1
|
Etzensperger R, Benninger M, Pozzi B, Rehmann R, Naguleswaran A, Schumann G, Van Den Abbeele J, Roditi I. Split-Cre-mediated GFP expression as a permanent marker for flagellar fusion of Trypanosoma brucei in its tsetse fly host. mBio 2025; 16:e0337524. [PMID: 39688410 PMCID: PMC11796343 DOI: 10.1128/mbio.03375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Trypanosomes have different ways of communicating with each other. While communication via quorum sensing, or by the release and uptake of extracellular vesicles, is widespread in nature, the phenomenon of flagellar fusion has only been observed in Trypanosoma brucei. We showed previously that a small proportion of procyclic culture forms (corresponding to insect midgut forms) can fuse their flagella and exchange cytosolic and membrane proteins. This happens reproducibly in cell culture. It was not known, however, if flagellar fusion also occurs in the tsetse fly host, and at what stage of the life cycle. We have developed a split-Cre-Lox system to permanently label trypanosomes that undergo flagellar fusion. Specifically, we engineered trypanosomes to contain a GFP gene flanked by Lox sites in the reverse orientation to the promoter. In addition, the cells expressed inactive halves of the Cre recombinase, either N-terminal Cre residues 1-244 (N-Cre) or C-terminal Cre residues 245-343 (C-Cre). Upon flagellar fusion, these Cre halves were exchanged between trypanosomes, forming functional full Cre and flipping reverse-GFP into its forward orientation. We showed that cells that acquired the second half Cre through flagellar fusion were permanently modified and that the cells and their progeny constitutively expressed GFP. When tsetse flies were co-infected with N-Cre and C-Cre cells, GFP-positive trypanosomes were observed in the midgut and proventriculus 28-34 days post-infection. These results show that flagellar fusion not only happens in culture but also during the natural life cycle of trypanosomes in their tsetse fly host. IMPORTANCE We have established a procedure to permanently label pairs of trypanosomes that transiently fuse their flagella and exchange proteins. When this occurs, a reporter gene is permanently flipped from the "off" to the "on" position, resulting in the production of green fluorescent protein. Crucially, green trypanosomes can be detected in tsetse flies co-infected with the two cell lines, proving that flagellar fusion occurs in the host. To our knowledge, we are the first to describe a split-Cre-Lox system for lineage tracing and selection in trypanosomes. In addition to its use in trypanosomes, this system could be adapted for other parasites and in other contexts. For example, it could be used to determine whether flagellar fusion occurs in related parasites such as Leishmania and Trypanosoma cruzi or to monitor whether intracellular parasites and their hosts exchange proteins.
Collapse
Affiliation(s)
| | | | - Berta Pozzi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Trypanosoma Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Xu M, Fang M, Chen Q, Xiao W, Xu Z, Cai B, Zhao Z, Wang T, Zhu Z, Chen Y, Zhu Y, Dai M, Jiang T, Li X, Chun S, Zhou R, Li Y, Gou Y, He J, Luo L, You L, Jiang X. GMMID: genetically modified mice information database. Database (Oxford) 2024; 2024:baae078. [PMID: 39163546 PMCID: PMC11334936 DOI: 10.1093/database/baae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/19/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Genetically engineered mouse models (GEMMs) are vital for elucidating gene function and disease mechanisms. An overwhelming number of GEMM lines have been generated, but endeavors to collect and organize the information of these GEMMs are seriously lagging behind. Only a few databases are developed for the information of current GEMMs, and these databases lack biological descriptions of allele compositions, which poses a challenge for nonexperts in mouse genetics to interpret the genetic information of these mice. Moreover, these databases usually do not provide information on human diseases related to the GEMM, which hinders the dissemination of the insights the GEMM provides as a human disease model. To address these issues, we developed an algorithm to annotate all the allele compositions that have been reported with Python programming and have developed the genetically modified mice information database (GMMID; http://www.gmmid.cn), a user-friendly database that integrates information on GEMMs and related diseases from various databases, including National Center for Biotechnology Information, Mouse Genome Informatics, Online Mendelian Inheritance in Man, International Mouse Phenotyping Consortium, and Jax lab. GMMID provides comprehensive genetic information on >70 055 alleles, 65 520 allele compositions, and ∼4000 diseases, along with biologically meaningful descriptions of alleles and allele combinations. Furthermore, it provides spatiotemporal visualization of anatomical tissues mentioned in these descriptions, shown alongside the allele compositions. Compared to existing mouse databases, GMMID considers the needs of researchers across different disciplines and presents obscure genetic information in an intuitive and easy-to-understand format. It facilitates users in obtaining complete genetic information more efficiently, making it an essential resource for cross-disciplinary researchers. Database URL: http://www.gmmid.cn.
Collapse
Affiliation(s)
- Menglin Xu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Minghui Fang
- School of Intelligent Systems Engineering, Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
- Guangdong Key Laboratory of Intelligent Transportation Systems (ITS), Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Qiyang Chen
- School of Intelligent Systems Engineering, Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
- Guangdong Key Laboratory of Intelligent Transportation Systems (ITS), Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Wenjun Xiao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Zhixuan Xu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Bao Cai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Zhenyang Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Tao Wang
- Guangdong GemPharmatech Co,Ltd, No 6, Qianjin West Rd. Shishan Town Nanhai District, Foshan, Guangdong 528225, China
| | - Zhu Zhu
- Guangdong GemPharmatech Co,Ltd, No 6, Qianjin West Rd. Shishan Town Nanhai District, Foshan, Guangdong 528225, China
| | - Yingshan Chen
- Guangdong GemPharmatech Co,Ltd, No 6, Qianjin West Rd. Shishan Town Nanhai District, Foshan, Guangdong 528225, China
| | - Yue Zhu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Mingzhou Dai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Tiancheng Jiang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Xinyi Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Siuwing Chun
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Runhua Zhou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Yafei Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Yueyue Gou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Jingjing He
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Lin Luo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Linlin You
- School of Intelligent Systems Engineering, Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
- Guangdong Key Laboratory of Intelligent Transportation Systems (ITS), Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| | - Xuan Jiang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, 66#, Gongchang Road, Shenzhen, Guangdong 518107, China
| |
Collapse
|
3
|
Piya D, Nolan N, Moore ML, Ramirez Hernandez LA, Cress BF, Young R, Arkin AP, Mutalik VK. Systematic and scalable genome-wide essentiality mapping to identify nonessential genes in phages. PLoS Biol 2023; 21:e3002416. [PMID: 38048319 PMCID: PMC10695390 DOI: 10.1371/journal.pbio.3002416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Phages are one of the key ecological drivers of microbial community dynamics, function, and evolution. Despite their importance in bacterial ecology and evolutionary processes, phage genes are poorly characterized, hampering their usage in a variety of biotechnological applications. Methods to characterize such genes, even those critical to the phage life cycle, are labor intensive and are generally phage specific. Here, we develop a systematic gene essentiality mapping method scalable to new phage-host combinations that facilitate the identification of nonessential genes. As a proof of concept, we use an arrayed genome-wide CRISPR interference (CRISPRi) assay to map gene essentiality landscape in the canonical coliphages λ and P1. Results from a single panel of CRISPRi probes largely recapitulate the essential gene roster determined from decades of genetic analysis for lambda and provide new insights into essential and nonessential loci in P1. We present evidence of how CRISPRi polarity can lead to false positive gene essentiality assignments and recommend caution towards interpreting CRISPRi data on gene essentiality when applied to less studied phages. Finally, we show that we can engineer phages by inserting DNA barcodes into newly identified inessential regions, which will empower processes of identification, quantification, and tracking of phages in diverse applications.
Collapse
Affiliation(s)
- Denish Piya
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Nicholas Nolan
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
| | - Madeline L. Moore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Luis A. Ramirez Hernandez
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Brady F. Cress
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California, United States of America
| | - Ry Young
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Vivek K. Mutalik
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
4
|
Albers S, Allen EC, Bharti N, Davyt M, Joshi D, Perez-Garcia CG, Santos L, Mukthavaram R, Delgado-Toscano MA, Molina B, Kuakini K, Alayyoubi M, Park KJJ, Acharya G, Gonzalez JA, Sagi A, Birket SE, Tearney GJ, Rowe SM, Manfredi C, Hong JS, Tachikawa K, Karmali P, Matsuda D, Sorscher EJ, Chivukula P, Ignatova Z. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 2023; 618:842-848. [PMID: 37258671 PMCID: PMC10284701 DOI: 10.1038/s41586-023-06133-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.
Collapse
Affiliation(s)
- Suki Albers
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Nikhil Bharti
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Disha Joshi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | - Amit Sagi
- Arcturus Therapeutics, San Diego, CA, USA
| | - Susan E Birket
- Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, MA, Cambridge, USA
| | - Steven M Rowe
- Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Candela Manfredi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jeong S Hong
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | | | | | - Eric J Sorscher
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | | | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
5
|
DNA Methylation in Prokaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:21-43. [DOI: 10.1007/978-3-031-11454-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Heintz N, Gong S. Working with Bacterial Artificial Chromosomes (BACs) and Other High-Capacity Vectors. Cold Spring Harb Protoc 2020; 2020:2020/10/pdb.top097998. [PMID: 33004554 DOI: 10.1101/pdb.top097998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetic targeting of specific cell types is fundamentally important for modern molecular-genetic studies. The development of simple methods to engineer high-capacity vectors-in particular, bacterial artificial chromosomes (BACs)-for the preparation of transgenic lines that accurately express a gene of interest has resulted in commonplace usage of transgenic techniques in a wide variety of experimental systems. Here we provide a brief description of each of the four major types of large-capacity vectors, with a focus on the use of BAC vectors.
Collapse
|
7
|
Application of Recombinase-Based In Vivo Expression Technology to Bifidobacterium longum subsp. longum for Identification of Genes Induced in the Gastrointestinal Tract of Mice. Microorganisms 2020; 8:microorganisms8030410. [PMID: 32183191 PMCID: PMC7143038 DOI: 10.3390/microorganisms8030410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Bifidobacteria are one of the major components in human gut microbiota and well-known as beneficial microbes. However, clarification of commensal mechanisms of bifidobacteria in the intestines is still ongoing, especially in the presence of the gut microbiota. Here, we applied recombinase-based in vivo expression technology (R-IVET) using the bacteriophage P1 Cre/loxP system to Bifidobacterium longum subsp. longum 105-A (B. longum 105-A) to identify genes that are specifically expressed in the gastrointestinal tract of conventionally raised mice. Oral administration of the genomic DNA library of B. longum 105-A to conventionally raised mice resulted in the identification of 73 in vivo-induced genes. Four out of seven tested genes were verified in vivo-specific induction at least in the cecum by quantitative reverse transcription PCR. Although there is still room for improvement of the system, our findings can contribute to expanding our understanding of the commensal behavior of B. longum in the gut ecosystem.
Collapse
|
8
|
Powell TR, Duarte RRR, Hotopf M, Hatch SL, de Mulder Rougvie M, Breen GD, Lewis CM, Nixon DF. The behavioral, cellular and immune mediators of HIV-1 acquisition: New insights from population genetics. Sci Rep 2020; 10:3304. [PMID: 32094379 PMCID: PMC7039899 DOI: 10.1038/s41598-020-59256-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Millions are exposed to the human immunodeficiency virus type 1 (HIV-1) every year, but not all acquire the virus, suggesting a potential role for host genetics in the moderation of HIV-1 acquisition. Here, we analyzed summary statistics from the largest genome-wide association study of HIV-1 acquisition to-date, consisting of 6,334 infected patients and 7,247 population controls, to advance our understanding of the genetic mechanisms implicated in this trait. We found that HIV-1 acquisition is polygenic and heritable, with SNP heritability estimates explaining 28-42% of the variance in this trait at a population level. Genetic correlations alongside UK Biobank data revealed associations with smoking, prospective memory and socioeconomic traits. Gene-level enrichment analysis identified EF-hand calcium binding domain 14 as a novel susceptibility gene for HIV-1 acquisition. We also observed that susceptibility variants for HIV-1 acquisition were significantly enriched for genes expressed in T-cells, but also in striatal and hippocampal neurons. Finally, we tested how polygenic risk scores for HIV-1 acquisition influence blood levels of 35 inflammatory markers in 406 HIV-1-negative individuals. We found that higher genetic risk for HIV-1 acquisition was associated with lower levels of C-C motif chemokine ligand 17. Our findings corroborate a complex model for HIV-1 acquisition, whereby susceptibility is partly heritable and moderated by specific behavioral, cellular and immunological parameters.
Collapse
Affiliation(s)
- Timothy R Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Rodrigo R R Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stephani L Hatch
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Gerome D Breen
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cathryn M Lewis
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Douglas F Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
9
|
Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res 2018; 34:147-159. [PMID: 30671100 PMCID: PMC6333611 DOI: 10.5625/lar.2018.34.4.147] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically engineered mouse models are commonly preferred for studying the human disease due to genetic and pathophysiological similarities between mice and humans. In particular, Cre-loxP system is widely used as an integral experimental tool for generating the conditional. This system has enabled researchers to investigate genes of interest in a tissue/cell (spatial control) and/or time (temporal control) specific manner. A various tissue-specific Cre-driver mouse lines have been generated to date, and new Cre lines are still being developed. This review provides a brief overview of Cre-loxP system and a few commonly used promoters for expression of tissue-specific Cre recombinase. Also, we finally introduce some available links to the Web sites that provides detailed information about Cre mouse lines including their characterization.
Collapse
|
10
|
Sharma S, Kumar G, Dasgupta I. Simultaneous resistance against the two viruses causing rice tungro disease using RNA interference. Virus Res 2018; 255:157-164. [PMID: 30031045 DOI: 10.1016/j.virusres.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 02/09/2023]
Abstract
Rice tungro is the most important viral disease affecting rice in South and Southeast Asia, caused by two viruses rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). Transgenic resistance using RNA-interference (RNAi) has been reported individually against RTBV and RTSV earlier. Here we report the development of transgenic rice plants expressing RNAi against both RTBV and RTSV simultaneously. A DNA construct carrying 300 bp of RTBV DNA and 300 bp of RTSV cDNA were cloned as the two arms in hairpin orientation in a binary plasmid background to generate RNAi against both viruses simultaneously. Transgenic rice plants were raised using the above construct and their resistance against RTBV and RTSV was quantified at the T1 plants. Levels of both the viral nucleic acids showed a fall of 100- to 500-fold in the above plants, compared with the non-transgenic controls, coupled with the amelioration of stunting. The transgenic plants also retained higher chlorophyll levels than the control non-transgenic plants after infection with RTBV and RTSV. Small RNA analysis of virus inoculated transgenic plants indicated the presence of 21 nt and 22 nt siRNAs specific to RTBV and RTSV. The evidence points towards an active RNAi mechanism leading to resistance against the tungro viruses in the plants analysed.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Gaurav Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
11
|
Abstract
Cre-lox of bacteriophage P1 has become one of the most widely used tools for genetic engineering in eukaryotes. The origins of this tool date to more than 30 years ago when Nat L. Sternberg discovered the recombinase, Cre, and its specific locus of crossover, lox, while studying the maintenance of bacteriophage P1 as a stable plasmid. Recombinations mediated by Cre assist in cyclization of the DNA of infecting phage and in resolution of prophage multimers created by generalized recombination. Early in vitro work demonstrated that, although it shares similarities with the well-characterized bacteriophage λ integration, Cre-lox is in many ways far simpler in its requirements for carrying out recombination. These features would prove critical for its development as a powerful and versatile tool in genetic engineering. We review the history of the discovery and characterization of Cre-lox and touch upon the present direction of Cre-lox research.
Collapse
Affiliation(s)
- Michael Yarmolinsky
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | | |
Collapse
|
12
|
Ee R, Lim YL, Yin WF, See-Too WS, Roberts RJ, Chan KG. Novel Methyltransferase Recognition Motif Identified in Chania multitudinisentens RB-25(T) gen. nov., sp. nov. Front Microbiol 2016; 7:1362. [PMID: 27630623 PMCID: PMC5005818 DOI: 10.3389/fmicb.2016.01362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robson Ee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Wah-Seng See-Too
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | | | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Ahlstrand T, Tuominen H, Beklen A, Torittu A, Oscarsson J, Sormunen R, Pöllänen MT, Permi P, Ihalin R. A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8. Virulence 2016; 8:115-134. [PMID: 27459270 PMCID: PMC5383217 DOI: 10.1080/21505594.2016.1216294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1β. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1β and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI− mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1β in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1β internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Heidi Tuominen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Arzu Beklen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Annamari Torittu
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Jan Oscarsson
- b Oral Microbiology , Department of Odontology, Umeå University , Umeå , Sweden
| | - Raija Sormunen
- c Biocenter Oulu and Department of Pathology , University of Oulu , Oulu Finland
| | | | - Perttu Permi
- e Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , Helsinki , Finland.,f Department of Biological and Environmental Sciences , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland.,g Department of Chemistry , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland
| | - Riikka Ihalin
- a Department of Biochemistry , University of Turku , Turku , Finland
| |
Collapse
|
14
|
Kishimoto K, Nakayama M, Kinoshita M. In vivorecombination efficiency of two site-specific recombination systems, VCre/VloxP and SCre/SloxP, in medaka (Oryzias latipes). Dev Growth Differ 2016; 58:516-21. [DOI: 10.1111/dgd.12289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Kenta Kishimoto
- Division of Applied Bioscience; Graduate School of Agriculture; Kyoto university; Sakyo-ku 606-8502
| | - Manabu Nakayama
- Chromosome Engineering Team; Department of Technology Development; Kazusa DNA Research Institute; Kisarazu 292-0818 Japan
| | - Masato Kinoshita
- Division of Applied Bioscience; Graduate School of Agriculture; Kyoto university; Sakyo-ku 606-8502
| |
Collapse
|
15
|
Casadesús J. Bacterial DNA Methylation and Methylomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:35-61. [PMID: 27826834 DOI: 10.1007/978-3-319-43624-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Formation of C5-methylcytosine, N4-methylcytosine, and N6-methyladenine in bacterial genomes is postreplicative and involves transfer of a methyl group from S-adenosyl-methionine to a base embedded in a specific DNA sequence context. Most bacterial DNA methyltransferases belong to restriction-modification systems; in addition, "solitary" or "orphan" DNA methyltransferases are frequently found in the genomes of bacteria and phage. Base methylation can affect the interaction of DNA-binding proteins with their cognate sites, either by a direct effect (e.g., steric hindrance) or by changes in DNA topology. In both Alphaproteobacteria and Gammaproteobacteria, the roles of DNA base methylation are especially well known for N6-methyladenine, including control of chromosome replication, nucleoid segregation, postreplicative correction of DNA mismatches, cell cycle-coupled transcription, formation of bacterial cell lineages, and regulation of bacterial virulence. Technical procedures that permit genome-wide analysis of DNA methylation are nowadays expanding our knowledge of the extent, evolution, and physiological significance of bacterial DNA methylation.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, Seville, 41080, Spain.
| |
Collapse
|
16
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during the repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and the regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential, and, in C. crescentus, it is important for temporal gene expression, which, in turn, is required for coordinating chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage, decrease transformation frequency in certain bacteria, and decrease the stability of short direct repeats and are necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
17
|
Vidigal J, Fernandes F, Coroadinha AS, Teixeira AP, Alves PM. Insect cell line development using FLP-mediated cassette exchange technology. Methods Mol Biol 2014; 1104:15-27. [PMID: 24297406 DOI: 10.1007/978-1-62703-733-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Traditional cell line development is quite laborious and time-consuming as it is based on the random integration of the gene of interest which leads to unpredictable expression behavior. In opposition, recombinase-mediated cassette exchange systems represent a powerful genetic engineering approach, allowing site-specific insertion of recombinant genes into pre-tagged genomic loci with superior expression characteristics, thus bypassing the need for extensive clone screening and shortening the development timelines. Such systems have not been widely implemented in insect cell lines used for the production of recombinant proteins most commonly through the baculovirus expression vector system. Herein, it is provided the protocol for the implementation of a FLP-mediated cassette exchange system in Spodoptera frugiperda Sf 9 cells, in order to grant a flexible cell line for the stable production of recombinant proteins.
Collapse
Affiliation(s)
- João Vidigal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
18
|
Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 2013; 79:7547-55. [PMID: 24123737 DOI: 10.1128/aem.02229-13] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.
Collapse
|
19
|
Iyer LM, Zhang D, Burroughs AM, Aravind L. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Res 2013; 41:7635-55. [PMID: 23814188 PMCID: PMC3763556 DOI: 10.1093/nar/gkt573] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel ‘readers’ of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
20
|
Zimmerman CUR, Rosengarten R, Spergser J. Interaction of the putative tyrosine recombinases RipX (UU145), XerC (UU222), and CodV (UU529) of Ureaplasma parvum serovar 3 with specific DNA. FEMS Microbiol Lett 2013; 340:55-64. [PMID: 23305333 PMCID: PMC3599477 DOI: 10.1111/1574-6968.12077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022] Open
Abstract
Phase variation of two loci (‘mba locus’ and ‘UU172 phase-variable element’) in Ureaplasma parvum serovar 3 has been suggested as result of site-specific DNA inversion occurring at short inverted repeats. Three potential tyrosine recombinases (RipX, XerC, and CodV encoded by the genes UU145, UU222, and UU529) have been annotated in the genome of U. parvum serovar 3, which could be mediators in the proposed recombination event. We document that only orthologs of the gene xerC are present in all strains that show phase variation in the two loci. We demonstrate in vitro binding of recombinant maltose-binding protein fusions of XerC to the inverted repeats of the phase-variable loci, of RipX to a direct repeat that flanks a 20-kbp region, which has been proposed as putative pathogenicity island, and of CodV to a putative dif site. Co-transformation of the model organism Mycoplasma pneumoniae M129 with both the ‘mba locus’ and the recombinase gene xerC behind an active promoter region resulted in DNA inversion in the ‘mba locus’. Results suggest that XerC of U. parvum serovar 3 is a mediator in the proposed DNA inversion event of the two phase-variable loci.
Collapse
Affiliation(s)
- Carl-Ulrich R Zimmerman
- Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, Austria.
| | | | | |
Collapse
|
21
|
Abstract
In prokaryotes, alteration in gene expression was observed with the modification of DNA, especially DNA methylation. Such changes are inherited from generation to generation with no alterations in the DNA sequence and represent the epigenetic signal in prokaryotes. DNA methyltransferases are enzymes involved in DNA modification and thus in epigenetic regulation of gene expression. DNA methylation not only affects the thermodynamic stability of DNA, but also changes its curvature. Methylation of specific residues on DNA can affect the protein-DNA interactions. DNA methylation in prokaryotes regulates a number of physiological processes in the bacterial cell including transcription, DNA mismatch repair and replication initiation. Significantly, many reports have suggested a role of DNA methylation in regulating the expression of a number of genes in virulence and pathogenesis thus, making DNA methlytransferases novel targets for the designing of therapeutics. Here, we summarize the current knowledge about the influence of DNA methylation on gene regulation in different bacteria, and on bacterial virulence.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India,
| | | |
Collapse
|
22
|
[Progress in Cre/lox site-specific recombination system in higher eukaryotes]. YI CHUAN = HEREDITAS 2012; 34:177-89. [PMID: 22382059 DOI: 10.3724/sp.j.1005.2012.00177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cre/lox system derived from P1 bacteriaphage can quickly and effectively achieve gene insertion, deletion, replacement, and inversion by means of site-specific recombination. As one of the most important tools for gene targeting at present, Cre/lox system has been widely used in Arabidopsis thaliana, Oryza sativa L., Mus musculus, Drosophila melanogaster, Danio rerio, and other higher eukaryotic organisms. This review roundly described the basic profile of Cre/lox system, and its application in higher eukaryotes. In addition, we also discussed the main problems and developmental trend of the Cre/lox system in this review, which can be a good reference for using Cre/lox system to realize the gene manipulations of the different high eukaryotic organisms.
Collapse
|
23
|
Wong SP, Argyros O, Harbottle RP. Vector systems for prenatal gene therapy: principles of non-viral vector design and production. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 891:133-67. [PMID: 22648771 DOI: 10.1007/978-1-61779-873-3_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy vectors based on viruses are the most effective gene delivery systems in use today and although efficient at gene transfer their potential toxicity (Hacein-Bey-Abina et al., Science 302:415-419, 2003) provides impetus for the development of safer non-viral alternatives. An ideal vector for human gene therapy should deliver sustainable therapeutic levels of gene expression without affecting the viability of the host at either the cellular or somatic level. Vectors, which comprise entirely human elements, may provide the most suitable method of achieving this. Non-viral vectors are attractive alternatives to viral gene delivery systems because of their low toxicity, relatively easy production, and great versatility. The development of more efficient, economically prepared, and safer gene delivery vectors is a crucial prerequisite for their successful clinical application and remains a primary strategic task of gene therapy research.
Collapse
Affiliation(s)
- Suet Ping Wong
- Faculty of Medicine, Molecular and Cellular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
24
|
Jaschke PR, Saer RG, Noll S, Beatty JT. Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 2011; 497:519-38. [PMID: 21601102 DOI: 10.1016/b978-0-12-385075-1.00023-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The α-proteobacterium Rhodobacter sphaeroides is an exemplary model organism for the creation and study of novel protein expression systems, especially membrane protein complexes that harvest light energy to yield electrical energy. Advantages of this organism include a sequenced genome, tools for genetic engineering, a well-characterized metabolism, and a large membrane surface area when grown under hypoxic or anoxic conditions. This chapter provides a framework for the utilization of R. sphaeroides as a model organism for membrane protein expression, highlighting key advantages and shortcomings. Procedures covered in this chapter include the creation of chromosomal gene deletions, disruptions, and replacements, as well as the construction of a synthetic operon using a model promoter to induce expression of modified photosynthetic reaction center proteins for structural and functional analysis.
Collapse
Affiliation(s)
- Paul R Jaschke
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
25
|
Cao B, Huang Z, Chen G, Lei J. Restoring pollen fertility in transgenic male-sterile eggplant by Cre/loxp-mediated site-specific recombination system. Genet Mol Biol 2010; 33:298-307. [PMID: 21637486 PMCID: PMC3036876 DOI: 10.1590/s1415-47572010005000043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/15/2009] [Indexed: 11/25/2022] Open
Abstract
This study was designed to control plant fertility by cell lethal gene Barnase expressing at specific developmental stage and in specific tissue of male organ under the control of Cre/loxP system, for heterosis breeding, producing hybrid seed of eggplant. The Barnase-coding region was flanked by loxP recognition sites for Cre-recombinase. The eggplant inbred/pure line (‘E-38') was transformed with Cre gene and the inbred/pure line (‘E-8') was transformed with the Barnase gene situated between loxp. The experiments were done separately, by means of Agrobacterium co-culture. Four T0 -plants with the Barnase gene were obtained, all proved to be male-sterile and incapable of producing viable pollen. Flowers stamens were shorter, but the vegetative phenotype was similar to wild-type. Five T 0 -plants with the Cre gene developed well, blossomed out and set fruit normally. The crossing of male-sterile Barnase-plants with Cre expression transgenic eggplants resulted in site-specific excision with the male-sterile plants producing normal fruits. With the Barnase was excised, pollen fertility was fully restored in the hybrids. The phenotype of these restored plants was the same as that of the wild-type. Thus, the Barnase and Cre genes were capable of stable inheritance and expression in progenies of transgenic plants.
Collapse
Affiliation(s)
- Bihao Cao
- College of Horticulture, South China Agriculture University, Guangzhou City, Guanghdong P.R. China
| | | | | | | |
Collapse
|
26
|
Use of the Cre-lox recombination system to investigate the lp54 gene requirement in the infectious cycle of Borrelia burgdorferi. Infect Immun 2010; 78:2397-407. [PMID: 20231410 DOI: 10.1128/iai.01059-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has a complex genome consisting of a linear chromosome and up to 21 linear and circular plasmids. These plasmids encode numerous proteins critical to the spirochete's infectious cycle and many hypothetical proteins whose functions and requirements are unknown. The conserved linear plasmid lp54 encodes several proteins important for survival in the mouse-tick infectious cycle, but the majority of the proteins are of unknown function and lack homologs outside the borreliae. In this study we adapted the Cre-lox recombination system to create large deletions in the B. burgdorferi genome. Using Cre-lox, we systematically investigated the contribution of 14 adjacent genes on the left arm of lp54 to the overall infectivity of B. burgdorferi. The deletion of the region of lp54 encompassing bba07 to bba14 had no significant effect on the infectious cycle of B. burgdorferi. The deletion of bba01 to bba07 resulted in a slight growth defect but did not significantly affect the ability of B. burgdorferi to complete the infectious cycle. This study demonstrated the utility of the Cre-lox system to efficiently explore gene requirements in B. burgdorferi and surprisingly revealed that a large number of the highly conserved proteins encoded on lp54 are not required to complete the infectious cycle.
Collapse
|
27
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcmmethyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholera and Caulobactercrescentus) adenine methylation is essential, and in C.crescentus it is important for temporal gene expression which, in turn, is required for coordination of chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage,decrease transformation frequency in certain bacteria,and decrease the stability of short direct repeats andare necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
28
|
Long MA, Rossi FMV. Silencing inhibits Cre-mediated recombination of the Z/AP and Z/EG reporters in adult cells. PLoS One 2009; 4:e5435. [PMID: 19415111 PMCID: PMC2672169 DOI: 10.1371/journal.pone.0005435] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/12/2009] [Indexed: 12/25/2022] Open
Abstract
Background The Cre-loxP system has been used to enable tissue specific activation, inactivation and mutation of many genes in vivo and has thereby greatly facilitated the genetic dissection of several cellular and developmental processes. In such studies, Cre-reporter strains, which carry a Cre-activated marker gene, are frequently utilized to validate the expression profile of Cre transgenes, to act as a surrogate marker for excision of a second allele, and to irreversibly label cells for lineage tracing experiments. Principal Findings We have studied three commonly used Cre-reporter strains, Z/AP, Z/EG and R26R-EYFP and have demonstrated that although each reporter can be reliably activated by Cre during early development, exposure to Cre in adult hematopoietic cells results in a much lower frequency of marker-positive cells in the Z/AP or Z/EG strains than in the R26R-EYFP strain. In marker negative cells derived from the Z/AP and Z/EG strains, the transgenic promoter is methylated and Cre-mediated recombination of the locus is inhibited. Conclusions These results show that the efficiency of Cre-mediated recombination is not only dependent on the genomic context of a given loxP-flanked sequence, but also on stochastic epigenetic mechanisms underlying transgene variegation. Furthermore, our data highlights the potential shortcomings of utilizing the Z/AP and Z/EG reporters as surrogate markers of excision or in lineage tracing experiments.
Collapse
Affiliation(s)
- Michael A. Long
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabio M. V. Rossi
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
29
|
Production of a reporter transgenic pig for monitoring Cre recombinase activity. Biochem Biophys Res Commun 2009; 382:232-5. [PMID: 19268654 DOI: 10.1016/j.bbrc.2009.02.146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 02/26/2009] [Indexed: 11/23/2022]
Abstract
The pig is thought to be the most suitable non-human source of organs for xenotransplantation and is widely used as a model of human disease. Using pigs as disease models requires the design of conditional Cre recombinase-loxP gene modifications, which, in turn, requires a Cre-expressing pig with defined patterns of expression controlled by the use of a tissue-specific promoter. In order to monitor Cre recombinant expression in vivo, it is important to create a reporter strain. We have generated reporter a pig that is based on a single vector that drives the ubiquitous expression of the enhanced green fluorescent protein (EGFP). The EGFP gene is expressed only after Cre-mediated excision of loxP-flanked stop sequences. These reporter transgenic pigs will be of great value for monitoring Cre recombinase activity in vivo.
Collapse
|
30
|
Sequence analysis of a DNA fragment fromSinorhizobium fredii USDA257 which extends the nitrogen fixation host range ofRhizobium species NGR234 to soybean,Glycine max (L.) Merr cultivar Peking. Symbiosis 2009. [DOI: 10.1007/bf03179990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Oscarsson J, Karched M, Thay B, Chen C, Asikainen S. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol 2008; 8:206. [PMID: 19038023 PMCID: PMC2612679 DOI: 10.1186/1471-2180-8-206] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. RESULTS By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. CONCLUSION A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis.
Collapse
Affiliation(s)
- Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Fujise O, Wang Y, Chen W, Chen C. Adherence of Aggregatibacter actinomycetemcomitans via serotype-specific polysaccharide antigens in lipopolysaccharides. ACTA ACUST UNITED AC 2008; 23:226-33. [PMID: 18402609 DOI: 10.1111/j.1399-302x.2007.00416.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Gram-negative Aggregatibacter actinomycetemcomitans is recognized as an important periodontal pathogen. A striking property of this bacterium is its ability to form a tenacious biofilm adhering to abiotic surfaces. Both fimbrial and non-fimbrial adhesins are believed to be responsible for this ability. In our study, specific markerless mutants in the biosynthesis genes of cell surface polysaccharides were constructed with the Cre-loxP recombination system to identify non-fimbrial adhesin(s). METHODS Non-fimbriated A. actinomycetemcomitans strain ATCC29523 (serotype a) was used to construct a deletion mutant of serotype-a specific polysaccharide antigen (SPA-a) in lipopolysaccharide (LPS). The LPS was purified through a polymyxin B column following phenol extraction, and verified by silver staining following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by immunoblot analysis using rabbit antisera raised against SPA-a. Strains were grown in broth for 2 days and examined for the adherence of bacterial cells on the glass surface. RESULTS Strain ATCC29523 formed a thin film of bacterial growth on the glass surface. The deletion of SPA-a affected its ability to form this thin film. When this mutant was rescued with the wild-type SPA-a gene cluster, its adherence-positive phenotype was restored. CONCLUSION SPA-a in the LPS molecule appears to promote the adherence of A. actinomycetemcomitans cells to abiotic surfaces.
Collapse
Affiliation(s)
- O Fujise
- Kyushu University Faculty of Dental Science, Fukuoka, Japan.
| | | | | | | |
Collapse
|
33
|
Klopcic B, Maass T, Meyer E, Lehr HA, Metzger D, Chambon P, Mann A, Blessing M. TGF-β superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 2007; 86:781-99. [PMID: 17499880 DOI: 10.1016/j.ejcb.2007.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 03/09/2007] [Accepted: 03/09/2007] [Indexed: 12/22/2022] Open
Abstract
Members of the transforming growth factor beta (TGF-beta) superfamily of signaling molecules are involved in the regulation of many developmental processes that involve the interaction between mesenchymal and epithelial tissues. Smad7 is a potent inhibitor of many members of the TGF-beta family, notably TGF-beta and activin. In this study, we show that embryonic overexpression of Smad7 in stratified epithelia using a keratin 5 promoter, results in severe morphogenetic defects in skin and teeth and leads to embryonic and perinatal lethality. To further analyze the functions of Smad7 in epithelial tissues of adult mice, we used an expression system that allowed a controlled overexpression of Smad7 in terms of both space and time. Skin defects in adult mice overexpressing Smad7 were characterized by hyper-proliferation and missing expression of early markers of keratinocyte differentiation. Upon Smad7-mediated blockade of TGF-beta superfamily signaling, ameloblasts failed to produce an enamel layer in incisor teeth. In addition, TGF-beta blockade in adult mice altered the pattern of thymic T cell differentiation and the number of thymic T cells was significantly reduced. This study shows that TGF-beta superfamily signaling is essential for development of hair, tooth and T-cells as well as differentiation and proliferation control in adult tissues.
Collapse
Affiliation(s)
- Borut Klopcic
- I. Medical Department, Section Pathophysiology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Le Bourgeois P, Bugarel M, Campo N, Daveran-Mingot ML, Labonté J, Lanfranchi D, Lautier T, Pagès C, Ritzenthaler P. The unconventional Xer recombination machinery of Streptococci/Lactococci. PLoS Genet 2007; 3:e117. [PMID: 17630835 PMCID: PMC1914069 DOI: 10.1371/journal.pgen.0030117] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/04/2007] [Indexed: 11/19/2022] Open
Abstract
Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located at the junction of the two replication arms. Xer recombination is tightly controlled by the septal protein FtsK. XerCD recombinases and FtsK are found on most sequenced eubacterial genomes, suggesting that the Xer recombination system as described in E. coli is highly conserved among prokaryotes. We show here that Streptococci and Lactococci carry an alternative Xer recombination machinery, organized in a single recombination module. This corresponds to an atypical 31-bp recombination site (dif(SL)) associated with a dedicated tyrosine recombinase (XerS). In contrast to the E. coli Xer system, only a single recombinase is required to recombine dif(SL), suggesting a different mechanism in the recombination process. Despite this important difference, XerS can only perform efficient recombination when dif(SL) sites are located on chromosome dimers. Moreover, the XerS/dif(SL) recombination requires the streptococcal protein FtsK(SL), probably without the need for direct protein-protein interaction, which we demonstrated to be located at the division septum of Lactococcus lactis. Acquisition of the XerS recombination module can be considered as a landmark of the separation of Streptococci/Lactococci from other firmicutes and support the view that Xer recombination is a conserved cellular function in bacteria, but that can be achieved by functional analogs.
Collapse
Affiliation(s)
- Pascal Le Bourgeois
- Laboratoire de Microbiologie et Génétique Microbienne, CNRS, Université Paul Sabatier, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tsuge Y, Suzuki N, Inui M, Yukawa H. Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007; 74:1333-41. [PMID: 17221197 DOI: 10.1007/s00253-006-0788-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
A simple and random genome deletion method combining insertion sequence (IS) element IS31831 and the Cre/loxP excision system generated 42 Corynebacterium glutamicum mutants (0.2-186 kb). A total of 393.6 kb (11.9% of C. glutamicum R genome) coding for 331 genes was confirmed to be nonessential under standard laboratory conditions. The deletion strains, generated using only two vectors, varied not only in their lengths but also the location of the deletion along the C. glutamicum R genome. By comparing and analyzing the generated deletion strains, identification of nonessential genes, the roles of genes of hitherto unknown function, and gene-gene interactions can be easily and efficiently determined.
Collapse
Affiliation(s)
- Yota Tsuge
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Soraku-gun, Kyoto 619-0292, Japan
| | | | | | | |
Collapse
|
36
|
Abstract
Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogenic Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine at GANTC sites by the CcrM methylase regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation at GATC sites by the Dam methylase provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage genomes, transposase activity, and regulation of gene expression. Transcriptional repression by Dam methylation appears to be more common than transcriptional activation. Certain promoters are active only during the hemimethylation interval that follows DNA replication; repression is restored when the newly synthesized DNA strand is methylated. In the E. coli genome, however, methylation of specific GATC sites can be blocked by cognate DNA binding proteins. Blockage of GATC methylation beyond cell division permits transmission of DNA methylation patterns to daughter cells and can give rise to distinct epigenetic states, each propagated by a positive feedback loop. Switching between alternative DNA methylation patterns can split clonal bacterial populations into epigenetic lineages in a manner reminiscent of eukaryotic cell differentiation. Inheritance of self-propagating DNA methylation patterns governs phase variation in the E. coli pap operon, the agn43 gene, and other loci encoding virulence-related cell surface functions.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Seville 41080, Spain
| | | |
Collapse
|
37
|
Abstract
N(6)-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction-modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA-protein interactions. In gamma-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In alpha-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.
Collapse
Affiliation(s)
- Didier Wion
- INSERM U318, CHU Michallon, Université Joseph Fourier, 38043 Grenoble, France.
| | | |
Collapse
|
38
|
Schnütgen F, Stewart AF, von Melchner H, Anastassiadis K. Engineering embryonic stem cells with recombinase systems. Methods Enzymol 2006; 420:100-36. [PMID: 17161696 DOI: 10.1016/s0076-6879(06)20007-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The combined use of site-specific recombination and gene targeting or trapping in embryonic stem cells (ESCs) has resulted in the emergence of technologies that enable the induction of mouse mutations in a prespecified temporal and spatially restricted manner. Their large-scale implementation by several international mouse mutagenesis programs will lead to the assembly of a library of ES cell lines harboring conditional mutations in every single gene of the mouse genome. In anticipation of this unprecedented resource, this chapter will focus on site-specific recombination strategies and issues pertinent to ESCs and mice. The upcoming ESC resource and the increasing sophistication of site-specific recombination technologies will greatly assist the functional annotation of the human genome and the animal modeling of human disease.
Collapse
Affiliation(s)
- Frank Schnütgen
- Department for Molecular Hematology, University of Frankfurt Medical School, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
39
|
Sauer B, McDermott J. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 2004; 32:6086-95. [PMID: 15550568 PMCID: PMC534624 DOI: 10.1093/nar/gkh941] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sequencing of the 7 kb immC region from four P1-related phages identified a novel DNA recombinase that exhibits many Cre-like characteristics, including recombination in mammalian cells, but which has a distinctly different DNA specificity. DNA sequence comparison to the P1 immC region showed that all phages had related DNA terminase, C1 repressor and DNA recombinase genes. Although these genes from phages P7, phi(w39) and p15B were highly similar to those from P1, those of phage D6 showed significant divergence. Moreover, the D6 sequence showed evidence of DNA deletion and substitution in this region relative to the other phages. Characterization of the D6 site-specific DNA recombinase (Dre) showed that it was a tyrosine recombinase closely related to the P1 Cre recombinase, but that it had a distinct DNA specificity for a 32 bp DNA site (rox). Cre and Dre are heterospecific: Cre did not catalyze recombination at rox sites and Dre did not catalyze recombination at lox sites. Like Cre, Dre catalyzed both integrative and excisive recombination and required no other phage-encoded proteins for recombination. Dre-mediated recombination in mammalian cells showed that, like Cre, no host bacterial proteins are required for efficient Dre-mediated site-specific DNA recombination.
Collapse
Affiliation(s)
- Brian Sauer
- Stowers Institute, 1000 E 50th Street, Kansas City, MO 64110, USA.
| | | |
Collapse
|
40
|
Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032-68. [PMID: 15489417 PMCID: PMC523184 DOI: 10.1128/jb.186.21.7032-7068.2004] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.
Collapse
Affiliation(s)
- Małgorzata B Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Ul. Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Enhanced cell-permeant Cre protein for site-specific recombination in cultured cells. BMC Biotechnol 2004; 4:25. [PMID: 15500682 PMCID: PMC529453 DOI: 10.1186/1472-6750-4-25] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2004] [Accepted: 10/22/2004] [Indexed: 12/04/2022] Open
Abstract
Background Cell-permeant Cre DNA site-specific recombinases provide an easily controlled means to regulate gene structure and function in living cells. Since recombination provides a stable and unambiguous record of protein uptake, the enzyme may also be used for quantitative studies of cis- and trans-acting factors that influence the delivery of proteins into cells. Results In the present study, 11 recombinant fusion proteins were analyzed to characterize sequences and conditions that affect protein uptake and/or activity and to develop more active cell-permeant enzymes. We report that the native enzyme has a low, but intrinsic ability to enter cells. The most active Cre proteins tested contained either an N-terminal 6xHis tag and a nuclear localization sequence from SV40 large T antigen (HNC) or the HIV Tat transduction sequence and a C-terminal 6xHis tag (TCH6). The NLS and 6xHis elements separately enhanced the delivery of the HNC protein into cells; moreover, transduction sequences from fibroblast growth factor 4, HIV Tat or consisting of the (KFF)3K sequence were not required for efficient protein transduction and adversely affected enzyme solubility. Transduction of the HNC protein required 10 to 15 min for half-maximum uptake, was greatly decreased at 4°C and was inhibited by serum. Efficient recombination was observed in all cell types tested (a T-cell line, NIH3T3, Cos7, murine ES cells, and primary splenocytes), and did not require localization of the enzyme to the nucleus. Conclusions The effects of different sequences on the delivery and/or activity of Cre in cultured cells could not be predicted in advance. Consequently, the process of developing more active cell-permeant recombinases was largely empirical. The HNC protein, with an excellent combination of activity, solubility and yield, will enhance the use of cell-permeant Cre proteins to regulate gene structure and function in living cells.
Collapse
|
42
|
Petyuk V, McDermott J, Cook M, Sauer B. Functional mapping of Cre recombinase by pentapeptide insertional mutagenesis. J Biol Chem 2004; 279:37040-8. [PMID: 15218019 DOI: 10.1074/jbc.m406042200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cre is a site-specific recombinase from bacteriophage P1. It is a member of the tyrosine integrase family and catalyzes reciprocal recombination between specific 34-bp sites called loxP. To analyze the structure-function relationships of this enzyme, we performed large scale pentapeptide insertional mutagenesis to generate insertions of five amino acids at random positions in the protein. The high density of insertion mutations into Cre allowed us to identify an unexpected degree of functional tolerance to insertions into the 4-5 beta-hairpin and into the loop between helices J and K (both of which contact the DNA in the minor groove) and also into helix A. The phenotypes of the majority of inserts allowed us to confirm a variety of predictions made on the basis of sequence conservation, known three-dimensional structure, and proposed catalytic mechanism. In particular, most insertions into conserved regions or secondary structure elements inactivated Cre, and most insertions located in nonconserved, unstructured regions preserved Cre activity. Less expectedly, the non-conserved and poorly structured loops and linkers between helices A-B, E-F, and M-N did not tolerate insertions, thus identifying these as critical regions for recombinase activity. We purified and characterized in vitro several representatives of these "unexpected" Cre insertion mutants. The role of those regions in the recombination process is discussed.
Collapse
Affiliation(s)
- Vladislav Petyuk
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
43
|
Brake RL, Chatterjee PK, Kees UR, Watt PM. The functional mapping of long-range transcription control elements of the HOX11 proto-oncogene. Biochem Biophys Res Commun 2004; 313:327-35. [PMID: 14684164 DOI: 10.1016/j.bbrc.2003.11.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mapping of transcriptional control elements normally depends on the generation of a series of deletion mutants. The consequences of particular deletions are then functionally assessed by their ability to alter gene expression. The information derived from such investigations provides a general regulatory profile of the gene of interest, as well as generating a focus for future experiments. Due to the limitations of conventional DNA cloning methods, it has previously not been possible to use such an approach to rapidly assess the role of long-range regulatory elements that frequently lie further than 20 kb away from the coding region. In order to identify regulatory elements of the proto-oncogene HOX11 that may be mutated in a subset of childhood T-cell acute lymphoblastic leukaemia specimens, we generated nested deletions from a P1 artificial chromosome (PAC). This clone contained 95 kilobases (kb) of the HOX11 locus at 10q24; including 63 kb of 5' regulatory DNA. The deletion series was produced by the use of a recombination based cloning system and clones were subsequently transfected into mammalian cells. We have identified several long-range regulatory elements that mediate transcriptional control of HOX11. This approach is simple, rapid, and inexpensive. Furthermore, it generates multiple deletion clones in a single experiment. This novel approach opens up a new avenue for investigating long-range transcription control. Additionally, by allowing analysis of these elements in the natural context of large integrants the approach does not require the use of artificial extrachromosomal elements. This methodology can be applied to any gene cloned into a PAC or BAC vector and could also be useful in identifying appropriately sized deletion mutants for functional testing in transgenic models.
Collapse
Affiliation(s)
- Rachael L Brake
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research and Centre for Child Health Research, The University of Western Australia, West Perth, WA 6872, Australia.
| | | | | | | |
Collapse
|
44
|
Abstract
Cre recombinase has become an important tool in the precise manipulation of the genome, and its adoption has led to the development of increasingly accurate mouse models for the understanding of gene function. Although much of current work exploits the alacrity and precision with which Cre catalyzes excisive DNA recombination, Cre also is adept at the insertion of heterologous DNA into the genome. The precision and efficiency with which Cre can target DNA to a predesignated locus in the genome promises to facilitate understanding of mutant genes and allelic variants in their natural chromosomal context.
Collapse
Affiliation(s)
- Brian Sauer
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| |
Collapse
|
45
|
Barbosa MDFS, Lin S, Markwalder JA, Mills JA, DeVito JA, Teleha CA, Garlapati V, Liu C, Thompson A, Trainor GL, Kurilla MG, Pompliano DL. Regulated expression of the Escherichia coli lepB gene as a tool for cellular testing of antimicrobial compounds that inhibit signal peptidase I in vitro. Antimicrob Agents Chemother 2002; 46:3549-54. [PMID: 12384363 PMCID: PMC128713 DOI: 10.1128/aac.46.11.3549-3554.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli under-expressing lepB was utilized to test cellular inhibition of signal peptidase I (SPase). For the construction of a lepB regulatable strain, the E. coli lepB gene was cloned into pBAD, with expression dependent on L-arabinose. The chromosomal copy of lepB was replaced with a kanamycin resistance gene, which was subsequently removed. SPase production by the lepB regulatable strain in the presence of various concentrations of L-arabinose was monitored by Western blot analysis. At lower arabinose concentrations growth proceeded more slowly, possibly due to a decrease of SPase levels in the cells. A penem SPase inhibitor with little antimicrobial activity against E. coli when tested at 100 micro M was utilized to validate the cell-based system. Under-expression of lepB sensitized the cells to penem, with complete growth inhibition observed at 10 to 30 micro M. Growth was rescued by increasing the SPase levels. The cell-based assay was used to test cellular inhibition of SPase by compounds that inhibit the enzyme in vitro. MD1, MD2, and MD3 are SPase inhibitors with antimicrobial activity against Staphylococcus aureus, although they do not inhibit growth of E. coli. MD1 presented the best spectrum of antimicrobial activity. Both MD1 and MD2 prevented growth of E. coli under-expressing lepB in the presence of polymyxin B nonapeptide, with growth rescue observed when wild-type levels of SPase were produced. MD3 and MD4, a reactive analog of MD3, inhibited growth of E. coli under-expressing lepB. However, growth rescue in the presence of these compounds following increased lepB expression was observed only after prolonged incubation.
Collapse
Affiliation(s)
- Maria D F S Barbosa
- Departments of Antimicrobial Research, Bristol-Myers Squibb Company, Wilmington, Delaware 19880, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Andreas S, Schwenk F, Küter-Luks B, Faust N, Kühn R. Enhanced efficiency through nuclear localization signal fusion on phage PhiC31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res 2002; 30:2299-306. [PMID: 12034816 PMCID: PMC117205 DOI: 10.1093/nar/30.11.2299] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The integrase of the phage PhiC31 recombines an attP site in the phage genome with a chromosomal attB site of its Streptomyces host. We have utilized the integrase-mediated reaction to achieve episomal and genomic deletion of a reporter gene in mammalian cells, and provide the first comparison of its efficiency with other recombinases in a new assay system. This assay demonstrated that the efficiency of PhiC31-integrase is significantly enhanced by the C-terminal, but not the N-terminal, addition of a nuclear localization signal and becomes comparable with that of the widely used Cre/loxP system. Furthermore, we found that the improved FLP recombinase, FLPe, exhibits only 10% recombination activity on chromosomal targets as compared with Cre, whereas the Anabaena derived XisA recombinase is essentially inactive in mammalian cells. These results provide the first demonstration that a nuclear localisation signal and its position within a recombinase can be important for its efficiency in mammalian cells and establish the improved PhiC31-integrase as a new tool for genome engineering.
Collapse
Affiliation(s)
- Susanne Andreas
- Artemis Pharmaceuticals GmbH, Neurather Ring 1, 51063 Köln, Germany
| | | | | | | | | |
Collapse
|
47
|
DeVito JA, Mills JA, Liu VG, Agarwal A, Sizemore CF, Yao Z, Stoughton DM, Cappiello MG, Barbosa MDFS, Foster LA, Pompliano DL. An array of target-specific screening strains for antibacterial discovery. Nat Biotechnol 2002; 20:478-83. [PMID: 11981561 DOI: 10.1038/nbt0502-478] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As the global threat of drug- and antibiotic-resistant bacteria continues to rise, new strategies are required to advance the drug discovery process. This work describes the construction of an array of Escherichia coli strains for use in whole-cell screens to identify new antimicrobial compounds. We used the recombination systems from bacteriophages lambda and P1 to engineer each strain in the array for low-level expression of a single, essential gene product, thus making each strain hypersusceptible to specific inhibitors of that gene target. Screening of nine strains from the array in parallel against a large chemical library permitted identification of new inhibitors of bacterial growth. As an example of the target specificity of the approach, compounds identified in the whole-cell screen for MurA inhibitors were also found to block the biochemical function of the target when tested in vitro.
Collapse
Affiliation(s)
- Joseph A DeVito
- Department of Antimicrobial Research, Bristol-Myers Squibb Company, Wilmington, DE 19880, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Westwater C, Schofield DA, Schmidt MG, Norris JS, Dolan JW. Development of a P1 phagemid system for the delivery of DNA into Gram-negative bacteria. MICROBIOLOGY (READING, ENGLAND) 2002; 148:943-950. [PMID: 11932441 DOI: 10.1099/00221287-148-4-943] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The inability to transform many clinically important Gram-negative bacteria has hampered genetic studies addressing the mechanism of bacterial pathogenesis. This report describes the development and construction of a delivery system utilizing the broad-host-range transducing bacteriophage P1. The phagemids used in this system contain a P1 pac initiation site to package the vector, a P1 lytic replicon to generate concatemeric DNA, a broad-host-range origin of replication and an antibiotic-resistance determinant to select bacterial clones containing the recircularized phagemid. Phagemid DNA was successfully introduced by infection and stably maintained in members of the families Enterobacteriaceae (Escherichia coli, Shigella flexneri, Shigella dysenteriae, Klebsiella pneumoniae and Citrobacter freundii) and Pseudomonadaceae (Pseudomonas aeruginosa). In addition to laboratory strains, these virions were used successfully to deliver phagemids to a number of strains isolated from patients. This ability to deliver genetic information to wild-type strains raises the potential for use in antimicrobial therapies and DNA vaccine development.
Collapse
Affiliation(s)
- Caroline Westwater
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| | - David A Schofield
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| | - Michael G Schmidt
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| | - James S Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| | - Joseph W Dolan
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue BSB-201, Charleston, SC 29403, USA1
| |
Collapse
|
49
|
Qian F, Pan W. Construction of a tetR-integrated Salmonella enterica serovar Typhi CVD908 strain that tightly controls expression of the major merozoite surface protein of Plasmodium falciparum for applications in human Vaccine production. Infect Immun 2002; 70:2029-38. [PMID: 11895968 PMCID: PMC127878 DOI: 10.1128/iai.70.4.2029-2038.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attenuated Salmonella strains are an attractive live vector for delivery of a foreign antigen to the human immune system. However, the problem with this vector lies with plasmid segregation and the low level of expression of the foreign gene in vivo when constitutive expression is employed, leading to a diminished immune response. We have established inducible expressions of foreign genes in the Salmonella enterica serovar Typhi CVD908 vaccine strain using the tetracycline response regulatory promoter. To set up this system, a tetracycline repressor (tetR) was integrated into a defined Delta aroC locus of the chromosome via suicide plasmid pJG12/tetR-neo. To remove the neo gene conferring kanamycin resistance from the locus, a cre expression vector under the control of the tetracycline response promoter was transformed into the clone; expression of the Cre recombinase excised the neo gene and generated the end strain CVD908-tetR. Expression of the luciferase reporter gene in this strain is dependent on the presence of tetracycline in the medium and can be regulated up to 4,773-fold. Moreover, the tightly controlled expression of major merozoite surface protein 1 (MSP1) and parts of Plasmodium falciparum was achieved, and the product yield was increased when the inducible expression system was employed. Inoculation of bacteria harboring plasmid pZE11/MSP1(42) in mice produced the protein in liver and spleen controlled by the inducer. The persistence of the plasmid-carrying bacteria in mice was determined. Peak colonization of both liver and spleen was detected on the third day postinoculation and was followed by a decline in growth curves. After 14 days postinfection, the majority of the bacteria (>90%) recovered from the liver and spleen of the mice retained the plasmid when expression was induced; this clearly indicated that stability of the expression vector in vivo was improved by inducible expression. Establishment of the regulatory system in the vaccine strain may broaden the range of its use by enhancing plasmid stability and expression levels in vivo. Moreover, the availability of the vaccine strain inducibly expressing the entire MSP1 provides possibilities for examining its immunogenicity, particularly the cellular response in animal models.
Collapse
Affiliation(s)
- Feng Qian
- Department of Etiologic Biology, Second Military Medical University, Shanghai, China
| | | |
Collapse
|
50
|
Sato M, Watanabe T, Oshida A, Nagashima A, Miyazaki JI, Kimura M. Usefulness of double gene construct for rapid identification of transgenic mice exhibiting tissue-specific gene expression. Mol Reprod Dev 2001; 60:446-56. [PMID: 11746955 DOI: 10.1002/mrd.1109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Identification of transgenics still requires PCR and genomic Southern blot hybridization of genomic DNA isolated from tail pieces. Furthermore, identification of transgene-expressing transgenics (hereafter called "expressor") requires mRNA analyses (RT-PCR and Northern blot hybridization) or protein analysis (Western blotting and immunohistochemical staining using specific antibodies). These approaches are often labor-intensive and time-consuming. We developed a technique that simplifies the process of screening expressor transgenics using enhanced green fluorescent protein (EGFP), a noninvasive reporter recently utilized in a variety of organisms, including mice, as a tag. We constructed a MNCE transgene consisting of two expression units, MBP-NCre (termed "MN") and CAG-EGFP (termed "CE"). MN consists of a myelin basic protein (MBP) promoter and NCre gene (Cre gene carrying a nuclear localization signal (NLS) sequence at its 5' end). CE consists of a promoter element, CAG composed of cytomegalovirus (CMV) enhancer and chicken beta-actin promoter, and EGFP cDNA. Of a total of 72 F0 mice obtained after pronuclear injection of MNCE at 1-cell egg stage, 15 were found to express EGFP when the tail, eye, and inner surface of the ear were inspected for EGFP fluorescence under UV illumination at weaning stage. These fluorescent mice were found to possess MNCE and to express NCre mRNA in a brain-specific manner. Mice exhibiting no fluorescence were transgenic or nontransgenic. Mice carrying MNCE, but exhibiting no fluorescence, never expressed NCre mRNA in any organs tested. These findings indicate that (i) direct inspection of the surface of mice for fluorescence under UV illumination enables identification of expressor transgenics without performances of the molecular biological analyses mentioned above, and (ii) systemic promoters such as CAG do not affect the tissue-specificity of a tissue-specific promoter such as MBP promoter, which is located upstream of CAG by approximately 2 kb.
Collapse
MESH Headings
- Actins/genetics
- Animals
- Blotting, Southern
- Brain/metabolism
- Cells, Cultured
- Chickens/genetics
- Cytomegalovirus/genetics
- DNA, Recombinant/genetics
- Enhancer Elements, Genetic/genetics
- Gene Expression
- Gene Expression Profiling/methods
- Genes, Reporter/genetics
- Green Fluorescent Proteins
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- Mice, Transgenic
- Myelin Basic Protein/genetics
- Organ Specificity
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Recombination, Genetic/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Transgenes/genetics
Collapse
Affiliation(s)
- M Sato
- Molecular Medicine Research Center, The Institute of Medical Sciences, Tokai University, Bohseidai, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | |
Collapse
|