between host and parasite may occur over relatively long ranges to enable host finding and acquisition by infective parasitic nematode larvae. Innate behaviors in infective larvae transmitted from the soil that enhance the likelihood of host contact, such as negative geotaxis and hypermotility, are likely mediated by mechanoreception and neuromuscular signaling. Host cues such as vibration of the substratum, elevated temperature, exhaled CO2, and other volatile odorants are perceived by mechanosensory and chemosensory neurons of the amphidial complex. Beyond this, the molecular systems that transduce these external cues within the worm are unknown at this time. Overall, the signal transduction mechanisms that regulate switching between dauer and continuous reproductive development in Caenorhabditis elegans, and doubtless other free-living nematodes, have provided a useful framework for testing hypotheses about how the morphogenesis and development of infective parasitic nematode larvae and the lifespan of adult parasites are regulated. In C. elegans, four major signal transduction pathways, G protein-coupled receptor signaling, insulin/insulin-like growth factor signaling, TGFβ-like signaling and steroid-nuclear hormone receptor signaling govern the switch between dauer and continuous development and regulate adult lifespan. Parasitic nematodes appear to have conserved the functions of G-protein-coupled signaling, insulin-like signaling and steroid-nuclear hormone receptor signaling to regulate larval development before and during the infective process. By contrast, TGFβ-like signaling appears to have been adapted for some other function, perhaps modulation of the host immune response. Of the three signal transduction pathways that appear to regulate development in parasitic nematodes, steroid-nuclear hormone signaling is the most straightforward to manipulate with administered small molecules and may form the basis of new chemotherapeutic strategies. Signaling between parasites and their hosts' immune systems also occurs and serves to modulate these responses to allow chronic infection and down regulate acute inflammatory responses. Knowledge of the precise nature of this signaling may form the basis of immunological interventions to protect against parasitism or related lesions and to alleviate inflammatory diseases of various etiologies.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104 USA
| |
Collapse
|
16
|
Gang SS, Hallem EA. Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol 2016; 208:23-32. [PMID: 27211240 DOI: 10.1016/j.molbiopara.2016.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
Abstract
The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors.
Collapse
Affiliation(s)
- Spencer S Gang
- Department of Microbiology, Immunology, and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
17
|
Lee JH, Dillman AR, Hallem EA. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol 2016; 14:36. [PMID: 27154502 PMCID: PMC4858831 DOI: 10.1186/s12915-016-0259-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/22/2016] [Indexed: 01/08/2023] Open
Abstract
Background Entomopathogenic nematodes (EPNs) are lethal parasites of insects that are of interest as biocontrol agents for insect pests and disease vectors. Although EPNs have been successfully commercialized for pest control, their efficacy in the field is often inconsistent for reasons that remain elusive. EPN infective juveniles (IJs) actively search for hosts to infect using a diverse array of host-emitted odorants. Here we investigate whether their host-seeking behavior is subject to context-dependent modulation. Results We find that EPN IJs exhibit extreme plasticity of olfactory behavior as a function of cultivation temperature. Many odorants that are attractive for IJs grown at lower temperatures are repulsive for IJs grown at higher temperatures and vice versa. Temperature-induced changes in olfactory preferences occur gradually over the course of days to weeks and are reversible. Similar changes in olfactory behavior occur in some EPNs as a function of IJ age. EPNs also show temperature-dependent changes in their host-seeking strategy: IJs cultured at lower temperatures appear to more actively cruise for hosts than IJs cultured at higher temperatures. Furthermore, we find that the skin-penetrating rat parasite Strongyloides ratti also shows temperature-dependent changes in olfactory behavior, demonstrating that such changes occur in mammalian-parasitic nematodes. Conclusions IJs are developmentally arrested and long-lived, often surviving in the environment through multiple seasonal temperature changes. Temperature-dependent modulation of behavior may enable IJs to optimize host seeking in response to changing environmental conditions, and may play a previously unrecognized role in shaping the interactions of both beneficial and harmful parasitic nematodes with their hosts. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0259-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joon Ha Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, 90095, USA
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, California, 92521, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, 90095, USA.
| |
Collapse
|
18
|
Prevalence and Risk Factors of Hookworm-Related Cutaneous Larva Migrans (HrCLM) in a Resource-Poor Community in Manaus, Brazil. PLoS Negl Trop Dis 2016; 10:e0004514. [PMID: 27010204 PMCID: PMC4807001 DOI: 10.1371/journal.pntd.0004514] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/14/2016] [Indexed: 11/19/2022] Open
Abstract
Background Hookworm-related cutaneous larva migrans (HrCLM) is a neglected tropical skin disease associated with significant clinical pathology. Little knowledge exists about prevalence and risk factors of HrCLM in endemic regions. Methodology/ Principal Findings To understand the epidemiology of HrCLM in Amazonia, we conducted a cross-sectional study in a resource-poor township in Manaus, Brazil. HrCLM was diagnosed in 8.2% (95% CI, 6.3–10.1%) of the study population (N = 806) with a peak prevalence of 18.2% (95% CI, 9.3–27.1%) in children aged 10–14. Most of the tracks (62.4%) were located on the feet, and 10.6% were superinfected. HrCLM was associated independently with age under 15, male sex, presence of animal faeces on the compound, walking barefoot on sandy ground and poverty. Conclusions/ Significance HrCLM is common in resource-poor communities in Amazonia and is related to poverty. To reduce the disease burden caused by HrCLM, living conditions have to be improved. Hookworm-related cutaneous larva migrans (HrCLM) is a parasitic skin disease caused by the penetration of animal hookworm larvae into the human skin. In this compartment the larvae cannot pass the basal membrane and reproduce, but migrate in the outer skin layer for several weeks, causing skin inflammation and intense itching. Thus, humans are a biological impasse. Although HrCLM is a common skin disease in tropical and subtropical regions, studies on prevalence and risk factors are scarce. We clinically examined the population of a resource-poor neighbourhood in Manaus, capital of Amazonas State, Brazil, and investigated HrCLM-associated risk factors. HrCLM was very common with an overall prevalence of 8.2%. Children in general, and boys in particular, were most frequently infected. We could confirm that walking barefoot on sandy ground is a significant risk factor, and we identified the presence of animal faeces on the compound as another important predictive factor. Clearly, HrCLM was associated with low income and poverty-related living conditions. The poorest of the poor were identified as the most vulnerable population group.
Collapse
|
19
|
Abstract
Nearly all animals are capable of sensing changes in environmental oxygen (O2) and carbon dioxide (CO2) levels, which can signal the presence of food, pathogens, conspecifics, predators, or hosts. The free-living nematode Caenorhabditis elegans is a powerful model system for the study of gas sensing. C. elegans detects changes in O2 and CO2 levels and integrates information about ambient gas levels with other internal and external cues to generate context-appropriate behavioral responses. Due to its small nervous system and amenability to genetic and genomic analyses, the functional properties of its gas-sensing microcircuits can be dissected with single-cell resolution, and signaling molecules and natural genetic variations that modulate gas responses can be identified. Here, we discuss the neural basis of gas sensing in C. elegans, and highlight changes in gas-evoked behaviors in the context of other sensory cues and natural genetic variations. We also discuss gas sensing in other free-living nematodes and parasitic nematodes, focusing on how gas-sensing behavior has evolved to mediate species-specific behavioral requirements.
Collapse
|
20
|
Strømnes E. An in vitro study of lipid preference in whaleworm (Anisakis simplex, Nematoda, Ascaridoidea, Anisakidae) third-stage larvae. Parasitol Res 2014; 113:1113-8. [PMID: 24458651 PMCID: PMC3932165 DOI: 10.1007/s00436-013-3748-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/26/2013] [Indexed: 11/28/2022]
Abstract
The behavioural response of nematodes to chemical stimuli has been extensively investigated in some free-living and plant parasitic species. However, in animal parasitic species, little is yet known, particularly in regards to marine forms such as the whaleworm (Anisakis simplex). Previous studies showed that A. simplex L3-larvae tend to prefer fish tissue with high lipid content. The intention of this study was to investigate the behaviour of A. simplex L3 in response to different concentrations of fish lipid in further detail. This was done by an in vitro study based on larvae from cod (Gadus morhua). Ten larvae were placed in each of the culture containers containing agar that was separated into three segments of equal size. Three categories of agar were used containing 0, 2 and 7 % cod liver oil. A total of 900 larvae were included. The study consisted of three parts: The purpose of experiment I was to establish whether different lipid concentrations influenced the migration pattern at all. Experiment II was intended to examine whether A. simplex L3-larvae were able to actively search for lipids. Experiment III was set up to analyse the short-distance dispersion of the L3-larvae. Experiment I indicated that the L3-larvae move randomly but do not stop randomly since the tendency to move out of the start area was inversely correlated with lipid concentration. Experiment II indicates that the larvae are almost unable to select areas of high lipid concentrations when more than a few centimetres away. Experiment III showed that the L3-larvae prefer high-fat content and can seek it out over short distances.
Collapse
Affiliation(s)
- Einar Strømnes
- Natural History Museum, University of Oslo, P.O.Box 1172 Blindern, NO-0318, Oslo, Norway,
| |
Collapse
|
21
|
Grewal PS, Gaugler R, Selvan S. Host recognition by entomopathogenic nematodes: Behavioral response to contact with host feces. J Chem Ecol 2013; 19:1219-31. [PMID: 24249139 DOI: 10.1007/bf00987382] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1992] [Accepted: 02/02/1993] [Indexed: 10/25/2022]
Abstract
Host recognition by entomopathogenic nematodes may occur through contact with insects' excretory products, cuticle, or gut contents. We analyzed the behavioral responses of four species of entomopathogenic nematodes during contact with feces of natural or experimental hosts. Host recognition by nematodes was manifested in alterations in the frequency and/or duration of one or more search parameters including forward crawling, headwaving, body-waving, stopping, backward crawling, head-rubbing, and headthrusting.Heterorhabditis bacteriophora andSteinernema glaseri showed behavioral responses to contact with feces of their natural hosts,Spodoptera exigua (Lepidoptera) andPopillia japonica (Coleoptera), and to the experimental hosts,Acheata domesticus (Orthoptera) andBlatella germanica (Blatteria).Steinernema carpocapsae responded only toB. germanica feces, whereas5. scapterisci did not significantly respond to any of the insect species. During contact with cockroach feces, all nematodes, exceptS. scapterisci, showed avoidance behavior. We suggest that ammonia present in cockroach feces is inhibitory to nematodes. Specific host recognition by entomopathogenic nematodes may be an important mechanism to maintain host affinities.
Collapse
Affiliation(s)
- P S Grewal
- Department of Entomology, Rutgers University, 08903, New Brunswick, New Jersey
| | | | | |
Collapse
|
22
|
MacIntosh AJJ, Jacobs A, Garcia C, Shimizu K, Mouri K, Huffman MA, Hernandez AD. Monkeys in the middle: parasite transmission through the social network of a wild primate. PLoS One 2012; 7:e51144. [PMID: 23227246 PMCID: PMC3515516 DOI: 10.1371/journal.pone.0051144] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/31/2012] [Indexed: 11/19/2022] Open
Abstract
In wildlife populations, group-living is thought to increase the probability of parasite transmission because contact rates increase at high host densities. Physical contact, such as social grooming, is an important component of group structure, but it can also increase the risk of exposure to infection for individuals because it provides a mechanism for transmission of potentially pathogenic organisms. Living in groups can also create variation in susceptibility to infection among individuals because circulating levels of immunosuppressive hormones like glucocorticoids often depend on an individual's position within the group's social structure. Yet, little is known about the relative roles of socially mediated exposure versus susceptibility in parasite transmission among free-living animal groups. To address this issue, we investigate the relationship between host dominance hierarchy and nematode parasite transmission among females in a wild group of Japanese macaques (Macaca fuscata yakui). We use social network analysis to describe each individual female's position within the grooming network in relation to dominance rank and relative levels of infection. Our results suggest that the number of directly-transmitted parasite species infecting each female, and the relative amount of transmission stages that one of these species sheds in faeces, both increase with dominance rank. Female centrality within the network, which shows positive associations with dominance hierarchy, is also positively associated with infection by certain parasite species, suggesting that the measured rank-bias in transmission may reflect variation in exposure rather than susceptibility. This is supported by the lack of a clear relationship between rank and faecal cortisol, as an indicator of stress, in a subset of these females. Thus, socially mediated exposure appears to be important for direct transmission of nematode parasites, lending support to the idea that a classical fitness trade-off inherent to living in groups can exist.
Collapse
Affiliation(s)
- Andrew J. J. MacIntosh
- Center for International Collaboration and Advanced Studies in Primatology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Armand Jacobs
- Département Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien Centre National de la Recherche Scientifique UMR7178, Université de Strasbourg, Strasbourg, Alsace, France
| | - Cécile Garcia
- Laboratoire de Dynamique de l’Évolution Humaine, Centre National de la Recherche Scientifique UPR 2147, Paris, Île-de-France, France
| | - Keiko Shimizu
- Department of Zoology, Faculty of Science, Okayama University of Science, Okayama City, Okayama, Japan
| | - Keiko Mouri
- Department of Zoology, Faculty of Science, Okayama University of Science, Okayama City, Okayama, Japan
| | - Michael A. Huffman
- Center for International Collaboration and Advanced Studies in Primatology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Alexander D. Hernandez
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
23
|
Chaisson KE, Hallem EA. Chemosensory behaviors of parasites. Trends Parasitol 2012; 28:427-36. [PMID: 22921895 PMCID: PMC5663455 DOI: 10.1016/j.pt.2012.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 12/17/2022]
Abstract
Many multicellular parasites seek out hosts by following trails of host-emitted chemicals. Host seeking is a characteristic of endoparasites such as parasitic worms as well as of ectoparasites such as mosquitoes and ticks. For host location, many of these parasites use CO(2), a respiration byproduct, in combination with host-specific chemicals. Recent work has begun to elucidate the behavioral responses of parasites to CO(2) and other host chemicals, and to unravel the mechanisms of these responses. Here we discuss recent findings that have greatly advanced our understanding of the chemosensory behaviors of host-seeking parasites. We focus primarily on well-studied parasites such as nematodes and insects, but also note broadly relevant findings in a few less well studied parasites.
Collapse
Affiliation(s)
- Keely E Chaisson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
24
|
Olfaction shapes host-parasite interactions in parasitic nematodes. Proc Natl Acad Sci U S A 2012; 109:E2324-33. [PMID: 22851767 DOI: 10.1073/pnas.1211436109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many parasitic nematodes actively seek out hosts in which to complete their lifecycles. Olfaction is thought to play an important role in the host-seeking process, with parasites following a chemical trail toward host-associated odors. However, little is known about the olfactory cues that attract parasitic nematodes to hosts or the behavioral responses these cues elicit. Moreover, what little is known focuses on easily obtainable laboratory hosts rather than on natural or other ecologically relevant hosts. Here we investigate the olfactory responses of six diverse species of entomopathogenic nematodes (EPNs) to seven ecologically relevant potential invertebrate hosts, including one known natural host and other potential hosts collected from the environment. We show that EPNs respond differentially to the odor blends emitted by live potential hosts as well as to individual host-derived odorants. In addition, we show that EPNs use the universal host cue CO(2) as well as host-specific odorants for host location, but the relative importance of CO(2) versus host-specific odorants varies for different parasite-host combinations and for different host-seeking behaviors. We also identified host-derived odorants by gas chromatography-mass spectrometry and found that many of these odorants stimulate host-seeking behaviors in a species-specific manner. Taken together, our results demonstrate that parasitic nematodes have evolved specialized olfactory systems that likely contribute to appropriate host selection.
Collapse
|
25
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Leksomboon R, Chaijaroonkhanarak W, Arunyanart C, Umka J, Jones MK, Sripa B. Organization of the nervous system in Opisthorchis viverrini investigated by histochemical and immunohistochemical study. Parasitol Int 2011; 61:107-11. [PMID: 21807116 DOI: 10.1016/j.parint.2011.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/08/2011] [Accepted: 07/10/2011] [Indexed: 11/26/2022]
Abstract
The structure and organization of the nervous system has been documented for various helminth parasites. However, the neuroanatomy of the carcinogenic liver fluke, Opisthorchis viverrini has not been described. This study therefore investigated the organization of the nervous system of this fluke using cholinesterase activity, aminergic and peptidergic (FMRFamide-like peptides) immunostaining to tag major neural elements. The nervous system, as detected by acetylcholinesterase (AchE) reaction, was similar in newly excysted metacercariae, migrating juveniles and adult parasites. In these stages, there were three pairs (dorsal, ventral and lateral) of bilaterally symmetrical longitudinal nerve cords and two cerebral ganglia. The ventral nerve cords and the cerebral ganglia were well-developed and exhibited strong AchE reactivity, as well as aminergic and FMRFamide-like immunoreactivity. Numerous immunoreactive nerve cell bodies were observed around the inner surface of the ventral sucker. Fine FMRFamide-like peptides immunopositive nerve fiber was rarely observed. Overall, the organization of the nervous system of O. viverrini is similar to other trematodes.
Collapse
Affiliation(s)
- Ratana Leksomboon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | |
Collapse
|
27
|
Franke D, Strube C, Epe C, Welz C, Schnieder T. Larval migration in PERL chambers as an in vitro model for percutaneous infection stimulates feeding in the canine hookworm Ancylostoma caninum. Parasit Vectors 2011; 4:7. [PMID: 21266069 PMCID: PMC3037914 DOI: 10.1186/1756-3305-4-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/25/2011] [Indexed: 11/16/2022] Open
Abstract
Background Ancylostoma caninum third-stage larvae are the non-feeding infective stage of this parasite and are able to infect potential hosts via different infection routes. Since percutaneous infection is one of the most important routes and skin penetration is the first step into parasitic life, an existing in vitro model for percutaneous migration was modified and evaluated. The main parameter used to evaluate migration was the migration ratio (migrated larvae as a percentage of total number of larvae recovered). Additionally, the skin lag was calculated, expressing the percentage of larvae remaining in the skin and therefore not being recovered. Since initiation of feeding is proposed to be an important step in the transition from free-living to parasitic A. caninum larvae, feeding assays were performed with in vitro percutaneously migrated larvae. Additionally, infective larvae of A. caninum were activated via serum-stimulation and feeding behaviour was analysed and compared between percutaneously migrated and serum-stimulated larvae. Results Maximum skin migration levels of infective larvae were observed at temperatures above 32°C when larvae were placed on the epidermal side of skin for more than 12 hours. The medium beneath the skin had no effect on migration ratio, and no significant difference between the migration ratios through fresh and frozen/thawed skin was observed. Maximum feeding levels of 93.2% were observed for percutaneously migrated larvae after 48 h incubation, whereas serum-stimulated larvae reached the maximum of 91.0% feeding larvae after 24 h. Conclusions The PERL chamber system was optimised and standardised as an in vitro model for percutaneous migration. The larvae recovered after percutaneous migration showed characteristic signs of activation similar to that of serum-stimulated larvae. The observed difference in time course of resumption of feeding indicates that percutaneously migrated larvae are not identical to serum-stimulated larvae, which are currently representing the model for early parasitic stages.
Collapse
Affiliation(s)
- Daniela Franke
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
28
|
Epidemiological and clinical characteristics of hookworm-related cutaneous larva migrans. THE LANCET. INFECTIOUS DISEASES 2008; 8:302-9. [PMID: 18471775 DOI: 10.1016/s1473-3099(08)70098-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hookworm-related cutaneous larva migrans is caused by the migration of animal hookworm larvae in the human skin. The disease mainly occurs in resource-poor communities in the developing world, but it is also reported sporadically in high-income countries and in tourists who have visited the tropics. Diagnosis is made clinically in the presence of a linear serpiginous track moving forward in the skin, associated with itching and a history of exposure. Itching is typically very intense and can prevent patients from sleeping. Bacterial superinfection occurs as a result of scratching. Treatment is based on oral drugs (albendazole or ivermectin) or the topical application of tiabendazole. To control hookworm-related cutaneous larva migrans at the community level, regular treatment of dogs and cats with anthelmintic drugs is necessary, but this is seldom feasible in resource-poor settings. Animals should be banned from beaches and playgrounds. For protection at the individual level, unprotected skin should not come into contact with possibly contaminated soil.
Collapse
|
29
|
Kusaba T, Fujimaki Y, Vincent AL, Aoki Y. In vitro chemotaxis of Brugia pahangi infective larvae to the sera and hemolymph of mammals and lower animals. Parasitol Int 2007; 57:179-84. [PMID: 18243775 DOI: 10.1016/j.parint.2007.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 12/04/2007] [Accepted: 12/08/2007] [Indexed: 11/25/2022]
Abstract
The jird (Mongolian gerbil) is a highly susceptible experimental host for the lymphatic filarial nematode, Brugia pahangi. The chemotactic activity of serum from this host for B. pahangi infective larvae was compared in vitro to that of sera or hemolymph of a wide variety of other organisms including mammals, reptiles, fishes and invertebrates. The range of the Chemotactic Index (CI) was from 96.0 for the jird to 56.2 for a snail. An average of CI of saline control was 4.5. Significant chemotactic activity was present in many organisms, especially mammals, but was not closely related to either the phylogenetic position of the organism and to its known susceptibility as definitive host for B. pahangi. Migratory response was diminished in a consistent way by serial dilution of sera of humans, jirds and fetal bovine serum. Pre-incubation of larvae in fetal bovine serum inhibited migration, especially towards the sera of humans. Inhibition could be reversed by rinsing larvae in saline, longer rinse periods resulting in greater recovery of CI. These results are the first to suggest the activity of the specific amphid chemoreceptors in the chemotaxis of the infective larvae of B. pahangi.
Collapse
Affiliation(s)
- Teruyo Kusaba
- Department of Parasitology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | | | | | | |
Collapse
|
30
|
Strongyloides ratti: chemotactic responses of third-stage larvae to selected serum proteins and albumins. J Helminthol 2007. [DOI: 10.1017/s0022149x00000354] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractExperiments were carried outin vitroto investigate whether the sera of several animals as well as albumins and peptides might act as attractants for larvae ofStrongyloidesratti. Samples of sera from several mammal species were dialysed and the aliquots were further centrifuged using ultrafiltration cartridges to remove any remaining small molecules. Additional test substances included commercially obtained ovalbumin, rat and bovine serum albumins, polypeptides such as peptone, tryptone and tryptose, amino nitrogens, monosaccharides, and reduced glutathione (triaminopeptide). Larvae were strongly attracted to the dialysed mammalian sera, which mainly consisted of serum albumin and globulins. Ov- and serum albumins, and polypeptides also acted as attractants. On the other hand, reduced glutathione, 16 kinds of amino acids and four kinds of monosaccharides did not attract this nematode.
Collapse
|
31
|
Abstract
Many parasitic worms enter their hosts by active invasion. Their transmission success is often based on a mass production of invasive stages. However, most stages show a highly specific host-finding behaviour. Information on host-finding mechanisms is available mainly for trematode miracidia and cercariae and for nematode hookworms. The larvae find and recognise their hosts, in some cases even with species specificity, via complex sequences of behavioural patterns with which they successively respond to various environmental and host cues. There is often a surprisingly high diversity of host-recognition strategies. Each parasite species finds and enters its host using a different series of cues. For example, different species of schistosomes enter the human skin using different recognition sequences. The various recognition strategies may reflect adaptations to distinct ecological conditions of transmission. Another question is how, after invasion, parasitic worms find their complex paths through their host's tissues to their often very specific microhabitats. Recent data show that the migrating parasite stages can follow local chemical gradients of skin and blood compounds, but their long-distance navigation within the host body still remains puzzling. The high complexity, specificity and diversity of host-recognition strategies suggest that host finding and host recognition are important determinants in the evolution of parasite life cycles.
Collapse
Affiliation(s)
- Wilfried Haas
- Institute of Zoology, University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
32
|
Hoholm F, Zhu X, Ashton FT, Freeman AS, Veklich Y, Castelletto A, Lamont S, Schad GA. New oral linguiform projections and their associated neurons in the third-stage infective larva of the parasitic nematode Oesophagostomum dentatum. J Parasitol 2005; 91:61-8. [PMID: 15856873 DOI: 10.1645/ge-3398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The infective larvae (L3i) of the nematode parasite of swine, Oesophagostomum dentatum, are passively ingested by their hosts. The L3i exhibit certain behaviors that are probably selected to increase the likelihood of ingestion, by strategic positioning in the environment. The larvae show positive geotactic behavior and respond to temperature variations in their environment, as shown by their behavior on a thermal gradient. To investigate neuronal control of this behavior, we initiated a study of the structure of the amphidial neurons of this parasite. The same number and types of neuronal dendritic processes are found in the amphids of the O. dentatum L3i as in those of its close relatives Haemonchus contortus and Ancylostoma caninum. Well-developed dendritic processes of wing cells are located in the amphidial sheath cells, these being similar to wing cells AWA in the free-living nematode Caenorhabditis elegans but actually more extensive. Similar to its close relatives just mentioned, and C. elegans as well, O. dentatum L3i has prominent finger cell processes, the finger cell neurons being the thermoreceptors in all 3 of the preceding species. However, unlike the arrangement seen in H. contortus and A. caninum, where the microvilli-like "fingers" of these neurons lie dorsal to the amphidial channel and occupy a very large portion (>50%) of the anterior end of the larva, the dendritic process of the finger cells in O. dentatum extends into unusual linguiform projections that, in turn, extend into the lumen of the mouth tube, a complex structural arrangement that has not been described for any other nematode.
Collapse
Affiliation(s)
- Fredrik Hoholm
- Department of Pathobiology/Parasitology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tobata-Kudo H, Kudo H, Tada I. Strongyloides ratti: chemokinesis of glycolytic enzyme- and lectin-treated third-stage infective larvae in vitro. Parasitol Int 2005; 54:147-52. [PMID: 15866477 DOI: 10.1016/j.parint.2005.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 03/04/2005] [Indexed: 11/28/2022]
Abstract
The infective third-stage larvae (L3s) of Strongyloides ratti, a parasitic nematode in rodents, showed two types of chemokinesis on a gradient of sodium chloride (NaCl) in an in vitro agarose tracking assay. The types were a consistent directional avoidance behavior under unfavorable environmental conditions and a reduced avoidance behavior under favorable conditions. We examined the effects of treatments with glycolytic enzymes and lectins by analyzing the avoidance behavior. L-Fucose dehydrogenase, hyaluronidase, beta-glucosidase, alpha-mannosidase, beta-galactosidase, concanavalin A, wheat germ agglutinin and soybean agglutinin exhibited inhibitory or enhancive effects on chemokinesis. We also confirmed the sites of the amphids of L3s aside from the mouth at the anterior end by scanning electron microscopy, and that concanavalin A-binding sites existed in the vicinity of the amphids using lectin-histochemistry. The carbohydrate moieties in the amphids of S. ratti L3s may play an important role as chemosensors in perceiving environmental cues.
Collapse
Affiliation(s)
- Hiroe Tobata-Kudo
- Tobata Laboratory, 1-20-10 Asakawagakuendai, Yahatanishi-ku, Kitakyushu 807-0871, Japan.
| | | | | |
Collapse
|
34
|
Tobata-Kudo H, Kudo H, Tada I. Strongyloides ratti: thermokinesis of glycolytic enzyme- and lectin-treated third-stage infective larvae in vitro. Parasitol Res 2005; 95:314-8. [PMID: 15696317 DOI: 10.1007/s00436-004-1282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 11/23/2004] [Indexed: 11/28/2022]
Abstract
The infective third-stage larvae (L3s) of a parasitic nematode of rodents, Strongyloides ratti, showed three types of thermokinesis on a temperature gradient using an in vitro agarose tracking assay method. These depended both on the pattern of gradient temperature and the prior culture temperature. Most L3s (> or = 80%) isolated from rat feces cultured at 25 degrees C and placed on a gradient at temperatures between 30 degrees C and 37 degrees C showed no directional response, at 22-29 degrees C more than 50% of the L3s showed positive thermokinesis, at 21 degrees C L3s showed positive, negative and no directional responses in the same ratio, while at 18-20 degrees C, L3s showed negative thermokinesis (approx. 40%) or no directional response (approx. 60%) as in our previous study. The present study describes the effects of glycolytic enzyme- and lectin-treated positive thermokinesis of L3s. alpha-Glucosidase or concanavalin A significantly exhibited inhibitory effects on thermokinesis.
Collapse
Affiliation(s)
- Hiroe Tobata-Kudo
- Tobata Laboratory, 1-20-10 Asakawagakuendai, Yahatanishi-ku, 807-0871 Kitakyushu, Japan.
| | | | | |
Collapse
|
35
|
Haas W, Haberl B, Idris I, Kallert D, Kersten S, Stiegeler P. Behavioural strategies used by the hookworms Necator americanus and Ancylostoma duodenale to find, recognize and invade the human host. Parasitol Res 2004; 95:30-9. [PMID: 15614587 DOI: 10.1007/s00436-004-1257-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 10/08/2004] [Indexed: 11/28/2022]
Abstract
The infective third-stage larvae of the hookworms Necator americanus and Ancylostoma duodenale infect their human hosts by active skin invasion, but A. duodenale is in addition capable of oral infection. The behaviour of the larvae when crawling on surfaces has already been described. Here we analyse in various in vitro systems the other behavioural invasion phases: activation, penetration, and orientation within the host. The larvae normally remained in a motionless, energy-saving, resting posture. An activation to sinusoidal locomotion was stimulated in both species by similar cues such as touch, vibration, water currents, heat, light, and chemicals. Human breath in addition stimulated searching and waving ("nictating") behaviour, which facilitates a change-over to the host. Activating cues in air streams were warmth and moisture; CO2 activated only in combination with warmth and/or moisture. Penetration behaviour in both species was stimulated by warmth and skin extracts. The stimulating components of skin extracts were fatty acids, but their stimulating characteristics differed from those inducing schistosome cercarial skin penetration. After penetration into agar substrates, both species showed thermo-orientation, but only A. duodenale followed gradients of serum. The directing serum cues were not amino acids and glucose (the supposed cues for schistosome blood vessel localization), but Ringer's solution attracted the larvae. The host-finding and host-invasion behaviour of both hookworm species is well adapted to the invasion of the human skin, and there seems to be no particular adaptation of A. duodenale behaviour to the oral infection mode. Hookworm host-finding behaviour is not as complex as that of schistosome cercariae but seems well adapted to the ecological conditions in the transmission sites.
Collapse
Affiliation(s)
- Wilfried Haas
- Institute for Zoology I, University Erlangen-Nuernberg, Staudtstrasse 5, 91058, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Haas W, Haberl B, Idris I, Kersten S. Infective larvae of the human hookworms Necator americanus and Ancylostoma duodenale differ in their orientation behaviour when crawling on surfaces. Parasitol Res 2004; 95:25-9. [PMID: 15614586 DOI: 10.1007/s00436-004-1256-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
The infective third stage larvae of hookworms infect their hosts by active skin invasion, and they find and recognize their hosts by the behavioural phases of activation, directed crawling, and penetration. Here we analyse the orientation of the infective larvae of the human hookworms Necator americanus and Ancylostoma duodenale when crawling on surfaces. Their behaviour differed from that of the larvae of the dog hookworm Ancylostoma caninum, but the two species also differed from each other. N. americanus crawled towards light, but A. duodenale did not. Both species migrated towards the warm ends of thermal gradients, and this response was more sensitive than in other skin-invading helminths (threshold 0.09 degrees C/cm). However, A. duodenale turned back and accumulated at higher temperatures than N. americanus [turn-back 45.7 (44.5-49.9) vs 41.5 (38.5-43.9) degrees C; accumulation 43.6 (41.6-46.0) vs 39.5 (37.9-43.0) degrees C]. In contrast to other skin-invading helminths, both species showed no chemo-orientation towards skin compounds when crawling on surfaces. This behaviour may reflect adaptations for reaching the skin surface from hairs or adhering material, but the differences in the orientation of the two species could not be attributed to differing transmission strategies.
Collapse
Affiliation(s)
- Wilfried Haas
- Institute for Zoology I, University Erlangen-Nuernberg, Staudtstrasse 5, 91058, Erlangen, Germany.
| | | | | | | |
Collapse
|
37
|
Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, Swain GP, Knight PA, Donaldson DD, Lazar MA, Miller HRP, Schad GA, Scott P, Wu GD. RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci U S A 2004; 101:13596-600. [PMID: 15340149 PMCID: PMC518800 DOI: 10.1073/pnas.0404034101] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Indexed: 01/16/2023] Open
Abstract
Gastrointestinal (GI) nematode infections are an important public health and economic concern. Experimental studies have shown that resistance to infection requires CD4(+) T helper type 2 (Th2) cytokine responses characterized by the production of IL-4 and IL-13. However, despite >30 years of research, it is unclear how the immune system mediates the expulsion of worms from the GI tract. Here, we demonstrate that a recently described intestinal goblet cell-specific protein, RELMbeta/FIZZ2, is induced after exposure to three phylogenetically distinct GI nematode pathogens. Maximal expression of RELMbeta was coincident with the production of Th2 cytokines and host protective immunity, whereas production of the Th1 cytokine, IFN-gamma, inhibited RELMbeta expression and led to chronic infection. Furthermore, whereas induction of RELMbeta was equivalent in nematode-infected wild-type and IL-4-deficient mice, IL-4 receptor-deficient mice showed minimal RELMbeta induction and developed persistent infections, demonstrating a direct role for IL-13 in optimal expression of RELMbeta. Finally, we show that RELMbeta binds to components of the nematode chemosensory apparatus and inhibits chemotaxic function of a parasitic nematode in vitro. Together, these results suggest that intestinal goblet cell-derived RELMbeta may be a novel Th2 cytokine-induced immune-effector molecule in resistance to GI nematode infection.
Collapse
Affiliation(s)
- David Artis
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Forbes WM, Ashton FT, Boston R, Zhu X, Schad GA. Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively. Vet Parasitol 2004; 120:189-98. [PMID: 15041094 DOI: 10.1016/j.vetpar.2004.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 01/09/2004] [Indexed: 11/27/2022]
Abstract
Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.
Collapse
Affiliation(s)
- W M Forbes
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Rosenthal Building, Room 212, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
International travel and increasingly exotic diets have resulted in an increase in cases of cutaneous larva migrans in industrialized countries. A broader spectrum of clinical presentation and complications of cutaneous larva migrans is recognized by clinicians. A new syndrome, eosinophilic enteritis, has been described in Australia and may be more widespread as new diagnostic tests are used more widely. Other causes of cutaneous migration, such as gnathostomiasis and sparganosis, should be considered, and a recent outbreak of gnathostomiasis in Mexico suggests that clinicians must be alert to these unusual infections arising in patients outside their traditional distribution.
Collapse
Affiliation(s)
- Stephen H. Gillespie
- Department of Medical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
40
|
Gunawardena NK, Fujimaki Y, Aoki Y. Chemotactic response of Brugia pahangi infective larvae to jird serum in vitro. Parasitol Res 2003; 90:337-42. [PMID: 12695907 DOI: 10.1007/s00436-003-0838-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Accepted: 01/09/2003] [Indexed: 10/26/2022]
Abstract
The Brugia pahangi infective larval response to jird serum was studied using an agar plate assay. Larvae placed onto the agar remained at the same place for 60 min. Once the larvae were stimulated by serum, more than 95% oriented towards the serum and reached it within few minutes. This larval response was inhibited by an activator of phosphodiesterase (imidazole), adenylate cyclase inhibitors (SQ22536 and MDL-12330A) and protein kinase A inhibitor. An inhibitor of phosphodiesterase (IBMX), an activator of adenylate cyclase (forskolin) and an membrane permeant analogue of cAMP (8-bromo-cAMP), caused a number of larvae to move out from the inoculation area towards the other zones. To our knowledge, this is the first report of a chemotactic response by B. pahangi larvae to host serum. We conclude that B. pahangi larvae show a chemotaxic response to host serum, and that cAMP and cAMP dependent protein kinase are involved in the signal transduction.
Collapse
Affiliation(s)
- N K Gunawardena
- Department of Parasitology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, 852-8523 Nagasaki, Japan.
| | | | | |
Collapse
|
41
|
Sciacca J, Forbes WM, Ashton FT, Lombardini E, Gamble HR, Schad GA. Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. Parasitol Int 2002; 51:53-62. [PMID: 11880227 DOI: 10.1016/s1383-5769(01)00105-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The response of infective third-stage larvae (L3) of three species of parasitic nematodes, Ancylostoma caninum, Strongyloides stercoralis, and Haemonchus contortus to carbon dioxide (CO(2)) at physiological concentrations was investigated. L3 of the skin-penetrating species, A. caninum and S. stercoralis, were stimulated by CO(2) at the concentration found in human breath (3.3-4%); these larvae responded by crawling actively, but not directionally. Crawling was not stimulated by breath passed through a CO(2)-removing "scrubber" or by "bench air". Both A. caninum and S. stercoralis L3 stopped crawling when exposed to 5% CO(2) for 1 min. L3 of A. caninum became active 9-14 min after exposure to 5% CO(2) ended, but activity resumed more rapidly (10-15 s) if larvae were subsequently exposed to breath or breath through the scrubber. L3 of S. stercoralis resumed crawling 30-35 s after exposure to 5% CO(2), but resumed crawling within a very few seconds when exposed to breath or breath through the scrubber. Thus, while 5% CO(2) was inhibitory, lower concentrations of this gas stimulated L3 of both species. Apparently, exposing immobilized larvae to breath or breath through the scrubber causes the environmental CO(2) concentration to drop to a level that is stimulatory. The L3 of H. contortus ceased crawling and coiled when exposed to human breath or to 1% CO(2), but continued to move within the coil in both cases. The crawling response of the L3 of the two skin-penetrating species, A. caninum and S. stercoralis, to stimulation by CO(2) probably relates to their active host-finding behavior, while the cessation response elicited by CO(2) in H. contortus larvae may relate to the fact that they rely on passive ingestion by a ruminant host.
Collapse
Affiliation(s)
- Joslyn Sciacca
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bhopale VM, Kupprion EK, Ashton FT, Boston R, Schad GA. Ancylostoma caninum: the finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm. Exp Parasitol 2001; 97:70-6. [PMID: 11281703 DOI: 10.1006/expr.2000.4575] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bhopale, V. M., Kupprion, E. K., Ashton, F. T., Boston, R., and Schad, G. A. 2001. Ancylostoma caninum: The finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm. Experimental Parasitology 97, 70-76. In the amphids (anteriorly positioned, paired sensilla) of the free-living nematode Caenorhabditis elegans, the so-called finger cells (AFD), a pair of neurons, each of which ends in a cluster of microvilli-like projections, are known to be the primary thermoreceptors. A similar neuron pair in the amphids of the parasitic nematode Haemonchus contortus is also known to be thermoreceptive. The hookworm of dogs, Ancylostoma caninum, has apparent structural homologs of finger cells in its amphids. The neuroanatomy of the amphids of A. caninum and H. contortus is strikingly similar, and the amphidial cell bodies in the lateral ganglia of the latter nematode have been identified and mapped. When the lateral ganglia of first-stage larvae (L1) of A. caninum are examined with differential interference contrast microscopy, positional homologs of the recognized amphidial cell bodies in the lateral ganglia of H. contortus L1 are readily identified in A. caninum. The amphidial neurons in A. caninum were consequently given the same names as those of their apparent homologs in H. contortus. It was hypothesized that the finger cell neurons (AFD) might mediate thermotaxis by the skin-penetrating infective larvae (L3) of A. caninum. Laser microbeam ablation experiments with A. caninum were conducted, using the H. contortus L1 neuronal map as a guide. A. caninum L1 were anesthetized and the paired AFD class neurons were ablated. The larvae were then cultured to L3 and assayed for thermotaxis on a thermal gradient. L3 with ablated AFD-class neuron pairs showed significantly reduced thermotaxis compared to control groups. The thermoreceptive function of the AFD-class neurons associates this neuron pair with the host-finding process of the A. caninum infective larva and shows functional homology with the neurons of class AFD in C. elegans and in H. contortus.
Collapse
Affiliation(s)
- V M Bhopale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, U.S.A
| | | | | | | | | |
Collapse
|
43
|
Li J, Zhu X, Ashton FT, Gamble HR, Schad GA. Sensory neuroanatomy of a passively ingested nematode parasite, Haemonchus contortus: amphidial neurons of the third-stage larva. J Parasitol 2001; 87:65-72. [PMID: 11227904 DOI: 10.1645/0022-3395(2001)087[0065:snoapi]2.0.co;2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The sensory neuronal ultrastructure of the amphids of the infective larva (L3) of Haemonchus contortus was analyzed, compared, and contrasted with that of the first-stage larva (L1). As in L1, each amphid of the L3 is innervated by 12 neurons. Thirteen ciliated dendritic processes of 10 neurons, 3 with double processes, lie in each amphidial channel. The dendritic process of each finger cell neuron ends in a large number of digitiform projections or "fingers," many more than in the L1. Processes of another pair of specialized neurons, probable homologs of wing cells in Caenorhabditis elegans, extend into the extreme anterior tip of the larva; they are much longer than those in L1. In L3, the neurons exit through the posterior wall of the amphidial chamber individually rather than in a bundle, as in L1. Cell constancy between L1 and L3 was confirmed, and the neurons were individually identified. Significant neuron-specific variations, presumably related to functional differences between the 2 stages were observed. In contrast, species-specific differences are surprisingly small. Haemonchus contortus is closely related to hookworms and has amphidial structure nearly identical to that in hookworms and similar to that in C. elegans, to which it is also closely related.
Collapse
Affiliation(s)
- J Li
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
44
|
Lopez PM, Boston R, Ashton FT, Schad GA. The neurons of class ALD mediate thermotaxis in the parasitic nematode, Strongyloides stercoralis. Int J Parasitol 2000; 30:1115-21. [PMID: 10996330 DOI: 10.1016/s0020-7519(00)00087-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strongyloides stercoralis, a skin-penetrating nematode parasite of homeotherms, migrates to warmth. In nematodes, the amphids, anteriorly positioned, paired sensilla, each contain a bundle of sensory neurons. In the amphids of the free-living nematode Caenorhabditis elegans, a pair of neurons, each of which ends in a cluster of microvilli-like projections, are known to be the primary thermoreceptors, and have been named the finger cells (class AFD). A similar neuron pair in the amphids of the parasite Haemonchus contortus is also known to be thermosensory. Strongyloides stercoralis lacks finger cells but, in its amphids, it has a pair of neurons whose dendrites end in a multi-layered complex of lamellae, the so-called lamellar cells (class ALD). Consequently, it was hypothesised that these lamellar cells might mediate thermotaxis by the skin-penetrating infective larva of this species. To investigate this, first stage S. stercoralis larvae were anaesthetised and the paired ALD class neurons were ablated with a laser microbeam. The larvae were then cultured to the infective third stage (L3) and assayed for thermotaxis on a thermal gradient. L3 with ablated ALD class neuron pairs showed significantly reduced thermotaxis compared with control groups. The thermoreceptive function of the ALD class neurons (i) associates this neuron pair with the host-finding process of S. stercoralis and (ii) demonstrates a functional similarity with the neurons of class AFD in C. elegans. The structural and positional characteristics of the ALD neurons suggest that these neurons may, in fact, be homologous with one pair of flattened dendritic processes known as wing cells (AWC) in C. elegans, while their florid development and thermosensory function suggest homology with the finger cells (AFD) of that nematode.
Collapse
Affiliation(s)
- P M Lopez
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Rosenthal Building, Room 212, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
45
|
Li J, Zhu X, Boston R, Ashton FT, Gamble HR, Schad GA. Thermotaxis and thermosensory neurons in infective larvae of Haemonchus contortus, a passively ingested nematode parasite. J Comp Neurol 2000; 424:58-73. [PMID: 10888739 DOI: 10.1002/1096-9861(20000814)424:1<58::aid-cne5>3.0.co;2-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a basis for studies of thermal behavior of infective larvae (L3) of Haemonchus contortus resulting from ablation of amphidial neurons, the locations of the amphidial cell bodies in the hatchling larva (L1) were compared with their locations in the L3. We sought to verify that killing each targeted cell body in L1 destroys the putative corresponding dendrite of the L3. These comparisons confirmed the predicted cell body-to-dendrite connections, as well as similarities in the general amphidial structure of the two stages. We then conducted a series of studies using laser microbeam ablation of amphidial cell bodies in the L1 to determine the role of specific neurons in the thermal behavior of the L3. In a thermal gradient, normal L3 of H. contortus migrate to the temperature at which they were cultured and/or maintained. Larvae grown at 16 degrees or 26 degrees C migrate appropriately to either of these temperatures. Larvae grown to the L3 stage at 16 degrees C and then moved to 26 degrees C become acclimated to this temperature and thereafter migrate to it. However, when the putative thermosensory neurons, the finger cell neurons (AFD), were ablated in hatchling larvae with a laser microbeam, and these were grown to the L3 stage and tested on a radial thermal gradient, they failed to migrate to their culture temperature. Instead, they moved actively and continuously over much of the assay plate surface, with no obviously oriented cryo- or thermotactic movement. Ablation-control larvae, those in which putatively chemosensory neuron classes ASE or AWC were killed, migrated normally to their culture temperature. When the RIA interneurons (identified by positional homology with those of Caenorhabditis elegans) were ablated, the operated larvae moved actively, but circled near the initial placement point; control larvae, in which other nonamphidial neurons were killed, migrated normally. These results indicate that the finger cell neurons (AFD) are the primary thermosensory class in H. contortus. The RIA-class neurons integrate thermal responses in H. contortus, as do their putative structural homologs in C. elegans, but the behavior of H. contortus subsequent to RIA ablation is strikingly different.
Collapse
Affiliation(s)
- J Li
- School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
46
|
Tobata-Kudo H, Shimada M, Koga M, Tada I. Strongyloides ratti: thermokinetic behavior of third-stage larvae on a temperature gradient. Exp Parasitol 2000; 95:196-201. [PMID: 10964647 DOI: 10.1006/expr.2000.4526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the thermokinetic behaviors of infective third-stage larvae (L3) of the rodent parasitic nematode Strongyloides ratti on temperature gradients using an in vitro agarose tracking assay method. Observed behaviors included both negative and positive thermokineses, the direction of movement depending both on the gradient temperature at which larvae were initially placed and on prior experience of culture temperature. Larvae isolated from rat feces cultured at 25 degrees C and placed on a gradient at temperatures between 22 degrees and 29 degrees C tended to move toward higher temperatures. At higher placement temperatures, most larvae moved little and showed no directional response, whereas at lower placement temperatures, many migrated toward cooler temperatures. At placement temperatures of 20 degrees C or below, few or no larvae moved toward the zone of higher temperature. Larvae isolated from rat feces cultured at 20 degrees C tended to migrate to a high temperature area regardless of placed temperature. Those cultured at 30 degrees C did not respond to the temperature gradient. L3 cultured at 30 degrees C were significantly less infective to rats than those cultured at 25 degrees or 20 degrees C. Additional experiments were designed to demonstrate thermokinetic behaviors during the period after reaching the L3 stage. Larvae incubated in double distilled water (DDW) for 24 h at 37 degrees C lost their ability to respond to lower temperatures, while in those incubated in DDW at 15 degrees and 25 degrees C, responses were still apparent. The thermokinetic behavior of S. ratti L3 is affected by surrounding environmental temperatures and this may have an important role in host finding.
Collapse
Affiliation(s)
- H Tobata-Kudo
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | |
Collapse
|
47
|
Lewis EE, Ricci M, Gaugler R. Host recognition behaviour predicts host suitability in the entomopathogenic nematode Steinernema carpocapsae (Rhabditida:Steinernematidae). Parasitology 1996; 113 ( Pt 6):573-9. [PMID: 8939054 DOI: 10.1017/s0031182000067627] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Steinernema carpocapsae (Rhabditida: Steinernematidae) host recognition behaviour was assessed and compared with 2 measures of host suitability. Previous research showed that S. carpocapsae infective juveniles respond to host cues in a hierarchical order, with attraction to Galleria mellonella volatiles being stimulated by contact with G. mellonella cuticle. We measured host recognition behaviour by calculating the percentage response of S. carpocapsae infective juveniles to volatiles produced by G. mellonella last instars after the nematodes were exposed to the cuticle of 11 candidate arthropod hosts and 2 control surfaces. Host suitability was measured by nematode-induced mortality to candidate hosts at 2 nematode doses and the level of reproduction supported by each host. The highest recognition response was scored for Agrotis ipsilon (Lepidoptera: Noctuidae). This insect also incurred nearly 100% mortality due to nematode infection and supported the highest level of reproduction. Non-insect arthropods tested (Chilopoda and Isopoda) stimulated no behavioural response and were not susceptible to nematode infection. Other insect species elicited intermediate levels of the recognition response. There were significant correlations between behavioural response and nematode-induced mortality at the lower dose. The level of reproduction supported by the candidate hosts was also correlated with S. carpocapsae behavioural response.
Collapse
Affiliation(s)
- E E Lewis
- Department of Entomology, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick 08903-0231, USA.
| | | | | |
Collapse
|
48
|
Prociv P, Croese J. Human enteric infection with Ancylostoma caninum: hookworms reappraised in the light of a "new" zoonosis. Acta Trop 1996; 62:23-44. [PMID: 8971276 DOI: 10.1016/s0001-706x(96)00016-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies in northeastern Australia indicate that enteric infection with Ancylostoma caninum is a leading cause of human eosinophilic enteritis. Much more frequent accompaniments of this infection are obscure abdominal pain with or without blood eosinophilia, while a large part of the population is probably infected asymptomatically. These conclusions are based on extensive serological investigations in patients and control subjects, as well as 15 cases in which single, adult hookworms were identified in situ in patients. In no case has more than one worm been identified, and none has been fully mature, so the infections have never been patent. Aphthous ulcers of the terminal ileum, caecum and colon have been seen in association with this infection and have also been observed in almost 5% of patients who are colonoscoped in north Queensland. Serodiagnosis has relied on an IgG and IgE ELISA using excretory-secretory antigens from adult A. caninum, but Western blot using these antigens to identify IgG4 antibodies to a protein of molecular weight 68 kDa (Ac68) promises to be more specific and sensitive. However, identical antigens appear to be secreted by the anthropophilic hookworms as well. The clinical, public health and biological significance of these findings are discussed in detail.
Collapse
Affiliation(s)
- P Prociv
- Department of Parasitology, University of Queensland, Brisbane, Australia.
| | | |
Collapse
|