1
|
van Ede JM, Soic D, Pabst M. Decoding Sugars: Mass Spectrometric Advances in the Analysis of the Sugar Alphabet. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39972673 DOI: 10.1002/mas.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Monosaccharides play a central role in metabolic networks and in the biosynthesis of glycomolecules, which perform essential functions across all domains of life. Thus, identifying and quantifying these building blocks is crucial in both research and industry. Routine methods have been established to facilitate the analysis of common monosaccharides. However, despite the presence of common metabolites, most organisms utilize distinct sets of monosaccharides and derivatives. These molecules therefore display a large diversity, potentially numbering in the hundreds or thousands, with many still unknown. This complexity presents significant challenges in the study of glycomolecules, particularly in microbes, including pathogens and those with the potential to serve as novel model organisms. This review discusses mass spectrometric techniques for the isomer-sensitive analysis of monosaccharides, their derivatives, and activated forms. Although mass spectrometry allows for untargeted analysis and sensitive detection in complex matrices, the presence of stereoisomers and extensive modifications necessitates the integration of advanced chromatographic, electrophoretic, ion mobility, or ion spectroscopic methods. Furthermore, stable-isotope incorporation studies are critical in elucidating biosynthetic routes in novel organisms.
Collapse
Affiliation(s)
- Jitske M van Ede
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Dinko Soic
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
2
|
Leontakianakou S, Grey C, Karlsson EN, Sardari RRR. An improved HPAEC-PAD method for the determination of D-glucuronic acid and 4-O-methyl-D-glucuronic acid from polymeric and oligomeric xylan. BMC Biotechnol 2024; 24:100. [PMID: 39668348 PMCID: PMC11636049 DOI: 10.1186/s12896-024-00931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
Glucuronic acid (GlcA) is an abundant substituent in hardwood xylan, and it is often found in its methylated form as methyl glucuronic acid (MeGlcA). GlcA and MeGlcA are sugar acids, bound to the xylose backbone at position O-2, and their presence can affect the digestibility of the polymer. Currently, detection of released GlcA or MeGlcA from synthetic substrates such as pNP-glucuronic acid can be achieved with colorimetric assays, whereas analysis from natural substrates such as xylan is more complicated. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) with an isocratic elution profile has been proposed for quantification of uronic acids in acid-hydrolysed wood samples. However, achieving sufficient separation for comprehensive analysis of hardwood-related xylan components, particularly MeGlcA remains challenging with this methodology. This study offers modified protocols for improved separation by introducing gradient elution profiles to effectively separate hydrolysed hardwood-related compounds, including MeGlcA, and GlcA within a single analytical run. The method showed excellent reproducibility and a standard curve of MeGlcA assured first order linearity in a wide range of concentrations, making the method excellent for quantification.
Collapse
Affiliation(s)
- Savvina Leontakianakou
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, 22100, Lund, Sweden.
| | - Carl Grey
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, 22100, Lund, Sweden
| | - Eva Nordberg Karlsson
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, 22100, Lund, Sweden
| | - Roya R R Sardari
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, 22100, Lund, Sweden
| |
Collapse
|
3
|
Siziya IN, Lim HJ, Baek S, Lee S, Seo MJ. Mannosidase-inhibiting iminosugar production by recombinant Corynebacterium glutamicum harboring the 1-deoxynojirimycin biosynthetic gene cluster. Int J Biol Macromol 2024; 278:134858. [PMID: 39163968 DOI: 10.1016/j.ijbiomac.2024.134858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
The iminosugar class of carbohydrate-active enzyme inhibitors has therapeutic applications in metabolic syndrome conditions, viral infections and cancer. Compared to chemical synthesis, microbial iminosugar production has benefits of cost, sustainability and optimization. In this study, the 1-deoxynojirimycin (DNJ) biosynthetic gene cluster from Bacillus velezensis MBLB0692, and its individual genes, were cloned into Corynebacterium glutamicum (Cg). Characterizations of the encoded aminotransferase GabT1, phosphatase Yktc1, and dehydrogenase GutB1, were performed with purified enzymes and whole cell biocatalysts bearing individual and clustered (TYB) genes. GabT1 showed a variable pattern in its half-reaction with a slow turnover. GutB1 was an alkaline dehydrogenase with a broad substrate specificity and no divalent ion dependency while the zinc-dependent phosphatase Yktc1 had substrate specificity that was both pH- and ion-dependent. The CgYktc1 and CgGutB1 whole cells were viable biocatalysts with wider ranges of substrates than their enzyme counterparts. The CgTYB cells produced mannosidase-inhibiting iminosugars corresponding to mannojirimycin dehydrate (162 m/z) and deoxymannojirimycin (164 m/z). Mannosidase inhibitors have been found to be effective in treating orphan diseases, cancer and viral infections, and their biosynthesis by recombinant C. glutamicum can be optimized for industrial production and novel drug development.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyo Jung Lim
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea
| | - Suhyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sanggil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea; Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
4
|
Ma X, Li C, Zhang J, Xin J, Mosongo I, Yang J, Hu K. Monosaccharide composition analysis by 2D quantitative gsHSQC i. Carbohydr Res 2024; 541:109168. [PMID: 38833821 DOI: 10.1016/j.carres.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
The physicochemical properties and biological activities of polysaccharides depend on their structures. Monosaccharide composition analysis is indispensable for the structural characterization of polysaccharides and is helpful in the quality control of polysaccharide preparation. Here, using a model mixture and tamarind seed polysaccharide as examples, we demonstrated that a quantitative 2D NMR method, gsHSQCi (three gradient-selective Heteronuclear Single Quantum Coherence spectra acquired with incremented repetition times, i = 1, 2, 3) can directly quantify a variety of monosaccharides in solution with adequate precision and accuracy, requiring no derivatization, postprocessing steps and column separation. Both anomeric and non-anomeric signals of monosaccharides can be utilized for content determination. More accurate quantification of fructose in a mixture containing nine monosaccharides is obtained, which is difficult to achieve by quantitative 1D 1HNMR and the common PMP-HPLC method (high-performance liquid chromatography through pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone) due to the peak overlapping and the poor derivatization efficiency, respectively. The results also revealed that Na[Fe(EDTA)] can serve as a proper relaxation-enhancing agent for saccharide samples to save experimental time. We expect that this approach can be applied as an alternative to analyzing the monosaccharide composition and be helpful in interpreting the structure of polysaccharides.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Caihong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Junyin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiang Xin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Isidore Mosongo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
5
|
Valorization of agro-industrial byproducts: Extraction and analytical characterization of valuable compounds for potential edible active packaging formulation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Wan Y, Xu X, Gilbert RG, Sullivan MA. A Review on the Structure and Anti-Diabetic (Type 2) Functions of β-Glucans. Foods 2021; 11:57. [PMID: 35010185 PMCID: PMC8750484 DOI: 10.3390/foods11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that β-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about the antidiabetic activities of β-glucans have been published, potentially resulting from incomplete understanding of their precise structural characteristics. This review aims to increase clarity on the structure-function relationships of β-glucans in treating type 2 diabetes by examining detailed structural and conformational features of naturally derived β-glucans, as well as both chemical and instrumental methods used in their characterization, and their underlying anti-diabetic mechanisms. This may help to uncover additional structure and function relationships and to expand applications of β-glucans.
Collapse
Affiliation(s)
- Yujun Wan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;
| | - Robert G. Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Mitchell A. Sullivan
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
MITOMO SI, NEGISHI Y, MUTAI T, INOUE Y. Development of Core-Shell Ion-Exchange Resin by Changing the Core-Shell Ratio and Its Elution Behavior with Carbohydrates. CHROMATOGRAPHY 2021. [DOI: 10.15583/jpchrom.2021.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Yukiko NEGISHI
- Institute of Nutrition Sciences, Kagawa Nutrition University
| | - Toshiki MUTAI
- Institute of Industrial Science, the University of Tokyo
| | - Yutaka INOUE
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
8
|
Fan Q, Zhang L, Dong C, Zhong L, Fang X, Huan M, Ye X, Huang Y, Li Z, Cui Z. Novel Malto‐Oligosaccharide‐Producing Amylase AmyAc from
Archangium
sp. Strain AC19 and Its Catalytic Properties. STARCH-STARKE 2021. [DOI: 10.1002/star.202100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qiwen Fan
- Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture College of Life Science Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture College of Life Science Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Chaonan Dong
- Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture College of Life Science Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Linli Zhong
- Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture College of Life Science Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Xiaodong Fang
- Guangzhou Hanyun Pharmaceutical Technology Co. Ltd. Guangzhou 510000 P. R. China
| | - Minghui Huan
- Microbial Research Institute of Liaoning Province Chaoyang P. R. China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture College of Life Science Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture College of Life Science Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture College of Life Science Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture College of Life Science Nanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
9
|
Guan P, Xie C, Li L, Fang X, Wu F, Hu JJ, Tang K. Structural resolution of disaccharides through halogen anion complexation using negative trapped ion mobility spectrometry. Talanta 2021; 230:122348. [PMID: 33934797 DOI: 10.1016/j.talanta.2021.122348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023]
Abstract
Carbohydrates are an indispensable part of early life evolution. The determination of their structures is a key step to analyze their critical roles in biological systems. A variation of composition, glycosidic linkage, and (or) configuration between carbohydrate isomers induces structure diversity and brings challenges for their structural determination. Ion mobility spectrometry (IMS), an emerging gas-phase ion separation technology, has been considered as a promising tool for performing carbohydrate structure elucidation. In this work, eight disaccharides were analyzed by trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) in the negative ion mode as the complexed form of [M + X]-, where M = disaccharide, and X = Cl, Br, and I. As compared to the positive ion analysis of the selected disaccharide in a sodiated form, a reversal charge state provided the ability to eliminate or even reverse the collision cross section (CCS) difference between disaccharide isomers. By the combination of TIMS analysis and the calculation of density functional theory, the only observed two conformers of ions [lactulose + I]- may result from different adduction sites for an iodide anion. Based on the comparison of different halogen adducts, the [M + I]- ion form exhibited more powerful ability for isomeric disaccharide differentiation with an average resolution (RP-P) of 1.17, which results in a 34.5% improvement as compared to the corresponding chloride adducts. This result indicates that the use of negative charge states, especially the complexation of an iodide anion, could be a supplemental strategy to commonly used positive ion analysis for carbohydrate separation.
Collapse
Affiliation(s)
- Pengfei Guan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chengyi Xie
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Lei Li
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xiangyu Fang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Jun Jack Hu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
10
|
Wang Q, Bhattarai M, Zhao P, Alnsour T, Held M, Faik A, Chen H. Fast and Sensitive Detection of Oligosaccharides Using Desalting Paper Spray Mass Spectrometry (DPS-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2226-2235. [PMID: 32910855 PMCID: PMC8189650 DOI: 10.1021/jasms.0c00310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Conventional mass spectrometry (MS)-based analytical methods for small carbohydrate fragments (oligosaccharides, degree of polymerization 2-12) are time-consuming due to the need for an offline sample pretreatment such as desalting. Herein, we report a new paper spray ionization method, named desalting paper spray (DPS), which employs a piece of triangular filter paper for both sample desalting and ionization. Unlike regular paper spray ionization (PSI) and nanoelectrospray ionization (nanoESI), DPS-MS allows fast and sensitive detection of oligosaccharides in biological samples having complex matrices (e.g., Tris, PBS, HEPES buffers, or urine). When an oligosaccharide sample is loaded onto the filter paper substrate (10 × 5 mm, height × base) made mostly of cellulose, oligosaccharides are adsorbed on the paper via hydrophilic interactions with cellulose. Salts and buffers can be washed away using an ACN/H2O (90/10 v/v) solution, while oligosaccharides can be eluted from the paper using a solution of ACN/H2O/formic acid (FA) (10/90/1 v/v/v) and directly spray-ionized from the tip of the paper. Various saccharides at trace levels (e.g., 50 fmol) in nonvolatile buffer can be quickly analyzed by DPS-MS (<5 min per sample). DPS-MS is also applicable for direct detection of oligosaccharides from glycosyltransferase (GT) reactions, a challenging task that typically requires a radioactive assay. Quantitative analysis of acceptor and product oligosaccharides shows increased product with increased GT enzymes used for the reaction, a result in line with the radioactivity assay. This work suggests that DPS-MS has potential for rapid oligosaccharide analysis from biological samples.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - Pengyi Zhao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Tariq Alnsour
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Ahmed Faik
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| |
Collapse
|
11
|
Fu X, Cebo M, Ikegami T, Lämmerhofer M. Separation of carbohydrate isomers and anomers on poly-N-(1H-tetrazole-5-yl)-methacrylamide-bonded stationary phase by hydrophilic interaction chromatography as well as determination of anomer interconversion energy barriers. J Chromatogr A 2020; 1620:460981. [PMID: 32115232 DOI: 10.1016/j.chroma.2020.460981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/31/2022]
Abstract
A new commercially available HPLC column, poly-N-(1H-tetrazole-5-yl)-methacrylamide-bonded stationary phase (Daicel DCpak PTZ), was systematically evaluated for its carbohydrate isomer separation capability by hydrophilic interaction liquid chromatography (HILIC) with charged aerosol detection (CAD) or (tandem) mass spectrometry. Reducing sugars tend to split into two anomer peaks which makes carbohydrate isomer separations in non-derivatized form even more complicated. For practical purposes anomer separations are therefore ideally suppressed which can be accomplished by using high temperature or high pH that are both associated with fast interconversion kinetics leading to peak coalescence, or on the other hand by conditions with low chromatographic anomer selectivity. Four major hexoses (glucose, mannose, galactose, fructose), five main pentoses (ribose, ribulose, xylose, xylulose, arabinose) and five most important disaccharides (maltose, cellobiose, lactose, sucrose, trehalose) were analyzed as single carbohydrate standards by isocratic HILIC with 0.1% (v/v) formic acid and 2 mM ammonium acetate at various temperatures to study anomer interconversion equilibria in a pH-dependent manner. Rate constants of forward (α→β) and backward (β→α) anomerization and corresponding energy barriers were calculated. The energy barriers of anomerisation were in the range of around 83-91 kJ mol-1 at 298 K and the difference between forward (α→β) and backward reaction (β→α) was typically between 1-3 kJ mol-1. The systematic studies finally allowed to pick conditions for the simultaneous analysis of all 14 carbohydrates by HILIC-ESI-MS(/MS) with PTZ in gradient elution mode. A combination of carbohydrate isomer-selective LC (with PTZ), tandem MS (with carbohydrate group-selective MS1 and some species-specific SRM transitions) and a simple deconvolution strategy allowed the determination of all carbohydrates of the complex test mixture except for the disaccharide pair lactose and maltose (which can be determined as sum). Consequently, the proposed method represents a successful step towards a global glycometabolomics profiling method of mono- and disaccharides by HILIC-ESI-MS/MS.
Collapse
Affiliation(s)
- Xiaoqing Fu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Malgorzata Cebo
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tohru Ikegami
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Department of Materials Synthesis, Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
12
|
Analysis of levoglucosan and its isomers in atmospheric samples by ion chromatography with electrospray lithium cationisation - Triple quadrupole tandem mass spectrometry. J Chromatogr A 2020; 1610:460557. [PMID: 31570193 DOI: 10.1016/j.chroma.2019.460557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022]
Abstract
Biomass burning (BB) emissions are a significant source of particles to the atmosphere, especially in the Southern Hemisphere, where the occurrence of anthropogenic and natural wild fires is common. These emissions can threaten human health through increased exposure, whilst simultaneously representing a significant source of trace metals and nutrients to the ocean. One well known method to track BB emissions is through monitoring the atmospheric concentration of specific monosaccharide anhydrides (MAs), specifically levoglucosan and its isomers, mannosan and galactosan. Herein, a new method for the determination of levoglucosan and its isomers in marine and terrestrial aerosol samples is presented, which delivers both high selectivity and sensitivity, through the coupling of ion chromatography and triple quadrupole tandem mass spectrometry. Optimal chromatographic conditions, providing baseline separation for target anhydrosugars in under 8 min, were obtained using a Dionex CarboPacⓇ PA-1 column with an electrolytically generated KOH gradient. To improve the ionisation efficiency for MS detection, an organic make-up solvent was fed into the IC column effluent before the ESI source, and to further increase both sensitivity and selectivity, cationisation of levoglucosan was investigated by adding salts into the make-up solvent, namely, sodium, ammonium and lithium salts. Using positive lithium cationisation with 0.5 mM lithium chloride in methanol as the make-up solvent, delivered at a flow rate of 0.02 mL min-1, the levoglucosan response was improved by factors of 100 and 10, comparing to negative ionisation and positive sodium cationisation, respectively. Detection was carried out in SRM mode for quantitation and identification, achieving an instrumental LOD of 0.10, 0.12 and 0.5 µg L-1 for levoglucosan, mannosan and galactosan, respectively. Finally, the method was applied to the analysis of 41 marine and terrestrial aerosol samples from Australia, its surrounding coastal waters and areas within the remote Southern Ocean, covering a large range of BB marker concentrations.
Collapse
|
13
|
An improved phenol-sulfuric acid method for the determination of carbohydrates in the presence of persulfate. Carbohydr Polym 2020; 227:115332. [DOI: 10.1016/j.carbpol.2019.115332] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022]
|
14
|
Rohrer JS. Vaccine Quality Ensured by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection. SLAS Technol 2019; 25:320-328. [PMID: 31771418 DOI: 10.1177/2472630319890309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many important vaccines use bacterial capsular polysaccharides, or shorter polysaccharides or oligosaccharides, derived from the capsular polysaccharides, conjugated to protein. It is imperative that manufacturers understand the carbohydrate composition of these vaccines and deliver a product with a consistent polysaccharide or polysaccharide conjugate composition and content. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) is a major technique used to understand the carbohydrate composition of these vaccines and ensure product quality. HPAE-PAD separates and detects carbohydrates without analyte derivatization. This paper describes the basics of the HPAE-PAD technique and then reviews how it has been applied to Haemophilus influenzae type b, pneumococcal, meningococcal, group B streptococcal, and Salmonella polysaccharide and corresponding conjugate vaccines.
Collapse
|
15
|
Durazzo A, Camilli E, Marconi S, Lisciani S, Gabrielli P, Gambelli L, Aguzzi A, Lucarini M, Kiefer J, Marletta L. Nutritional composition and dietary intake of composite dishes traditionally consumed in Italy. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Baldassarre S, Babbar N, Van Roy S, Dejonghe W, Maesen M, Sforza S, Elst K. Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chem 2018; 267:101-110. [DOI: 10.1016/j.foodchem.2017.10.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 07/15/2017] [Accepted: 10/09/2017] [Indexed: 11/27/2022]
|
17
|
Reversed phase ion-pair chromatographic separation of sugar alcohols by complexation with molybdate ion. J Chromatogr A 2018; 1547:71-76. [PMID: 29567366 DOI: 10.1016/j.chroma.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022]
Abstract
In this study, we developed a simple and sensitive reversed phase ion-pair chromatographic method for the analysis of C4-C6 sugar alcohols. The method is based on the on-line complexation of sugar alcohols with molybdate ion. The resulting dinuclear anionic complexes can be separated on a reversed-phase C18 column using tetrabutylammonium chloride as an ion-pairing reagent. The mobile phase (pH 3.1) consisted of 0.1 mM disodium molybdate, 1 mM hydrochloric acid and 0.4 mM tetrabutylammonium chloride - 10% v/v methanol. By complexing with molybdate ion, sugar alcohols can be detected by their UV absorption at 247 nm with high resolution and sensitivity. The quantification limits of the examined sugar alcohols calculated at S/N = 10 were 0.1 mM for erythritol and xylitol and 0.01 mM for arabitol, sorbitol, mannitol and dulcitol. The detector response was linear over three orders of magnitude of sugar alcohol concentration. The proposed method was successfully applied to measure sugar alcohols in health drinks, eyedrops and mouthwashes.
Collapse
|
18
|
Cao L, Tian H, Wu M, Zhang H, Zhou P, Huang Q. Determination of Curdlan Oligosaccharides with High-Performance Anion Exchange Chromatography with Pulsed Amperometric Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:3980814. [PMID: 31049244 PMCID: PMC6462318 DOI: 10.1155/2018/3980814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 05/13/2023]
Abstract
The increasing interest of curdlan oligosaccharides (COS) in medicine and plant protection fields implies a necessity to identify and quantify this product. In the present study, an efficient and sensitive analytical method based on high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was established for the simultaneous separation and determination of D-glucose and ß-1,3-linked COS ranging from (COS)2 to (COS)6 within 20 min. Detection limits were 0.01 to 0.03 mg/L. The optimized assay was performed on a CarboPac-PA100 analytical column (4 mm × 250 mm) using isocratic elution with water-0.2 M sodium hydroxide-0.5 M sodium acetate mixture (50 : 30 : 20, v/v/v) as the mobile phase at a flow rate of 0.8 mL/min. Regression equations indicated a good linear relationship (R 2 = 0.9992-1.0000, n = 6) within the test ranges. Quality parameters including precision and accuracy were fully validated and found to be satisfactory. More important, the regression of natural logarithm values of retention times (log10 RT) versus the degree polymerization (DP), as well as the slope coefficient of each COS's linear equation versus the corresponding DP, fitted a linear relationship well. These inherent linear relationships could provide valuable information to tentatively identify and quantify the COS even with the DP more than 6 without authentic standard. Furthermore, when the log10 RT was plotted against log10 flow rate for each COS, a perfect linear relationship was also observed.
Collapse
Affiliation(s)
- Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Huifang Tian
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Miaomiao Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Hongjun Zhang
- Ministry of Agriculture, Institute for the Control of Agrochemicals, No. 22 Maizidian Street, Beijing 110000, China
| | - Puguo Zhou
- Ministry of Agriculture, Institute for the Control of Agrochemicals, No. 22 Maizidian Street, Beijing 110000, China
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
19
|
Prandi B, Baldassarre S, Babbar N, Bancalari E, Vandezande P, Hermans D, Bruggeman G, Gatti M, Elst K, Sforza S. Pectin oligosaccharides from sugar beet pulp: molecular characterization and potential prebiotic activity. Food Funct 2018; 9:1557-1569. [DOI: 10.1039/c7fo01182b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pectin oligosaccharides (POS) obtained from sugar beet pulp with suitable technologies showed promising prebiotic activity.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food and Drug
- University of Parma
- Parma
- Italy
| | | | - Neha Babbar
- Department of Food and Drug
- University of Parma
- Parma
- Italy
- Flemish Institute for Technological Research
| | | | | | | | | | - Monica Gatti
- Department of Food and Drug
- University of Parma
- Parma
- Italy
| | - Kathy Elst
- Flemish Institute for Technological Research
- Mol
- Belgium
| | - Stefano Sforza
- Department of Food and Drug
- University of Parma
- Parma
- Italy
| |
Collapse
|
20
|
Carbohydrates Components of Some Italian Local Landraces: Garlic (Allium sativum L.). SUSTAINABILITY 2017. [DOI: 10.3390/su9101922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Zhang K, Cao M, Lou C, Wu S, Zhang P, Zhi M, Zhu Y. Graphene-coated polymeric anion exchangers for ion chromatography. Anal Chim Acta 2017; 970:73-81. [DOI: 10.1016/j.aca.2017.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 01/28/2023]
|
22
|
Feng HT, Li P, Rui G, Stray J, Khan S, Chen SM, Li SFY. Multiplexing N-glycan analysis by DNA analyzer. Electrophoresis 2017; 38:1788-1799. [PMID: 28426178 DOI: 10.1002/elps.201600404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 12/25/2022]
Abstract
Analysis of N-glycan structures has been gaining attentions over the years due to their critical importance to biopharma-based applications and growing roles in biological research. Glycan profiling is also critical to the development of biosimilar drugs. The detailed characterization of N-glycosylation is mandatory because it is a nontemplate driven process and that significantly influences critical properties such as bio-safety and bio-activity. The ability to comprehensively characterize highly complex mixtures of N-glycans has been analytically challenging and stimulating because of the difficulties in both the structure complexity and time-consuming sample pretreatment procedures. CE-LIF is one of the typical techniques for N-glycan analysis due to its high separation efficiency. In this paper, a 16-capillary DNA analyzer was coupled with a magnetic bead glycan purification method to accelerate the sample preparation procedure and therefore increase N-glycan assay throughput. Routinely, the labeling dye used for CE-LIF is 8-aminopyrene-1,3,6-trisulfonic acid, while the typical identification method involves matching migration times with database entries. Two new fluorescent dyes were used to either cross-validate and increase the glycan identification precision or simplify sample preparation steps. Exoglycosidase studies were carried out using neuramididase, galactosidase, and fucosidase to confirm the results of three dye cross-validation. The optimized method combines the parallel separation capacity of multiple-capillary separation with three labeling dyes, magnetic bead assisted preparation, and exoglycosidase treatment to allow rapid and accurate analysis of N-glycans. These new methods provided enough useful structural information to permit N-glycan structure elucidation with only one sample injection.
Collapse
Affiliation(s)
- Hua-Tao Feng
- Department of Chemistry, National University of Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Pingjing Li
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Guo Rui
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - James Stray
- Thermo Fisher Scientific, South San Francisco, CA, USA
| | - Shaheer Khan
- Thermo Fisher Scientific, South San Francisco, CA, USA
| | | | - Sam F Y Li
- Department of Chemistry, National University of Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore
| |
Collapse
|
23
|
Santos-Moriano P, Fernandez-Arrojo L, Mengibar M, Belmonte-Reche E, Peñalver P, Acosta FN, Ballesteros AO, Morales JC, Kidibule P, Fernandez-Lobato M, Plou FJ. Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1295231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | - M. Mengibar
- InFiQuS S.L, paseo Juan XXIII no. 1, Madrid, Spain,
| | - E. Belmonte-Reche
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, CSIC, Armilla Granada, Spain,
| | - P. Peñalver
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, CSIC, Armilla Granada, Spain,
| | - F. N. Acosta
- Instituto de Estudios Biofuncionales, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain, and
| | | | - J. C. Morales
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, CSIC, Armilla Granada, Spain,
| | - P. Kidibule
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - M. Fernandez-Lobato
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - F. J. Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain,
| |
Collapse
|
24
|
Kemmei T, Kodama S, Yamamoto A, Inoue Y, Hayakawa K. Determination of hexitols by reversed phase liquid chromatography using on-line complexation with molybdate ion. Anal Chim Acta 2017; 958:71-76. [DOI: 10.1016/j.aca.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/13/2016] [Accepted: 12/14/2016] [Indexed: 12/24/2022]
|
25
|
Durazzo A, Lisciani S, Camilli E, Gabrielli P, Marconi S, Gambelli L, Aguzzi A, Lucarini M, Maiani G, Casale G, Marletta L. Nutritional composition and antioxidant properties of traditional Italian dishes. Food Chem 2017; 218:70-77. [DOI: 10.1016/j.foodchem.2016.08.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022]
|
26
|
Simultaneous analysis of heparosan oligosaccharides by isocratic liquid chromatography with charged aerosol detection/mass spectrometry. Carbohydr Polym 2016; 152:337-342. [PMID: 27516280 DOI: 10.1016/j.carbpol.2016.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 11/21/2022]
Abstract
Uncovering the biological roles of heparosan oligosaccharides requires a simple and robust method for their separation and identification. We reported on systematic investigations of the retention behaviors of synthetic heparosan oligosaccharides on porous graphitic carbon (PGC) column by HPLC with charged aerosol detection. Oligosaccharides were strongly retained by PGC material in water-acetonitrile mobile phase, and eluted by trifluoroacetic acid occurring as narrow peaks. Addition of small fraction of methanol led to better selectivity of PGC to oligosaccharides than acetonitrile modifier alone, presumably, resulting from displacement of methanol to give different chemical environment at the PGC surface. Van't-Hoff plots demonstrated that retention behaviors highly depended on the column temperature and oligosaccharide moieties. By implementing the optimal MeOH content and temperature, a novel isocratic elution method was successfully developed for baseline resolution and identification of seven heparosan oligosaccharides using PGC-HPLC-CAD/MS. This approach allows for rapid analysis of heparosan oligosaccharides from various sources.
Collapse
|
27
|
Willems JL, Low NH. Oligosaccharide formation during commercial pear juice processing. Food Chem 2016; 204:84-93. [DOI: 10.1016/j.foodchem.2016.02.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
|
28
|
Detecting Adulterated Commercial Sweet Sorghum Syrups with Ion Chromatography Oligosaccharide Fingerprint Profiles. SEPARATIONS 2016. [DOI: 10.3390/separations3030020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Lorenz D, Erasmy N, Akil Y, Saake B. A new method for the quantification of monosaccharides, uronic acids and oligosaccharides in partially hydrolyzed xylans by HPAEC-UV/VIS. Carbohydr Polym 2015; 140:181-7. [PMID: 26876842 DOI: 10.1016/j.carbpol.2015.12.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well.
Collapse
Affiliation(s)
- Dominic Lorenz
- Department of Wood Science, University of Hamburg, Leuschnerstr. 91 b, 21031, Hamburg, Germany.
| | - Nicole Erasmy
- Thünen-Insitute of Wood Research, Leuschnerstr. 91 b, 21031, Hamburg, Germany.
| | - Youssef Akil
- Department of Wood Science, University of Hamburg, Leuschnerstr. 91 b, 21031, Hamburg, Germany.
| | - Bodo Saake
- Department of Wood Science, University of Hamburg, Leuschnerstr. 91 b, 21031, Hamburg, Germany.
| |
Collapse
|
30
|
Beres MJ, Olesik SV. Enhanced-fluidity liquid chromatography using mixed-mode hydrophilic interaction liquid chromatography/strong cation-exchange retention mechanisms. J Sep Sci 2015; 38:3119-3129. [DOI: 10.1002/jssc.201500454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/13/2015] [Accepted: 06/14/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Martin J. Beres
- Department of Chemistry and Biochemistry; The Ohio State University; Columbus OH USA
| | - Susan V. Olesik
- Department of Chemistry and Biochemistry; The Ohio State University; Columbus OH USA
| |
Collapse
|
31
|
Cook MC, Kaldas SJ, Muradia G, Rosu-Myles M, Kunkel JP. Comparison of orthogonal chromatographic and lectin-affinity microarray methods for glycan profiling of a therapeutic monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:162-78. [DOI: 10.1016/j.jchromb.2015.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
32
|
A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J Chromatogr A 2015; 1400:98-106. [DOI: 10.1016/j.chroma.2015.04.054] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/23/2022]
|
33
|
Lu J, Yang H, Hao J, Wu C, Liu L, Xu N, Linhardt RJ, Zhang Z. Impact of hydrolysis conditions on the detection of mannuronic to guluronic acid ratio in alginate and its derivatives. Carbohydr Polym 2015; 122:180-8. [DOI: 10.1016/j.carbpol.2015.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
34
|
Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. Carbohydr Res 2015; 407:73-8. [DOI: 10.1016/j.carres.2015.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/23/2015] [Indexed: 01/14/2023]
|
35
|
Eggleston G, Borges E. Multiple applications of ion chromatography oligosaccharide fingerprint profiles to solve a variety of sugar and sugar-biofuel industry problems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2841-2851. [PMID: 25708094 DOI: 10.1021/jf506370s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sugar crops contain a broad variety of carbohydrates used for human consumption and the production of biofuels and bioproducts. Ion chromatography with integrated pulsed amperometric detection (IC-IPAD) can be used to simultaneously detect mono-, di-, and oligosaccharides, oligosaccharide isomers, mannitol, and ethanol in complex matrices from sugar crops. By utilizing a strong NaOH/NaOAc gradient method over 45 min, oligosaccharides of at least 2-12 dp can be detected. Fingerprint IC oligosaccharide profiles are extremely selective, sensitive, and reliable and can detect deterioration product metabolites from as low as 100 colony-forming units/mL lactic acid bacteria. The IC fingerprints can also be used to (i) monitor freeze deterioration, (ii) optimize harvesting methods and cut-to-crush times, (iii) differentiate between white refined sugar from sugar cane and from sugar beets, (iv) verify the activities of carbohydrate enzymes, (v) select yeasts for ethanol fermentations, and (vi) isolate and diagnose infections and processing problems in sugar factories.
Collapse
Affiliation(s)
- Gillian Eggleston
- †Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Eduardo Borges
- §Fermentec Ltda., Av. Antônia Pazzinato Sturion 1155, Piracicaba, Brazil 13420 640
| |
Collapse
|
36
|
Babbar N, Dejonghe W, Gatti M, Sforza S, Elst K. Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits. Crit Rev Biotechnol 2015; 36:594-606. [DOI: 10.3109/07388551.2014.996732] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Neha Babbar
- Separation & Conversion Technology, VITO-Flemish Institute for Technological Research, Boeretang, Mol, Belgium and
- Department of Food Science, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Winnie Dejonghe
- Separation & Conversion Technology, VITO-Flemish Institute for Technological Research, Boeretang, Mol, Belgium and
| | - Monica Gatti
- Department of Food Science, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Stefano Sforza
- Department of Food Science, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Kathy Elst
- Separation & Conversion Technology, VITO-Flemish Institute for Technological Research, Boeretang, Mol, Belgium and
| |
Collapse
|
37
|
Kunacheva C, Stuckey DC. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: a review. WATER RESEARCH 2014; 61:1-18. [PMID: 24878622 DOI: 10.1016/j.watres.2014.04.044] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
Effluents from biological processes contain a wide range of complex organic compounds, including soluble microbial products (SMP) and extracellular polymers (ECP), released during bacteria metabolism in mixed culture in bioreactors. It is important to clearly identify the primary components of SMPs and ECPs in order to understand the fundamental mechanisms of biological activity that create these compounds, and how to reduce these compounds in the effluent. In addition, these compounds constitute the main foulants in membrane bioreactors which are being used more widely around the world. A review on the extraction of ECP, characterization, and identification of SMPs and ECPs is presented, and we summarize up-to-date pretreatments and analytical methods for SMPs. Most researchers have focused more on the overall properties of SMPs and ECPs such as their concentrations, molecular weight distribution, aromaticity, hydrophobic and hydrophilic properties, biodegradability, and toxicity characteristics. Many studies on the identification of effluent SMPs show that most of these compounds were not present in the influent, such as humic acids, polysaccharides, proteins, nucleic acids, organic acids, amino acids, exocellular enzymes, structural components of cells and products of energy metabolism. A few groups of researchers have been working on the identification of compounds in SMPs using advanced analytical techniques such as GC-MS, LC-IT-TOF-MS and MALDI-TOF-MS. However, there is still considerably more work needed to be done analytically to fully understand the chemical characteristics of SMPs and ECPs.
Collapse
Affiliation(s)
- Chinagarn Kunacheva
- Advanced Environmental Biotechnology Center, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore.
| | - David C Stuckey
- Advanced Environmental Biotechnology Center, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
38
|
Kazłowski B, Ko YT. Reaction of phosphorylase-a with α-d-glucose 1-phosphate and maltodextrin acceptors to give products with degree of polymerization 6–89. Carbohydr Polym 2014; 106:209-16. [DOI: 10.1016/j.carbpol.2014.01.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/30/2022]
|
39
|
Guo J, Yang S, Peng X, Li F, Zhou L, Pu Q. Microwave-assisted derivatization for fast and efficient analysis of saccharides on disposable microchips. RSC Adv 2014. [DOI: 10.1039/c4ra07934e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A domestic microwave oven was used to achieve rapid derivatization of saccharides for their microchip electrophoresis analysis.
Collapse
Affiliation(s)
- Jinxiu Guo
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou, China
| | - Shenghong Yang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou, China
| | - Xianglu Peng
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou, China
| | - Fengyun Li
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou, China
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou, China
| |
Collapse
|
40
|
Oyama T, Schmitz GE, Dodd D, Han Y, Burnett A, Nagasawa N, Mackie RI, Nakamura H, Morikawa K, Cann I. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases. PLoS One 2013; 8:e80448. [PMID: 24278284 PMCID: PMC3835425 DOI: 10.1371/journal.pone.0080448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022] Open
Abstract
CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.
Collapse
Affiliation(s)
- Takuji Oyama
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - George E. Schmitz
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Dylan Dodd
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - Yejun Han
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Alanna Burnett
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - Naoko Nagasawa
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Roderick I. Mackie
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kosuke Morikawa
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Isaac Cann
- Institute for Protein Research, Osaka University, Osaka, Japan
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Yang S, Toghi Eshghi S, Chiu H, DeVoe DL, Zhang H. Glycomic analysis by glycoprotein immobilization for glycan extraction and liquid chromatography on microfluidic chip. Anal Chem 2013; 85:10117-25. [PMID: 24111616 PMCID: PMC3867136 DOI: 10.1021/ac4013013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycosylation is one of the most common protein modifications and profoundly regulates many biological processes. Aberrant glycosylation is reported to associate with diseases such as cancers, human immunodeficiency virus, and immune disorders. It is considerably important to study protein glycosylation and the associated glycans for diagnostics and disease prognostics. Unlike other protein modifications, glycans attached to proteins are enormously complex. Therefore, the comprehensive analysis of glycans from biological or clinical samples is an unmet technical challenge. Development of the high-throughput method will facilitate the glycomics analysis. In this study, we developed a novel method for the high-throughput analysis of N-glycans from glycoproteins using glycoprotein immobilization for glycan extraction (GIG) coupled with liquid chromatography (LC) in an integrated microfluidic platform (chipLC). The separated glycans were then analyzed by mass spectrometry. Briefly, proteins were first immobilized on a solid support. Glycans on immobilized glycoproteins were modified on solid phase to increase the detection and structure analysis. N-Glycans were then enzymatically released and subsequentially separated by porous graphitized carbon particles packed in the same device. By applying the GIG-chipLC for glycomic analysis of human sera, we identified N-glycans with 148 distinct N-glycan masses. The platform was used to analyze N-glycans from mouse heart tissue and serum. The extracted N-glycans from tissues indicated that unique unsialylated N-glycans were detected in tissues that were missing from the proximal or distal serum, whereas common N-glycans from tissues and serum have mature and sialylated structures. The GIG-chipLC provides a simple and robust platform for glycomic analysis of complex biological and clinical samples.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Indorf C, Bodé S, Boeckx P, Dyckmans J, Meyer A, Fischer K, Joergensen RG. Comparison of HPLC Methods for the Determination of Amino Sugars in Soil Hydrolysates. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.796558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Łukasiak J, Olsen K, Georgiou CA, Georgakopoulos DG. Bioluminescence and ice-nucleation microbial biosensors for l-arabinose content analysis in arabinoxylans. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1990-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Simultaneous determination of glucose, d-gluconic, 2-keto-d-gluconic and 5-keto-d-gluconic acids by ion chromatography-pulsed amperometric detection with column-switching technique. Talanta 2013; 113:113-7. [DOI: 10.1016/j.talanta.2013.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 11/18/2022]
|
46
|
Rohrer JS, Basumallick L, Hurum D. High-performance anion-exchange chromatography with pulsed amperometric detection for carbohydrate analysis of glycoproteins. BIOCHEMISTRY (MOSCOW) 2013; 78:697-709. [DOI: 10.1134/s000629791307002x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Rivière A, Eeltink S, Pierlot C, Balzarini T, Moens F, Selak M, De Vuyst L. Development of an ion-exchange chromatography method for monitoring the degradation of prebiotic arabinoxylan-oligosaccharides in a complex fermentation medium. Anal Chem 2013; 85:4982-90. [PMID: 23541153 DOI: 10.1021/ac400187f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Arabinoxylan-oligosaccharides (AXOS) are a new class of prebiotics with promising health-promoting characteristics. However, the mechanism by which bacteria break down these compounds in the colon is still uncharacterized, due to their structural complexity. A new analytical method that offers structural information was developed to characterize AXOS degradation during fermentation. The method was based on the simultaneous determination of arabinose, xylose, xylo-oligosaccharides (XOS), and AXOS by applying high-performance anion-exchange chromatography with pulsed amperometric detection. To study the structural features of AXOS in solution without the use of spectroscopic techniques or standards, enzymatic-based reference degradation chromatograms were generated based on enzymes with known specificity. The new method for fingerprinting showed to be a powerful and fast tool to study AXOS degradation with high repeatability with respect to peak area, peak width at half height, and retention time (respective relative standard deviations of ≤3.1%, 2.8%, and 0.8%). This method was successfully applied to study the degradation kinetics of AXOS in a complex fermentation medium by Bifidobacterium longum LMG 11047. The results showed that this strain could use both the arabinose side chains and xylose backbones up to xylotetraose. The characterization of the degradation abilities of AXOS by colon bacteria will allow a better understanding of the beneficial effects of these prebiotics. Furthermore, if the appropriate enzymes are available to design the reference degradation chromatograms, this new method for the qualitative fingerprinting of AXOS breakdown can also be applied for the breakdown of other complex oligosaccharides and polysaccharides.
Collapse
Affiliation(s)
- Audrey Rivière
- Research Group of Industrial Microbiology and Food Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
Vismeh R, Humpula JF, Chundawat SP, Balan V, Dale BE, Jones AD. Profiling of soluble neutral oligosaccharides from treated biomass using solid phase extraction and LC–TOF MS. Carbohydr Polym 2013; 94:791-9. [DOI: 10.1016/j.carbpol.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
|
49
|
Deciphering O-glycomics for the development and production of biopharmaceuticals. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Teixeira AS, González-Benito ME, Molina-García AD. Glassy state and cryopreservation of mint shoot tips. Biotechnol Prog 2013; 29:707-17. [PMID: 23436805 DOI: 10.1002/btpr.1711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/11/2013] [Indexed: 11/06/2022]
Abstract
Vitrification refers to the physical process by which a liquid supercools to very low temperatures and finally solidifies into a metastable glass, without undergoing crystallization at a practical cooling rate. Thus, vitrification is an effective freeze-avoidance mechanism and living tissue cryopreservation is, in most cases, relying on it. As a glass is exceedingly viscous and stops all chemical reactions that require molecular diffusion, its formation leads to metabolic inactivity and stability over time. To investigate glassy state in cryopreserved plant material, mint shoot tips were submitted to the different stages of a frequently used cryopreservation protocol (droplet-vitrification) and evaluated for water content reduction and sucrose content, as determined by ion chromatography, frozen water fraction and glass transitions occurrence by differential scanning calorimetry, and investigated by low-temperature scanning electron microscopy, as a way to ascertain if their cellular content was vitrified. Results show how tissues at intermediate treatment steps develop ice crystals during liquid nitrogen cooling, while specimens whose treatment was completed become vitrified, with no evidence of ice formation. The agreement between calorimetric and microscopic observations was perfect. Besides finding a higher sucrose concentration in tissues at the more advanced protocol steps, this level was also higher in plants precultured at 25/-1°C than in plants cultivated at 25°C.
Collapse
Affiliation(s)
- Aline S Teixeira
- ICTAN, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC, Madrid, 28040, Spain.
| | | | | |
Collapse
|