1
|
Frindert J, Zhang Y, Nübel G, Kahloon M, Kolmar L, Hotz-Wagenblatt A, Burhenne J, Haefeli WE, Jäschke A. Identification, Biosynthesis, and Decapping of NAD-Capped RNAs in B. subtilis. Cell Rep 2019; 24:1890-1901.e8. [PMID: 30110644 DOI: 10.1016/j.celrep.2018.07.047] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
The ubiquitous coenzyme nicotinamide adenine dinucleotide (NAD) decorates various RNAs in different organisms. In the proteobacterium Escherichia coli, the NAD-cap confers stability against RNA degradation. To date, NAD-RNAs have not been identified in any other bacterial microorganism. Here, we report the identification of NAD-RNA in the firmicute Bacillus subtilis. In the late exponential growth phase, predominantly mRNAs are NAD modified. NAD is incorporated de novo into RNA by the cellular RNA polymerase using non-canonical transcription initiation. The incorporation efficiency depends on the -1 position of the promoter but is independent of sigma factors or mutations in the rifampicin binding pocket. RNA pyrophosphohydrolase BsRppH is found to decap NAD-RNA. In vitro, the decapping activity is facilitated by manganese ions and single-stranded RNA 5' ends. Depletion of BsRppH influences the gene expression of ∼13% of transcripts in B. subtilis. The NAD-cap stabilizes RNA against 5'-to-3'-exonucleolytic decay by RNase J1.
Collapse
Affiliation(s)
- Jens Frindert
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Yaqing Zhang
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Gabriele Nübel
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Masroor Kahloon
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Leonie Kolmar
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Core Facility Genomics and Proteomics, German Cancer Research Center (DKFZ), DKFZ-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor. J Bacteriol 2017; 199:JB.00277-17. [PMID: 28507241 DOI: 10.1128/jb.00277-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
Sigma (σ) factors direct gene transcription by binding to and determining the promoter recognition specificity of RNA polymerase (RNAP) in bacteria. Genes transcribed under the control of alternative sigma factors allow cells to respond to stress and undergo developmental processes, such as sporulation in Bacillus subtilis, in which gene expression is controlled by a cascade of alternative sigma factors. Binding of sigma factors to RNA polymerase depends on the coiled-coil (or clamp helices) motif of the β' subunit. We have identified an amino acid substitution (L257P) in the coiled coil that markedly inhibits the function of σH, the earliest-acting alternative sigma factor in the sporulation cascade. Cells with this mutant RNAP exhibited an early and severe block in sporulation but not in growth. The mutant was strongly impaired in σH-directed gene expression but not in the activity of the stress-response sigma factor σB Pulldown experiments showed that the mutant RNAP was defective in associating with σH but could still associate with σA and σB The differential effects of the L257P substitution on sigma factor binding to RNAP are likely due to a conformational change in the β' coiled coil that is specifically detrimental for interaction with σH This is the first example, to our knowledge, of an amino acid substitution in RNAP that exhibits a strong differential effect on a particular alternative sigma factor.IMPORTANCE In bacteria, all transcription is mediated by a single multisubunit RNA polymerase (RNAP) enzyme. However, promoter-specific transcription initiation necessitates that RNAP associates with a σ factor. Bacteria contain a primary σ factor that directs transcription of housekeeping genes and alternative σ factors that direct transcription in response to environmental or developmental cues. We identified an amino acid substitution (L257P) in the B. subtilis β' subunit whereby RNAPL257P associates with some σ factors (σA and σB) and enables vegetative cell growth but is defective in utilization of σH and is consequently blocked for sporulation. To our knowledge, this is the first identification of an amino acid substitution within the core enzyme that affects utilization of a specific sigma factor.
Collapse
|
3
|
Evidence that Oxidative Stress Induces spxA2 Transcription in Bacillus anthracis Sterne through a Mechanism Requiring SpxA1 and Positive Autoregulation. J Bacteriol 2016; 198:2902-2913. [PMID: 27501985 PMCID: PMC5055595 DOI: 10.1128/jb.00512-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022] Open
Abstract
Bacillus anthracis possesses two paralogs of the transcriptional regulator, Spx. SpxA1 and SpxA2 interact with RNA polymerase (RNAP) to activate the transcription of genes implicated in the prevention and alleviation of oxidative protein damage. The spxA2 gene is highly upregulated in infected macrophages, but how this is achieved is unknown. Previous studies have shown that the spxA2 gene was under negative control by the Rrf2 family repressor protein, SaiR, whose activity is sensitive to oxidative stress. These studies also suggested that spxA2 was under positive autoregulation. In the present study, we show by in vivo and in vitro analyses that spxA2 is under direct autoregulation but is also dependent on the SpxA1 paralogous protein. The deletion of either spxA1 or spxA2 reduced the diamide-inducible expression of an spxA2-lacZ construct. In vitro transcription reactions using purified B. anthracis RNAP showed that SpxA1 and SpxA2 protein stimulates transcription from a DNA fragment containing the spxA2 promoter. Ectopically positioned spxA2-lacZ fusion requires both SpxA1 and SpxA2 for expression, but the requirement for SpxA1 is partially overcome when saiR is deleted. Electrophoretic mobility shift assays showed that SpxA1 and SpxA2 enhance the affinity of RNAP for spxA2 promoter DNA and that this activity is sensitive to reductant. We hypothesize that the previously observed upregulation of spxA2 in the oxidative environment of the macrophage is at least partly due to SpxA1-mediated SaiR repressor inactivation and the positive autoregulation of spxA2 transcription. IMPORTANCE Regulators of transcription initiation are known to govern the expression of genes required for virulence in pathogenic bacterial species. Members of the Spx family of transcription factors function in control of genes required for virulence and viability in low-GC Gram-positive bacteria. In Bacillus anthracis, the spxA2 gene is highly induced in infected macrophages, which suggests an important role in the control of virulence gene expression during the anthrax disease state. We provide evidence that elevated concentrations of oxidized, active SpxA2 result from an autoregulatory positive-feedback loop driving spxA2 transcription.
Collapse
|
4
|
Tanaka K, Iwasaki K, Morimoto T, Matsuse T, Hasunuma T, Takenaka S, Chumsakul O, Ishikawa S, Ogasawara N, Yoshida KI. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis. BMC Microbiol 2015; 15:43. [PMID: 25880922 PMCID: PMC4348106 DOI: 10.1186/s12866-015-0373-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
Background The two-component regulatory system, involving the histidine sensor kinase DegS and response regulator DegU, plays an important role to control various cell processes in the transition phase of Bacillus subtilis. The degU32 allele in strain 1A95 is characterized by the accumulation of phosphorylated form of DegU (DegU-P). Results Growing 1A95 cells elevated the pH of soytone-based medium more than the parental strain 168 after the onset of the transition phase. The rocG gene encodes a catabolic glutamate dehydrogenase that catalyzes one of the main ammonia-releasing reactions. Inactivation of rocG abolished 1A95-mediated increases in the pH of growth media. Thus, transcription of the rocG locus was examined, and a novel 3.7-kb transcript covering sivA, rocG, and rocA was found in 1A95 but not 168 cells. Increased intracellular fructose 1,6-bisphosphate (FBP) levels are known to activate the HPr kinase HPrK, and to induce formation of the P-Ser-HPr/CcpA complex, which binds to catabolite responsive elements (cre) and exerts CcpA-dependent catabolite repression. A putative cre found within the intergenic region between sivA and rocG, and inactivation of ccpA led to creation of the 3.7-kb transcript in 168 cells. Analyses of intermediates in central carbon metabolism revealed that intracellular FBP levels were lowered earlier in 1A95 than in 168 cells. A genome wide transcriptome analysis comparing 1A95 and 168 cells suggested similar events occurring in other catabolite repressive loci involving induction of lctE encoding lactate dehydrogenase. Conclusions Under physiological conditions the 3.7-kb rocG transcript may be tightly controlled by a roadblock mechanism involving P-Ser-HPr/CcpA in 168 cells, while in 1A95 cells abolished repression of the 3.7-kb transcript. Accumulation of DegU-P in 1A95 affects central carbon metabolism involving lctE enhanced by unknown mechanisms, downregulates FBP levels earlier, and inactivates HPrK to allow the 3.7-kb transcription, and thus similar events may occur in other catabolite repressive loci. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0373-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan.
| | - Kana Iwasaki
- Department of Agrobioscience, Kobe University, Kobe, Hyogo, Japan.
| | - Takuya Morimoto
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi, Japan. .,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | | | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan.
| | - Shinji Takenaka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan. .,Department of Agrobioscience, Kobe University, Kobe, Hyogo, Japan.
| | - Onuma Chumsakul
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | - Shu Ishikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | - Ken-ichi Yoshida
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan. .,Department of Agrobioscience, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
5
|
Abstract
My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery.
Collapse
Affiliation(s)
- Richard Losick
- From the Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| |
Collapse
|
6
|
Nakano MM, Kominos-Marvell W, Sane B, Nader YM, Barendt SM, Jones MB, Zuber P. spxA2, encoding a regulator of stress resistance in Bacillus anthracis, is controlled by SaiR, a new member of the Rrf2 protein family. Mol Microbiol 2014; 94:815-27. [PMID: 25231235 DOI: 10.1111/mmi.12798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2014] [Indexed: 12/22/2022]
Abstract
Spx, a member of the ArsC (arsenate reductase) protein family, is conserved in Gram-positive bacteria, and interacts with RNA polymerase to activate transcription in response to toxic oxidants. In Bacillus anthracis str. Sterne, resistance to oxidative stress requires the activity of two paralogues, SpxA1 and SpxA2. Suppressor mutations were identified in spxA1 mutant cells that conferred resistance to hydrogen peroxide. The mutations generated null alleles of the saiR gene and resulted in elevated spxA2 transcription. The saiR gene resides in the spxA2 operon and encodes a member of the Rrf2 family of transcriptional repressors. Derepression of spxA2 in a saiR mutant required SpxA2, indicating an autoregulatory mechanism of spxA2 control. Reconstruction of SaiR-dependent control of spxA2 was accomplished in Bacillus subtilis, where deletion analysis uncovered two cis-elements within the spxA2 regulatory region that are required for repression. Mutations to one of the sequences of dyad symmetry substantially reduced SaiR binding and SaiR-dependent repression of transcription from the spxA2 promoter in vitro. Previous studies have shown that spxA2 is one of the most highly induced genes in a macrophage infected with B. anthracis. The work reported herein uncovered a key regulator, SaiR, of the Spx system of stress response control.
Collapse
Affiliation(s)
- Michiko M Nakano
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
A Novel Small Protein ofBacillus subtilisInvolved in Spore Germination and Spore Coat Assembly. Biosci Biotechnol Biochem 2014; 75:1119-28. [DOI: 10.1271/bbb.110029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Tzanis A, Dalton KA, Hesketh A, den Hengst CD, Buttner MJ, Thibessard A, Kelemen GH. A sporulation-specific, sigF-dependent protein, SspA, affects septum positioning in Streptomyces coelicolor. Mol Microbiol 2013; 91:363-80. [PMID: 24261854 PMCID: PMC4282423 DOI: 10.1111/mmi.12466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 01/17/2023]
Abstract
The RNA polymerase sigma factor SigF controls late development during sporulation in the filamentous bacterium Streptomyces coelicolor. The only known SigF-dependent gene identified so far, SCO5321, is found in the biosynthetic cluster encoding spore pigment synthesis. Here we identify the first direct target for SigF, the gene sspA, encoding a sporulation-specific protein. Bioinformatic analysis suggests that SspA is a secreted lipoprotein with two PepSY signature domains. The sspA deletion mutant exhibits irregular sporulation septation and altered spore shape, suggesting that SspA plays a role in septum formation and spore maturation. The fluorescent translational fusion protein SspA–mCherry localized first to septum sites, then subsequently around the surface of the spores. Both SspA protein and sspA transcription are absent from the sigF null mutant. Moreover, in vitro transcription assay confirmed that RNA polymerase holoenzyme containing SigF is sufficient for initiation of transcription from a single sspA promoter. In addition, in vivo and in vitro experiments showed that sspA is a direct target of BldD, which functions to repress sporulation genes, including whiG, ftsZ and ssgB, during vegetative growth, co-ordinating their expression during sporulation septation.
Collapse
Affiliation(s)
- Angelos Tzanis
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Kuwana R, Takamatsu H. The GerW protein is essential for L-alanine-stimulated germination of Bacillus subtilis spores. J Biochem 2013; 154:409-17. [PMID: 23921501 DOI: 10.1093/jb/mvt072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
GerW (formerly called YtfJ) is a protein found in dormant spores of Bacillus subtilis. We have studied spore proteins in B. subtilis before, and here we report the characterization of GerW protein. Northern blot analysis revealed that gerW mRNA was transcribed by SigF-containing RNA polymerase beginning 1 h after the initiation of sporulation. Fluorescence was detected in forespores and dormant spores of B. subtilis recombinant strains expressing GerW-GFP. During germination in the presence of L-alanine or a mixture of L-asparagine, D-glucose, D-fructose and potassium ions (AGFK), normal spores of B. subtilis became darkened, stained positive with Hoechst 33342 and carboxyfluorescein diacetate succinimidyl ester (CFDA-SE), and released dipicolinic acid (DPA). In the case of gerW-deficient spores, AGFK triggered germination in a manner similar to that seen in the wild-type spores, whereas spores stimulated by L-alanine remained refractive under the phase contrast microscope, failed to stain positive with Hoechst 33342 or CFDA-SE, and released almost no DPA. These results indicate that GerW is essential for the L-alanine-induced breakdown of spore dormancy followed by core rehydration and the resumption of enzymatic activity, and suggest that GerW is involved in the early stages of germination in the presence of l-alanine.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | | |
Collapse
|
10
|
Barendt S, Lee H, Birch C, Nakano MM, Jones M, Zuber P. Transcriptomic and phenotypic analysis of paralogous spx gene function in Bacillus anthracis Sterne. Microbiologyopen 2013; 2:695-714. [PMID: 23873705 PMCID: PMC3831629 DOI: 10.1002/mbo3.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/05/2013] [Accepted: 06/17/2013] [Indexed: 11/15/2022] Open
Abstract
Spx of Bacillus subtilis is a redox-sensitive protein, which, under disulfide stress, interacts with RNA polymerase to activate genes required for maintaining thiol homeostasis. Spx orthologs are highly conserved among low %GC Gram-positive bacteria, and often exist in multiple paralogous forms. In this study, we used B. anthracis Sterne, which harbors two paralogous spx genes, spxA1 and spxA2, to examine the phenotypes of spx null mutations and to identify the genes regulated by each Spx paralog. Cells devoid of spxA1 were sensitive to diamide and hydrogen peroxide, while the spxA1 spoxA2 double mutant was hypersensitive to the thiol-specific oxidant, diamide. Bacillus anthracis Sterne strains expressing spxA1DD or spxA2DD alleles encoding protease-resistant products were used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses in order to uncover genes under SpxA1, SpxA2, or SpxA1/SpxA2 control. Comparison of transcriptomes identified many genes that were upregulated when either SpxA1DD or SpxA2DD was produced, but several genes were uncovered whose transcript levels increased in only one of the two SpxADD-expression strains, suggesting that each Spx paralog governs a unique regulon. Among genes that were upregulated were those encoding orthologs of proteins that are specifically involved in maintaining intracellular thiol homeostasis or alleviating oxidative stress. Some of these genes have important roles in B. anthracis pathogenesis, and a large number of upregulated hypothetical genes have no homology outside of the B. cereus/thuringiensis group. Microarray and RT-qPCR analyses also unveiled a regulatory link that exists between the two spx paralogous genes. The data indicate that spxA1 and spxA2 are transcriptional regulators involved in relieving disulfide stress but also control a set of genes whose products function in other cellular processes. Bacillus anthracis harbors two paralogs of the global transcriptional regulator of stress response, SpxA. SpxA1 and SpxA2 contribute to disulfide stress tolerance, but only SpxA1 functions in resistance to peroxide. Transcriptome analysis uncovered potential SpxA1 and SpxA2 regulon members, which include genes activated by both paralogs. However, paralog-specific gene activation was also observed. Genes encoding glutamate racemase, CoA disulfide reductase, and products functioning in bacillithiol biosynthesis, are among the genes activated by the SpxA paralogs.
Collapse
Affiliation(s)
- Skye Barendt
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Beaverton, Oregon
| | | | | | | | | | | |
Collapse
|
11
|
Manabe K, Kageyama Y, Morimoto T, Shimizu E, Takahashi H, Kanaya S, Ara K, Ozaki K, Ogasawara N. Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions. Microb Cell Fact 2013; 12:18. [PMID: 23419162 PMCID: PMC3600796 DOI: 10.1186/1475-2859-12-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/06/2013] [Indexed: 11/23/2022] Open
Abstract
Background The Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular enzymes under batch fermentation conditions. We predicted that deletion of the gene for RocG, a bi-functional protein that acts as a glutamate dehydrogenase and an indirect repressor of glutamate synthesis, would improve glutamate metabolism, leading to further increased enzyme production. However, deletion of rocG dramatically decreased production of the alkaline cellulase Egl-237 in strain MGB874 (strain 874∆rocG). Results Transcriptome analysis and cultivation profiles suggest that this phenomenon is attributable to impaired secretion of alkaline cellulase Egl-237 and nitrogen starvation, caused by decreased external pH and ammonium depletion, respectively. With NH3-pH auxostat fermentation, production of alkaline cellulase Egl-237 in strain 874∆rocG was increased, exceeding that in the wild-type-background strain 168∆rocG. Notably, in strain 874∆rocG, high enzyme productivity was observed throughout cultivation, possibly due to enhancement of metabolic flux from 2-oxoglutarate to glutamate and generation of metabolic energy through activation of the tricarboxylic acid (TCA) cycle. The level of alkaline cellulase Egl-237 obtained corresponded to about 5.5 g l-1, the highest level reported so far. Conclusions We found the highest levels of production of alkaline cellulase Egl-237 with the reduced-genome strain 874∆rocG and using the NH3-pH auxostat. Deletion of the glutamate dehydrogenase gene rocG enhanced enzyme production via a prolonged auxostat fermentation, possibly due to improved glutamate synthesis and enhanced generation of metabolism energy.
Collapse
Affiliation(s)
- Kenji Manabe
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Counterselection system for Geobacillus kaustophilus HTA426 through disruption of pyrF and pyrR. Appl Environ Microbiol 2012; 78:7376-83. [PMID: 22885745 DOI: 10.1128/aem.01669-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Counterselection systems facilitate marker-free genetic modifications in microbes by enabling positive selections for both the introduction of a marker gene into the microbe and elimination of the marker from the microbe. Here we report a counterselection system for Geobacillus kaustophilus HTA426, established through simultaneous disruption of the pyrF and pyrR genes. The pyrF gene, essential for pyrimidine biosynthesis and metabolization of 5-fluoroorotic acid (5-FOA) to toxic metabolites, was disrupted by homologous recombination. The resultant MK54 strain (ΔpyrF) was auxotrophic for uracil and resistant to 5-FOA. MK54 complemented with pyrF was prototrophic for uracil but insensitive to 5-FOA in the presence of uracil. To confer 5-FOA sensitivity, the pyrR gene encoding an attenuator to repress pyrimidine biosynthesis by sensing uracil derivatives was disrupted. The resultant MK72 strain (ΔpyrF ΔpyrR) was auxotrophic for uracil and resistant to 5-FOA. MK72 complemented with pyrF was prototrophic for uracil and 5-FOA sensitive even in the presence of uracil. The results suggested that pyrF could serve as a counterselection marker in MK72, which was demonstrated by efficient marker-free integrations of heterologous β-galactosidase and α-amylase genes. The integrated genes were functionally expressed in G. kaustophilus and conferred new functions on the thermophile. This report describes the first establishment of a pyrF-based counterselection system in a Bacillus-related bacterium, along with the first demonstration of homologous recombination and heterologous gene expression in G. kaustophilus. Our results also suggest a new strategy for establishment of counterselection systems.
Collapse
|
13
|
Manabe K, Kageyama Y, Tohata M, Ara K, Ozaki K, Ogasawara N. High external pH enables more efficient secretion of alkaline α-amylase AmyK38 by Bacillus subtilis. Microb Cell Fact 2012; 11:74. [PMID: 22681752 PMCID: PMC3424145 DOI: 10.1186/1475-2859-11-74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular alkaline cellulase Egl-237 and subtilisin-like alkaline protease M-protease. Here, we investigated the suitability of strain MGB874 for the production of α-amylase, which was anticipated to provoke secretion stress responses involving the CssRS (Control secretion stress Regulator and Sensor) system. Results Compared to wild-type strain 168, the production of a novel alkaline α-amylase, AmyK38, was severely decreased in strain MGB874 and higher secretion stress responses were also induced. Genetic analyses revealed that these phenomena were attributable to the decreased pH of growth medium as a result of the lowered expression of rocG, encoding glutamate dehydrogenase, whose activity leads to NH3 production. Notably, in both the genome-reduced and wild-type strains, an up-shift of the external pH by the addition of an alkaline solution improved AmyK38 production, which was associated with alleviation of the secretion stress response. These results suggest that the optimal external pH for the secretion of AmyK38 is higher than the typical external pH of growth medium used to culture B. subtilis. Under controlled pH conditions, the highest production level (1.08 g l-1) of AmyK38 was obtained using strain MGB874. Conclusions We demonstrated for the first time that RocG is an important factor for secretory enzyme production in B. subtilis through its role in preventing acidification of the growth medium. As expected, a higher external pH enabled a more efficient secretion of the alkaline α-amylase AmyK38 in B. subtilis. Under controlled pH conditions, the reduced-genome strain MGB874 was demonstrated to be a beneficial host for the production of AmyK38.
Collapse
Affiliation(s)
- Kenji Manabe
- Biological Science Laboratories, Kao Corporation, 2606 Akabane Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Lama A, Pané-Farré J, Chon T, Wiersma AM, Sit CS, Vederas JC, Hecker M, Nakano MM. Response of methicillin-resistant Staphylococcus aureus to amicoumacin A. PLoS One 2012; 7:e34037. [PMID: 22479511 PMCID: PMC3316591 DOI: 10.1371/journal.pone.0034037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/21/2012] [Indexed: 11/18/2022] Open
Abstract
Amicoumacin A exhibits strong antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), hence we sought to uncover its mechanism of action. Genome-wide transcriptome analysis of S. aureus COL in response to amicoumacin A showed alteration in transcription of genes specifying several cellular processes including cell envelope turnover, cross-membrane transport, virulence, metabolism, and general stress response. The most highly induced gene was lrgA, encoding an antiholin-like product, which is induced in cells undergoing a collapse of Δψ. Consistent with the notion that LrgA modulates murein hydrolase activity, COL grown in the presence of amicoumacin A showed reduced autolysis, which was primarily caused by lower hydrolase activity. To gain further insight into the mechanism of action of amicoumacin A, a whole genome comparison of wild-type COL and amicoumacin A-resistant mutants isolated by a serial passage method was carried out. Single point mutations generating codon substitutions were uncovered in ksgA (encoding RNA dimethyltransferase), fusA (elongation factor G), dnaG (primase), lacD (tagatose 1,6-bisphosphate aldolase), and SACOL0611 (a putative glycosyl transferase). The codon substitutions in EF-G that cause amicoumacin A resistance and fusidic acid resistance reside in separate domains and do not bring about cross resistance. Taken together, these results suggest that amicoumacin A might cause perturbation of the cell membrane and lead to energy dissipation. Decreased rates of cellular metabolism including protein synthesis and DNA replication in resistant strains might allow cells to compensate for membrane dysfunction and thus increase cell survivability.
Collapse
Affiliation(s)
- Amrita Lama
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jan Pané-Farré
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Tai Chon
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Anna M. Wiersma
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Clarissa S. Sit
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Michiko M. Nakano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
15
|
Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol 2011; 77:8370-81. [PMID: 21965396 DOI: 10.1128/aem.06136-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome reduction strategies to create genetically improved cellular biosynthesis machineries for proteins and other products have been pursued by use of a wide range of bacteria. We reported previously that the novel Bacillus subtilis strain MGB874, which was derived from strain 168 and has a total genomic deletion of 874 kb (20.7%), exhibits enhanced production of recombinant enzymes. However, it was not clear how the genomic reduction resulted in elevated enzyme production. Here we report that deletion of the rocDEF-rocR region, which is involved in arginine degradation, contributes to enhanced enzyme production in strain MGB874. Deletion of the rocDEF-rocR region caused drastic changes in glutamate metabolism, leading to improved cell yields with maintenance of enzyme productivity. Notably, the specific enzyme productivity was higher in the reduced-genome strain, with or without the rocDEF-rocR region, than in wild-type strain 168. The high specific productivity in strain MGB874 is likely attributable to the higher expression levels of the target gene resulting from an increased promoter activity and plasmid copy number. Thus, the combined effects of the improved cell yield by deletion of the rocDEF-rocR region and the increased specific productivity by deletion of another gene(s) or the genomic reduction itself enhanced the production of recombinant enzymes in MGB874. Our findings represent a good starting point for the further improvement of B. subtilis reduced-genome strains as cell factories for the production of heterologous enzymes.
Collapse
|
16
|
Fujinami S, Sato T, Ito M. The relationship between a coiled morphology and Mbl in alkaliphilic Bacillus halodurans C-125 at neutral pH values. Extremophiles 2011; 15:587-96. [PMID: 21786127 DOI: 10.1007/s00792-011-0389-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 07/04/2011] [Indexed: 11/30/2022]
Abstract
The facultative alkaliphilic Bacillus halodurans C-125 can grow in a pH range from 6.8 to 10.8. The morphology of the cells grown at pH values above 7.5 is rod shaped, whereas, that gown at pH values less than 7.5 is coiled. Cytoplasmic membrane staining revealed that this coiled morphology was formed not by one filamentous cell, but by many chained bent/non-bent cells. Prokaryotic actin and tubulin homologs (MreB, Mbl MreBH, and FtsZ, respectively) are known to function as bacterial cytoskeleton proteins. The transcription levels of ftsZ, mreB, and mreBH genes were hardly affected by growth pH. However, the level of the mbl gene was significantly decreased at neutral pH values. Moreover, the expression level of the Mbl protein at pH 7.0 was about one-fourth of that at pH 10. Immunofluorescence microscopy (IFM) showed that the Mbl protein was localized as a helical structure in the rod-shaped cell grown at pH 10, whereas a helical structure was not observed in the cells grown at pH 7.0. Fluorescent vancomycin staining showed insertion of new peptidoglycan strands of sidewalls occurred in the cells grown at pH 7.0. These data suggested that a decrease in the expression level of the Mbl protein can influence the morphology of B. halodurans C-125 grown at pH 7.0 without influencing insertion of new peptidoglycan strands.
Collapse
Affiliation(s)
- Shun Fujinami
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan.
| | | | | |
Collapse
|
17
|
Chee GJ, Takami H. Alternative splicing by participation of the group II intron ORF in extremely halotolerant and alkaliphilic Oceanobacillus iheyensis. Microbes Environ 2011; 26:54-60. [PMID: 21487203 DOI: 10.1264/jsme2.me10154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.
Collapse
Affiliation(s)
- Gab-Joo Chee
- Microbial Genome Research Group, Japan Agency for Marine-Earth Science and Technology, 2–15 Natsushima, Yokosuka 237–0061, Japan.
| | | |
Collapse
|
18
|
Kocabaş P, Çalık P, Çalık G, Özdamar TH. Microarray Studies inBacillus subtilis. Biotechnol J 2009; 4:1012-27. [DOI: 10.1002/biot.200800330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Hecker M, Reder A, Fuchs S, Pagels M, Engelmann S. Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus. Res Microbiol 2009; 160:245-58. [PMID: 19403106 DOI: 10.1016/j.resmic.2009.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Gel-based proteomics is a useful approach for visualizing the responses of bacteria to stress and starvation stimuli. In order to face stress/starvation, bacteria have developed very complicated gene expression networks. A proteomic view of stress/starvation responses, however, is only a starting point which should promote follow-up studies aimed at the comprehensive description of single regulons, their signal transduction pathways on the one hand, and their adaptive functions on the other, and finally their integration into complex gene expression networks. This "road map of physiological proteomics" will be demonstrated for the general stress regulon controlled by sigma(B) in Bacillus subtilis and the oxygen starvation response with Rex as a master regulator in Staphylococcus aureus.
Collapse
Affiliation(s)
- Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Jahnstrasse 15A, 17487 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
20
|
Expression of yeeK during Bacillus subtilis sporulation and localization of YeeK to the inner spore coat using fluorescence microscopy. J Bacteriol 2008; 191:1220-9. [PMID: 19060142 DOI: 10.1128/jb.01269-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeeK gene of Bacillus subtilis is predicted to encode a protein of 145 amino acids composed of 28% glycine, 23% histidine, and 12% tyrosine residues. Previous studies were unable to detect YeeK in wild-type spores; however, the 18-kDa YeeK polypeptide has been identified in yabG mutant spores. In this study, we analyze the expression and localization of YeeK to explore the relationship between YeeK and YabG. Northern hybridization analysis of wild-type RNA indicated that transcription of the yeeK gene, which was initiated 5 h after the onset of sporulation, was dependent on a SigK-containing RNA polymerase and the GerE protein. Genetic disruption of yeeK did not impair vegetative growth, development of resistant spores, or germination. Fluorescent microscopy of in-frame fusions of YeeK with green fluorescent protein (YeeK-GFP) and red fluorescent protein (YeeK-RFP) confirmed that YeeK assembles into the spore integument. CotE, SafA, and SpoVID were required for the proper localization of YeeK-GFP. Comparative analysis of YeeK-RFP and an in-frame GFP fusion of YabG indicated that YeeK colocalized with YabG in the spore coat. This is the first use of fluorescent proteins to show localization to different layers of the spore coat. Immunoblotting with anti-GFP antiserum indicated that YeeK-GFP was primarily synthesized as a 44-kDa molecule, which was then digested into a 29-kDa fragment that corresponded to the molecular size of GFP in wild-type spores. In contrast, a minimal amount of 44-kDa YeeK-GFP was digested in yabG mutant spores. Our findings demonstrate that YeeK is guided into the spore coat by CotE, SafA, and SpoVID. We conclude that YabG is directly or indirectly involved in the digestion of YeeK.
Collapse
|
21
|
Saito S, Kakeshita H, Nakamura K. Novel small RNA-encoding genes in the intergenic regions of Bacillus subtilis. Gene 2008; 428:2-8. [PMID: 18948176 DOI: 10.1016/j.gene.2008.09.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/28/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
Small, non-coding RNAs (ncRNAs) perform diverse functions in a variety of organisms, but few ncRNAs have been identified in Bacillus subtilis. To search the B. subtilis genome for genes encoding ncRNAs, we focused on 123 intergenic regions (IGRs) over 500 bp in length and analyzed expression from these regions. Seven IGRs termed bsrC, bsrD, bsrE, bsrF, bsrG, bsrH and bsrI expressed RNAs smaller than 380 nt. All small RNAs except BsrD RNA were expressed in transformed Escherichia coli cells harboring a plasmid with PCR-amplified IGRs of B. subtilis, indicating that their own promoters independently express small RNAs. Under the non-stressed condition, depletion of the genes for the small RNAs did not affect growth. Although their functions are unknown, gene expression profiles at several time points showed that most of the genes except for bsrD were expressed during the vegetative phase (4-6 h), but undetectable during the stationary phase (8 h). Mapping the 5' ends of the 6 small RNAs revealed that the genes for BsrE, BsrF, BsrG, BsrH, and BsrI RNAs are preceded by a recognition site for RNA polymerase sigma factor sigma(A). These small RNAs might lack an SD sequence and exert their actions as ncRNAs.
Collapse
Affiliation(s)
- Shinichi Saito
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
22
|
Abstract
SUMMARY Undomesticated strains of Bacillus subtilis can form pellicle biofilms in standing culture. Pellicle formation is initiated by repression of flagellar genes and activation of the eps and yqxM operons, which are involved in biofilm-matrix synthesis. SinI is thought to induce the eps and yqxM operons by antagonizing their repressor SinR. Here, we show that mutations in late-flagellar genes prevent pellicle formation at an initiation step. These mutations reduce the activity of SlrR/SlrA. SlrR (formerly Slr) and SlrA are homologues of SinR and SinI respectively, and SlrR/SlrA represses sigma(D)-dependent flagellar genes and activate the eps and yqxM operons. Contrary to previous reports, a sinI mutation does not prevent pellicle formation in B. subtilis strain ATCC 6051. ATCC 6051 has a frameshift mutation in the ywcC gene, which encodes a TetR-type transcriptional repressor. The ywcC mutation depresses slrA transcription, thereby increasing SlrR/SlrA activity. In the ywcC mutant, SlrR/SlrA rather than SinI activates the eps and yqxM operons by antagonizing SinR. The roles of SlrR/SlrA and flagella in the initiation of pellicle formation are discussed.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan.
| |
Collapse
|
23
|
Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. J Bacteriol 2008; 190:4272-80. [PMID: 18408032 DOI: 10.1128/jb.00162-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular depolymerization of arabinopolysaccharides by microorganisms is accomplished by arabinanases, xylanases, and galactanases. Here, we characterize a novel endo-alpha-1,5-l-arabinanase (EC 3.2.1.99) from Bacillus subtilis, encoded by the yxiA gene (herein renamed abn2) that contributes to arabinan degradation. Functional studies by mutational analysis showed that Abn2, together with previously characterized AbnA, is responsible for the majority of the extracellular arabinan activity in B. subtilis. Abn2 was overproduced in Escherichia coli, purified from the periplasmic fraction, and characterized with respect to substrate specificity and biochemical and physical properties. With linear-alpha-1,5-l-arabinan as the preferred substrate, the enzyme exhibited an apparent K(m) of 2.0 mg ml(-1) and V(max) of 0.25 mmol min(-1) mg(-1) at pH 7.0 and 50 degrees C. RNA studies revealed the monocistronic nature of abn2. Two potential transcriptional start sites were identified by primer extension analysis, and both a sigma(A)-dependent and a sigma(H)-dependent promoter were located. Transcriptional fusion studies revealed that the expression of abn2 is stimulated by arabinan and pectin and repressed by glucose; however, arabinose is not the natural inducer. Additionally, trans-acting factors and cis elements involved in transcription were investigated. Abn2 displayed a control mechanism at a level of gene expression different from that observed with AbnA. These distinct regulatory mechanisms exhibited by two members of extracellular glycoside hydrolase family 43 (GH43) suggest an adaptative strategy of B. subtilis for optimal degradation of arabinopolysaccharides.
Collapse
|
24
|
Kobayashi K, Kuwana R, Takamatsu H. kinA mRNA is missing a stop codon in the undomesticated Bacillus subtilis strain ATCC 6051. MICROBIOLOGY-SGM 2008; 154:54-63. [PMID: 18174125 DOI: 10.1099/mic.0.2007/011783-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several features distinguish laboratory and undomesticated strains of Bacillus subtilis. For example, unlike the laboratory strain 168, the undomesticated strain ATCC 6051 is deficient in sporulation in a rich sporulation medium, 2x SG. ATCC 6051 cannot induce transcription of the spoIIG operon, suggesting that this strain has a defect in initiation of sporulation. To determine the genetic difference between 168 and ATCC 6051, the DNA region responsible for the Spo(-) phenotype was transferred to strain 168. Genetic mapping and DNA sequencing analysis revealed that a stop codon (TAA) for kinA in 168 is replaced with Lys (TAT) in ATCC 6051, making the kinA open reading frame 201 bp longer in the undomesticated strain ATCC 6051. Introduction of kinA from strain 168 restored sporulation in ATCC 6051, indicating that the difference in kinA is responsible for the Spo(-) phenotype of ATCC 6051. A potential rho-independent terminator is located upstream of a stop codon for the extended kinA open reading frame in ATCC 6051. Northern blot analysis showed that transcription of kinA terminated at this terminator, and kinA mRNA is missing a stop codon in ATCC 6051. Moreover, deletion of tmRNA suppresses the sporulation defect in ATCC 6051. These observations indicate that in ATCC 6051 the absence of a stop codon in kinA mRNA affects sporulation, probably by leading to rapid degradation of KinA via the trans-translation process. In ATCC 6051, the kinA mutation affects sporulation but not other Spo0A-dependent phenomena such as biofilm formation, which can be activated by a low level of Spo0A approximately P. This is due to the fact that KinA activity is kept low during the exponential phase via transcriptional and post-translational regulation. Thus, the stop-codon-less kinA probably affects only sporulation. DNA sequencing of 30 B. subtilis strains revealed that another strain also produces stop-codon-less kinA mRNA. This observation suggests that the lack of a stop codon for kinA mRNA may give rise to a selective advantage under certain conditions.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Nagaotouge 45-1, Hirakata, Osaka 573-0101, Japan
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, Nagaotouge 45-1, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
25
|
Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 2008; 15:73-81. [PMID: 18334513 PMCID: PMC2650625 DOI: 10.1093/dnares/dsn002] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The emerging field of synthetic genomics is expected to facilitate the generation of microorganisms with the potential to achieve a sustainable society. One approach towards this goal is the reduction of microbial genomes by rationally designed deletions to create simplified cells with predictable behavior that act as a platform to build in various genetic systems for specific purposes. We report a novel Bacillus subtilis strain, MBG874, depleted of 874 kb (20%) of the genomic sequence. When compared with wild-type cells, the regulatory network of gene expression of the mutant strain is reorganized after entry into the transition state due to the synergistic effect of multiple deletions, and productivity of extracellular cellulase and protease from transformed plasmids harboring the corresponding genes is remarkably enhanced. To our knowledge, this is the first report demonstrating that genome reduction actually contributes to the creation of bacterial cells with a practical application in industry. Further systematic analysis of changes in the transcriptional regulatory network of MGB874 cells in relation to protein productivity should facilitate the generation of improved B. subtilis cells as hosts of industrial protein production.
Collapse
Affiliation(s)
- Takuya Morimoto
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gaskell AA, Crack JC, Kelemen GH, Hutchings MI, Le Brun NE. RsmA is an anti-sigma factor that modulates its activity through a [2Fe-2S] cluster cofactor. J Biol Chem 2007; 282:31812-20. [PMID: 17766240 DOI: 10.1074/jbc.m705160200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rsmA gene of Streptomyces coelicolor lies directly upstream of the gene encoding the group 3 sigma factor sigma(M). The RsmA protein is a putative member of the HATPase_c family of anti-sigma factors but is unusual in that it contains seven cysteine residues. Bacterial two-hybrid studies demonstrate that it interacts specifically with sigma(M), and in vitro studies of the purified proteins by native PAGE and transcription assays confirmed that they form a complex. Characterization of RsmA revealed that it binds ATP and that, as isolated, it contains significant quantities of iron and inorganic sulfide, in equal proportion, with spectroscopic properties characteristic of a [2Fe-2S] cluster-containing protein. Importantly, the interaction between RsmA and sigma(M) is dependent on the presence of the iron-sulfur cluster. We propose a model in which RsmA regulates the activity of sigma(M). Loss of the cluster, in response to an as yet unidentified signal, activates sigma(M) by abolishing its interaction with the anti-sigma factor. This represents a major extension of the functional diversity of iron-sulfur cluster proteins.
Collapse
Affiliation(s)
- Alisa A Gaskell
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Dalton KA, Thibessard A, Hunter JIB, Kelemen GH. A novel compartment, the 'subapical stem' of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor. Mol Microbiol 2007; 64:719-37. [PMID: 17462019 DOI: 10.1111/j.1365-2958.2007.05684.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Streptomyces coelicolor has nine SigB-like RNA polymerase sigma factors, several of them implicated in morphological differentiation and/or responses to different stresses. One of the nine, SigN, is the focus of this article. A constructed sigN null mutant was delayed in development and exhibited a bald phenotype when grown on minimal medium containing glucose as carbon source. One of two distinct sigN promoters, sigNP1, was active only during growth on solid medium, when its activation coincided with aerial hyphae formation. Transcription from sigNP1 was readily detected in several whi mutants (interrupted in morphogenesis of aerial mycelium into spores), but was absent from all bld mutants tested, suggesting that sigNP1 activity was restricted to the aerial hyphae. It also depended on sigN, thus sigN was autoregulated. Mutational and transcription studies revealed no functional significance to the location of sigN next to sigF, encoding another SigB-like sigma factor. We identified another potential SigN target, nepA, encoding a putative small secreted protein. Transcription of nepA originated from a single, aerial hyphae-specific and sigN-dependent promoter. While in vitro run-off transcription using purified SigN on the Bacillus subtilis ctc promoter confirmed that SigN is an RNA polymerase sigma factor, SigN failed to initiate transcription from sigNP1 and from the nepA promoter in vitro. Additional in vivo data indicated that further nepA upstream sequences, which are likely to bind a potential activator, are required for successful transcription. Using a nepA-egfp transcriptional fusion we located nepA transcription to a novel compartment, the 'subapical stem' of the aerial hyphae. We suggest that this newly recognized compartment defines an interface between the aerial and vegetative parts of the Streptomyces colony and might also be involved in communication between these two compartments.
Collapse
Affiliation(s)
- Kate A Dalton
- University of East Anglia, School of Biological Sciences, Norwich NR47TJ, UK
| | | | | | | |
Collapse
|
28
|
Lu Z, Takeuchi M, Sato T. The LysR-type transcriptional regulator YofA controls cell division through the regulation of expression of ftsW in Bacillus subtilis. J Bacteriol 2007; 189:5642-51. [PMID: 17526699 PMCID: PMC1951840 DOI: 10.1128/jb.00467-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have carried out a functional analysis of LysR family transcriptional regulators in Bacillus subtilis. The cell density of cultures of a yofA insertion mutant declined sharply after the end of exponential growth, as measured by optical density at 600 nm. Complementation in trans and analysis of isopropyl-beta-d-thiogalactopyranoside (IPTG)-dependent growth of an inducible yofA strain confirmed that YofA contributes to the cell density of a culture after the end of exponential growth. Microscopic observation suggested that cell division is inhibited or delayed in the yofA mutant during entry into stationary phase. Analysis of the transcription of cell division genes revealed that the expression of ftsW is inhibited in yofA mutants, and overexpression of yofA, driven by a multiple-copy plasmid, enhances the induction of ftsW expression. These results suggest that YofA is required for the final round of cell division before entry into stationary phase and that YofA positively regulates ftsW expression. The defects caused by mutation of yofA were suppressed in strains carrying P(spac)-ftsW in the presence of IPTG. Furthermore, maximal expression of yofA was observed at the onset of stationary phase, which coincided with the maximal ftsW expression. Our data indicate that YofA is involved in cell division through positive regulation of the expression of ftsW in B. subtilis.
Collapse
Affiliation(s)
- Zuolei Lu
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | |
Collapse
|
29
|
Kobayashi K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J Bacteriol 2007; 189:4920-31. [PMID: 17468240 PMCID: PMC1913431 DOI: 10.1128/jb.00157-07] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are structured multicellular communities of bacteria that form through a developmental process. In standing culture, undomesticated strains of Bacillus subtilis produce a floating biofilm, called a pellicle, with a distinct macroscopic architecture. Here we report on a comprehensive analysis of B. subtilis pellicle formation, with a focus on transcriptional regulators and morphological changes. To date, 288 known or putative transcriptional regulators encoded by the B. subtilis genome have been identified or assigned based on similarity to other known proteins. The genes encoding these regulators were systematically disrupted, and the effects of the mutations on pellicle formation were examined, resulting in the identification of 19 regulators involved in pellicle formation. In addition, morphological analysis revealed that pellicle formation begins with the formation of cell chains, which is followed by clustering and degradation of cell chains. Genetic and morphological evidence showed that each stage of morphological change can be defined genetically, based on mutants of transcriptional regulators, each of which blocks pellicle formation at a specific morphological stage. Formation and degradation of cell chains are controlled by down- and up-regulation of sigma(D)- and sigma(H)-dependent autolysins expressed at specific stages during pellicle formation. Transcriptional analysis revealed that the transcriptional activation of sigH depends on the formation of cell clusters, which in turn activates transcription of sigma(H)-dependent autolysin in cell clusters. Taken together, our results reveal relationships between transcriptional regulators and morphological development during pellicle formation by B. subtilis.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
30
|
Masayama A, Kuwana R, Takamatsu H, Hemmi H, Yoshimura T, Watabe K, Moriyama R. A novel lipolytic enzyme, YcsK (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. J Bacteriol 2007; 189:2369-75. [PMID: 17220230 PMCID: PMC1899377 DOI: 10.1128/jb.01527-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The predicted amino acid sequence of Bacillus subtilis ycsK exhibits similarity to the GDSL family of lipolytic enzymes. Northern blot analysis showed that ycsK mRNA was first detected from 4 h after the onset of sporulation and that transcription of ycsK was dependent on SigK and GerE. The fluorescence of the YcsK-green fluorescent protein fusion protein produced in sporulating cells was detectable in the mother cell but not in the forespore compartment under fluorescence microscopy, and the fusion protein was localized around the developing spores dependent on CotE, SafA, and SpoVID. Inactivation of the ycsK gene by insertion of an erythromycin resistance gene did not affect vegetative growth or spore resistance to heat, lysozyme, or chloroform. The germination of ycsK spores in a mixture of L-asparagine, D-glucose, D-fructose, and potassium chloride and LB medium was also the same as that of wild-type spores, but the mutant spores were defective in L-alanine-stimulated germination. In addition, zymogram analysis demonstrated that the YcsK protein heterologously expressed in Escherichia coli showed lipolytic activity. We therefore propose that ycsK should be renamed lipC. This is the first study of a bacterial spore germination-related lipase.
Collapse
Affiliation(s)
- Atsushi Masayama
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Kodama T, Endo K, Ara K, Ozaki K, Kakeshita H, Yamane K, Sekiguchi J. Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis. J Biosci Bioeng 2007; 103:13-21. [PMID: 17298895 DOI: 10.1263/jbb.103.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 10/02/2006] [Indexed: 11/17/2022]
Abstract
The Bacillus subtilis spo0A mutant is an adequate host for extracellular protein production (e.g., alpha-amylase). However the mutant was prone to cell lysis. SDS-PAGE and zymography of cell wall lytic proteins indicated that the spo0A mutant contained high amounts of two major autolysins (LytC [CwlB] and LytD [CwlG]) and two minor cell wall lytic enzymes (LytE [CwlF] and LytF [CwlE]). On the other hand, the expression of eight extracellular protease genes was very poor or absent in the spo0A mutant. An eight-extracellular-protease-deficient mutant (Dpr8 strain) was constructed and the strain also exhibited cell lysis. The autolysins from the spo0A mutant were degraded by the supernatant of the wild type but not degraded by that of the Dpr8 mutant. These results suggest that the extensive cell lysis of the spo0A mutant was partially caused by the stability of autolysins via the decrease of the extracellular proteases. The introduction of a major autolysin and/or SigD mutations into the spo0A mutant was effective for preventing cell lysis.
Collapse
Affiliation(s)
- Takeko Kodama
- Tochigi Research Laboratories of Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Gyan S, Shiohira Y, Sato I, Takeuchi M, Sato T. Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J Bacteriol 2006; 188:7062-71. [PMID: 17015645 PMCID: PMC1636230 DOI: 10.1128/jb.00601-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NADH dehydrogenase is a key component of the respiratory chain. It catalyzes the oxidation of NADH by transferring electrons to ubiquinone and establishes a proton motive force across the cell membrane. The yjlD (renamed ndh) gene of Bacillus subtilis is predicted to encode an enzyme similar to the NADH dehydrogenase II of Escherichia coli, encoded by the ndh gene. We have shown that the yjlC-ndh operon is negatively regulated by YdiH (renamed Rex), a homolog of Rex in Streptomyces coelicolor, and a redox-sensing transcriptional regulator that responds to the NADH/NAD(+) ratio. The ndh gene regulates expression of the yjlC-ndh operon, as indicated by the fact that mutation in ndh causes a higher NADH/NAD(+) ratio. An in vitro study showed that Rex binds to the downstream region of the yjlC-ndh promoter and that NAD(+) enhances the binding of Rex to the putative Rex-binding sites in the yjlC-ndh operon as well as in the cydABCD operon. These results indicated that Rex and Ndh together form a regulatory loop which functions to prevent a large fluctuation in the NADH/NAD(+) ratio in B. subtilis.
Collapse
Affiliation(s)
- Smita Gyan
- International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
33
|
Kuwana R, Okuda N, Takamatsu H, Watabe K. Modification of GerQ reveals a functional relationship between Tgl and YabG in the coat of Bacillus subtilis spores. J Biochem 2006; 139:887-901. [PMID: 16751597 DOI: 10.1093/jb/mvj096] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we describe the functional relationship between YabG and transglutaminase (Tgl), enzymes that modify the spore coat proteins of Bacillus subtilis. In wild-type spores at 37 degrees C, Tgl mediates the crosslinking of GerQ into higher molecular mass forms; however, some GerQ multimers are found in tgl mutant spores, indicating that Tgl is not essential. Immunoblotting showed that spores isolated from a yabG mutant after sporulation at 37 degrees C contain only very low levels of GerQ multimers. Heat treatment for 20 min at 60 degrees C, which maximally activates the enzymatic activity of Tgl, caused crosslinking of GerQ in isolated yabG spores but not in tgl/yabG double-mutant spores. In addition, the germination frequency of the tgl/yabG spores in the presence of l-alanine with or without heat activation at 60 degrees C was lower than that of wild-type spores. These findings suggest that Tgl cooperates with YabG to mediate the temperature-dependent modification of the coat proteins, a process associated with spore germination in B. subtilis.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101
| | | | | | | |
Collapse
|
34
|
Terahara N, Fujisawa M, Powers B, Henkin TM, Krulwich TA, Ito M. An intergenic stem-loop mutation in the Bacillus subtilis ccpA-motPS operon increases motPS transcription and the MotPS contribution to motility. J Bacteriol 2006; 188:2701-5. [PMID: 16547058 PMCID: PMC1428412 DOI: 10.1128/jb.188.7.2701-2705.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A stem-loop mutation between ccpA and motP in the Bacillus subtilis ccpA-motPS operon increased motPS transcription and membrane-associated MotPS levels, motility, and number of flagella/cell when MotPS is the sole stator and the MotPS contribution to motility at high pH, Na+, and viscosity when MotAB is also present.
Collapse
Affiliation(s)
- Naoya Terahara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Le Breton Y, Mohapatra NP, Haldenwang WG. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol 2006; 72:327-33. [PMID: 16391061 PMCID: PMC1352254 DOI: 10.1128/aem.72.1.327-333.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This report describes the construction and characterization of a mariner-based transposon system designed to be used in Bacillus subtilis, but potentially applicable to other gram-positive bacteria. Two pUC19-derived plasmids were created that contain the mariner-Himar1 transposase gene, modified for expression in B. subtilis, under the control of either sigmaA- or sigmaB-dependent promoters. Both plasmids also contain a transposable element (TnYLB-1) consisting of a Kan r cassette bracketed by the Himar1-recognized inverse terminal repeats, as well as the temperature-sensitive replicon and Erm r gene of pE194ts. TnYLB-1 transposes into the B. subtilis chromosome with high frequency (10(-2)) from either plasmid. Southern hybridization analyses of 15 transposants and sequence analyses of the insertion sites of 10 of these are consistent with random transposition, requiring only a "TA" dinucleotide as the essential target in the recipient DNA. Two hundred transposants screened for sporulation proficiency and auxotrophy yielded five Spo- clones, three with insertions in known sporulation genes (kinA, spoVT, and yqfD) and two in genes (ybaN and yubB) with unknown functions. Two auxotrophic mutants were identified among the 200 transposants, one with an insertion in lysA and another in a gene (yjzB) whose function is unknown.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Microbiology and Immunology, MSC 7758, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
36
|
Zhang HM, Li Z, Tsudome M, Ito S, Takami H, Horikoshi K. An alkali-inducible flotillin-like protein from Bacillus halodurans C-125. Protein J 2005; 24:125-31. [PMID: 16003954 DOI: 10.1007/s10930-004-1519-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Flotillins are markers of lipid microdomains, and have emerged as a key concept in cellular biology. However, it remains unclear whether flotillin proteins exist in prokaryotic cells. The amino acid sequence of the BH3500 protein from Bacillus halodurans was 30% identical to that of flotillin-1. Motif analysis revealed that several specific residues (SPFH and flotillin domains, an AEA-repeat structure) and five potential phosphorylation sites are conserved in the BH3500 protein. In addition, the BH3500 protein was found to possess two transmembrane-spanning domains at the N-terminus, which is consistent with the common properties of flotillin-1. The BH3500 protein was detected in the Triton-insoluble, buoyant membrane fraction of B. halodurans by mass spectrometry and Western blotting. Interestingly, BH3500 was expressed strongly in alkaline conditions at both transcriptional and translational levels, which implies that it is one of the alkali-inducible proteins.
Collapse
Affiliation(s)
- Hui-Min Zhang
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Chee GJ, Takami H. Housekeeping recA gene interrupted by group II intron in the thermophilic Geobacillus kaustophilus. Gene 2005; 363:211-20. [PMID: 16242272 DOI: 10.1016/j.gene.2005.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 11/26/2022]
Abstract
Most of group II introns are found in intergenes and CDSs with unknown functions, but not in housekeeping genes. In particular, no group II intron within the housekeeping recA gene has been reported either in eukaryotic genomes or in prokaryotic genomes. In this study, we found that the recA gene of the thermophilic Geobacillus kaustophilus genome is interrupted by a group II intron (Gk. Int1), and that Gk.Int1 can splice in temperatures above 70 degrees C in vivo. Here, we report the first prokaryotic group II intron to be found in a housekeeping gene, the characteristics of its self-splicing in vivo and in vitro, and our conclusion that the recA gene functions through the self-splicing of Gk.Int1. It is suggested that the amelioration of Gk.Int1 intron has occurred recently, and that it is still in the process of evolution to the recipient genome.
Collapse
Affiliation(s)
- Gab-Joo Chee
- Microbial Genome Research Group, XBR, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima Yokosuka 237-0061, Japan.
| | | |
Collapse
|
38
|
Kuwana R, Okumura T, Takamatsu H, Watabe K. The ylbO gene product of Bacillus subtilis is involved in the coat development and lysozyme resistance of spore. FEMS Microbiol Lett 2005; 242:51-7. [PMID: 15621419 DOI: 10.1016/j.femsle.2004.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/06/2004] [Accepted: 10/20/2004] [Indexed: 11/27/2022] Open
Abstract
The Bacillus subtilis YlbO protein is a Myb-like DNA binding domain-containing protein that is expressed under the control of SigE. Here, we analyzed gene expression and protein composition in ylbO-negative cells. SDS-PAGE analysis revealed that the protein profile of ylbO- negative spores differed from that of wild-type. Specifically, the expression of coat proteins CgeA, CotG, and CotY, which are controlled by SigK and GerE, was reduced in ylbO -negative cells. Northern blot analysis revealed that YlbO regulated the transcription of cgeA, cotG, and cotY. These results suggest that YlbO regulates the expression of some coat proteins during sporulation in B. subtilis directly or indirectly.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | | | | | | |
Collapse
|
39
|
Hecker M, Völker U. Towards a comprehensive understanding ofBacillus subtiliscell physiology by physiological proteomics. Proteomics 2004; 4:3727-50. [PMID: 15540212 DOI: 10.1002/pmic.200401017] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using Bacillus subtilis as a model system for functional genomics, this review will provide insights how proteomics can be used to bring the virtual life of genes to the real life of proteins. Physiological proteomics will generate a new and broad understanding of cellular physiology because the majority of proteins synthesized in the cell can be visualized. From a physiological point of view two major proteome fractions can be distinguished: proteomes of growing cells and proteomes of nongrowing cells. In the main analytical window almost 50% of the vegetative proteome expressed in growing cells of B. subtilis were identified. This proteomic view of growing cells can be employed for analyzing the regulation of entire metabolic pathways and thus opens the chance for a comprehensive understanding of metabolism and growth processes of bacteria. Proteomics, on the other hand, is also a useful tool for analyzing the adaptational network of nongrowing cells that consists of several partially overlapping regulation groups induced by stress/starvation stimuli. Furthermore, proteomic signatures for environmental stimuli can not only be applied to predict the physiological state of cells, but also offer various industrial applications from fermentation monitoring up to the analysis of the mode of action of drugs. Even if DNA array technologies currently provide a better overview of the gene expression profile than proteome approaches, the latter address biological problems in which they can not be replaced by mRNA profiling procedures. This proteomics of the second generation is a powerful tool for analyzing global control of protein stability, the protein interaction network, protein secretion or post-translational modifications of proteins on the way towards the elucidation of the mystery of life.
Collapse
Affiliation(s)
- Michael Hecker
- Institute for Microbiology, Erst-Moritz-Arndt-University, Greifswald, Germany.
| | | |
Collapse
|
40
|
Imamura D, Kobayashi K, Sekiguchi J, Ogasawara N, Takeuchi M, Sato T. spoIVH (ykvV), a requisite cortex formation gene, is expressed in both sporulating compartments of Bacillus subtilis. J Bacteriol 2004; 186:5450-9. [PMID: 15292147 PMCID: PMC490867 DOI: 10.1128/jb.186.16.5450-5459.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well known that the ykvU-ykvV operon is under the regulation of the sigma(E)-associated RNA polymerase (Esigma(E)). In our study, we observed that ykvV is transcribed together with the upstream ykvU gene by Esigma(E) in the mother cell and monocistronically under Esigma(G) control in the forespore. Interestingly, alternatively expressed ykvV in either the forespore or the mother cell increased the sporulation efficiency in the ykvV background. Studies show that the YkvV protein is a member of the thioredoxin superfamily and also contains a putative Sec-type secretion signal at the N terminus. We observed efficient sporulation in a mutant strain obtained by replacing the putative signal peptide of YkvV with the secretion signal sequence of SleB, indicating that the putative signal sequence is essential for spore formation. These results suggest that YkvV is capable of being transported by the putative Sec-type signal sequence into the space between the double membranes surrounding the forespore. The ability of ykvV expression in either compartment to complement is indeed intriguing and further introduces a new dimension to the genetics of B. subtilis spore formation. Furthermore, electron microscopic observation revealed a defective cortex in the ykvV disruptant. In addition, the expression levels of sigma(K)-directed genes significantly decreased despite normal sigma(G) activity in the ykvV mutant. However, immunoblotting with the anti-sigma(K) antibody showed that pro-sigma(K) was normally processed in the ykvV mutant, indicating that YkvV plays an important role in cortex formation, consistent with recent reports. We therefore propose that ykvV should be renamed spoIVH.
Collapse
MESH Headings
- Adaptation, Physiological
- Amidohydrolases/genetics
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Bacillus subtilis/physiology
- Bacillus subtilis/ultrastructure
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Microscopy, Electron
- Morphogenesis
- Mutagenesis, Insertional
- Mutation
- Operon/genetics
- Operon/physiology
- Protein Sorting Signals/genetics
- RNA, Bacterial/analysis
- RNA, Messenger/analysis
- Recombination, Genetic
- Sigma Factor/physiology
- Spores, Bacterial/genetics
- Spores, Bacterial/metabolism
- Spores, Bacterial/physiology
- Spores, Bacterial/ultrastructure
- Thioredoxins/genetics
- Transcription Factors/physiology
- Transcription Initiation Site
- Transcription, Genetic
Collapse
Affiliation(s)
- Daisuke Imamura
- International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Delumeau O, Dutta S, Brigulla M, Kuhnke G, Hardwick SW, Völker U, Yudkin MD, Lewis RJ. Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C. J Biol Chem 2004; 279:40927-37. [PMID: 15263010 DOI: 10.1074/jbc.m405464200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RsbU is a positive regulator of the activity of sigmaB, the general stress-response sigma factor of Gram+ microorganisms. The N-terminal domain of this protein has no significant sequence homology with proteins of known function, whereas the C-terminal domain is similar to the catalytic domains of PP2C-type phosphatases. The phosphatase activity of RsbU is stimulated greatly during the response to stress by associating with a kinase, RsbT. This association leads to the induction of sigmaB activity. Here we present data on the activation process and demonstrate in vivo that truncations in the N-terminal region of RsbU are deleterious for the activation of RsbU. This conclusion is supported by comparisons of the phosphatase activities of full-length and a truncated form of RsbU in vitro. Our determination of the crystal structure of the N-terminal domain of RsbU from Bacillus subtilis reveals structural similarities to the regulatory domains from ubiquitous protein phosphatases and a conserved domain of sigma-factors, illuminating the activation processes of phosphatases and the evolution of "partner switching." Finally, the molecular basis of kinase recruitment by the RsbU phosphatase is discussed by comparing RsbU sequences from bacteria that either possess or lack RsbT.
Collapse
Affiliation(s)
- Olivier Delumeau
- Microbiology Unit and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Carniol K, Kim TJ, Price CW, Losick R. Insulation of the sigmaF regulatory system in Bacillus subtilis. J Bacteriol 2004; 186:4390-4. [PMID: 15205443 PMCID: PMC421598 DOI: 10.1128/jb.186.13.4390-4394.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factors sigmaF and sigmaB are related RNA polymerase sigma factors that govern dissimilar networks of adaptation to stress conditions in Bacillus subtilis. The two factors are controlled by closely related regulatory pathways, involving protein kinases and phosphatases. We report that insulation of the sigmaF pathway from the sigmaB pathway involves the integrated action of both the cognate kinase and the cognate phosphatase.
Collapse
Affiliation(s)
- Karen Carniol
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238, USA
| | | | | | | |
Collapse
|
43
|
Kuwana R, Ikejiri H, Yamamura S, Takamatsu H, Watabe K. Functional relationship between SpoVIF and GerE in gene regulation during sporulation of Bacillus subtilis. MICROBIOLOGY-SGM 2004; 150:163-170. [PMID: 14702409 DOI: 10.1099/mic.0.26689-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sporulation-specific SpoVIF (YjcC) protein of Bacillus subtilis is essential for the development of heat-resistant spores. The GerE protein, the smallest member of the LuxR-FixJ family, contains a helix-turn-helix (HTH) motif and is involved in the expression of various sporulation-specific genes. In this study, the gene expression and protein composition of sporulating spoVIF-negative cells were analysed. CgeA, CotG and CotS, which are GerE-dependent coat proteins, were not expressed in the spoVIF-negative cells. Northern blotting showed that SpoVIF regulated the transcription of cgeA, cotG and cotS in a manner similar to that of GerE. In spoVIF-negative cells, gerE mRNA was transcribed normally, but immunoblot analysis using anti-GerE antiserum showed that the quantity of GerE protein was considerably less than that in wild-type controls. Using GFP (green fluorescent protein) fusion proteins, the localization of SpoVIF and GerE was observed by fluorescence microscopy. SpoVIF-GFP was detectable in the mother cell compartment, as was GerE-GFP. These results suggest that SpoVIF directly or indirectly controls the function of the GerE protein, and that SpoVIF is required for gene regulation during the latter stages of sporulation.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Hiromi Ikejiri
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Satoko Yamamura
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Kazuhito Watabe
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
44
|
Kuwana R, Yamamura S, Ikejiri H, Kobayashi K, Ogasawara N, Asai K, Sadaie Y, Takamatsu H, Watabe K. Bacillus subtilis spoVIF (yjcC) gene, involved in coat assembly and spore resistance. MICROBIOLOGY-SGM 2003; 149:3011-3021. [PMID: 14523132 DOI: 10.1099/mic.0.26432-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In systematic screening four sporulation-specific genes, yjcA, yjcB, yjcZ and yjcC, of unknown function were found in Bacillus subtilis. These genes are located just upstream of the cotVWXYZ gene cluster oriented in the opposite direction. Northern blot analysis showed that yjcA was transcribed by the SigE RNA polymerase beginning 2 h (t(2)) after the onset of sporulation, and yjcB, yjcZ and yjcC were transcribed by the SigK RNA polymerase beginning at t(4) of sporulation. The transcription of yjcZ was dependent on SigK and GerE. The consensus sequences of the appropriate sigma factors were found upstream of each gene. There were putative GerE-binding sites upstream of yjcZ. Insertional inactivation of the yjcC gene resulted in a reduction in resistance of the mutant spores to lysozyme and heat. Transmission electron microscopic examination of yjcC spores revealed a defect of sporulation at stage VI, resulting in loss of spore coats. These results suggest that YjcC is involved in assembly of spore coat proteins that have roles in lysozyme resistance. It is proposed that yjcC should be renamed as spoVIF.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Satoko Yamamura
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Hiromi Ikejiri
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Kazuo Kobayashi
- Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Naotake Ogasawara
- Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kei Asai
- Saitama University, Urawa, Saitama 338-8570, Japan
| | | | - Hiromu Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Kazuhito Watabe
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
45
|
Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M. Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 2003; 185:5722-34. [PMID: 13129943 PMCID: PMC193959 DOI: 10.1128/jb.185.19.5722-5734.2003] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the stress-responsive alternative sigma factor sigma(B) has been identified in different species of Bacillus, Listeria, and Staphylococcus, the sigma(B) regulon has been extensively characterized only in B. subtilis. We combined biocomputing and microarray-based strategies to identify sigma(B)-dependent genes in the facultative intracellular pathogen Listeria monocytogenes. Hidden Markov model (HMM)-based searches identified 170 candidate sigma(B)-dependent promoter sequences in the strain EGD-e genome sequence. These data were used to develop a specialized, 208-gene microarray, which included 166 genes downstream of HMM-predicted sigma(B)-dependent promoters as well as selected virulence and stress response genes. RNA for the microarray experiments was isolated from both wild-type and Delta sigB null mutant L. monocytogenes cells grown to stationary phase or exposed to osmotic stress (0.5 M KCl). Microarray analyses identified a total of 55 genes with statistically significant sigma(B)-dependent expression under the conditions used in these experiments, with at least 1.5-fold-higher expression in the wild type over the sigB mutant under either stress condition (51 genes showed at least 2.0-fold-higher expression in the wild type). Of the 55 genes exhibiting sigma(B)-dependent expression, 54 were preceded by a sequence resembling the sigma(B) promoter consensus sequence. Rapid amplification of cDNA ends-PCR was used to confirm the sigma(B)-dependent nature of a subset of eight selected promoter regions. Notably, the sigma(B)-dependent L. monocytogenes genes identified through this HMM/microarray strategy included both stress response genes (e.g., gadB, ctc, and the glutathione reductase gene lmo1433) and virulence genes (e.g., inlA, inlB, and bsh). Our data demonstrate that, in addition to regulating expression of genes important for survival under environmental stress conditions, sigma(B) also contributes to regulation of virulence gene expression in L. monocytogenes. These findings strongly suggest that sigma(B) contributes to L. monocytogenes gene expression during infection.
Collapse
|
46
|
Tanaka K, Kobayashi K, Ogasawara N. The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2317-2329. [PMID: 12949159 DOI: 10.1099/mic.0.26257-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis has a complete set of enzymes for the tricarboxylic acid (TCA) cycle and can grow aerobically using most of the TCA cycle intermediates (malate, fumarate, succinate and citrate) as a sole carbon source. The B. subtilis genome sequence contains three paralogous two-component regulatory systems, CitST, DctSR and YufLM. CitST and DctSR activate the expression of a transporter of the Mg(2+)-citrate complex (CitM) and a fumarate and succinate transporter (DctP), respectively. These findings prompted an investigation of whether the YufL sensor and its cognate regulator, YufM, play a role in malate uptake. This paper reports that the YufM regulator shows in vitro binding to the promoter region of two malate transporter genes, maeN and yflS, and is responsible for inducing their expression in vivo. It was also found that inactivation of the yufM or maeN genes resulted in bacteria that could not grow in a minimal salts medium containing malate as a sole carbon source, indicating that the induction of the MaeN transporter by the YufM regulator is essential for the utilization of malate as a carbon source. Inactivation of the yufL gene resulted in the constitutive expression of MaeN. This expression was suppressed by reintroduction of the kinase domain of YufL, indicating that the YufL sensor is required for proper signal detection and signalling specificity. The authors propose that a phosphatase activity of YufL plays an important role in the YufLM two-component regulatory system. The studies reported here have revealed that members of a set of paralogous two-component regulatory systems in B. subtilis, CitST, DctSR and YufLM, are involved in a related function--uptake (and metabolism) of the TCA cycle intermediates--but with distinct substrate specificities.
Collapse
Affiliation(s)
- Kousei Tanaka
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | - Kazuo Kobayashi
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | - Naotake Ogasawara
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
47
|
Brigulla M, Hoffmann T, Krisp A, Völker A, Bremer E, Völker U. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 2003; 185:4305-14. [PMID: 12867438 PMCID: PMC165770 DOI: 10.1128/jb.185.15.4305-4314.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of environmental and metabolic cues trigger the transient activation of the alternative transcription factor SigB of Bacillus subtilis, which subsequently leads to the induction of more than 150 general stress genes. This general stress regulon provides nongrowing and nonsporulated cells with a multiple, nonspecific, and preemptive stress resistance. By a proteome approach we have detected the expression of the SigB regulon during continuous growth at low temperature (15 degrees C). Using a combination of Western blot analysis and SigB-dependent reporter gene fusions, we provide evidence for high-level and persistent induction of the sigB operon and the SigB regulon, respectively, in cells continuously exposed to low temperatures. In contrast to all SigB-activating stimuli described thus far, induction by low temperatures does not depend on the positive regulatory protein RsbV or its regulatory phosphatases RsbU and RsbP, indicating the presence of an entirely new pathway for the activation of SigB by chill stress in B. subtilis. The physiological importance of the induction of the general stress response for the adaptation of B. subtilis to low temperatures is emphasized by the observation that growth of a sigB mutant is drastically impaired at 15 degrees C. Inclusion of the compatible solute glycine betaine in the growth medium not only improved the growth of the wild-type strain but rescued the growth defect of the sigB mutant, indicating that the induction of the general stress regulon and the accumulation of glycine betaine are independent means by which B. subtilis cells cope with chill stress.
Collapse
Affiliation(s)
- Matthias Brigulla
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Ohki R, Tateno K, Masuyama W, Moriya S, Kobayashi K, Ogasawara N. The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis. Mol Microbiol 2003; 49:1135-44. [PMID: 12890034 DOI: 10.1046/j.1365-2958.2003.03653.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BceA and bceB encode a nucleotide-binding domain (NBD) and membrane-spanning domain (MSD) subunit, respectively, of an ATP-binding cassette (ABC) transporter in Bacillus subtilis. Disruption of these genes resulted in hypersensitivity to bacitracin, a peptide antibiotic that is non-ribosomally synthesized in some strains of Bacillus. Northern hybridization analyses showed that expression of the bceAB operon is induced by bacitracin present in the growth medium. The bceRS genes encoding a two-component regulatory system are located immediately upstream of bceAB. Deletion analyses of the bceAB promoter together with DNase I footprinting experiments revealed that a sensor kinase, BceS, responds to extracellular bacitracin either directly or indirectly and transmits a signal to a cognate response regulator, BceR. The regulator binds directly to the upstream region of the bceAB promoter and upregulates the expression of bceAB genes. The bcrC gene product is additionally involved in bacitracin resistance. The expression of bcrC is dependent on the ECF sigma factors, sigmaM and sigmaX, but not on the BceRS two-component system. In view of these results, possible roles of BceA, BceB and BcrC in bacitracin resistance of B. subtilis 168 are discussed.
Collapse
Affiliation(s)
- Reiko Ohki
- Department of Molecular Biology, School of Health Sciences, Kyorin University, 476 Miyashita, Hachiouji, Tokyo 192-0005, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Watanabe S, Hamano M, Kakeshita H, Bunai K, Tojo S, Yamaguchi H, Fujita Y, Wong SL, Yamane K. Mannitol-1-phosphate dehydrogenase (MtlD) is required for mannitol and glucitol assimilation in Bacillus subtilis: possible cooperation of mtl and gut operons. J Bacteriol 2003; 185:4816-24. [PMID: 12897001 PMCID: PMC166460 DOI: 10.1128/jb.185.16.4816-4824.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that mannitol-1-phosphate dehydrogenase (MtlD), a component of the mannitol-specific phosphotransferase system, is required for glucitol assimilation in addition to GutR, GutB, and GutP in Bacillus subtilis. Northern hybridization of total RNA and microarray studies of RNA from cells cultured on glucose, mannitol, and glucitol indicated that mannitol as the sole carbon source induced hyperexpression of the mtl operon, whereas glucitol induced both mtl and gut operons. The B. subtilis mtl operon consists of mtlA (encoding enzyme IICBA(mt1)) and mtlD, and its transcriptional regulator gene, mtlR, is located 14.4 kb downstream from the mtl operon on the chromosome. The mtlA, mtlD, and mtlR mutants disrupted by the introduction of the pMUTin derivatives MTLAd, MTLDd, and MTLRd, respectively, could not grow normally on either mannitol or glucitol. However, the growth of MTLAd on glucitol was enhanced by IPTG (isopropyl-beta-D-thiogalactopyranoside). This mutant has an IPTG-inducible promoter (Pspac promoter) located in mtlA, and this site corresponds to the upstream region of mtlD. Insertion mutants of mtlD harboring the chloramphenicol resistance gene also could not grow on either mannitol or glucitol. In contrast, an insertion mutant of mtlA could grow on glucitol but not on mannitol in the presence or absence of IPTG. MtlR bound to the promoter region of the mtl operon but not to a DNA fragment containing the gut promoter region.
Collapse
Affiliation(s)
- Shouji Watanabe
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kawai Y, Moriya S, Ogasawara N. Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol Microbiol 2003; 47:1113-22. [PMID: 12581363 DOI: 10.1046/j.1365-2958.2003.03360.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A knock-out mutant of the dinR gene that encodes the SOS regulon repressor in Bacillus subtilis was constructed. The yneA, yneB and ynzC genes transcribed divergently from the dinR gene were strongly induced in mutant cells. Northern hybridization analyses revealed that these genes collectively form an operon and belong to the SOS regulon. The simultaneous deletion of dinR and yneA suppressed the filamentous phenotype of the dinR mutant. Furthermore, although yneA is suppressed in the wild-type cell in the absence of SOS induction, artificial expression of the YneA protein using an IPTG-inducible promoter resulted in cell elongation. Disruption of yneA significantly reduced cell elongation after the induction of the SOS response by mitomycin C in dinR+ cells. These results indicate that the YneA protein is responsible for cell division suppression during the SOS response in B. subtilis. Localization of the FtsZ protein to the cell division site was reduced in dinR-disrupted or yneA-expressing cells, further suggesting that the YneA protein suppresses cell division through the suppression of FtsZ ring formation. Interestingly, the B. subtilis YneA protein is structurally and phylogenetically unrelated to its functional counterpart in Escherichia coli, SulA.
Collapse
Affiliation(s)
- Yoshikazu Kawai
- Department of Microbial Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|