1
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
2
|
Yoo HS, Kim HK, Lee JH, Chun JH, Lee HS, Grothe MJ, Teipel S, Cavedo E, Vergallo A, Hampel H, Ryu YH, Cho H, Lyoo CH. Association of Basal Forebrain Volume with Amyloid, Tau, and Cognition in Alzheimer's Disease. J Alzheimers Dis 2024; 99:145-159. [PMID: 38640150 DOI: 10.3233/jad-230975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Degeneration of cholinergic basal forebrain (BF) neurons characterizes Alzheimer's disease (AD). However, what role the BF plays in the dynamics of AD pathophysiology has not been investigated precisely. Objective To investigate the baseline and longitudinal roles of BF along with core neuropathologies in AD. Methods In this retrospective cohort study, we enrolled 113 subjects (38 amyloid [Aβ]-negative cognitively unimpaired, 6 Aβ-positive cognitively unimpaired, 39 with prodromal AD, and 30 with AD dementia) who performed brain MRI for BF volume and cortical thickness, 18F-florbetaben PET for Aβ, 18F-flortaucipir PET for tau, and detailed cognitive testing longitudinally. We investigated the baseline and longitudinal association of BF volume with Aβ and tau standardized uptake value ratio and cognition. Results Cross-sectionally, lower BF volume was not independently associated with higher cortical Aβ, but it was associated with tau burden. Tau burden in the orbitofrontal, insular, lateral temporal, inferior temporo-occipital, and anterior cingulate cortices were associated with progressive BF atrophy. Lower BF volume was associated with faster Aβ accumulation, mainly in the prefrontal, anterior temporal, cingulate, and medial occipital cortices. BF volume was associated with progressive decline in language and memory functions regardless of baseline Aβ and tau burden. Conclusions Tau deposition affected progressive BF atrophy, which in turn accelerated amyloid deposition, leading to a vicious cycle. Also, lower baseline BF volume independently predicted deterioration in cognitive function.
Collapse
Affiliation(s)
- Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Kyeol Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Hyun Chun
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Michel J Grothe
- Reina Sofia Alzheimer Center, CIEN Foundation-ISCIII, Madrid, Spain
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)-Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Germany
| | - Enrica Cavedo
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Harald Hampel
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Babić Leko M, Nikolac Perković M, Klepac N, Švob Štrac D, Borovečki F, Pivac N, Hof PR, Šimić G. Relationships of Cerebrospinal Fluid Alzheimer's Disease Biomarkers and COMT, DBH, and MAOB Single Nucleotide Polymorphisms. J Alzheimers Dis 2021; 73:135-145. [PMID: 31771069 PMCID: PMC7029364 DOI: 10.3233/jad-190991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The noradrenergic and dopaminergic systems are affected in Alzheimer’s disease (AD). Polymorphisms in genes encoding enzymes and proteins that are components of these systems can affect products of transcription and translation and lead to altered enzymatic activity and alterations in overall dopamine and noradrenaline levels. Catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAOB) are the enzymes that regulate degradation of dopamine, while dopamine β-hydroxylase (DBH) is involved in synthesis of noradrenaline. COMT Val158Met (rs4680), DBH rs1611115 (also called –1021C/T or –970C/T), and MAOB rs1799836 (also called A644G) polymorphisms have been previously associated with AD. We assessed whether these polymorphisms are associated with cerebrospinal fluid (CSF) AD biomarkers including total tau (t-tau), phosphorylated tau proteins (p-tau181, p-tau199, and p-tau231), amyloid-β42 (Aβ42), and visinin-like protein 1 (VILIP-1) to test possible relationships of specific genotypes and pathological levels of CSF AD biomarkers. The study included 233 subjects: 115 AD, 53 mild cognitive impairment, 54 subjects with other primary causes of dementia, and 11 healthy controls. Significant decrease in Aβ42 levels was found in patients with GG compared to AG COMT Val158Met genotype, while t-tau and p-tau181 levels were increased in patients with AA compared to AG COMT Val158Met genotype. Aβ42 levels were also decreased in carriers of A allele in MAO-B rs1799836 polymorphism, while p-tau181 levels were increased in carriers of T allele in DBH rs1611115 polymorphism. These results indicate that COMT Val158Met, DBH rs1611115, and MAOB rs1799836 polymorphisms deserve further investigation as genetic markers of AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | | | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Department of Molecular Medicine, Institute Ruđer Bošković, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
5
|
Slater C, Wang Q. Alzheimer's disease: An evolving understanding of noradrenergic involvement and the promising future of electroceutical therapies. Clin Transl Med 2021; 11:e397. [PMID: 33931975 PMCID: PMC8087948 DOI: 10.1002/ctm2.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through β adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Qi Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
6
|
Abstract
Alzheimer’s disease (AD) is a common chronic neurodegenerative disorders. Melatonin (MLT) has been reported to be neuroprotective agent, and its modified structures exhibit potent antioxidant and anti-inflammation activities. Therefore, the activity of MLT and its derivatives against AD was investigated. Herein, the targeted enzymes, such as β-secretase (BACE1) and acetylcholinesterase (AChE), as well as the neuroprotective and neuritogenic effects on P19-derived neurons were evaluated. All the derivatives (1–5), including MLT, displayed potent inhibitory activity for BACE1, with inhibition values of more than 75% at 5 µM. A molecular docking study predicted that MLT, 5-MT, and 5 bound with BACE1 at catalytic amino acids Asp32 and the flap region, whereas 1–4 interacted with allosteric residue Thr232 and the flap region. The additional π-π interactions between 2, 3, and 5 with Tyr71 promoted ligand-enzyme binding. In addition, MLT, 1, 3, and 5 significantly protected neuron cells from oxidative stress by increasing the cell viability to 97.95, 74.29, 70.80, and 69.50% at 1 nM, respectively. Moreover, these derivatives significantly induced neurite outgrowth by increasing the neurite length and number. The derivatives 1, 3, and 5 should be thoroughly studied as potential AD treatment and neuroprotective agents.
Collapse
|
7
|
Hampel H, Mesulam MM, Cuello AC, Khachaturian AS, Farlow MR, Snyder PJ, Giacobini E, Khachaturian ZS. WITHDRAWN: Revisiting the cholinergic hypothesis in Alzheimer's disease: Emerging evidence from translational and clinical research. Alzheimers Dement 2017:S1552-5260(17)33719-6. [PMID: 29028480 DOI: 10.1016/j.jalz.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/04/2017] [Accepted: 08/24/2017] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Paris, France
| | - Marsel M Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Ara S Khachaturian
- The Campaign to Prevent Alzheimer's Disease by 2020 (PAD2020), Potomac, MD, USA
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter J Snyder
- Department of Neurology, Rhode Island Hospital & Alpert Medical School of Brown University, Providence RI, USA
| | - Ezio Giacobini
- Department of Internal Medicine, Rehabilitation and Geriatrics, University of Geneva Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
8
|
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem 2016; 139 Suppl 2:154-178. [PMID: 26968403 DOI: 10.1111/jnc.13447] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Aside from its roles in as a classical neurotransmitter involved in regulation of behavior, noradrenaline (NA) has other functions in the CNS. This includes restricting the development of neuroinflammatory activation, providing neurotrophic support to neurons, and providing neuroprotection against oxidative stress. In recent years, it has become evident that disruption of physiological NA levels or signaling is a contributing factor to a variety of neurological diseases and conditions including Alzheimer's disease (AD) and Multiple Sclerosis. The basis for dysregulation in these diseases is, in many cases, due to damage occurring to noradrenergic neurons present in the locus coeruleus (LC), the major source of NA in the CNS. LC damage is present in AD, multiple sclerosis, and a large number of other diseases and conditions. Studies using animal models have shown that experimentally induced lesion of LC neurons exacerbates neuropathology while treatments to compensate for NA depletion, or to reduce LC neuronal damage, provide benefit. In this review, we will summarize the anti-inflammatory and neuroprotective actions of NA, summarize examples of how LC damage worsens disease, and discuss several approaches taken to treat or prevent reductions in NA levels and LC neuronal damage. Further understanding of these events will be of value for the development of treatments for AD, multiple sclerosis, and other diseases and conditions having a neuroinflammatory component. The classical neurotransmitter noradrenaline (NA) has critical roles in modulating behaviors including those involved in sleep, anxiety, and depression. However, NA can also elicit anti-inflammatory responses in glial cells, can increase neuronal viability by inducing neurotrophic factor expression, and can reduce neuronal damage due to oxidative stress by scavenging free radicals. NA is primarily produced by tyrosine hydroxylase (TH) expressing neurons in the locus coeruleus (LC), a relatively small brainstem nucleus near the IVth ventricle which sends projections throughout the brain and spinal cord. It has been known for close to 50 years that LC neurons are lost during normal aging, and that loss is exacerbated in neurological diseases including Parkinson's disease and Alzheimer's disease. LC neuronal damage and glial activation has now been documented in a variety of other neurological conditions and diseases, however, the causes of LC damage and cell loss remain largely unknown. A number of approaches have been developed to address the loss of NA and increased inflammation associated with LC damage, and several methods are being explored to directly minimize the extent of LC neuronal cell loss or function. In this review, we will summarize some of the consequences of LC loss, consider several factors that likely contribute to that loss, and discuss various ways that have been used to increase NA or to reduce LC damage. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA. .,Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - David Braun
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
9
|
Arendt T, Brückner MK, Morawski M, Jäger C, Gertz HJ. Early neurone loss in Alzheimer's disease: cortical or subcortical? Acta Neuropathol Commun 2015; 3:10. [PMID: 25853173 PMCID: PMC4359478 DOI: 10.1186/s40478-015-0187-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative disorder where the distribution of pathology throughout the brain is not random but follows a predictive pattern used for pathological staging. While the involvement of defined functional systems is fairly well established for more advanced stages, the initial sites of degeneration are still ill defined. The prevailing concept suggests an origin within the transentorhinal and entorhinal cortex (EC) from where pathology spreads to other areas. Still, this concept has been challenged recently suggesting a potential origin of degeneration in nonthalamic subcortical nuclei giving rise to cortical innervation such as locus coeruleus (LC) and nucleus basalis of Meynert (NbM). To contribute to the identification of the early site of degeneration, here, we address the question whether cortical or subcortical degeneration occurs more early and develops more quickly during progression of AD. To this end, we stereologically assessed neurone counts in the NbM, LC and EC layer-II in the same AD patients ranging from preclinical stages to severe dementia. In all three areas, neurone loss becomes detectable already at preclinical stages and is clearly manifest at prodromal AD/MCI. At more advanced AD, cell loss is most pronounced in the NbM > LC > layer-II EC. During early AD, however, the extent of cell loss is fairly balanced between all three areas without clear indications for a preference of one area. We can thus not rule out that there is more than one way of spreading from its site of origin or that degeneration even occurs independently at several sites in parallel.
Collapse
|
10
|
Genotype-independent decrease in plasma dopamine beta-hydroxylase activity in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:94-9. [PMID: 23416088 PMCID: PMC3952071 DOI: 10.1016/j.pnpbp.2013.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/23/2013] [Accepted: 02/04/2013] [Indexed: 02/02/2023]
Abstract
The noradrenergic system is involved in the etiology and progression of Alzheimer's disease (AD) but its role is still unclear. Dopamine beta-hydroxylase (DBH) as a catecholamine-synthesizing enzyme plays a central role in noradrenaline (NA) synthesis and turnover. Plasma DBH (pDBH) activity shows wide inheritable interindividual variability that is under genetic control. The aim of this study was to determine pDBH activity, DBH (C-970T; rs1611115) and DBH (C1603T; rs6271) gene polymorphisms in 207 patients with AD and in 90 healthy age-matched controls. Plasma DBH activity was lower, particularly in the early stage of AD, compared to values in middle and late stages of the disease, as well as to control values. Two-way ANOVA revealed significant effect of both diagnosis and DBH (C-970T) or DBH (C1603T) genotypes on pDBH activity, but without significant diagnosis×genotype interaction. No association was found between AD and DBH C-970T (OR=1.08, 95% CI 1.13-4.37; p=0.779) and C1603T (OR=0.89; 95% CI 0.36-2.20; p=0.814) genotypes controlled for age, gender, and ApoE4 allele. The decrease in pDBH activity, found in early phase of AD suggests that alterations in DBH activity represent a compensatory mechanism for the loss of noradrenergic neurons, and that treatment with selective NA reuptake inhibitors may be indicated in early stages of AD to compensate for loss of noradrenergic activity in the locus coeruleus.
Collapse
|
11
|
Hardy J, Adolfsson R, Alafuzoff I, Bucht G, Marcusson J, Nyberg P, Perdahl E, Wester P, Winblad B. Transmitter deficits in Alzheimer's disease. Neurochem Int 2012; 7:545-63. [PMID: 20492959 DOI: 10.1016/0197-0186(85)90050-6] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pattern of neurotransmitter pathway losses in Alzheimer's disease are reviewed. Deficits of the cholinergic pathway from the nucleus basalis, the noradrenergic pathway from the locus coeruleus and the serotoninergic pathway from the raphe nuclei are established. Cortical somatostatin interneurons are affected and dopaminergic neurons may be affected although these may be late or secondary phenomena in the disease process. Other neuronal systems, particularly in the hippocampus and temporal cortex, are also damaged. However, the disease is not one of generalised neuronal atrophy since some neurons are selectively spared. The established pathway-specific losses are discussed in relation to the clinical symptomatology and the pathology of the disorder. The biochemical and histological findings are compared with similar measurements made on tissues from other dementing disorders in an attempt to trace features common to dementias. Finally, as an addendum, a hypothesis is briefly outlined which attempts to explain the common features of the affected neurons and the pathogenesis of the disorder.
Collapse
Affiliation(s)
- J Hardy
- Umeå Dementia Research Group, Departments of Pathology, Psychiatry and Geriatric Medicine, University of Umeå, Umeå Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
13
|
The dopamine β-hydroxylase -1021C/T polymorphism is associated with the risk of Alzheimer's disease in the Epistasis Project. BMC MEDICAL GENETICS 2010; 11:162. [PMID: 21070631 PMCID: PMC2994840 DOI: 10.1186/1471-2350-11-162] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/11/2010] [Indexed: 02/06/2023]
Abstract
Background The loss of noradrenergic neurones of the locus coeruleus is a major feature of Alzheimer's disease (AD). Dopamine β-hydroxylase (DBH) catalyses the conversion of dopamine to noradrenaline. Interactions have been reported between the low-activity -1021T allele (rs1611115) of DBH and polymorphisms of the pro-inflammatory cytokine genes, IL1A and IL6, contributing to the risk of AD. We therefore examined the associations with AD of the DBH -1021T allele and of the above interactions in the Epistasis Project, with 1757 cases of AD and 6294 elderly controls. Methods We genotyped eight single nucleotide polymorphisms (SNPs) in the three genes, DBH, IL1A and IL6. We used logistic regression models and synergy factor analysis to examine potential interactions and associations with AD. Results We found that the presence of the -1021T allele was associated with AD: odds ratio = 1.2 (95% confidence interval: 1.06-1.4, p = 0.005). This association was nearly restricted to men < 75 years old: odds ratio = 2.2 (1.4-3.3, 0.0004). We also found an interaction between the presence of DBH -1021T and the -889TT genotype (rs1800587) of IL1A: synergy factor = 1.9 (1.2-3.1, 0.005). All these results were consistent between North Europe and North Spain. Conclusions Extensive, previous evidence (reviewed here) indicates an important role for noradrenaline in the control of inflammation in the brain. Thus, the -1021T allele with presumed low activity may be associated with misregulation of inflammation, which could contribute to the onset of AD. We suggest that such misregulation is the predominant mechanism of the association we report here.
Collapse
|
14
|
Reinikainen K, Soininen H, Halonen T, Riekkinen PJ. Cholinergic and monoaminergic neurons in SDAT and in vascular dementia. Acta Neurol Scand 2009. [DOI: 10.1111/j.1600-0404.1984.tb02459.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Diez M, Groth D, DeArmond SJ, Prusiner SB, Hökfelt T. Changes in neuropeptide expression in mice infected with prions. Neurobiol Aging 2007; 28:748-65. [PMID: 16621165 DOI: 10.1016/j.neurobiolaging.2006.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 02/24/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Prion diseases are neurodegenerative disorders characterized by accumulation of an aberrantly folded isoform (PrP(Sc)) of the normal prion protein (PrP(C)). Using in situ hybridization and immunohistochemistry, we have studied changes in the expression of neuropeptides, acetylcholinesterase and tyrosine hydroxylase in CD1 and FVB wild-type mouse strains, as well as in PrP(C) null mice and in mice overexpressing PrP(C) following intracerebral inoculation with RML or Me7 prions. In the immunohistochemical analysis, neuropeptide Y (NPY), enkephalin and dynorphin-like immunoreactivities increased in mossy fibers of CD1 and FVB mice inoculated with either RML- or Me7 prions, whereas cholecystokinin-like immunoreactivity was decreased. These changes in peptide levels were paralleled by an increase in the transcripts in granule cells for neuropeptide Y, enkephalin, and cholecystokinin. However, the dynorphin transcript was decreased in the granule cells. The changes occurred more rapidly in PrP(C)-overexpressing compared to wild-type mice, and could not be found at all in PrP(C)-knockout mice. These changes in peptide expression, which mostly occur before appearance of symptoms of disease, may reflect attempts to initiate protective and/or regenerative processes.
Collapse
Affiliation(s)
- Margarita Diez
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Vécsei L, Klivényi P. Somatostatin and Alzheimer's disease. Arch Gerontol Geriatr 2005; 21:35-41. [PMID: 15374222 DOI: 10.1016/0167-4943(95)00640-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/1994] [Revised: 10/19/1994] [Accepted: 03/30/1995] [Indexed: 10/27/2022]
Abstract
One of the most consistent neurochemical deficits in Alzheimer's disease is a reduction in cortical somatostatin concentrations. The probability of a predominant regulatory change is heightened by the finding that 90% of somatostatin positive nonpyramidal neurons are also positive for NADPH, and NADPH neurons are 'protected' in Alzheimer's disease and do not appear to be lost. The first evidence that somatostatin influences learning and memory processes in experimental animals was published more than a decade ago. These reports of somatostatin effects on cognitive functions in rats were later confirmed by several other studies. The somatostatin depleting substance cysteamine inhibited the learning and memory performance of rats in active and passive avoidance behavior tests. Post-mortem human studies suggest that although somatostatin concentration is reduced, the somatostatin receptors are less affected in the brain in Alzheimer's disease. These findings may be of importance for possible therapeutic approaches using somatostatin-receptor-influencing compounds.
Collapse
Affiliation(s)
- L Vécsei
- Department of Neurology, Szent-Györgyi University Medical School P.O. Box 397, Szeged, H-6701 Hungary
| | | |
Collapse
|
17
|
Herrmann N, Lanctôt KL, Eryavec G, Khan LR. Noradrenergic activity is associated with response to pindolol in aggressive Alzheimer's disease patients. J Psychopharmacol 2004; 18:215-20. [PMID: 15260910 DOI: 10.1177/0269881104042625] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Loss of noradrenergic (NE) neurones in the locus ceruleus and compensatory changes in NE activity have been described in Alzheimer's disease (AD), but have never been linked to treatment. The hypothesis of this study was that central NE responsivity would predict aggression response to treatment with a NE medication, pindolol. Fifteen institutionalized AD subjects [Mini-Mental State Examination (MMSE), mean 3.3 +/- 4.6] with significant behavioural disturbances (Neuropsychiatric Inventory Score, mean 30.6 +/- 14.6) were studied. Growth hormone (GH) response to clonidine challenge (5 microg/kg) was used as a measure of central NE responsivity. Subjects were then randomized to 7 weeks of treatment with pindolol, maximum dose 20 mg b.i.d., or an identical placebo capsule in a cross-over design. The primary outcome measure was change on the retrospective Overt Aggression Scale (r-OAS). Five of 11 completers (45%) had decreased total r-OAS scores. There was significant improvement noted on the r-OAS verbal aggression subscale (paired t = -2.5, p = 0.03) compared to placebo, but not r-OAS total. Higher baseline aggression, higher MMSE and lower GH response predicted improvement in aggression, accounting for 82% of the variance (r = 0.91, F = 10.5, p = 0.006). Changes in NE responsivity, as reflected by a blunted GH response to clonidine challenge and more severe aggression, were associated with better response to the NE agent pindolol. Individual patient characteristics, including underlying neurotransmitter changes, may be useful for predicting response to therapy.
Collapse
Affiliation(s)
- Nathan Herrmann
- Department of Psychiatry, Sunnybrook and Women's College Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
18
|
Diez M, Danner S, Frey P, Sommer B, Staufenbiel M, Wiederhold KH, Hökfelt T. Neuropeptide alterations in the hippocampal formation and cortex of transgenic mice overexpressing β-amyloid precursor protein (APP) with the Swedish double mutation (APP23). Neurobiol Dis 2003; 14:579-94. [PMID: 14678773 DOI: 10.1016/j.nbd.2003.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The role of neuropeptides and the significance of peptidergic mechanisms in neurodegenerative diseases are still unclear. In the periphery, nerve injury results in dramatic changes in the expression of neuropeptides. An important question regards to what extent similar changes occur, and similar mechanisms operate, after lesions and/or degeneration in the brain. The purpose of this work is, therefore, to study neuropeptides with regard to their presence and distribution in the APP23 mouse (HuAPP(751) K670M/N671L under the murine Thy-1 promoter), a model for Alzheimer's disease, or cerebral amyloidosis, using the immunohistochemical technique. In addition, tyrosine hydroxylase and acetylcholinesterase were analyzed. This study shows marked neuropeptide changes in the hippocampal formation and the ventral cortex, whereas the dorsolateral neocortex was less affected. There was a considerable variation with regard to peptide expression among animals of the same age which was related to the variation in Abeta deposition. Dystrophic and varicose fibers containing galanin, neuropeptide Y, enkephalin, and especially cholecystokinin were commonly seen in close proximity to amyloid plaques. In addition, generalized changes were observed, such as increases of enkephalin and neuropeptide Y in stratum lacunosum moleculare and of neuropeptide Y, enkephalin, and dynorphin in mossy fibers. In contrast, cholecystokinin was decreased in mossy fibers. Comparatively small differences were observed between wild-type and transgenic mice with regard to tyrosine hydroxylase (noradrenergic but also dopaminergic fibers) and acetylcholine esterase (mainly cholinergic fibers). The increase of neuropeptides in dystrophic fibers in this model may represent a response to nerve injury caused by the amyloid accumulation and may reflect attempts to counteract degeneration by initiating protective and/or regenerative processes.
Collapse
Affiliation(s)
- Margarita Diez
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Tales A, Muir JL, Bayer A, Jones R, Snowden RJ. Phasic visual alertness in Alzheimer's disease and ageing. Neuroreport 2002; 13:2557-60. [PMID: 12499867 DOI: 10.1097/00001756-200212200-00035] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An individual's ability to see and react quickly to a target stimulus is enhanced if they are alerted to the arrival of this target by a stimulus that occurs just prior in time to it. This alerting effect is thought to occur due to a phasic increase in alertness mediated by noradrenergic activity. In Alzheimer's disease (AD) there is a dysfunction in the noradrenergic system resulting in a decrease in central levels of noradrenaline. We therefore predicted that patients with AD would not be able to benefit from the prior stimulus to the same extent as that seen in healthy older adults and thus would have a reduced or abolished alerting-effect. We measured reaction times to respond to a visual target that could be preceded (by 200 ms) by a visual alerting cue, in 17 patients with Alzheimer's disease, 19 age-matched controls and 13 younger controls. We found that the alerting cue significantly decreased the reaction times for both the young and old controls, but that this cue had no effect upon the reaction times for those with AD. This marked inability to increase phasic alertness in AD may contribute to the everyday problems faced by these patients, and may provide a simple tool to aid diagnosis and disease progression.
Collapse
Affiliation(s)
- Andrea Tales
- School of Psychology, Cardiff University, Cardiff CF11 3YG, Wales, UK.
| | | | | | | | | |
Collapse
|
20
|
Tales A, Muir JL, Bayer A, Snowden RJ. Spatial shifts in visual attention in normal ageing and dementia of the Alzheimer type. Neuropsychologia 2002; 40:2000-12. [PMID: 12207997 DOI: 10.1016/s0028-3932(02)00057-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using a spatial-cueing paradigm, we assessed the ability of Alzheimer's disease patients, age-matched controls and younger participants to use cues to guide attention to the location indicated by the cue. In separate experiments, we attempted to isolate cues that attract attention automatically (exogenous cueing) and those that require the wilful movement of attention (endogenous cues). We found significant cueing effects for all three groups of participants for both types of cue. However, the group with Alzheimer's disease showed far greater cueing effects when using an exogenous cue, whilst no difference between group's ability to use the cue was found for the endogenous cue. No differences in cueing were found for either cue type as a function of normal ageing. We further tested whether the differences in cueing found in the group with Alzheimer's disease was due to a generalised slowing of function. After transforming the data to take account of the overall slowing of all responses in this group, we still found significant differences between this group and the control groups. We conclude that patients with Alzheimer's disease have an abnormality in automatic, but not controlled visuospatial attention.
Collapse
Affiliation(s)
- Andrea Tales
- School of Psychology, Cardiff University, Wales, UK
| | | | | | | |
Collapse
|
21
|
Mann MB, Wu S, Rostamkhani M, Tourtellotte W, MacMurray J, Comings DE. Phenylethanolamine N-methyltransferase (PNMT) gene and early-onset Alzheimer disease. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 105:312-6. [PMID: 11378842 DOI: 10.1002/ajmg.1363] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The activity of human phenylethanolamine N-methyltransferase (PNMT) is reduced in the neurons of those cells in many subcortical areas of the brain that are known to undergo neurodegeneration in Alzheimer disease (AD). Others have reported that PNMT is decreased in brains of persons with AD and that the decrease in enzymatic activity is due to a reduced amount of the enzyme protein. We have previously described two polymorphisms, G-353A and G-148A, in the promoter region of the gene coding for PNMT. These markers were tested for their association with the occurrence of sporadic AD. Genotyping of 131 necropsy confirmed AD cases, and 947 adult nondemented controls were completed. We observed a significant association between both of the PNMT gene polymorphisms and early-onset AD (EOAD) (P < or = 0.007), but not in late-onset AD (LOAD). These data suggest that genetic variation in the promoter of the PNMT gene is associated with increased susceptibility to the sporadic form of EOAD.
Collapse
Affiliation(s)
- M B Mann
- Department of Medical Genetics, City of Hope Medical Center, Duarte, California, USA
| | | | | | | | | | | |
Collapse
|
22
|
Diez M, Koistinaho J, Kahn K, Games D, Hökfelt T. Neuropeptides in hippocampus and cortex in transgenic mice overexpressing V717F beta-amyloid precursor protein--initial observations. Neuroscience 2001; 100:259-86. [PMID: 11008166 DOI: 10.1016/s0306-4522(00)00261-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunohistochemistry was used to analyse 18- and 26-month-old transgenic mice overexpressing the human beta-amyloid precursor protein under the platelet-derived growth factor-beta promoter with regard to presence and distribution of neuropeptides. In addition, antisera/antibodies to tyrosine hydroxylase, acetylcholinesterase, amyloid peptide, glial fibrillary acidic protein and microglial marker OX42 were used. These mice have been reported to exhibit extensive amyloid plaques in the hippocampus and cortex [Masliah et al. (1996) J. Neurosci. 16, 5795-5811]. The most pronounced changes were related to neuropeptides, whereas differences between wild-type and transgenic mice were less prominent with regard to tyrosine hydroxylase and acetylcholinesterase. The main findings were of two types; (i) involvement of peptide-containing neurites in amyloid beta-peptide positive plaques, and (ii) more generalized changes in peptide levels in specific layers, neuron populations and/or subregions in the hippocampal formation and ventral cortices. In contrast, the parietal and auditory cortices were comparatively less affected. The peptide immunoreactivities most strongly involved, both in plaques and in the generalized changes, were galanin, neuropeptide Y, cholecystokinin and enkephalin. This study shows that there is considerable variation both with regard to plaque load and peptide expression even among homozygotes of the same age. The most pronounced changes, predominantly increased peptide levels, were observed in two 26-month-old homozygous mice, for example, galanin-, enkephalin- and cholecystokinin-like immunoreactivities in stratum lacunosum moleculare, and galanin, neuropeptide Y, enkephalin and dynorphin in mossy fibers. Many peptides also showed elevated levels in the ventral cortices. However, decreases were also observed. Thus, galanin-like immunoreactivity could not any longer be detected in the diffusely distributed (presumably noradrenergic) fiber network in all hippocampal and cortical layers, and dynorphin-like immunoreactivity was decreased in stratum moleculare, cholecystokinin-like immunoreactivity in mossy fibers and substance P-like immunoreactivity in fibers around granule cells. The significance of generalized peptide changes is at present unclear. For example, the increase in the mainly inhibitory peptides galanin, neuropeptide Y, enkephalin and dynorphin and the decrease in the mainly excitatory peptide cholecystokinin in mossy fibers (and of substance P fibers around granule cells) indicate a shift in balance towards inhibition of the input to the CA3 pyramidal cell layer. Moreover, it may be speculated that the increase in levels of some of the peptides represents a reaction to nerve injury with the aim to counteract, in different ways, the consequences of injury, for example by exerting trophic actions. Further studies will be needed to establish to what extent these changes are typical for Alzheimer mouse models in general or are associated with the V717F mutation and/or the platelet-derived growth factor-beta promoter.
Collapse
Affiliation(s)
- M Diez
- Department of Neuroscience, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Szot P, Leverenz JB, Peskind ER, Kiyasu E, Rohde K, Miller MA, Raskind MA. Tyrosine hydroxylase and norepinephrine transporter mRNA expression in the locus coeruleus in Alzheimer's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 84:135-40. [PMID: 11113540 DOI: 10.1016/s0169-328x(00)00168-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the loss of locus coeruleus (LC) noradrenergic neurons in Alzheimer's disease (AD), cerebrospinal fluid norepinephrine (NE) levels are normal or increased in AD. This paradox suggests compensatory upregulation of NE synthetic capacity or downregulation of the NE transporter (NET) in the remaining LC neurons. LC tyrosine hydroxylase (TH) mRNA expression in the LC was measured in AD subjects (n=5) and in age and gender comparable non-demented subjects (n=6). When AD subjects were divided into those still ambulatory prior to death (CDR 3/4) and those in a prolonged 'vegetative' state prior to death (CDR 5), differences among groups became apparent at specific levels of the LC. In CDR 3/4 AD subjects there was increased TH mRNA expression per neuron compared to non-demented subjects in the caudal half of the LC. However, expression of NET mRNA in the same subjects was not significantly different at any level of the LC. These preliminary results suggest an upregulation of NE biosynthetic capacity in at least some LC neurons in AD prior to the very late stage of the disease.
Collapse
Affiliation(s)
- P Szot
- Northwest Network Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
O'Neill J, Halgren E, Marinkovic K, Siembieda D, Refai D, Fitten LJ, Perryman K, Fisher A. Effects of muscarinic and adrenergic agonism on auditory P300 in the macaque. Physiol Behav 2000; 70:163-70. [PMID: 10978492 DOI: 10.1016/s0031-9384(00)00258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homologs of human endogenous evoked potentials are known in several species of nonhuman primates, but the neurotransmitter substrates of these potentials remain uncertain. In particular, the role of central cholinergic and adrenergic systems is not yet clearly defined. We recorded cognitive evoked potentials from the scalp in four adult bonnet macaque monkeys during a passive version of the auditory oddball paradigm with unique novel stimuli under saline control conditions. In two subjects each, cognitive evoked potentials were also recorded following intramuscular administration of the m1 muscarinic agonist AF102B or of the alpha-2A noradrenergic agonist guanfacine. On saline, large positivities resembling the human P300 were recorded over midline sites in response to rare or novel auditory stimuli in all four monkeys. The amplitude of these positivities was sensitive to the delivery of fruit-juice reward in association with rare stimuli in three monkeys tested. At cognition-enhancing doses, AF102B enlarged the amplitude of P300-like positivities in both monkeys tested; guanfacine enlarged the amplitude of P300-like positivities in one of two monkeys tested. These results add to existing evidence of human-like endogenous late positivities in monkeys that are influenced by the cholinergic and adrenergic systems, and suggest a possible role of m1 muscarinic and alpha-2A noradrenergic receptor subtypes.
Collapse
Affiliation(s)
- J O'Neill
- Department of Veterans Affairs West LA Medical Center, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hoogendijk WJ, Feenstra MG, Botterblom MH, Gilhuis J, Sommer IE, Kamphorst W, Eikelenboom P, Swaab DF. Increased activity of surviving locus ceruleus neurons in Alzheimer's disease. Ann Neurol 1999; 45:82-91. [PMID: 9894881 DOI: 10.1002/1531-8249(199901)45:1<82::aid-art14>3.0.co;2-t] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Alzheimer's disease (AD) there is neuronal loss in the locus ceruleus (LC), and the noradrenergic system may be even more affected in depressed AD patients. However, this neuronal loss may go together with an increase in activity of the remaining noradrenergic neurons. We prospectively evaluated 16 AD patients (6 depressed, 5 transiently depressed, and 5 nondepressed) and 10 controls. We determined norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) in various brain areas, and compared these data with previously established neuron numbers in the LC in the same patients. We could not confirm earlier studies reporting lower norepinephrine concentrations in depressed than in nondepressed dementia patients. The mean norepinephrine concentrations in AD patients were significantly lower than those in control patients, whereas the mean concentrations of MHPG were not different. Moreover, we found significant inverse relationships between the number of remaining pigmented LC neurons and the MHPG/norepinephrine ratio in the frontal cortex and LC. These data are the first to provide direct evidence for the hypothesis that remaining LC neurons are activated to compensate for decreased cerebral norepinephrine levels in AD, by demonstrating that the MHPG/norepinephrine ratio is significantly higher in AD, indicating increased metabolism.
Collapse
Affiliation(s)
- W J Hoogendijk
- Netherlands Institute for Brain Research, and Department of Psychiatry, Valerius Clinic, Amsterdam
| | | | | | | | | | | | | | | |
Collapse
|
26
|
The Anatomy of Dementias. Cereb Cortex 1999. [DOI: 10.1007/978-1-4615-4885-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
|
28
|
Popović M, Caballero-Bleda M, Puelles L, Popović N. Importance of immunological and inflammatory processes in the pathogenesis and therapy of Alzheimer's disease. Int J Neurosci 1998; 95:203-36. [PMID: 9777440 DOI: 10.3109/00207459809003341] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The contribution of autoimmune processes or inflammatory components in the etiology and pathogenesis of Alzheimer's disease (AD) has been suspected for many years. The presence of antigen-presenting, HLA-DR-positive and other immunoregulatory cells, components of complement, inflammatory cytokines and acute phase reactants have been established in tissue of AD neuropathology. Although these data do not confirm the immune response as a primary cause of AD, they indicate involvement of immune processes at least as a secondary or tertiary reaction to the preexisting pathogen and point out its driving-force role in AD pathogenesis. These processes may contribute to systemic immune response. Thus, experimental and clinical studies indicate impairments in both humoral and cellular immunity in an animal model of AD as well as in AD patients. On the other hand, anti-inflammatory drugs applied for the treatment of some chronic inflammatory diseases have been shown to reduce risk of AD in these patients. Therefore, it seems that anti-inflammatory drugs and other substances which can control the activity of immunocompetent cells and the level of endogenous immune response can be valuable in the treatment of AD patients.
Collapse
Affiliation(s)
- M Popović
- Departamento de Ciencias Morfológicas y Psicobiología, Facultad de Medicina, Universidad de Murcia, Espinardo, Spain
| | | | | | | |
Collapse
|
29
|
Lawrence AD, Sahakian BJ. The cognitive psychopharmacology of Alzheimer's disease: focus on cholinergic systems. Neurochem Res 1998; 23:787-94. [PMID: 9566619 DOI: 10.1023/a:1022419712453] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The primary pathology in Alzheimer's disease (DAT) occurs in the basal forebrain cholinergic system (BFCS), which provides the major cholinergic innervation to the neocortex, hippocampus and amygdala. Consistent with the 'cholinergic hypothesis' of dementia in DAT, the most effective treatments so far developed for DAT are drugs which act to boost the functions of the BFCS. These include the centrally acting cholinesterase inhibitor tacrine, and the cholinergic agonist nicotine, acute administration of which leads to an improvement in attentional functions, in line with recent animal studies of the role of the BFCS in cognition. We conclude that future research should include the development of more potent, longer-lasting, less toxic cholinergic agents, which appear to be the best candidates for alleviating the cognitive symptomatology of DAT. Such drugs may also be useful in the treatment of a number of other cognitive disorders, including Lewy body dementia, attention deficit/hyperactivity disorder, and schizophrenia.
Collapse
Affiliation(s)
- A D Lawrence
- Department of Psychiatry, University of Cambridge, UK
| | | |
Collapse
|
30
|
Busch C, Bohl J, Ohm TG. Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 1997; 18:401-6. [PMID: 9330971 DOI: 10.1016/s0197-4580(97)00035-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of neurofibrillary tangles in the nucleus coeruleus was topographically and quantitatively analyzed. The topographical analysis showed statistically significant differences with regard to the distribution of neurofibrillary tangles in the dorsal-ventral and medial-lateral axes. More neurofibrillary tangles were found to be located in the dorsal and medial regions than in ventral and lateral areas. No significant difference in neurofibrillary tangle content was found between the rostral and the caudal areas of the nucleus coeruleus. Neurofibrillary tangle formation begins in the central parts of the nucleus coeruleus. The total number of neuromelanized neurons in the nucleus coeruleus was determined using a modern, unbiased sampling scheme and related to the cortical stage of Alzheimer's disease-related neurofibrillary changes present. A statistically significant reduction (50%) in nucleus coeruleus neurons was evident only in cases meeting the histopathological criteria for Alzheimer's disease. The extent of reduction in the total number of neurons in the nucleus coeruleus did not correlate with the number of neurofibrillary tangles observed. Our data suggest that despite the relatively early susceptibility of the nucleus coeruleus to neurofibrillary tangle formation, significant neuronal loss appears to occur much later, with an estimated average delay time of at least 25 years. Nonetheless, comparison of the topographical pattern of neurofibrillary tangle formation and cell loss indicates that neuronal loss is tangle-related.
Collapse
Affiliation(s)
- C Busch
- Zentrum der Morphologie, J. W. Goethe Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
31
|
Tolbert SR, Fuller MA. Selegiline in treatment of behavioral and cognitive symptoms of Alzheimer disease. Ann Pharmacother 1996; 30:1122-9. [PMID: 8998375 DOI: 10.1177/106002809603001012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE To evaluate the effects of selegiline on behavioral and cognitive symptoms of patients with Alzheimer disease. DATA SOURCES An English-language MEDLINE search (1982-1995) was used to identify the review articles and human clinical trials discussed in this article. STUDY SELECTION Double- and single-blind and open-label trials were reviewed. Studies were also reviewed if selegiline was evaluated comparatively with other agents. Review articles were used for background information. DATA EXTRACTION Data were evaluated from human studies. Studies were critiqued on the basis of design, methodology, duration, sample size, and the degree to which neuropsychological tests used in each study were compared. DATA SYNTHESIS Selegiline is a selective, irreversible inhibitor of monoamine oxidase type B. Eight of 11 controlled trials showed selegiline had a positive effect on cognition (e.g., word fluency, delayed recall, total recall). Two of 5 controlled trials evaluating selegiline's effect on behavior (e.g., anxiety, tension, excitement, depression) showed a positive effect. CONCLUSIONS The role of selegiline remains to be determined by large well-controlled long-term clinical trials. Selegiline may be a useful agent in managing behavioral and cognitive symptomatology associated with Alzheimer disease. Given that the management of Alzheimer disease is symptomatic and no standard treatment exists, selegiline should be considered among the various options.
Collapse
Affiliation(s)
- S R Tolbert
- Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
32
|
Vnek N, Kromer LF, Wiley RG, Rothblat LA. The basal forebrain cholinergic system and object memory in the rat. Brain Res 1996; 710:265-70. [PMID: 8963668 DOI: 10.1016/0006-8993(95)01477-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rats with near complete destruction of basal forebrain cholinergic neurons from intracerebroventricular injections of 192 IgG-saporin were trained on object discrimination problems and then retrained two weeks later to measure retention. Despite dramatic reductions of acetylcholinesterase-positive fibers in hippocampus and neocortex, these animals did not differ from controls on an analysis of savings scores. Thus, the basal forebrain cholinergic system may serve functions that support non-spatial memory but are not specifically mnemonic in nature.
Collapse
Affiliation(s)
- N Vnek
- Department of Psychology, George Washington University, Washington, DC 20052, USA
| | | | | | | |
Collapse
|
33
|
Gsell W, Strein I, Riederer P. The neurochemistry of Alzheimer type, vascular type and mixed type dementias compared. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1996; 47:73-101. [PMID: 8841958 DOI: 10.1007/978-3-7091-6892-9_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We present the results of a meta-analysis of neurochemical changes in human post mortem brains of Alzheimer type (AD), vascular type (VD) and mixed type (MF) dementias, and matched controls based on 275 articles published between January 1980 and February 1994. Severity of degeneration between the different neurochemical systems is as follows, although ranking is difficult with regard to limited numbers of investigations in some neurochemical systems: Cholinergic system > serotonergic system > excitatory amino acids > GABAergic system > energy metabolism > NA > oxidative stress parameters > neuropeptides > DA. But, within a neurochemical system, degeneration is not evenly distributed. Spared parameters, e.g. muscarinic receptors and MAO-B, allow to make some suggestions for future therapeutic strategies.
Collapse
Affiliation(s)
- W Gsell
- Department of Psychiatry, University of Würzburg, Federal Republic of Germany
| | | | | |
Collapse
|
34
|
Sramek JJ, Viereck C, Huff FJ, Wardle T, Hourani J, Stewart JA, Cutler NR. A "bridging" (safety/tolerance) study of besipirdine hydrochloride in patients with Alzheimer's disease. Life Sci 1995; 57:1241-8. [PMID: 7674813 DOI: 10.1016/0024-3205(95)02068-t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Besipirdine hydrochloride is a novel compound with cholinergic and adrenergic activity being investigated as a treatment for Alzheimer's disease (AD). The pharmacodynamics of some anti-dementia drugs are known to differ in patients with AD as compared with elderly normals. The present study was designed to determine the maximum tolerated dose (MTD) of multiple oral doses of besipirdine in AD patients. Twelve AD patients (NINCDS/ADRDA criteria; 7M, 5F, ages 58-75, mean age 65) were randomized to besipirdine (n = 9) or placebo (n = 3) in a double-blind, parallel-group, rising-dose design. Doses were 10, 20, 30, and 40 mg bid for 2 days each, followed by 50 and 60 mg bid for 5 days each. The most common adverse events were asymptomatic postural hypotension and asymptomatic bradycardia. Two patients on active drug developed severe adverse events: 1 after 3 days at 50 mg bid (nausea and vomiting); 1 after 3 days at 60 mg bid (angina). Due to the anginal episode, the study was terminated on Day 17. Plasma concentrations increased linearly with dose for besipirdine and its major metabolite. The two patients who developed severe adverse events had the highest plasma concentrations measured. Besipirdine 50 mg bid was considered the maximum tolerated dose (MTD).
Collapse
Affiliation(s)
- J J Sramek
- California Clinical Trials, Beverly Hills 90211, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Experimental pharmacotherapy of cognitive impairment in Alzheimer's disease has seen a recent proliferation of drug trials involving a wide variety of drugs. Many of the earlier studies focused on cholinergic agents. However, subsequent advances in basic and biological sciences have broadened the scope of therapeutic strategies beyond the neurotransmitter approaches to include neurotrophic, metabolic-enhancing, membrane-modifying, and antitoxic agents, and have also provided rationale for developing antiamyloid and anti-infective therapies. For the clinician, it has not been easy to keep abreast of these developments. In this article, I present an overview of the cognition-enhancing drugs that have been used in the past, of those currently under investigation, and of new drugs and strategies that are likely to receive attention in the next few years.
Collapse
Affiliation(s)
- S V Patel
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, New York, USA
| |
Collapse
|
36
|
Perry EK, Kerwin JM, Perry RH. On neuronal ill health. Trends Neurosci 1994; 17:51-2. [PMID: 7512767 DOI: 10.1016/0166-2236(94)90072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Booze RM, Mactutus CF, Gutman CR, Davis JN. Frequency analysis of catecholamine axonal morphology in human brain. II. Alzheimer's disease and hippocampal sympathetic ingrowth. J Neurol Sci 1993; 119:110-8. [PMID: 7902423 DOI: 10.1016/0022-510x(93)90198-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have examined the various diverse morphologies of catecholamine axons in the brains of patients with Alzheimer's disease. Alzheimer's disease and aged control brain tissue were obtained by a rapid autopsy protocol (mean postmortem delay < 1 h). Tissue blocks from the superior frontal cortex (Brodmann area 9), the hippocampal gyrus, and the calcarine cortex (Brodmann area 17) were processed for identification of catecholamine axons using tyrosine hydroxylase immunocytochemistry. A total of 1275 tyrosine hydroxylase immunoreactive axons were randomly sampled from coded sections and classified into one of six distinct axon-type categories. The axon classification from patients with Alzheimer's disease significantly differed from those of an age-matched control population in the hippocampus. The Alzheimer's disease brains were decreased in the frequency of very long, thin, tyrosine hydroxylase immunoreactive axons (type 1) and had an increased frequency of shorter, tortuous, axons (type 3). These selective quantitative shifts in hippocampal catecholaminergic axon morphology are consistent with the hypothesis that sympathetic noradrenergic axons invade the hippocampus of patients with Alzheimer's disease. Multivariate modeling of the frequency sampling data found that the axon type classification scheme successfully predicted the presence of Alzheimer's disease. In particular, the use of quantitative neuroanatomical measures of the catecholaminergic system in human brain tissue was found to have errorless predictive ability with respect to late onset (> 75 years) Alzheimer's disease. In summary, the use of quantitative neuroanatomical measures of catecholamine axonal morphologies in Alzheimer's disease brain tissue identified a specific frequency shift which may represent hippocampal sympathetic ingrowth and this unique measure was found to have predictive utility with respect to Alzheimer's disease.
Collapse
Affiliation(s)
- R M Booze
- Department of Pharmacology, University of Kentucky Medical Center, Lexington 40536-0084
| | | | | | | |
Collapse
|
38
|
Booze RM, Mactutus CF, Gutman CR, Davis JN. Frequency analysis of catecholamine axonal morphology in human brain. I. Effects of postmortem delay interval. J Neurol Sci 1993; 119:99-109. [PMID: 7902424 DOI: 10.1016/0022-510x(93)90197-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The diverse morphologies of catecholamine axons in the human brain were examined by using tyrosine hydroxylase immunocytochemistry. Human brain tissue was obtained by either rapid autopsy (mean postmortem delay < 1 h) or routine autopsy (mean postmortem delay 5 h). Tissue blocks from the superior frontal cortex (Brodmann area 9), the hippocampal gyrus and the calcarine cortex (Brodmann area 17) were processed for tyrosine hydroxylase immunoreactivity. First, a quantitative method was developed to reliably identify differing morphologies of catecholamine axons in human brain tissue. A total of 625 tyrosine hydroxylase immunoreactive axons were randomly sampled from coded sections and classified into one of six distinct morphological categories. These categories were based upon axonal morphologies which were readily distinguished by trained observers, and moreover, further investigations demonstrated that entire tissue sections could be reliably re-sampled at intervals of up to six months. Second, regional variations in axonal distribution and the effects of increasing postmortem delay in tissue processing on the categories of tyrosine hydroxylase immunoreactive axon morphologies were examined. Postmortem delays of up to 6.5 hours were found to decrease the frequency of fine axons with varicosities (axon type 2) and increase thick-caliber straight axons (axon type 5) in all regions examined. The frequency of other morphological axon types did not change as a function of postmortem delay. In summary, the use of quantitative neuroanatomical measures of the catecholaminergic system in human brain tissue was found to be reliable and valid. It was furthermore demonstrated that postmortem delays affect selected morphological types of catecholamine axons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R M Booze
- Department of Pharmacology and College of Pharmacy, University of Kentucky Medical Center, Lexington 40536-0084
| | | | | | | |
Collapse
|
39
|
Fritschy JM, Grzanna R. Restoration of ascending noradrenergic projections by residual locus coeruleus neurons: compensatory response to neurotoxin-induced cell death in the adult rat brain. J Comp Neurol 1992; 321:421-41. [PMID: 1506478 DOI: 10.1002/cne.903210309] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is clinical and experimental evidence that monoamine neurons respond to lesions with a wide range of compensatory adaptations aimed at preserving their functional integrity. Neurotoxin-induced lesions are followed by increased synthesis and release of transmitter from residual monoamine fibers and by axonal sprouting. However, the fate of lesioned neurons after long survival periods remains largely unknown. Whether regenerative sprouting may contribute significantly to recovery of function following lesions which induce cell loss has been questioned. We have previously analyzed the response of locus coeruleus (LC) neurons to systemic administration of the noradrenergic (NE) neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to adult rats. This drug causes ablation of nearly all LC axon terminals within 2 weeks after administration, followed by a profound loss of LC cell bodies 6 months later. The present study was conducted to determine the fate of surviving LC neurons and to characterize their potential for regenerative sprouting during a 16 month period after DSP-4 treatment. The time-course and extent of LC neuron degeneration were analyzed quantitatively in Nissl-stained sections, and the regenerative response of residual neurons was characterized by dopamine-beta-hydroxylase immunohistochemistry. The results document that LC neurons degenerate gradually after DSP-4 treatment, cell loss reaching on average 57% after 1 year. LC neurons which survive the lesion exhibit a vigorous regenerative response, even in those animals in which cell loss exceeds 60-70%. This regenerative process leads progressively to restoration of the NE innervation pattern in the forebrain, with some regions becoming markedly hyperinnervated. In stark contrast to the forebrain, very little reinnervation takes place in the brainstem, cerebellum and spinal cord. These findings suggest that regenerative sprouting of residual neurons is an important compensatory mechanism by which the LC may regain much of its functional integrity in the presence of extensive cell loss. Furthermore, regeneration of LC axons after DSP-4 treatment is region-specific, suggesting that the pattern of reinnervation is controlled by target areas. Elucidation of the factors underlying recovery of LC neurons after DSP-4 treatment may provide insights into the compensatory mechanisms of central neurons after injury and in disease states.
Collapse
Affiliation(s)
- J M Fritschy
- Johns Hopkins University School of Medicine, Department of Neuroscience, Baltimore, Maryland 21205
| | | |
Collapse
|
40
|
Ounanian A, Guilbert B, Seigneurin JM. Characteristics of Epstein-Barr virus transformed B cell lines from patients with Alzheimer's disease and age-matched controls. Mech Ageing Dev 1992; 63:105-16. [PMID: 1318479 DOI: 10.1016/0047-6374(92)90020-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The characteristics of B cell lines isolated from patients with Alzheimer's disease (AD) and age-matched controls were investigated after having been transformed by Epstein-Barr virus (EBV). After isolation of mononuclear blood cells and in vivo or in vitro EBV infection, 35 and 21 lymphoblastoid cell lines (LCLs) were generated from 19 patients with AD (mean age 79.4 years) and 21 age-matched controls (mean age 80.0 years), respectively. B lymphocytes from AD patients were immortalised more easily than those from controls; the percentage of in vitro EBV infected LCLs (B95-LCLs) obtained in the AD group was significantly higher (76.2% versus 33.3% in the control group) and the mean time required for establishment was significantly lower (20.2 and 21.9 days versus 26.7 and 60.9 days in the control group). The EBV receptor and surface immunoglobulin (Ig) analyses showed no difference between the two groups. The expression of Epstein-Barr early antigens (EA) and viral capsid antigens (VCAs) revealed a tendency to higher viral replication in LCLs from AD patients; however, VCA expression remained limited to a small number of cells and did not affect overall cell growth. Finally, qualitative and quantitative differences were observed in the pattern of Ig production. Whereas spontaneously established LCLs from AD patients were generally monoclonal (80% of LCLs versus 33% in the control group), B95-LCLs were all polyclonal and secreted more IgM and IgA than those from controls; the mean IgM level was significantly higher in B95-LCLs from the AD group. These results suggest that B cells derived from AD patients seemed to be less differentiated than cells from age-matched controls.
Collapse
Affiliation(s)
- A Ounanian
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | | | | |
Collapse
|
41
|
Sandyk R, Kay SR, Awerbuch GI, Iacono RP. Risk factors for neuroleptic-induced movement disorders. Int J Neurosci 1991; 61:149-88. [PMID: 1688114 DOI: 10.3109/00207459108990737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic neuroleptic therapy may be associated with the development of diverse movement disorders including Tardive dyskinesia (TD), Parkinsonism, dystonia, and akathisia in a subset of schizophrenic patients. It is presently unknown why only a proportion of neuroleptic-treated patients develop these movement disorders. In the following communication, we present a series of studies which demonstrate that the development of these movement disorders may be facilitated by certain risk factors including disturbances in pineal melatonin functions, diabetes mellitus, cognitive deficits, suicidal behavior, and disturbances in the functions of the choroid plexus. Recognition of these biological factors may prove useful in: (a) further understanding of the pathophysiology of these disorders, and (b) identifying patients at risk for these movement disorders.
Collapse
Affiliation(s)
- R Sandyk
- Department of Psychiatry, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461
| | | | | | | |
Collapse
|
42
|
Jellinger KA. Pathology of Parkinson's disease. Changes other than the nigrostriatal pathway. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1991; 14:153-97. [PMID: 1958262 DOI: 10.1007/bf03159935] [Citation(s) in RCA: 379] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Parkinson's disease (PD), in addition to degeneration of the nigrostriatal dopaminergic pathway, a variety of neuronal systems are involved, causing multiple neuromediator dysfunctions that account for the complex patterns of functional deficits. Degeneration affects the dopaminergic mesocorticolimbic system, the noradrenergic locus ceruleus (oral parts) and motor vagal nucleus, the serotonergic raphe nuclei, the cholinergic nucleus basalis of Meynert, pedunculopontine nucleus pars compacta, Westphal-Edinger nucleus, and many peptidergic brainstem nuclei. Cell losses in subcortical projection nuclei range from 30 to 90% of controls; they are more severe in depressed and demented PD patients. Most of the lesions are region-specific, affecting not all neurons containing a specific transmitter or harboring Lewy bodies. In contrast to Alzheimer's disease (AD), subcortical system lesions in Parkinson's disease appear not to be related to cortical pathology, suggesting independent or concomitant degeneration. The pathogenesis of multiple-system changes contributing to chemical pathology and clinical course of Parkinson's disease are unknown.
Collapse
Affiliation(s)
- K A Jellinger
- L. Boltzmann Institute of Clinical Neurobiology, Lainz-Hospital, Vienna, Austria
| |
Collapse
|
43
|
Jackson WJ, Buccafusco JJ. Clonidine enhances delayed matching-to-sample performance by young and aged monkeys. Pharmacol Biochem Behav 1991; 39:79-84. [PMID: 1924516 DOI: 10.1016/0091-3057(91)90400-v] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clonidine, an alpha-2 noradrenergic agonist, has been shown to alter cognitive performance in humans and animals. Included among the evidence are studies which differ in their conclusions regarding the question of whether clonidine administration improves delayed response (DR) performance by nonhuman primates. The present results indicated that clonidine administration to both young and aged monkeys results in a modest performance improvement as measured by one of the commonly employed versions of DR performance-delayed matching-to-sample (DMTS). The clonidine-induced enhancement of DMTS had a duration of at least 24 h in both age groups.
Collapse
Affiliation(s)
- W J Jackson
- Department of Physiology & Endocrinology, Medical College of Georgia, Augusta 30912-3000
| | | |
Collapse
|
44
|
Burke WJ, Park DH, Chung HD, Marshall GL, Haring JH, Joh TH. Evidence for decreased transport of tryptophan hydroxylase in Alzheimer's disease. Brain Res 1990; 537:83-7. [PMID: 1707735 DOI: 10.1016/0006-8993(90)90342-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis of serotonin and a specific marker for serotonergic neurons. These neurons are affected in Alzheimer's disease (AD) in several ways: serotonin is decreased in axon terminals, serotonin neurons accumulate neurofibrillary protein, and these neurons are lost in AD brains. One subcellular mechanism which may underlie degeneration of neurons in AD is decreased axonal transport with accumulation of enzymes and their potentially toxic metabolites in the cell body. To determine whether there is a defect in axonal transport in serotonin neurons in AD we measured TPH activity, serotonin and its oxidative metabolite 5-hydroxyindoleacetic acid (5-HIAA) in dorsal raphe cell bodies from Alzheimer and control cases. TPH activity is increased 4.7-fold in raphe neuron cell bodies in Alzheimer brains. Serotonin and 5-HIAA are increased by 4.0- and 2.0-fold, respectively in Alzheimer compared to control raphe cell bodies. In contrast, in synaptic terminals of the amygdala 5-HT and 5-HIAA were decreased by 41% and 50%, respectively in the same AD cases. We propose that the accumulation of TPH and its products in the raphe perikarya in AD results from a diminished transport of TPH to axon terminals. The accumulation of oxidative metabolites of serotonin may contribute to the degeneration of serotonergic neurons in AD.
Collapse
Affiliation(s)
- W J Burke
- Department of Neurology, Veterans Administration Medical Center, St. Louis, MO
| | | | | | | | | | | |
Collapse
|
45
|
Burke WJ, Chung HD, Marshall GL, Gillespie KN, Joh TH. Evidence for decreased transport of PNMT protein in advanced Alzheimer's disease. J Am Geriatr Soc 1990; 38:1275-82. [PMID: 2254565 DOI: 10.1111/j.1532-5415.1990.tb03448.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phenylethanolamine N-methyltransferase (PNMT) is the rate-limiting enzyme in the synthesis of epinephrine and a specific marker for adrenergic neurons. PNMT protein is decreased in axon terminals in brains from patients with Alzheimer's disease due to retrograde degeneration of epinephrine neurons. To determine the subcellular mechanism underlying retrograde degeneration, the distribution of PNMT between axon terminal and cell body was calculated in early and advanced Alzheimer cases compared with age-matched controls. In early Alzheimer's disease there is a decrease in PNMT in axon terminals and in total PNMT in epinephrine cell bodies and terminals compared with control values. There is no difference in the ratio of PNMT in cell body/axon terminal compared with controls. In contrast, in advanced Alzheimer's disease, PNMT activity increases by 124% in epinephrine neuronal cell bodies compared with controls. Immunochemical titration shows that this increased enzyme activity is due to an increase in PNMT protein. The cell body/axon terminal ratio of PNMT is increased 2.5-fold in advanced Alzheimer's disease compared with controls. These findings are consistent with the hypothesis that in early Alzheimer's disease there is a decreased synthesis or increased degradation of PNMT. However, in advanced Alzheimer's disease we propose that the accumulation of this enzyme in the perikarya results from a diminished transport of PNMT to axon terminals. We further postulate that epinephrine, the product of PNMT, and its further metabolites are endogenous neurotoxins. Therefore, the accumulation of PNMT in epinephrine cell bodies may contribute to the degeneration of these neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- W J Burke
- Department of Neurology, Veterans Administration Medical Center, St. Louis, Missouri
| | | | | | | | | |
Collapse
|
46
|
Sahgal A, Keith AB, Lloyd S, Kerwin JM, Perry EK, Edwardson JA. Memory following cholinergic (NBM) and noradrenergic (DNAB) lesions made singly or in combination: potentiation of disruption by scopolamine. Pharmacol Biochem Behav 1990; 37:597-605. [PMID: 2128756 DOI: 10.1016/0091-3057(90)90533-n] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Groups of rats were trained on either delayed matching or nonmatching to position tasks, then divided into four subgroups and given the following bilateral lesions: (a) SHAM [vehicle injection into the nucleus basalis magnocellularis (NBM) and dorsal noradrenergic bundle (DNAB)], (b) DNAB (6-hydroxydopamine lesion of the DNAB, vehicle into the NBM), (c) NBM (quisqualic acid lesion of the NBM, vehicle into the DNAB) and (d) DUAL (neurotoxin lesions of both DNAB and NBM). Following postoperative recovery, the DUAL lesion subjects were slightly impaired, but by the seventh day of testing all groups were performing at similar levels. This strongly suggests that quisqualate lesions of the NBM are not sufficient to produce severe and lasting mnemonic disorders resembling those seen in Alzheimer's disease (AD). These data also indicate that the noradrenergic system may not be of critical importance with respect to cognition. It was reasoned that an additional anticholinergic treatment might exacerbate an underlying deficiency. All groups were injected, peripherally, with the cholinergic antagonist scopolamine (0-0.5 mg/kg). This drug dose-dependently disrupted performance in all groups. Moreover, the highest dose had a marked effect in the DUAL group, impairing performance even when no mnemonic burden was present (at zero delay). The results suggest that cholinergic NBM and noradrenergic DNAB lesions produce only transient mnemonic deficiencies. A combination of the two can be disruptive, but longer term task (or reference) memory is the primary process affected, and only under certain conditions. The implication of these findings to research concerning animal models relating to Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- A Sahgal
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, UK
| | | | | | | | | | | |
Collapse
|
47
|
Corain B, Bombi GG, Tapparo A, Nicolini M, Zatta P, Perazzolo M, Favarato M. Alzheimer's disease and aluminum toxicology. ENVIRONMENTAL HEALTH PERSPECTIVES 1990; 89:233-5. [PMID: 1982433 PMCID: PMC1567779 DOI: 10.1289/ehp.9089233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
|
48
|
Mohr E, Litvan I, Williams J, Fedio P, Chase TN. Selective deficits in Alzheimer and parkinsonian dementia: visuospatial function. Neurol Sci 1990; 17:292-7. [PMID: 2207883 DOI: 10.1017/s0317167100030596] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deficits in visuospatial cognition are frequently cited as an important component of the cognitive changes accompanying Parkinson's disease. To characterize possible differences between Parkinson's (PD) and Alzheimer's (AD) dementia, patients from both groups, matched for overall dementia severity, age and education, were contrasted neuropsychologically. Visuospatial tasks dissociated from memory, were significantly compromised in both patient groups. Differential impairment was evident on visuospatial abstraction and reasoning (Object Assembly), which was most deficient in PD. Visuospatial cognition associated with memory, classified both patient groups as impaired compared to controls, but AD patients demonstrated substantially lower performance levels than those with PD. Parkinsonian dementia thus appears to have some distinct features compared to Alzheimer's disease, which may indicate differences in underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- E Mohr
- Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | | | | | | | | |
Collapse
|
49
|
Everall IP, Kerwin R. The role of nerve growth factor in Alzheimer's disease. Psychol Med 1990; 20:249-251. [PMID: 2356254 DOI: 10.1017/s0033291700017578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Molchan SE, Hill JL, Mellow AM, Lawlor BA, Martinez R, Sunderland T. The dexamethasone suppression test in Alzheimer's disease and major depression: relationship to dementia severity, depression, and CSF monoamines. Int Psychogeriatr 1990; 2:99-122. [PMID: 1713799 DOI: 10.1017/s1041610290000370] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patients with Alzheimer's disease (AD) have been reported to have a rate of nonsuppression on the dexamethasone suppression test (DST) comparable to that of patients with major depression. With symptoms of depression being increasingly recognized in patients with AD, studying their DST response may provide clues to the etiology of the abnormal response in both diagnostic groups. A correlation between dementia severity and post-dexamethasone cortisol was found within the group of male, but not female AD patients. Within the group of elderly depressives, a correlation between post-dexamethasone cortisol and ratings of depression was found. Serum dexamethasone levels were not significantly lower in the nonsuppressors as compared with suppressors in either diagnostic group. Within the AD group, dexamethasone levels themselves correlated significantly with ratings of dementia severity and with the Wechsler Memory Scale score. Cerebrospinal fluid (CSF) 3-methoxy-4-hydroxyphenylglycol (MHPG) correlated positively with 4:00 pm post-dexamethasone cortisol level and with ratings of dementia severity in the AD patients. Findings are discussed in light of the known clinical and other biological similarities between AD and major depression, followed by a review of theories regarding the etiology of the hypothalamic-pituitary-adrenal abnormalities in these two illnesses.
Collapse
Affiliation(s)
- S E Molchan
- Unit on Geriatric Psychopharmacology, National Institute of Mental Health, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|