1
|
Pani S, Senapati U, Sahu B, Pati B, Swalsingh G, Pani P, Bindhani BK, Achary KG, Bal NC. Developmental overlap between skeletal muscle maturation and perirenal fat brown-to-white transition in goats: Exploring the role of Myf-5. Biochimie 2025; 228:1-7. [PMID: 39121901 DOI: 10.1016/j.biochi.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In mammals, skeletal muscles (SkMs) and adipose tissues regulate energy homeostasis and share developmental origins. Notably, the perirenal adipose tissue (PRAT) depot has been reported to display adipocyte heterogeneity: while some originated from Myogenic factor 5 (Myf-5) expressing progenitors, others did not. Our study examines the expression and distribution of Myf-5 using immunohistochemical staining and western blotting of PRAT, gastrocnemius, and trapezius from goat at various developmental stages. Contrary to earlier beliefs, functionally divergent SkM gastrocnemius and trapezius showed similar Myf-5 expressional pattern. SkM abundantly expresses Myf-5 in developing myocytes which gradually becomes limited to the nucleus of myogenic stem cells and is retained only in a few differentiated postnatal fibers. During the same period, PRAT displays a unique brown-to-white transition. PRAT exhibited an elevated expression of Myf-5 during prenatal periods, which declines thereafter and becomes negligible during adulthood where it gets fully enriched white adipocytes. The reduction of Myf-5 during the neonatal period was common to all three tissues. However, Myf-5 expression was retained in some of the differentiated myofibers while it was undetectable in adult PRAT. These observations suggest a possible developmental interplay between adipose tissue and SkM where Myf-5 might be a major regulator.
Collapse
Affiliation(s)
- Sunil Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Unmod Senapati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Benudhara Pati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | | | - Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | | | | | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
2
|
Deprez A, El-Jalbout R, Cloutier A, Gagnon DH, Gagnon Hamelin A, Mathieu ME, Kugathasan TA, Dumont NA, Nuyt AM, Luu TM. Adults born preterm have lower peripheral skeletal muscle area and strength. Sci Rep 2024; 14:21457. [PMID: 39271745 PMCID: PMC11399148 DOI: 10.1038/s41598-024-72533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Prematurity is associated with lower exercise capacity, which relies on the integrity of the cardiovascular, pulmonary, and skeletal muscle systems. Our animal model mimicking prematurity-associated conditions showed altered muscle composition and atrophy in adulthood. This study aimed to compare muscle composition and strength in adults born preterm versus full-term controls. This observational cohort study recruited 55 adults born preterm, ≤ 29 weeks' of gestation and 53 full-term controls who underwent musculoskeletal ultrasound imaging to assess morphology of the rectus femoris at rest and during a maximal voluntary contraction. Maximal voluntary contraction of the hands and legs were measured by manual dynamometry. In adults born preterm, there was lower muscle strength (handgrip: - 4.8 kg, 95% CI - 9.1, - 0.6; knee extensor: - 44.6 N/m, 95% CI - 63.4, - 25.8) and smaller muscle area (- 130 mm2, 95% CI - 207, - 53), which was more pronounced with a history of bronchopulmonary dysplasia. Muscle stiffness was increased in the preterm versus term group (0.4 m/s, 95% CI 0.04, 0.7). Prematurity is associated with alterations in skeletal muscle composition, area, and function in adulthood. These findings highlight the necessity to implement preventive and/or curative approaches to improve muscle development and function following preterm birth to enhance overall health in this population.
Collapse
Affiliation(s)
- Alyson Deprez
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Ramy El-Jalbout
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Anik Cloutier
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Dany H Gagnon
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Andréa Gagnon Hamelin
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Marie-Eve Mathieu
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- School of Kinesiology and Physical Activity Science, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Thiffya Arabi Kugathasan
- School of Kinesiology and Physical Activity Science, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Nicolas A Dumont
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Anne Monique Nuyt
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Thuy Mai Luu
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
3
|
Pani S, Senapati U, Pati B, Sahu B, Swalsingh G, Pani P, Rout S, Achary KG, Bal NC. Developmental dynamics of mitochondrial fission and fusion proteins in functionally divergent skeletal muscles of goat. Physiol Rep 2024; 12:e16002. [PMID: 38831632 PMCID: PMC11148127 DOI: 10.14814/phy2.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024] Open
Abstract
During skeletal muscle development, the intricate mitochondrial network formation relies on continuous fission and fusion. This process in larger mammals differs from rodents, the most used animal models. However, the expression pattern of proteins regulating mitochondrial dynamics in developing skeletal muscle remains unexplored in larger mammals. Therefore, we characterized the cellular expression and tissue-level distribution of these proteins during development taking goat as a model. We have performed histological and immunohistochemical analyses to study metabolic features in various muscles. Neonatal muscles display uniform distribution of mitochondrial activity. In contrast, adult muscles exhibit clear distinctions based on their function, whether dedicated for posture maintenance or facilitating locomotion. Mitochondrial fission proteins like DRP-1, MFF, and fusion proteins like MFN-1 and 2 are abundantly expressed in neonatal muscles. Fission proteins exhibit drastic downregulation with limited peripheral expression, whereas fusion proteins continue to express in a fiber-specific manner during adulthood. Locomotory muscles exhibit different fibers based on mitochondrial activity and peripheralization with high SDH activity. The proximity ligation assay between MFN1 and MFN2 demonstrates that their interaction is restricted to subsarcolemmal mitochondria in adult fibers while distributed evenly in neonatal fibers. These differences between postural and locomotory muscles suggest their physiological and metabolic properties are different.
Collapse
Grants
- ECR/ 2016/001247 DST | Science and Engineering Research Board (SERB)
- BT/RLF/Re-entry/41/2014 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- BT/PR28935/MED/30/2035/2018 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- 45/3/2019/PHY/BMS Indian Council of Medical Research (ICMR)
- 45/9/2020-PHY/BMS Indian Council of Medical Research (ICMR)
- 09/1035(0011)/2017-EMR-I CSIR | Human Resource Development Group (HRDG)
- DST/INSPIRE Fellowship/2018/IF180892 Department of Science and Technology, Ministry of Science and Technology, India (DST)
- DST | Science and Engineering Research Board (SERB)
- Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- Indian Council of Medical Research (ICMR)
- CSIR | Human Resource Development Group (HRDG)
- Department of Science and Technology, Ministry of Science and Technology, India (DST)
Collapse
Affiliation(s)
- Sunil Pani
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | - Unmod Senapati
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | - Benudhara Pati
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | | | | | - Punyadhara Pani
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | - Subhasmita Rout
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| | | | - Naresh C. Bal
- School of BiotechnologyKIIT UniversityBhubaneswarOdishaIndia
| |
Collapse
|
4
|
Deprez A, Poletto Bonetto JH, Ravizzoni Dartora D, Dodin P, Nuyt AM, Luu TM, Dumont NA. Impact of preterm birth on muscle mass and function: a systematic review and meta-analysis. Eur J Pediatr 2024; 183:1989-2002. [PMID: 38416257 DOI: 10.1007/s00431-023-05410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 02/29/2024]
Abstract
Individuals born preterm present lower exercise capacity. Along with the cardiopulmonary responses and activity level, muscle strength is a key determinant of exercise capacity. This systematic review aimed to summarize the current knowledge on the impact of preterm birth on skeletal muscle mass and function across the lifespan. The databases PubMed, MEDLINE, EBM, Embase, CINAHL Plus, Global Index Medicus, and Google Scholar were searched using keywords and MeSH terms related to skeletal muscle, preterm birth, and low birth weight. Two independent reviewers undertook study selection, data extraction, and quality appraisal using Covidence review management. Data were pooled to estimate the prematurity effect on muscle mass and function using the R software. From 4378 studies retrieved, 132 were full-text reviewed and 25 met the inclusion/exclusion criteria. Five studies presented a low risk of bias, and 5 had a higher risk of bias due to a lack of adjustment for confounding factors and presenting incomplete outcomes. Meta-analyses of pooled data from homogenous studies indicated a significant reduction in muscle thickness and jump test (muscle power) in individuals born preterm versus full-term with standardized mean difference and confidence interval of - 0.58 (0.27, 0.89) and - 0.45 (0.21, 0.69), respectively. Conclusion: Overall, this systematic review summarizing the existing literature on the impact of preterm birth on skeletal muscle indicates emerging evidence that individuals born preterm, display alteration in the development of their skeletal muscle mass and function. This work also highlights a clear knowledge gap in understanding the effect of preterm birth on skeletal muscle development. What is Known: • Preterm birth, which occurs at a critical time of skeletal muscle development and maturation, impairs the development of different organs and tissues leading to a higher risk of comorbidities such as cardiovascular diseases. • Preterm birth is associated with reduced exercise capacity. What is New: • Individuals born preterm display alterations in muscle mass and function compared to individuals born at term from infancy to adulthood. • There is a need to develop preventive or curative interventions to improve skeletal muscle health in preterm-born individuals.
Collapse
Affiliation(s)
- Alyson Deprez
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jéssica H Poletto Bonetto
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Daniela Ravizzoni Dartora
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Philippe Dodin
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Anne Monique Nuyt
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thuy Mai Luu
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas A Dumont
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
5
|
Bou Akar R, Lama C, Aubin D, Maruotti J, Onteniente B, Esteves de Lima J, Relaix F. Generation of highly pure pluripotent stem cell-derived myogenic progenitor cells and myotubes. Stem Cell Reports 2024; 19:84-99. [PMID: 38101399 PMCID: PMC10828960 DOI: 10.1016/j.stemcr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Driving efficient and pure skeletal muscle cell differentiation from pluripotent stem cells (PSCs) has been challenging. Here, we report an optimized protocol that generates skeletal muscle progenitor cells with high efficiency and purity in a short period of time. Human induced PSCs (hiPSCs) and murine embryonic stem cells (mESCs) were specified into the mesodermal myogenic fate using distinct and species-specific protocols. We used a specific maturation medium to promote the terminal differentiation of both human and mouse myoblast populations, and generated myotubes associated with a large pool of cell-cycle arrested PAX7+ cells. We also show that myotube maturation is modulated by dish-coating properties, cell density, and percentage of myogenic progenitor cells. Given the high efficiency in the generation of myogenic progenitors and differentiated myofibers, this protocol provides an attractive strategy for tissue engineering, modeling of muscle dystrophies, and evaluation of new therapeutic approaches in vitro.
Collapse
Affiliation(s)
- Reem Bou Akar
- University Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010 Creteil, France
| | - Chéryane Lama
- University Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010 Creteil, France
| | | | | | | | | | - Frédéric Relaix
- University Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010 Creteil, France.
| |
Collapse
|
6
|
Hulen J, Kenny D, Black R, Hallgren J, Hammond KG, Bredahl EC, Wickramasekara RN, Abel PW, Stessman HAF. KMT5B is required for early motor development. Front Genet 2022; 13:901228. [PMID: 36035149 PMCID: PMC9411648 DOI: 10.3389/fgene.2022.901228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Disruptive variants in lysine methyl transferase 5B (KMT5B/SUV4-20H1) have been identified as likely-pathogenic among humans with neurodevelopmental phenotypes including motor deficits (i.e., hypotonia and motor delay). However, the role that this enzyme plays in early motor development is largely unknown. Using a Kmt5b gene trap mouse model, we assessed neuromuscular strength, skeletal muscle weight (i.e., muscle mass), neuromuscular junction (NMJ) structure, and myofiber type, size, and distribution. Tests were performed over developmental time (postnatal days 17 and 44) to represent postnatal versus adult structures in slow- and fast-twitch muscle types. Prior to the onset of puberty, slow-twitch muscle weight was significantly reduced in heterozygous compared to wild-type males but not females. At the young adult stage, we identified decreased neuromuscular strength, decreased skeletal muscle weights (both slow- and fast-twitch), increased NMJ fragmentation (in slow-twitch muscle), and smaller myofibers in both sexes. We conclude that Kmt5b haploinsufficiency results in a skeletal muscle developmental deficit causing reduced muscle mass and body weight.
Collapse
Affiliation(s)
- Jason Hulen
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Dorothy Kenny
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Rebecca Black
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jodi Hallgren
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Kelley G. Hammond
- Department of Exercise Science, College of Arts and Sciences, Creighton University, Omaha, NE, United States
| | - Eric C. Bredahl
- Department of Exercise Science, College of Arts and Sciences, Creighton University, Omaha, NE, United States
| | - Rochelle N. Wickramasekara
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
- Molecular Diagnostic Laboratory, Boys Town National Research Hospital, Omaha, NE, United States
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Holly A. F. Stessman
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
7
|
Chien P, Xi H, Pyle AD. Recapitulating human myogenesis ex vivo using human pluripotent stem cells. Exp Cell Res 2021; 411:112990. [PMID: 34973262 DOI: 10.1016/j.yexcr.2021.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
Human pluripotent stem cells (hPSCs) provide a human model for developmental myogenesis, disease modeling and development of therapeutics. Differentiation of hPSCs into muscle stem cells has the potential to provide a cell-based therapy for many skeletal muscle wasting diseases. This review describes the current state of hPSCs towards recapitulating human myogenesis ex vivo, considerations of stem cell and progenitor cell state as well as function for future use of hPSC-derived muscle cells in regenerative medicine.
Collapse
Affiliation(s)
- Peggie Chien
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Haibin Xi
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - April D Pyle
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Sewry CA, Feng L, Chambers D, Matthews E, Phadke R. Importance of immunohistochemical evaluation of developmentally regulated myosin heavy chains in human muscle biopsies. Neuromuscul Disord 2021; 31:371-384. [PMID: 33685841 DOI: 10.1016/j.nmd.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Our retrospective immunohistochemical study of normal quadriceps muscle biopsies shows that embryonic myosin heavy chains are down-regulated by, or soon after, birth. Fetal myosin heavy chains are down-regulated by 4-6 months. Thus the presence of an appreciable number of fibres with embryonic myosin heavy chains at birth or of fetal myosin heavy chains after 6 months of age suggests a delay in maturation or an underlying abnormality. Regenerating fibres in dystrophic muscle often co-express both embryonic and fetal myosin heavy chains but more fibres with fetal than embryonic myosin heavy chains can occur. Embryonic myosin heavy chains are a useful marker of regeneration but effects of denervation, stress, disuse, and fibre maintenance also have to be taken into account. In neurogenic disorders fibres with embryonic myosin heavy chains are rare but fetal myosin heavy chain expression is common, particularly in 5q spinal muscle atrophy. Nuclear clumps in denervated muscle show fetal and sometimes embryonic myosin heavy chains. Developmentally regulated myosins are useful for highlighting the perifascicular atrophy in juvenile dermatomyositis. Our studies highlight the importance of baseline data for embryonic and fetal myosin heavy chains in human muscle biopsies and the importance of assessing them in a spectrum of neuromuscular disorders.
Collapse
Affiliation(s)
- C A Sewry
- The Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology Division of Neuropathology & National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; Department of Musculoskeletal Histopathology and the Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital NHS Trust, Oswestry, SY10 7AG, United Kingdom; Department of Cellular Pathology, Salford Royal Hospital NHS Foundation Trust, Northern Care Alliance NHS Group, Stott Lane, Salford M6 8HD, United Kingdom; The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom.
| | - L Feng
- The Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology Division of Neuropathology & National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom
| | - D Chambers
- The Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology Division of Neuropathology & National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom; The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health 30 Guildford Street, London, WC1N 1EH, United Kingdom
| | - E Matthews
- Atkinson-Morley Neuromuscular Centre, Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, United Kingdom; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - R Phadke
- The Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology Division of Neuropathology & National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| |
Collapse
|
9
|
Caveolin-3: A Causative Process of Chicken Muscular Dystrophy. Biomolecules 2020; 10:biom10091206. [PMID: 32825241 PMCID: PMC7565761 DOI: 10.3390/biom10091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022] Open
Abstract
The etiology of chicken muscular dystrophy is the synthesis of aberrant WW domain containing E3 ubiquitin-protein ligase 1 (WWP1) protein made by a missense mutation of WWP1 gene. The β-dystroglycan that confers stability to sarcolemma was identified as a substrate of WWP protein, which induces the next molecular collapse. The aberrant WWP1 increases the ubiquitin ligase-mediated ubiquitination following severe degradation of sarcolemmal and cytoplasmic β-dystroglycan, and an erased β-dystroglycan in dystrophic αW fibers will lead to molecular imperfection of the dystrophin-glycoprotein complex (DGC). The DGC is a core protein of costamere that is an essential part of force transduction and protects the muscle fibers from contraction-induced damage. Caveolin-3 (Cav-3) and dystrophin bind competitively to the same site of β-dystroglycan, and excessive Cav-3 on sarcolemma will block the interaction of dystrophin with β-dystroglycan, which is another reason for the disruption of the DGC. It is known that fast-twitch glycolytic fibers are more sensitive and vulnerable to contraction-induced small tears than slow-twitch oxidative fibers under a variety of diseased conditions. Accordingly, the fast glycolytic αW fibers must be easy with rapid damage of sarcolemma corruption seen in chicken muscular dystrophy, but the slow oxidative fibers are able to escape from these damages.
Collapse
|
10
|
Prediction of the Secretome and the Surfaceome: A Strategy to Decipher the Crosstalk between Adipose Tissue and Muscle during Fetal Growth. Int J Mol Sci 2020; 21:ijms21124375. [PMID: 32575512 PMCID: PMC7353064 DOI: 10.3390/ijms21124375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Crosstalk between adipose and muscular tissues is hypothesized to regulate the number of muscular and adipose cells during fetal growth, with post-natal consequences on lean and fat masses. Such crosstalk largely remains, however, to be described. We hypothesized that a characterization of the proteomes of adipose and muscular tissues from bovine fetuses may enhance the understanding of the crosstalk between these tissues through the prediction of their secretomes and surfaceomes. Proteomic experiments have identified 751 and 514 proteins in fetal adipose tissue and muscle. These are mainly involved in the regulation of cell proliferation or differentiation, but also in pathways such as apoptosis, Wnt signalling, or cytokine-mediated signalling. Of the identified proteins, 51 adipokines, 11 myokines, and 37 adipomyokines were predicted, together with 26 adipose and 13 muscular cell surface proteins. Analysis of protein–protein interactions suggested 13 links between secreted and cell surface proteins that may contribute to the adipose–muscular crosstalk. Of these, an interaction between the adipokine plasminogen and the muscular cell surface alpha-enolase may regulate the fetal myogenesis. The in silico secretome and surfaceome analyzed herein exemplify a powerful strategy to enhance the elucidation of the crosstalk between cell types or tissues.
Collapse
|
11
|
Kondash ME, Ananthakumar A, Khodabukus A, Bursac N, Truskey GA. Glucose Uptake and Insulin Response in Tissue-engineered Human Skeletal Muscle. Tissue Eng Regen Med 2020; 17:801-813. [PMID: 32200516 DOI: 10.1007/s13770-020-00242-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tissue-engineered muscles ("myobundles") offer a promising platform for developing a human in vitro model of healthy and diseased muscle for drug development and testing. Compared to traditional monolayer cultures, myobundles better model the three-dimensional structure of native skeletal muscle and are amenable to diverse functional measures to monitor the muscle health and drug response. Characterizing the metabolic function of human myobundles is of particular interest to enable their utilization in mechanistic studies of human metabolic diseases, identification of related drug targets, and systematic studies of drug safety and efficacy. METHODS To this end, we studied glucose uptake and insulin responsiveness in human tissue-engineered skeletal muscle myobundles in the basal state and in response to drug treatments. RESULTS In the human skeletal muscle myobundle system, insulin stimulates a 50% increase in 2-deoxyglucose (2-DG) uptake with a compiled EC50 of 0.27 ± 0.03 nM. Treatment of myobundles with 400 µM metformin increased basal 2-DG uptake 1.7-fold and caused a significant drop in twitch and tetanus contractile force along with decreased fatigue resistance. Treatment with the histone deacetylase inhibitor 4-phenylbutyrate (4-PBA) increased the magnitude of insulin response from a 1.2-fold increase in glucose uptake in the untreated state to a 1.4-fold increase after 4-PBA treatment. 4-PBA treated myobundles also exhibited increased fatigue resistance and increased twitch half-relaxation time. CONCLUSION Although tissue-engineered human myobundles exhibit a modest increase in glucose uptake in response to insulin, they recapitulate key features of in vivo insulin sensitivity and exhibit relevant drug-mediated perturbations in contractile function and glucose metabolism.
Collapse
Affiliation(s)
- Megan E Kondash
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | | | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
12
|
Soendenbroe C, Heisterberg MF, Schjerling P, Karlsen A, Kjaer M, Andersen JL, Mackey AL. Molecular indicators of denervation in aging human skeletal muscle. Muscle Nerve 2019; 60:453-463. [DOI: 10.1002/mus.26638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Mette F. Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Jesper L. Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
13
|
Lam LT, Holt I, Laitila J, Hanif M, Pelin K, Wallgren-Pettersson C, Sewry CA, Morris GE. Two alternatively-spliced human nebulin isoforms with either exon 143 or exon 144 and their developmental regulation. Sci Rep 2018; 8:15728. [PMID: 30356055 PMCID: PMC6200726 DOI: 10.1038/s41598-018-33281-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/07/2018] [Indexed: 11/09/2022] Open
Abstract
Nebulin is a very large protein required for assembly of the contractile machinery in muscle. Mutations in the nebulin gene NEB are a common cause of nemaline myopathy. Nebulin mRNA is alternatively-spliced so that each mRNA contains either exon 143 or exon 144. We have produced monoclonal antibodies specific for the regions of nebulin encoded by these two exons, enabling analysis of expression of isoforms at the protein level for the first time. All antibodies recognized a protein of the expected size (600–900 kD) and stained cross-striations of sarcomeres in muscle sections. Expression of exon 143 is developmentally-regulated since newly-formed myotubes in cell culture expressed nebulin with exon 144 only; this was confirmed at the mRNA level by qPCR. In fetal muscle, nebulin with exon 143 was expressed in some myotubes by 12-weeks of gestation and strongly-expressed in most myotubes by 17-weeks. In mature human muscle, the exon 144 antibody stained all fibres, but the exon 143 antibody staining varied from very strong in some fibres to almost-undetectable in other fibres. The results show that nebulin containing exon 144 is the default isoform early in myogenesis, while regulated expression of nebulin containing exon 143 occurs at later stages of muscle development.
Collapse
Affiliation(s)
- Le Thanh Lam
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.,Institute for Science and Technology in Medicine, Keele University, Keele, UK
| | - Jenni Laitila
- The Folkhälsan Institute of Genetics, Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Mubashir Hanif
- The Folkhälsan Institute of Genetics, Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Katarina Pelin
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Caroline A Sewry
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.,Dubowitz Neuromuscular Centre, Institute for Child Health and Great Ormond Street Hospital, London, UK
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK. .,Institute for Science and Technology in Medicine, Keele University, Keele, UK.
| |
Collapse
|
14
|
Naskar S, Kumaran V, Basu B. On The Origin of Shear Stress Induced Myogenesis Using PMMA Based Lab-on-Chip. ACS Biomater Sci Eng 2017; 3:1154-1171. [PMID: 33429590 DOI: 10.1021/acsbiomaterials.7b00206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the central themes in cell and tissue engineering is to develop an understanding as to how biophysical cues can influence cell functionality changes. The flow induced shear stress is regarded as one such biophysical cue to influence physiological changes in shear-sensitive tissues, in vivo. The origin of such phenomena is, however, poorly understood. While addressing such an issue, the present work demonstrates the intriguing synergistic effect of shear stress and spatial constraints in inducing aligned growth and differentiation of myoblast cells to myotubes. In a planned set of in vitro experiments, the regulation of laminar flow regime within a narrow window was obtained in a PMMA-based Lab-on-Chip (LOC) device, wherein the murine muscle cells (C2C12), chosen for their phenotypical differentiation stages, were cultured under graded shear conditions. The two factors of shear stress and spatial allowance were decoupled by another two sets of experiments. This aspect has been conclusively established using a PMMA device having a fixed width microchannel with varying shear and an identical amount of shear with different width of channels. On the basis of the extensive analysis of biochemical assays (WST-1, picogreen) together with gene expression using qRT-PCR and cell morphological changes (fluorescence/confocal microscopy), extensive differentiation of the myoblasts into myotubes is found to be dependent on both shear stress and spatial allocation with a maximum at an optimal shear of ca. 16 mPa. Quantitatively, the mRNA expression of myogenic biomarkers, i.e., myogenin, MyoD, and neogenin, exhibited 10- to 50-fold changes at ca. 16 mPa shear flow, compared to that under static conditions. Also, myotube aspect ratio and myotube density are modulated with shear stress and are in commensurate with gene expression changes. The flow cytometry analysis further confirmed that the cell cycle arrest at the G1/G0 phase triggers the onset of myogenesis. Taken together, the present study unambiguously establishes qualitative and quantitative biophysical basis for the origin of myogenesis toward the critical shear stress of murine myoblasts in a microfludic device, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| | - V Kumaran
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
15
|
Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile. Sci Rep 2017; 7:45052. [PMID: 28344332 PMCID: PMC5366807 DOI: 10.1038/srep45052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
During postnatal development, hyperplastic and hypertrophic processes of skeletal muscle growth depend on the activation, proliferation, differentiation, and fusion of satellite cells (SC). Therefore, molecular and functional SC heterogeneity is an important component of muscle plasticity and will greatly affect long-term growth performance and muscle health. However, its regulation by cell intrinsic and extrinsic factors is far from clear. In particular, there is only minor information on the early postnatal period which is critical for muscle maturation and the establishment of adult SC pools. Here, we separated two SC subpopulations (P40/50, P50/70) from muscle of 4-day-old piglets. Our results characterize P40/50 as homogeneous population of committed (high expression of Myf5), fast-proliferating muscle progenitors. P50/70 constituted a slow-proliferating phenotype and contains high numbers of differentiated SC progeny. During culture, P50/70 is transformed to a population with lower differentiation potential that contains 40% Pax7-positive cells. A reversible state of low mitochondrial activity that results from active down-regulation of ATP-synthase is associated with the transition of some of the P50/70 cells to this more primitive fate typical for a reserve cell population. We assume that P40/50 and P50/70 subpopulations contribute unequally in the processes of myofiber growth and maintenance of the SC pool.
Collapse
|
16
|
Sharples AP, Stewart CE, Seaborne RA. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell 2016; 15:603-16. [PMID: 27102569 PMCID: PMC4933662 DOI: 10.1111/acel.12486] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can ‘remember’ early‐life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an ‘epi’‐memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re‐encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early‐life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise‐induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the ‘epi’‐memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Claire E. Stewart
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Robert A. Seaborne
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| |
Collapse
|
17
|
Walklate J, Vera C, Bloemink MJ, Geeves MA, Leinwand L. The Most Prevalent Freeman-Sheldon Syndrome Mutations in the Embryonic Myosin Motor Share Functional Defects. J Biol Chem 2016; 291:10318-31. [PMID: 26945064 PMCID: PMC4858979 DOI: 10.1074/jbc.m115.707489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/12/2022] Open
Abstract
The embryonic myosin isoform is expressed during fetal development and rapidly down-regulated after birth. Freeman-Sheldon syndrome (FSS) is a disease associated with missense mutations in the motor domain of this myosin. It is the most severe form of distal arthrogryposis, leading to overcontraction of the hands, feet, and orofacial muscles and other joints of the body. Availability of human embryonic muscle tissue has been a limiting factor in investigating the properties of this isoform and its mutations. Using a recombinant expression system, we have studied homogeneous samples of human motors for the WT and three of the most common FSS mutants: R672H, R672C, and T178I. Our data suggest that the WT embryonic myosin motor is similar in contractile speed to the slow type I/β cardiac based on the rate constant for ADP release and ADP affinity for actin-myosin. All three FSS mutations show dramatic changes in kinetic properties, most notably the slowing of the apparent ATP hydrolysis step (reduced 5–9-fold), leading to a longer lived detached state and a slowed Vmax of the ATPase (2–35-fold), indicating a slower cycling time. These mutations therefore seriously disrupt myosin function.
Collapse
Affiliation(s)
- Jonathan Walklate
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Carlos Vera
- the Department of Molecular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Marieke J Bloemink
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Michael A Geeves
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Leslie Leinwand
- the Department of Molecular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
18
|
Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skelet Muscle 2015; 5:22. [PMID: 26180627 PMCID: PMC4502549 DOI: 10.1186/s13395-015-0046-6] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022] Open
Abstract
Developing skeletal muscles express unique myosin isoforms, including embryonic and neonatal myosin heavy chains, coded by the myosin heavy chain 3 (MYH3) and MYH8 genes, respectively, and myosin light chain 1 embryonic/atrial, encoded by the myosin light chain 4 (MYL4) gene. These myosin isoforms are transiently expressed during embryonic and fetal development and disappear shortly after birth when adult fast and slow myosins become prevalent. However, developmental myosins persist throughout adult stages in specialized muscles, such as the extraocular and jaw-closing muscles, and in the intrafusal fibers of the muscle spindles. These myosins are re-expressed during muscle regeneration and provide a specific marker of regenerating fibers in the pathologic skeletal muscle. Mutations in MYH3 or MYH8 are responsible for distal arthrogryposis syndromes, characterized by congenital joint contractures and orofacial dysmorphisms, supporting the importance of muscle contractile activity and body movements in joint development and in shaping the form of the face during fetal development. The biochemical and biophysical properties of developmental myosins have only partially been defined, and their functional significance is not yet clear. One possibility is that these myosins are specialized in contracting against low loads, and thus, they may be adapted to the prenatal environment, when fetal muscles contract against a very low load compared to postnatal muscles.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2, 35129 Padova, Italy
| | - Alberto C Rossi
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Vika Smerdu
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy ; CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
19
|
Abnormalities in Early Markers of Muscle Involvement Support a Delay in Myogenesis in Spinal Muscular Atrophy. J Neuropathol Exp Neurol 2014; 73:559-67. [DOI: 10.1097/nen.0000000000000078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Maltin CA. Muscle development and obesity: Is there a relationship? Organogenesis 2012; 4:158-69. [PMID: 19279728 DOI: 10.4161/org.4.3.6312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/20/2008] [Indexed: 12/25/2022] Open
Abstract
The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may 'program' the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity.
Collapse
Affiliation(s)
- Charlotte A Maltin
- School of Pharmacy and Life Sciences; Robert Gordon University; Aberdeen UK
| |
Collapse
|
21
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
22
|
Potential sources of early-postnatal increase in myofibre number in pig skeletal muscle. Histochem Cell Biol 2011; 136:217-25. [DOI: 10.1007/s00418-011-0833-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
23
|
Zhong WWH, Withers KW, Hoh JFY. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes. J Comp Physiol B 2009; 180:531-44. [PMID: 20012435 DOI: 10.1007/s00360-009-0431-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/02/2009] [Accepted: 11/25/2009] [Indexed: 11/29/2022]
Abstract
Effects of drug-induced hypothyroidism on myosin heavy chain (MyHC) content and fibre types of fast skeletal muscles were studied in a small marsupial, Antechinus flavipes. SDS-PAGE of MyHCs from the tibialis anterior and gastrocnemius revealed four isoforms, 2B, 2X, 2A and slow, in that order of decreasing abundance. After 5 weeks treatment with methimazole, the functionally fastest 2B MyHC significantly decreased, while 2X, 2A and slow MyHCs increased. Immunohistochemistry using monospecific antibodies to each of the four MyHCs revealed decreased 2b and 2x fibres, and increased 2a and hybrid fibres co-expressing two or three MyHCs. In the normally homogeneously fast superficial regions of these muscles, evenly distributed slow-staining fibres appeared, resembling the distribution of slow primary myotubes in fast muscles during development. Hybrid fibres containing 2A and slow MyHCs were virtually absent. These results are more detailed but broadly similar to the earlier studies on eutherians. We hypothesize that hypothyroidism essentially reverses the effects of thyroid hormone on MyHC gene expression of muscle fibres during myogenesis, which differ according to the developmental origin of the fibre: it induces slow MyHC expression in 2b fibres derived from fast primary myotubes, and shifts fast MyHC expression in fibres of secondary origin towards 2A, but not slow, MyHC.
Collapse
Affiliation(s)
- Wendy W H Zhong
- Discipline of Physiology and the Bosch Institute, Bldg F13, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
24
|
Rhee HS, Steel CM, Derksen FJ, Robinson NE, Hoh JFY. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy. J Histochem Cytochem 2009; 57:787-800. [PMID: 19398607 PMCID: PMC2713078 DOI: 10.1369/jhc.2009.953844] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/16/2009] [Indexed: 11/22/2022] Open
Abstract
We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers.
Collapse
Affiliation(s)
- Hannah S Rhee
- Discipline of Physiology, Bosch Institute, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Australia
| | | | | | | | | |
Collapse
|
25
|
Patruno M, Caliaro F, Maccatrozzo L, Sacchetto R, Martinello T, Toniolo L, Reggiani C, Mascarello F. Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles during pre- and post-natal growth. Differentiation 2007; 76:168-81. [PMID: 17573916 DOI: 10.1111/j.1432-0436.2007.00189.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myogenesis is driven by an extraordinary array of cellular signals that follow a common expression pattern among different animal phyla. Myostatin (mstn) is a secreted growth factor that plays a pivotal role in skeletal muscle mass regulation. The aim of the present study was to investigate mstn expression in a large mammal (the pig) in order to ascertain whether distinct expression changes of this factor might be linked to the fiber-type composition of the muscle examined and/or to specific developmental stages. To assess the expression pattern of mstn in relation to myogenic proliferative (Pax7 and MyoD) and differentiative (myogenin) markers, we evaluated muscles with different myosin heavy-chain compositions sampled during pre- and post-natal development and on myogenic cells isolated from the same muscles. Skeletal muscles showed higher levels of mRNA for mstn and all other genes examined during fetal development than after birth. The wide distribution of mstn was also confirmed by immunohistochemistry experiments supporting evidence for cytoplasmic staining in early fetal periods as well as the localization in type 1 fibers at the end of the gestation period. Extraocular muscles, in contrast, did not exhibit decreasing mRNA levels for mstn or other genes even in adult samples and expressed higher levels of both mstn mRNA and protein compared with skeletal muscles. Experiments carried out on myogenic cells showed that mstn mRNA levels decreased when myoblasts entered the differentiation program and that cells isolated at early post-natal stages maintained a high level of Pax7 expression. Our results showed that mstn had a specific expression pattern whose variations depended on the muscle type examined, thus supporting the hypothesis that at birth, porcine myogenic cells continue to be influenced by hyperplastic/proliferative mechanisms.
Collapse
Affiliation(s)
- Marco Patruno
- Department of Experimental Veterinary Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007; 308:281-93. [PMID: 17612520 DOI: 10.1016/j.ydbio.2007.06.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/03/2007] [Accepted: 06/08/2007] [Indexed: 12/29/2022]
Abstract
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy.
| | | | | |
Collapse
|
27
|
Kim Y, Lucas CA, Zhong WWH, Hoh JFY. Developmental changes in ventricular myosin isoenzymes of the tammar wallaby. J Comp Physiol B 2007; 177:701-5. [PMID: 17541602 DOI: 10.1007/s00360-007-0168-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 04/21/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
Ventricular myosin in eutherian mammals undergoes a perinatal change in response to a sharp rise in thyroid hormone levels during development. In this investigation, changes in ventricular myosin heavy chains (MyHCs) of the tammar wallaby (Macropus eugenii) from early pouch life to adulthood were analysed using native gel electrophoresis, SDS-PAGE and western blotting. Adult wallaby ventricle showed three myosin isoenzymes, V(1), V(2) and V(3); western blots using specific anti-alpha-MyHC and anti-beta-MyHC antibodies showed their MyHC compositions to be alphaalpha, alphabeta and betabeta, respectively. Ventricular muscle in early pouch joeys expressed predominantly beta-MyHC. Up to 200 days, the time of initial pouch exit, alpha-MyHC content was around 5%. Thereafter, there was a sharp increase of alpha-MyHC expression to 35% by 242 days of age, eventually falling back to 23% in the adult. These changes correlate with known surges in plasma levels of thyroid hormones around pouch exit. The results suggest that ventricular myosins in a marsupial mammal also undergo a developmental change, and that marsupial ventricular myosins are thyroid responsive as in eutherians. The increased alpha-MyHC expression empowers the heart to meet the enhanced cardiovascular demands of out-of-pouch activity and the thermogenic action of thyroid hormones.
Collapse
Affiliation(s)
- Yoonah Kim
- Discipline of Physiology and the Bosch Institute, F13, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
28
|
Strbenc M, Smerdu V, Pogacnik A, Fazarinc G. Myosin heavy chain isoform transitions in canine skeletal muscles during postnatal growth. J Anat 2007; 209:149-63. [PMID: 16879596 PMCID: PMC2100321 DOI: 10.1111/j.1469-7580.2006.00599.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To gain a better understanding of the normal characteristics of developing canine muscles, myosin heavy chain (MHC) isoform expression was analysed in the axial and limb skeletal muscles of 18 young dogs whose ages ranged from the late prenatal stage to 6 months. We compared the results of immunohistochemistry using ten monoclonal antibodies, specific to different MHC isoforms, and enzyme-histochemical reactions, which demonstrate the activity of myofibrillar ATPase, succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (alpha-GPDH). In the skeletal muscles of fetuses and neonatal dogs the developmental isoforms MHC-emb and MHC-neo were prevalent. In all muscles the primary fibres, located centrally in each muscle fascicle, strongly expressed the slow isoform MHC-I. The adult fast isoform MHC-IIa was first noted in some of the secondary fibres on fetal day 55. During the first 10 days after birth, the expression of MHC-emb declined, as did that of MHC-neo during the second and third weeks. Correspondingly, the expression of MHC-IIa, and later, of MHC-I increased in the secondary fibres. Between the sixth week and second month the expression of MHC-IIx became prominent. The slow rhomboideus muscle exhibited an early expression of the slow isoform in the secondary fibres. Our results indicate that the timing of muscle maturation depends on its activity immediately following birth. The fastest developing muscle was the diaphragm, followed by the fast muscles. A pronounced changeover from developmental to adult isoforms was noted at 4-6 weeks of age, which coincides with the increased physical activity of puppies.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Animals, Newborn
- Dogs
- Glycerolphosphate Dehydrogenase/metabolism
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Myosin Heavy Chains/metabolism
- Protein Isoforms
- Succinate Dehydrogenase/metabolism
Collapse
Affiliation(s)
- Malan Strbenc
- Institute of Anatomy, Histology and Embryology, Veterinary Faculty, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
29
|
Hoh JFY, Kim Y, Lim JHY, Sieber LG, Lucas CA, Zhong WWH. Marsupial cardiac myosins are similar to those of eutherians in subunit composition and in the correlation of their expression with body size. J Comp Physiol B 2006; 177:153-63. [PMID: 16988832 DOI: 10.1007/s00360-006-0117-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/20/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Cardiac myosins and their subunit compositions were studied in ten species of marsupial mammals. Using native gel electrophoresis, ventricular myosin in macropodoids showed three isoforms, V(1), V(2) and V(3), and western blots using specific anti-alpha- and anti-beta-cardiac myosin heavy chain (MyHC) antibodies showed their MyHC compositions to be alphaalpha, alphabeta and betabeta, respectively. Atrial myosin showed alphaalpha MyHC composition but differed from V(1) in light chain composition. Small marsupials (Sminthopsis crassicaudata, Antechinus stuartii, Antechinus flavipes) showed virtually pure V(1), while the larger (1-3 kg) Pseudocheirus peregrinus and Trichosurus vulpecula showed virtually pure V(3). The five macropodoids (Bettongia penicillata, Macropus eugenii, Wallabia bicolour, M. rufus and M. giganteus), ranging in body mass from 2 to 66 kg, expressed considerably more alpha-MyHC (22.8%) than expected for their body size. These results show that cardiac myosins in marsupial mammals are substantially the same as their eutherian counterparts in subunit composition and in the correlation of their expression with body size, the latter feature underlies the scaling of resting heart rate and cardiac cross-bridge kinetics with specific metabolic rate. The data from macropodoids further suggest that expression of cardiac myosins in mammals may also be influenced by their metabolic scope.
Collapse
Affiliation(s)
- Joseph F Y Hoh
- Discipline of Physiology and the Bosch Institute, Building F13, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Picard B, Jurie C, Duris M, Renand G. Consequences of selection for higher growth rate on muscle fibre development in cattle. Livest Sci 2006. [DOI: 10.1016/j.livsci.2005.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Potluri S, Lampa SJ, Norton AS, Laskowski MB. Morphometric analysis of neuromuscular topography in the serratus anterior muscle. Muscle Nerve 2006; 33:398-408. [PMID: 16320309 DOI: 10.1002/mus.20470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Groups of neurons form ordered topographic maps on their targets, and defining the mechanisms that develop such maps, and re-connect them after disruption, has biological as well as clinical importance. The neuromuscular system is an accessible and well-studied model for defining the principles that guide map formation, both during its development and its reformation after motor nerve damage. We present evidence for the expression of this map at the level of nerve terminal morphology and muscle fiber type in the serratus anterior muscle. Morphometric analyses indicate, first, a rostrocaudal difference in nerve terminal size depending on the ventral root of origin of the axons. Second, motor endplates are larger on type IIB than type IIA muscle fibers. Third, whereas IIB muscle fibers are distributed rather evenly along the rostrocaudal axis of the muscle, the more rostral type IIB fibers are preferentially innervated by anteriorly derived (C6) motor neurons, and more caudal IIB fibers are preferentially innervated by posteriorly derived (C7) motor neurons. This inference is supported by analysis of the size of nerve terminals formed in each muscle sector by rostral and caudal roots, and by evidence that the larger terminals are on IIB fibers. These results demonstrate a subcellular expression of neuromuscular topography in the serratus anterior muscle (SA) muscle in the form of differences in nerve terminal size. These results provide deeper insights into the organization of a neuromuscular system. They also offer a rationale for a topographic map, that is, to allow spinal motor centers to activate selectively different compartments within a muscle.
Collapse
Affiliation(s)
- S Potluri
- WWAMI (Washington, Wyoming, Alaska, Montana, Idaho) Medical Program, P.O. Box 444207, University of Idaho, Moscow, Idaho 83844-4207, USA
| | | | | | | |
Collapse
|
32
|
Casciola-Rosen L, Nagaraju K, Plotz P, Wang K, Levine S, Gabrielson E, Corse A, Rosen A. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. ACTA ACUST UNITED AC 2005; 201:591-601. [PMID: 15728237 PMCID: PMC2213068 DOI: 10.1084/jem.20041367] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Unique autoantibody specificities are strongly associated with distinct clinical phenotypes, making autoantibodies useful for diagnosis and prognosis. To investigate the mechanisms underlying this striking association, we examined autoantigen expression in normal muscle and in muscle from patients with autoimmune myositis. Although myositis autoantigens are expressed at very low levels in control muscle, they are found at high levels in myositis muscle. Furthermore, increased autoantigen expression correlates with differentiation state, such that myositis autoantigen expression is increased in cells that have features of regenerating muscle cells. Consistent with this, we found that cultured myoblasts express high levels of autoantigens, which are strikingly down-regulated as cells differentiate into myotubes in vitro. These data strongly implicate regenerating muscle cells rather than mature myotubes as the source of ongoing antigen supply in autoimmune myositis. Myositis autoantigen expression is also markedly increased in several cancers known to be associated with autoimmune myositis, but not in their related normal tissues, demonstrating that tumor cells and undifferentiated myoblasts are antigenically similar. We propose that in cancer-associated myositis, an autoimmune response directed against cancer cross-reacts with regenerating muscle cells, enabling a feed-forward loop of tissue damage and antigen selection. Regulating pathways of antigen expression may provide unrecognized therapeutic opportunities in autoimmune diseases.
Collapse
Affiliation(s)
- Livia Casciola-Rosen
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Everett AW, Ernst EJ. Increased quantal size in transmission at slow but not fast neuromuscular synapses of apolipoprotein E deficient mice. Exp Neurol 2004; 185:290-6. [PMID: 14736510 DOI: 10.1016/j.expneurol.2003.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Uncertainties from the literature concerning the role of apolipoprotein E (apoE) in central cholinergic function prompted us to investigate what effect apoE may have on transmission at the neuromuscular junction. Both spontaneous and evoked release were measured in isolated extensor digitorum longus (edl) and soleus muscles from both wild-type and apoE-deficient mice. Miniature endplate and nerve-evoked endplate potentials (MEPPs and EPPs, respectively) were indistinguishable in edl muscles in both groups of mice; however, MEPP amplitudes in soleus muscles were significantly larger (by an average of 23%) in apoE-deficient mice compared with 5- to 7-week-old age-matched wild-type mice. The EPP amplitudes were also larger in soleus muscles in the mutant mice, but this was a reflection of the larger quantal size in this muscle because quantal content, determined from the ratio of the average EPP amplitude to average MEPP amplitude, was unchanged from normal in the mutant mice. The MEPP frequency and the percent of nerve stimulations failing to produce an EPP were unchanged from normal in both muscle types in the mutant mice. The difference in quantal size in soleus muscle transmission between mutant and wild-type mice was abolished in the presence of neostigmine, an acetylcholinesterase inhibitor. The results suggest that apoE normally associates with acetylcholinesterase in the synaptic cleft of slow muscles, modulating the activity of the enzyme and therefore quantal size.
Collapse
Affiliation(s)
- A W Everett
- Physiology, M311, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley 6009, Australia.
| | | |
Collapse
|
34
|
Abmayr SM, Balagopalan L, Galletta BJ, Hong SJ. Cell and molecular biology of myoblast fusion. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:33-89. [PMID: 12696590 DOI: 10.1016/s0074-7696(05)25002-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In organisms from Drosophila to mammals, the musculature is comprised of an elaborate array of distinct fibers that are generated by the fusion of committed myoblasts. These muscle fibers differ from each other in features that include location, pattern of innervation, site of attachment, and size. The sizes of the newly formed muscles of an embryo are controlled in large part by the number of cells that form the syncitial fiber. Over the past few decades, an extensive body of literature has described the process of myoblast fusion in vertebrates, relying primarily on the strengths of tissue culture model systems. More recently, genetic studies in Drosophila embryos have provided new insights into the process. Together, these studies define the steps necessary for myoblast differentiation, the acquisition of fusion competence, the recognition and adhesion between myoblasts, and the fusion of two lipid bilayers into one. In this review, we have attempted to combine insights from both Drosophila and vertebrate studies to trace the processes and molecules involved in myoblast fusion. Implicit in this approach is the assumption that fundamental aspects of myoblast fusion will be similar, independent of the organism in which it is occurring.
Collapse
MESH Headings
- Animals
- Cell Adhesion/physiology
- Cell Differentiation/physiology
- Cell Membrane/metabolism
- Drosophila melanogaster/embryology
- Drosophila melanogaster/metabolism
- Drosophila melanogaster/ultrastructure
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/ultrastructure
- Humans
- Membrane Fusion/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/ultrastructure
Collapse
Affiliation(s)
- Susan M Abmayr
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
35
|
Cachaço AS, Chuva de Sousa Lopes SM, Kuikman I, Bajanca F, Abe K, Baudoin C, Sonnenberg A, Mummery CL, Thorsteinsdóttir S. Knock-in of integrin beta 1D affects primary but not secondary myogenesis in mice. Development 2003; 130:1659-71. [PMID: 12620989 DOI: 10.1242/dev.00394] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrins are extracellular matrix receptors composed of alpha and beta subunits involved in cell adhesion, migration and signal transduction. The beta1 subunit has two isoforms, beta 1A ubiquitously expressed and beta 1D restricted to striated muscle. They are not functionally equivalent. Replacement of beta 1A by beta 1D (beta 1D knock-in) in the mouse leads to midgestation lethality on a 50% Ola/50% FVB background [Baudoin, C., Goumans, M. J., Mummery, C. and Sonnenberg, A. (1998). Genes Dev. 12, 1202-1216]. We crossed the beta 1D knock-in line into a less penetrant genetic background. This led to an attenuation of the midgestation lethality and revealed a second period of lethality around birth. Midgestation death was apparently not caused by failure in cell migration, but rather by abnormal placentation. The beta 1D knock-in embryos that survived midgestation developed until birth, but exhibited severely reduced skeletal muscle mass. Quantification of myotube numbers showed that substitution of beta 1A with beta 1D impairs primary myogenesis with no direct effect on secondary myogenesis. Furthermore, long-term primary myotube survival was affected in beta 1D knock-in embryos. Finally, overexpression of beta 1D in C2C12 cells impaired myotube formation while overexpression of beta 1A primarily affected myotube maturation. Together these results demonstrate for the first time distinct roles for beta1 integrins in primary versus secondary myogenesis and that the beta 1A and beta 1D variants are not functionally equivalent in this process.
Collapse
Affiliation(s)
- Ana Sofia Cachaço
- Department of Animal Biology and Centre for Environmental Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Michal J, Xiang Z, Davenport G, Hayek M, Dodson MV, Byrne KM. Isolation and characterization of canine satellite cells. In Vitro Cell Dev Biol Anim 2002; 38:467-80. [PMID: 12605541 DOI: 10.1290/1071-2690(2002)038<0467:iacocs>2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Satellite cells were isolated from biopsies of the biceps femoris of adult dogs. Virtually all cells expressed muscle-specific proteins. Proliferation of satellite cells increased as the concentration of fetal calf serum (FCS) was increased from 1 to 10% of the basal medium. The addition of mitogenic growth factors resulted in greater proliferation than that of cells cultured in basal medium alone. Maximum proliferation was obtained when fibroblast growth factor-basic (FGF2) was added to the medium, but differences existed between sources or types. Proliferation did not plateau when the concentration of recombinant human FGF2 was 75 ng/ml but reached maximum levels when 50 ng/ml of bovine FGF2 or 10 ng/ml of growth hormone or insulin-like growth factor-1 were added to the medium. Proliferation of satellite cells decreased when more than 5 ng/ml of transforming growth factor-alpha was included in the medium. Exposure of canine satellite cells to chemically defined media induced greater fusion of total nuclei (ODM-34%; 4F, ITT-CF, and SFG-23%) than exposure to other treatments, such as basal medium plus 2 mg/ml of 1-beta-d-arabinofuranosylcytosine, 5% chick embryo extract, 1% horse serum (average 9% fused nuclei), or 1% FCS (2% fused nuclei). Actin, myosin, desmin, neural cell adhesion molecule, MyoD1, and myogenin were expressed by canine satellite cells, but expression of major histocompatibility complex class II antigen was not detected. Reverse transcriptase-polymerase chain reaction detected expression of messenger ribonucleic acid for interleukin-6 (IL-6), IL-15, and leukemia inhibitory factor by canine satellite cells. Collectively, these data suggest that isolated canine satellite cells display properties of other types of myogenic cells and may be useful for further study of the regulation of postnatal myogenesis.
Collapse
Affiliation(s)
- J Michal
- Department of Animal Sciences, Washington State University, P.O. Box 646310, Pullman 99164-6310, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Somatic muscle formation is an unusual process as it requires the cells involved, the myoblasts, to relinquish their individual state and fuse with one another to form a syncitial muscle fiber. The potential use of myoblast fusion therapies to rebuild damaged muscles has generated continuing interest in elucidating the molecular basis of the fusion process. Yet, until recently, few of the molecular players involved in this process had been identified. Now, however, it has been possible to couple a detailed understanding of the cellular basis of the fusion process with powerful classical and molecular genetic strategies in the Drosophila embryo. We review the cellular studies, and the recent genetic and biochemical analyses that uncovered interacting extracellular molecules present on fusing myoblasts and the intracellular effectors that facilitate fusion. With the conservation of proteins and protein functions across species, it is likely that these findings in Drosophila will benefit understanding of the myoblast fusion process in higher organisms.
Collapse
Affiliation(s)
- Heather A Dworak
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
38
|
Hoh JF, Kim Y, Sieber LG, Zhong WW, Lucas CA. Jaw-closing muscles of kangaroos express alpha-cardiac myosin heavy chain. J Muscle Res Cell Motil 2001; 21:673-80. [PMID: 11227794 DOI: 10.1023/a:1005676106940] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The masseter muscle of eutherian grazing mammals typically express beta or slow myosin heavy chain (MyHC). Myosins in the masseter of 4 species of kangaroos and a slow limb muscle of one of them were compared with their cardiac myosin by pyrophosphate and sodium dodecyl sulphate (SDS) gel electrophoresis, immunoblotting and immunohistochemistry. It was found that ventricular muscle contains three isoforms homologous to V1 (alpha-MyHC homodimer), V2 (heterodimer) and V3 (beta-MyHC homodimer) of eutherian cardiac muscle, and that the masseter contained V1, with traces of V2 and V3, in great contrast to eutherian ruminants, which express only V3. A polyclonal antibody (anti-KJM) was raised in rabbits against red kangaroo masseter myosin. After cross-absorption against limb muscle myofibrils, anti-KJM specifically reacted in Westerns with MyHCs from masseter but not limb muscles, and immunohistochemically with masseter, but not limb muscle fibers. In pyrophosphate Western blots, anti-KJM reacted with V1 but not with V3. However, a monoclonal antibody specific for eutherian slow myosin stained all kangaroo slow muscle fibers but only weakly stained scattered fibers in the masseter. The SDS-PAGE revealed that light chain composition of masseter and ventricular myosins is identical, but isoforms of both light chains of kangaroo limb slow myosin were observed. These results confirm that kangaroo jaw muscle express alpha-MyHC rather than beta-MyHC. The difference in MyHC gene expression between marsupial and eutherian grazers may be related to the fact that kangaroos are not ruminants, and have only a single chance to comminute food into fine particles, hence the need for the greater speed and power of muscle contraction associated with V1 containing muscle fibers.
Collapse
Affiliation(s)
- J F Hoh
- Department of Physiology and Institute for Biomedical Research, The University of Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
39
|
Golgi complex, endoplasmic reticulum exit sites, and microtubules in skeletal muscle fibers are organized by patterned activity. J Neurosci 2001. [PMID: 11157074 DOI: 10.1523/jneurosci.21-03-00875.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Golgi complex of skeletal muscle fibers is made of thousands of dispersed elements. The distributions of these elements and of the microtubules they associate with differ in fast compared with slow and in innervated compared with denervated fibers. To investigate the role of muscle impulse activity, we denervated fast extensor digitorum longus (EDL) and slow soleus (SOL) muscles of adult rats and stimulated them directly with patterns that resemble the impulse patterns of normal fast EDL (25 pulses at 150 Hz every 15 min) and slow SOL (200 pulses at 20 Hz every 30 sec) motor units. After 2 weeks of denervation plus stimulation, peripheral and central regions of muscle fibers were examined by immunofluorescence microscopy with regard to density and distribution of Golgi complex, microtubules, glucose transporter GLUT4, centrosomes, and endoplasmic reticulum exit sites. In extrajunctional regions, fast pattern stimulation preserved normal fast characteristics of all markers in EDL type IIB/IIX fibers, although inducing changes toward the fast phenotype in originally slow type I SOL fibers, such as a 1.5-fold decrease of the density of Golgi elements at the fiber surface. Slow pattern stimulation had converse effects such as a 2.2-fold increase of the density of Golgi elements at the EDL fiber surface. In junctional regions, where fast and slow fibers are similar, both stimulation patterns prevented a denervation-induced accumulation of GLUT4. The results indicate that patterns of muscle impulse activity, as normally imposed by motor neurons, play a major role in regulating the organization of Golgi complex and related proteins in the extrajunctional region of muscle fibers.
Collapse
|
40
|
Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:195-262. [PMID: 10958931 DOI: 10.1016/s0079-6107(00)00006-7] [Citation(s) in RCA: 374] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Contractile and energetic properties of human skeletal muscle have been studied for many years in vivo in the body. It has been, however, difficult to identify the specific role of muscle fibres in modulating muscle performance. Recently it has become possible to dissect short segments of single human muscle fibres from biopsy samples and make them work in nearly physiologic conditions in vitro. At the same time, the development of molecular biology has provided a wealth of information on muscle proteins and their genes and new techniques have allowed analysis of the protein isoform composition of the same fibre segments used for functional studies. In this way the histological identification of three main human muscle fibre types (I, IIA and IIX, previously called IIB) has been followed by a precise description of molecular composition and functional and biochemical properties. It has become apparent that the expression of different protein isoforms and therefore the existence of distinct muscle fibre phenotypes is one of the main determinants of the muscle performance in vivo. The present review will first describe the mechanisms through which molecular diversity is generated and how fibre types can be identified on the basis of structural and functional characteristics. Then the molecular and functional diversity will be examined with regard to (1) the myofibrillar apparatus; (2) the sarcolemma and the sarcoplasmic reticulum; and (3) the metabolic systems devoted to producing ATP. The last section of the review will discuss the advantage that fibre diversity can offer in optimizing muscle contractile performance.
Collapse
Affiliation(s)
- R Bottinelli
- Institute of Human Physiology, University of Pavia, Via Forlanni 6, 27100, Pavia, Italy.
| | | |
Collapse
|
41
|
Abstract
Dystrophin domains are observed in myoblast transplantation experiments and in muscle fibers after somatic reversion in human Duchenne and mdx mouse muscular dystrophy. However, the formation and evolution of dystrophin-positive domains are not well established. Using a muscle satellite cell coculture system, we examined the dynamic restoration of dystrophin expression in dystrophin-deficient myotubes. The dystrophin-positive domains around source nuclei were clearly identified in hybrid myotubes. The occurrence of dystrophin domains was higher in myotubes differentiated from cocultures with a low concentration of normal wild-type satellite cells in relation to dystrophin-deficient satellite cells. At higher seeding ratios, the domain feature of dystrophin expression was more transitory and decreased as myotubes differentiated over time in culture. The average domain size initially increased with the addition of new nuclei by fusion early after differentiation of cocultures. However, separating dystrophin-positive domains according to their number of dystrophin-expressing contributory nuclei showed that diffusion of dystrophin contributed to domain elongation, even in early myotubes and later without fusion of additional nuclei. Diffusion occurred for all domains of one to six wild-type nuclei, and the diffusion rate was higher in domains with larger numbers of nuclei. This dynamic domain feature of dystrophin expression was also related to restoring the organization of dystrophin-associated proteins and acetylcholine receptors to hybrid myotubes. Factors regulating domain formation and diffusion therefore are important considerations in the design of strategies for both myoblast transplantation and gene therapy of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- J Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba R3E 0W3, Canada
| | | |
Collapse
|
42
|
Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 2000; 80:1215-65. [PMID: 10893434 DOI: 10.1152/physrev.2000.80.3.1215] [Citation(s) in RCA: 617] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca(2+) release channel, 2) the troponin protein complex that mediates the Ca(2+) effect to the myofibrillar structures leading to contraction, 3) the Ca(2+) pump responsible for Ca(2+) reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca(2+) storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.
Collapse
Affiliation(s)
- M W Berchtold
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
43
|
Düsterhöft S, Pette D. Evidence that acidic fibroblast growth factor promotes maturation of rat satellite-cell-derived myotubes in vitro. Differentiation 1999; 65:161-9. [PMID: 10631813 DOI: 10.1046/j.1432-0436.1999.6530161.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Satellite cells isolated from fast tibialis anterior (TA) and slow soleus (SOL) rat muscles were cultivated on matrigel, and treated with acidic fibroblast growth factor (aFGF). The following observations were made: 1) aFGF-treated cultures exhibited enhanced proliferation as mirrored by a twofold increase in DNA content. 2) Compared to the untreated cultures, myotubes in the aFGF cultures were larger; 3) Using reverse transcriptase polymerase chain reaction (RT-PCR) and northern blot analyses, we observed enhanced expression of all adult myosin heavy chain (MHC) isoforms, as well as of myogenin. These findings indicate that, under the culture conditions used, aFGF has a stimulatory effect on proliferation but also on maturation and differentiation of satellite cells. Furthermore, transcript levels of FGF receptor 1 (FGFR1) and 4 (FGFR4) isoforms, as well as of aFGF and bFGF were assessed by RT-PCR. aFGF-treated myotubes displayed increased expression of aFGF and bFGF, suggesting a paracrine effect of exogenous aFGF. In this regard, SOL-derived cultures responded more strongly than TA-derived cultures. The effects of aFGF treatment on the two receptors consisted of a decrease in FGFR1 and an increase in FGFR4 mRNA levels in 5-day-old cultures. In 8-day-old TA cultures, effects of FGF were similar to those in 5-day-old cultures. 8-day FGF-treated SOL cultures treated with FGF for 8 days exhibited higher FGFR1 and FGFR4 mRNA levels than the respective untreated cultures. Compared to 5 day-treated cultures, FGFR1 increased and FGFR4 decreased. This led to a shift in the ratio of FGFR1 to FGFR4 in the FGF-treated cultures which may explain the ability of satellite cells to differentiate under the influence of aFGF.
Collapse
MESH Headings
- Age Factors
- Animals
- Biomarkers
- Cell Differentiation/drug effects
- Fibroblast Growth Factor 1/pharmacology
- Fibroblast Growth Factor 2/biosynthesis
- Fibroblast Growth Factor 2/genetics
- Gene Expression Regulation, Developmental/drug effects
- Male
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle, Skeletal/cytology
- Myosin Heavy Chains/biosynthesis
- Myosin Heavy Chains/genetics
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Rats
- Rats, Wistar
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Stem Cells/classification
- Stem Cells/cytology
- Stem Cells/drug effects
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- S Düsterhöft
- Faculty of Biology, University of Konstanz, Germany.
| | | |
Collapse
|
44
|
Suwa M, Nakamura T, Katsuta S. Muscle fibre number is a possible determinant of muscle fibre composition in rats. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:267-72. [PMID: 10606829 DOI: 10.1046/j.1365-201x.1999.00610.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the present study was to investigate whether the muscle fibre composition is related to the number of muscle fibres. To resolve this issue, we developed fast-twitch fibre dominant rats (FFDR) by selective breeding and compared the findings to those of control rats (CR) obtained by random breeding. Percentage of type I fibres of the deep portion of gastrocnemius (DG), soleus (SOL), vastus intermedius (VI), adductor longus (AL), and biceps brachii (BB) muscles in FFDR were lower than CR. Percentage of type IIB fibres in DG, VI and AL and percentage of type IIA fibres of SOL in FFDR were higher than CR. However, fibre composition of plantaris (PLAN), extensor digitorum longus (EDL), rectus abdominis (RA), diaphragm (DIA), and palmaris longus (PL) muscles in FFDR were identical with CR. Total fibre numbers on the cross-sectional area in SOL, PLAN, EDL, AL and PL were counted. Numbers of type I fibres of all those muscles in FFDR were not different from CR. Numbers of type IIA fibres of SOL and AL and of type IIB fibres of AL in FFDR were greater than CR, but there were no significant differences in the number of type IIA or type IIB fibres of PLAN, EDL or PL between the two groups. Based on these observations, it is suggested that there are pleiotropic and muscle-specific effects on muscle fibre composition. In addition, the number of type II fibres is a possible determinant of muscle fibre composition.
Collapse
Affiliation(s)
- M Suwa
- Institute of Health and Sport Sciences, University of Tsukuba, Japan
| | | | | |
Collapse
|
45
|
Erzen I, Primc M, Janmot C, Cvetko E, Sketelj J, d'Albis A. Myosin heavy chain profiles in regenerated fast and slow muscles innervated by the same motor nerve become nearly identical. THE HISTOCHEMICAL JOURNAL 1999; 31:277-83. [PMID: 10461862 DOI: 10.1023/a:1003709700270] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasticity of mature muscles exposed to different activation patterns is limited, probably due to restricted adaptive range of their muscle fibres. In this study, we tested whether satellite cells derived from slow muscles can give rise to a normal fast muscle, if transplanted to the fast muscle bed. Marcaine-treated rat soleus and extensor digitorum longus (EDL) muscles were transplanted to the EDL muscle bed and innervated by the 'EDL' nerve. Six months later expression of myosin heavy chain isoforms was analysed by areal densities of fibres, binding specific monoclonal antibodies, and by SDS gel electrophoresis. Both regenerated muscles closely resembled each other. Their myosin heavy chain profiles were similar to those in fast muscles although they were not identical to that in the control EDL muscle. Since not even regenerated EDL was able to reach the myosin heavy chain isoform profile of mature EDL muscle, our experimental model did not permit studying the adaptive capacity of satellite cells in different muscles in its whole extent. However, the results favour the multipotential myoblast stem cell population in rat muscles and underline the importance of the extrinsic regulation of muscle phenotype.
Collapse
Affiliation(s)
- I Erzen
- Institute of Anatomy, Medical Faculty, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Avian skeletal muscles consist of myotubes that can be categorized according to contraction and fatigue properties, which are based largely on the types of myosins and metabolic enzymes present in the cells. Most mature muscles in the head are mixed, but they display a variety of ratios and distributions of fast and slow muscle cells. We examine the development of all head muscles in chick and quail embryos, using immunohistochemical assays that distinguish between fast and slow myosin heavy chain (MyHC) isoforms. Some muscles exhibit the mature spatial organization from the onset of primary myotube differentiation (e.g., jaw adductor complex). Many other muscles undergo substantial transformation during the transition from primary to secondary myogenesis, becoming mixed after having started as exclusively slow (e.g., oculorotatory, neck muscles) or fast (e.g., mandibular depressor) myotube populations. A few muscles are comprised exclusively of fast myotubes throughout their development and in the adult (e.g., the quail quadratus and pyramidalis muscles, chick stylohyoideus muscles). Most developing quail and chick head muscles exhibit identical fiber type composition; exceptions include the genioglossal (chick: initially slow, quail: mixed), quadratus and pyramidalis (chick: mixed, quail: fast), and stylohyoid (chick: fast, quail: mixed). The great diversity of spatial and temporal scenarios during myogenesis of head muscles exceeds that observed in the limbs and trunk, and these observations, coupled with the results of precursor mapping studies, make it unlikely that a lineage based model, in which individual myoblasts are restricted to fast or slow fates, is in operation. More likely, spatiotemporal patterning of muscle fiber types is coupled with the interactions that direct the movements of muscle precursors and subsequent segregation of individual muscles from common myogenic condensations. In the head, most of these events are facilitated by connective tissue precursors derived from the neural crest. Whether these influences act upon uncommitted, or biased but not restricted, myogenic mesenchymal cells remains to be tested.
Collapse
Affiliation(s)
- R S Marcucio
- Department of Anatomy, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
47
|
|
48
|
Pette D, Staron RS. Mammalian skeletal muscle fiber type transitions. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:143-223. [PMID: 9002237 DOI: 10.1016/s0074-7696(08)61622-8] [Citation(s) in RCA: 432] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian skeletal muscle is an extremely heterogeneous tissue, composed of a large variety of fiber types. These fibers, however, are not fixed units but represent highly versatile entities capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This adaptive responsiveness is the basis of fiber type transitions. The fiber population of a given muscle is in a dynamic state, constantly adjusting to the current conditions. The full range of adaptive ability spans fast to slow characteristics. However, it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner. At the molecular level, the best examples of these stepwise transitions are myofibrillar protein isoform exchanges. For the myosin heavy chain, this entails a sequence going from the fastest (MHCIIb) to the slowest (MHCI) isoform, and vice-versa. Depending on the basal protein isoform profile and hence the position within the fast-slow spectrum, the adaptive ranges of different fibers vary. A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions.
Collapse
Affiliation(s)
- D Pette
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
49
|
Benoît R, Baudoin C. A morphometric investigation of myotube formation in rabbit embryo medial pterygoid muscle. J Dent Res 1996; 75:1835-41. [PMID: 9003229 DOI: 10.1177/00220345960750110401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To determine the times of the appearance of myoblasts, early myotubes, late myotubes, and myofibers, we studied a region between two aponeuroses of the medial pterygoid masticatory muscle in embryos of two strains of rabbits, without disturbing the normal innervation. The objectives of this study were to define the quantitative relations among these cells and to determine their kinetics statistically. We used Fauve de Bourgogne and New Zealand rabbit embryos on day 17, day 17 plus 12 hours, day 18, day 18 plus 12 hours, and days 20, 22, and 28 of gestation. Cell proliferation was studied with a light microscope, by means of counting methods. Similar development was observed in the two strains of rabbits. The numbers of myoblasts decreased as follows: (i) a marked decrease; (ii) a sudden cessation of the decrease, marked by a rebound at 18 days, and lasting less than 24 hours; and (iii) a plateau between embryonic days 22 and 28. The onset of reduction in the number of early myotubes coincided with the rebound of myoblasts. The number of late myotubes increased at the time of maximal early myotube density and during rebound of the myoblasts. Myofiber densities were similar to late myotube densities on day 22. We suggest that early myotubes are formed very gradually by fusion of myoblasts, and that the significant increase in the numbers of myoblasts corresponds to the second generation of myoblasts necessary for differentiation of late myotubes.
Collapse
Affiliation(s)
- R Benoît
- Laboratoire d'Histologie, Faculté de Chirurgie Dentaire, Université René-Descartes, Paris V, Montrouge, France
| | | |
Collapse
|
50
|
Grow WA, Kendall-Wassmuth E, Grober MS, Ulibarri C, Laskowski MB. Muscle fiber type correlates with innervation topography in the rat serratus anterior muscle. Muscle Nerve 1996; 19:605-13. [PMID: 8618558 DOI: 10.1002/(sici)1097-4598(199605)19:5<605::aid-mus8>3.0.co;2-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have reported that motoneurons from the sixth spinal nerve (C6) innervate the majority of muscle fibers in the rat serratus anterior (SA) muscle. The seventh spinal nerve (C7) innervates a limited number of SA fibers, increasing caudally. This topographic map is partially reestablished following denervation. In the present study, muscle fibers of the SA were stained with monoclonal antibodies for the muscle-specific fast myosin heavy chain (F-MHC) and slow myosin heavy chain (S-MHC) proteins. We found that the majority of fibers in the SA muscle stained for F-MHC antibody, and the percentage of muscle fibers staining for S-MHC antibody increased caudally. When newborn SA muscles were denervated and then reinnervated by the entire long thoracic (LT) nerve or only the C6 branch to the LT nerve, the reinnervated muscle had the normal proportion of muscle fibers expressing S-MHC protein. However, if the LT nerve was crushed and only C7 motoneurons allowed to reinnervate the SA muscle, a greater percentage of muscle fibers stained for S-MHC antibody than normal. We conclude that there is a correlation between muscle fiber type and innervation topography in the SA muscle of the rat.
Collapse
Affiliation(s)
- W A Grow
- WAMI Medical Program, University of Idaho, Moscow 83844-4207, USA
| | | | | | | | | |
Collapse
|