1
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Dinovi M, Edler L, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Nebbia CS, Oswald I, Petersen A, Rose M, Roudot A, Schwerdtle T, Vollmer G, Wallace H, Cottrill B, Dogliotti E, Laakso J, Metzler M, Velasco L, Baert K, Ruiz JAG, Varga E, Dörr B, Sousa R, Vleminckx C. Erucic acid in feed and food. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
2
|
Yamamoto Y, Itoh T, Yamamoto K. Chemical Synthesis of a Very Long-Chain Fatty Acid, Hexacosanoic Acid (C26:0), and the Ceramide Containing Hexacosanoic Acid. J Nutr Sci Vitaminol (Tokyo) 2016; 61:222-7. [PMID: 26226958 DOI: 10.3177/jnsv.61.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hexacosanoic acid (C26:0) (1), a very long-chain fatty acid, is related to various diseases such as adrenoleukodystrophy (ALD), adrenomyeloneuropathy (AMN) and atherosclerosis. As the level of 1 higher than the normal is related to diseases above, hexacosanoic acid (1) and the ceramide 2, which contains 1, are thought to play an important role in various tissues. Hexacosanoic acid (1) is known to be a waxy solid and to be hard to dissolve in water as well as organic solvents. Due to this physical property, it is not easy to handle hexacosanoic acid (1) in a laboratory. Therefore, efficient chemical synthesis of the compounds 1 and 2 has not been reported. Here, we report a versatile synthetic method for hexacosanoic acid (1) and the ceramide 2 containing the fatty acid 1. Synthesis of hexacosanoic acid (1) was achieved by applying the coupling of two alkyl units as a key step. Ceramide 2 was efficiently synthesized by applying the reported procedure together with hexacosanoic acid (1) synthesized here. This synthetic strategy has an advantage of getting various carbon chain length fatty acids and their ceramides by using a variety of carbon chain units. This method is also applicable for large-scale synthesis. In addition, these compounds 1 and 2 are useful for investigation of details of these compounds related to diseases such as ALD and AMN.
Collapse
Affiliation(s)
- Yoshinori Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | | | | |
Collapse
|
3
|
MicroRNA Profiling Identifies miR-196a as Differentially Expressed in Childhood Adrenoleukodystrophy and Adult Adrenomyeloneuropathy. Mol Neurobiol 2016; 54:1392-1403. [PMID: 26843114 DOI: 10.1007/s12035-016-9746-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/22/2016] [Indexed: 01/18/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene, leading to a defect in the peroxisomal adrenoleukodystrophy protein (ALDP), which inhibits the β-oxidation of very long chain fatty acids (VLCFAs). It is a complex disease where the same mutation in the peroxisomal ABCD1 can lead to clinically diverse phenotypes ranging from the fatal disorder of cerebral ALD (cALD) to mild adult disorder of adrenomyeloneuropathy (AMN). This suggests a role of epigenetic factors/modifier genes in disease progression of X-ALD which is not understood at present. To examine the possible role of microRNA (miRNA) in X-ALD disease mechanisms for differences in cALD and AMN phenotype, we profiled 1008 known miRNA in cALD, AMN, and normal human skin fibroblasts using miScript miRNA PCR array (Qiagen) and selected miRNAs which had differential expression in cALD and AMN fibroblasts. Eleven miRNA which were differentially regulated in cALD and AMN fibroblasts were identified. miR-196a showed a significant differential expression between cALD and AMN and is further characterized for target gene regulation. The predicted role of miR-196a in inhibition of inflammatory signaling factors (IKKα and IKKβ) and ELOVL1 expression suggests the pathological role of altered expression of miR-196a. This study indicates that miR-196a participated in differential regulation of ELOVL1 and inflammatory response between cALD as compared to AMN and may be a possible biomarker to differentiate between cALD and AMN.
Collapse
|
4
|
Liu J, Liang S, Liu X, Brown JA, Newman KE, Sunkara M, Morris AJ, Bhatnagar S, Li X, Pujol A, Graf GA. The absence of ABCD2 sensitizes mice to disruptions in lipid metabolism by dietary erucic acid. J Lipid Res 2012; 53:1071-9. [PMID: 22493092 PMCID: PMC3351814 DOI: 10.1194/jlr.m022160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/12/2012] [Indexed: 01/10/2023] Open
Abstract
ABCD2 (D2) is a peroxisomal transporter that is highly abundant in adipose tissue and promotes the oxidation of long-chain MUFA. Erucic acid (EA, 22:1ω9) reduces very long chain saturated fatty acids in patients with X-linked adrenoleukodystrophy but promotes dyslipidemia and dilated cardiomyopathy in rats. To determine the role of D2 in the metabolism of EA, we challenged wild-type and D2 deficient mice (D2 KO) with an enriched EA diet. In D2 KO mice, dietary EA resulted in the rapid expansion of adipose tissue, adipocyte hypertrophy, hepatic steatosis, and the loss of glycemic control. However, D2 had no impact on the development of obesity phenotypes in two models of diet-induced obesity. Although there was a significant increase in EA in liver of D2 KO mice, it constituted less than 2% of all fatty acids. Metabolites of EA (20:1, 18:1, and 16:1) were elevated, particularly 18:1, which accounted for 50% of all fatty acids. These data indicate that the failure to metabolize EA in adipose results in hepatic metabolism of EA, disruption of the fatty acid profile, and the development of obesity and reveal an essential role for D2 in the protection from dietary EA.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Shuang Liang
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Xiaoxi Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - J. Andrew Brown
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Kylie E. Newman
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Manjula Sunkara
- Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Andrew J. Morris
- Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Saloni Bhatnagar
- Kentucky Pediatric Research Institute, University of Kentucky, Lexington, KY
| | - Xiangan Li
- Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Kentucky Pediatric Research Institute, University of Kentucky, Lexington, KY
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory and Institut de Neuropatologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain, and Center for Biomedical Research on Rare Diseases (CIBERER), Spain
| | - Gregory A. Graf
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
- Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
5
|
Singh J, Khan M, Singh I. HDAC inhibitor SAHA normalizes the levels of VLCFAs in human skin fibroblasts from X-ALD patients and downregulates the expression of proinflammatory cytokines in Abcd1/2-silenced mouse astrocytes. J Lipid Res 2011; 52:2056-69. [PMID: 21891797 DOI: 10.1194/jlr.m017491] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). The consistent metabolic abnormality in all forms of X-ALD is an inherited defect in the peroxisomal β-oxidation of very long chain FAs (VLCFAs >C22:0) and the resultant pathognomic accumulation of VLCFA. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of a potent histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA) in inducing the expression of ABCD2 [adrenoleukodystrophy-related protein (ALDRP)], and normalizing the peroxisomal β-oxidation, as well as the saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and monounsaturated VLCFA (C26:1), was also reduced by SAHA treatment. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes, we also examined the effects of SAHA in VLCFA-induced inflammatory response. SAHA treatment decreased the inflammatory response as expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. These observations indicate that SAHA corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be an ideal drug candidate to be tested for X-ALD therapy in humans.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
6
|
Yanagisawa N, Shimada K, Miyazaki T, Kume A, Kitamura Y, Sumiyoshi K, Kiyanagi T, Iesaki T, Inoue N, Daida H. Enhanced production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in very long chain saturated fatty acid-accumulated macrophages. Lipids Health Dis 2008; 7:48. [PMID: 19038055 PMCID: PMC2613382 DOI: 10.1186/1476-511x-7-48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/28/2008] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Deterioration of peroxisomal beta-oxidation activity causes an accumulation of very long chain saturated fatty acids (VLCSFA) in various organs. We have recently reported that the levels of VLCSFA in the plasma and/or membranes of blood cells were significantly higher in patients with metabolic syndrome and in patients with coronary artery disease than the controls. The aim of the present study is to investigate the effect of VLCSFA accumulation on inflammatory and oxidative responses in VLCSFA-accumulated macrophages derived from X-linked adrenoleukodystrophy (X-ALD) protein (ALDP)-deficient mice. RESULTS Elevated levels of VLCSFA were confirmed in macrophages from ALDP-deficient mice. The levels of nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma), intracellular reactive oxygen species (ROS), and pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), interluekin-6 (IL-6), and interleukin-12p70 (IL-12p70), were significantly higher in macrophages from ALDP-deficient mice than in those from wild-type mice. The inducible NO synthase (iNOS) mRNA expression also showed an increase in macrophages from ALDP-deficient mice. CONCLUSION These results suggested that VLCSFA accumulation in macrophages may contribute to the pathogenesis of inflammatory diseases through the enhancement of inflammatory and oxidative responses.
Collapse
Affiliation(s)
- Naotake Yanagisawa
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Morita M, Kanai M, Mizuno S, Iwashima M, Hayashi T, Shimozawa N, Suzuki Y, Imanaka T. Baicalein 5,6,7-trimethyl ether activates peroxisomal but not mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 2008; 31:442-9. [PMID: 18470630 DOI: 10.1007/s10545-008-0857-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 02/26/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
Abstract
Recently, we reported that baicalein 5,6,7-trimethyl ether (BTM), a flavonoid, is capable of activating fatty acid beta-oxidation in X-linked adrenoleukodystrophy (X-ALD) fibroblasts (FEBS Lett. 2005; 579: 409-414). The objective of this study was to clarify whether BTM activates peroxisomal and/or mitochondrial fatty acid beta-oxidation. We first analysed the effect of BTM on fatty acid beta-oxidation in fibroblasts derived from healthy controls as well as patients with X-ALD, mitochondrial carnitine-acylcarnitine translocase (CACT) deficiency, and peroxisome biogenesis disorder, Zellweger syndrome. Lignoceric acid (C(24:0)) beta-oxidation in the fibroblasts was stimulated by treatment with BTM, except for Zellweger fibroblasts. In contrasts, palmitic acid (C(16:0)) beta-oxidation was increased (2.8-fold) only in CACT-deficient fibroblasts. In U87 glioblastoma cells, C(24:0) beta-oxidation was also activated by treatment with BTM but C(16:0) beta-oxidation was not. The C(16:0) beta-oxidation was, however, significantly increased in the presence of 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA), a carnitine palmitoyltransferase I inhibitor. These results indicate that BTM activates peroxisomal but not mitochondrial fatty acid beta-oxidation. In addition, we found that BTM did not upregulate the expression of ABCD2/ALDR, ABCD3/PMP70, ACOX1 and FATP4 genes but slightly increased ACSVL1 gene expression.
Collapse
Affiliation(s)
- M Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kume A, Miyazaki T, Kitamura Y, Oshida K, Yanagisawab N, Takizawa H, Fujii K, Kiyanagi T, Sumiyoshi K, Ohmura H, Mokuno H, Shimada K, Daida H. High levels of saturated very long-chain fatty acid (hexacosanoic acid; C26:0) in whole blood are associated with metabolic syndrome in Japanese men. Diabetes Res Clin Pract 2008; 80:259-64. [PMID: 18242759 DOI: 10.1016/j.diabres.2007.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 12/05/2007] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Hexacosanoic acid (C26:0) is a saturated very long-chain fatty acid and high levels of C26:0 in red blood cells are reported to be closely related with risk factors of atherosclerosis. However, the relationship between absolute levels of C26:0 in whole blood and metabolic syndrome (MS) has not been determined. MATERIALS AND METHOD We divided 218 consecutive apparently healthy male subjects into an MS group (n=78) and a non-MS group (n=140) according to the definition of the International Diabetes Federation. The levels of C26:0 in whole blood were measured by gas liquid chromatography-mass spectrometry. RESULTS The MS group had significantly higher levels of C26:0 than the non-MS group (2.42+/-0.31mug/ml vs. 2.25+/-0.29mug/ml, P=0001). There was a significant association between the levels of C26:0 and the number of factors of MS. The levels of C26:0 positively correlated with age, blood pressure, triglyceride and fasting plasma glucose. Multivariate analysis revealed that the level of C26:0 is still an independent variable for the presence of MS after adjustment for age and each criterion of MS. CONCLUSION The absolute levels of C26:0 in whole blood appear to be associated with MS independent of its component parts.
Collapse
Affiliation(s)
- Atsumi Kume
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Berger J, Gärtner J. X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1721-32. [PMID: 16949688 DOI: 10.1016/j.bbamcr.2006.07.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/24/2006] [Indexed: 11/17/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a clinically heterogeneous disorder ranging from the severe childhood cerebral form to asymptomatic persons. The overall incidence is 1:16,800 including hemizygotes as well as heterozygotes. The principal molecular defect is due to inborn mutations in the ABCD1 gene encoding the adrenoleukodystrophy protein (ALDP), a transporter in the peroxisome membrane. ALDP is involved in the transport of substrates from the cytoplasm into the peroxisomal lumen. ALDP defects lead to characteristic accumulation of saturated very long-chain fatty acids, the diagnostic disease marker. The pathogenesis is unclear. Different molecular mechanisms seem to induce inflammatory demyelination, neurodegeneration and adrenocortical insufficiency involving the primary ABCD1 defect, environmental factors and modifier genes. Important information has been derived from the X-ALD mouse models; species differences however complicate the interpretation of results. So far, bone marrow transplantation is the only effective long-term treatment for childhood cerebral X-ALD, however, only when performed at an early-stage of disease. Urgently needed novel therapeutic strategies are under consideration ranging from dietary approaches to gene therapy.
Collapse
Affiliation(s)
- Johannes Berger
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria.
| | | |
Collapse
|
11
|
Deon M, Wajner M, Sirtori LR, Fitarelli D, Coelho DM, Sitta A, Barschak AG, Ferreira GC, Haeser A, Giugliani R, Vargas CR. The effect of Lorenzo's oil on oxidative stress in X-linked adrenoleukodystrophy. J Neurol Sci 2006; 247:157-64. [PMID: 16750542 DOI: 10.1016/j.jns.2006.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 02/07/2006] [Accepted: 04/10/2006] [Indexed: 11/24/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C(26:0)) and tetracosanoic acid (C(24:0)), in tissues and biological fluids. Although patients affected by this disorder predominantly present central and peripheral demyelination as well as adrenal insufficiency, the mechanisms underlying the brain damage in X-ALD are poorly known. The current treatment of X-ALD with glyceroltrioleate (C(18:1))/glyceroltrierucate (C(22:1)) (Lorenzo's oil, LO) combined with a VLCFA-poor diet normalizes VLCFA concentrations, but the neurological symptoms persist or even progress in symptomatic patients. Considering that free radical generation is involved in various neurodegenerative disorders and that in a previous study we showed evidence that oxidative stress is probably involved in the pathophysiology of X-ALD symptomatic patients, in the present study we evaluated various oxidative stress parameters, namely thiobarbituric acid reactive species (TBA-RS) and total antioxidant reactivity (TAR) in plasma, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes from symptomatic and asymptomatic X-ALD patients and verified whether LO treatment and a VLCFA restricted diet could change these parameters. We observed a significant increase of plasma TBA-RS in symptomatic and asymptomatic X-ALD patients, reflecting induction of lipid peroxidation even before the disease was manifested. In addition, LO treatment did not alter this profile. Furthermore, plasma TAR measurement of X-ALD patients was not different from that of controls. Similarly, the antioxidant enzyme activities CAT, SOD and GPx were not altered in erythrocyte from X-ALD patients as compared to controls. We also examined the in vitro effects of hexacosanoic acid (C(26:0)) and tetracosanoic acid (C(24:0)) alone or combined with oleic (C(18:1))/erucic (C(22:1)) acids on various oxidative stress parameters in cerebral cortex of young rats, namely chemiluminescence, TBA-RS, TAR, CAT, SOD and GPx in order to investigate whether those fatty acids were able to induce oxidative stress. We found that there was a significant increase of TBARS and of chemiluminescence in rat cerebral cortex exposed to C(26:0)/C(24:0), and that the addition of C(18:1)and C(22:1) to the assays did not prevent this effect. Furthermore, TAR measurement was not altered by C(26:0) and C(24:0) acids in rat cerebral cortex. Taken together, our results indicate that lipid peroxidation occurs in X-ALD and that LO treatment does not attenuate or prevent free radical generation in these patients. Therefore, it may be presumed that antioxidants should be considered as an adjuvant therapy for X-ALD patients.
Collapse
Affiliation(s)
- Marion Deon
- Serviço de Genética Médica, HCPA, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
We examined the ability of erucic acid (22:1n-9) to cross the blood-brain barrier (BBB) by infusing [14-14C]22:1n-9 (170 microCi/kg, iv and icv) into awake, male rats. [1-14C]arachidonic acid (20:4n-6) [intravenous (i.v.)] was the positive control. After i.v. infusion, 0.011% of the plasma [14-14C]22:1n-9 was extracted by the brain, compared with 0.055% of the plasma [1-14C]20:4n-6. The [14-14C]22:1n-9 was extensively beta-oxidized (60%), compared with 30% for [1-14C]20:4n-6. Although 20:4n-6 was targeted primarily to phospholipid pools, 22:1n-9 was targeted to cholesteryl esters, triglycerides, and phospholipids. When [14-14C]22:1n-9 was infused directly into the fourth ventricle of the brain [intracerebroventricular (i.c.v.)] for 7 days, 60% of the tracer entered the phospholipid pools, similar to the distribution observed for [1-14C]20:4n-6. This demonstrates plasticity in the ability of the brain to esterify 22:1n-9 in an exposure-dependent manner. In i.v. and i.c.v. infused rats, a significant amount of tracer found in the phospholipid pools underwent sequential rounds of chain shortening and was found as [12-14C]20:1n-9 and [10-14C]oleic acid. These results demonstrate for the first time that intact 22:1n-9 crosses the BBB, is incorporated into specific lipid pools, and is chain-shortened.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
13
|
Morita M, Takahashi I, Kanai M, Okafuji F, Iwashima M, Hayashi T, Watanabe S, Hamazaki T, Shimozawa N, Suzuki Y, Furuya H, Yamada T, Imanaka T. Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett 2004; 579:409-14. [PMID: 15642351 DOI: 10.1016/j.febslet.2004.11.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 11/26/2004] [Accepted: 11/29/2004] [Indexed: 11/17/2022]
Abstract
The purpose of the present study is to identify bioactive compounds with potential for X-linked adrenoleukodystrophy (X-ALD) pharmacological therapy. Various plant natural products including flavonoids were tested for their ability to ameliorate the abnormality of very long chain fatty acid (VLCFA) metabolism in cultured skin-fibroblasts from X-ALD patients. Of the compounds tested, baicalein 5,6,7-trimethyl ether (baicalein-tri-Me) was found to significantly stimulate the VLCFA beta-oxidation activity. Furthermore, the incorporation of [1-(14)C]lignoceric acid into cholesteryl esters was markedly reduced towards the normal level and the VLCFA (C24:0 and C26:0) content was decreased. These results make baicalein-tri-Me a candidate for the therapeutic compound for X-ALD.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Faculty of Pharmaceutical Science, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vargas CR, Wajner M, Sirtori LR, Goulart L, Chiochetta M, Coelho D, Latini A, Llesuy S, Bello-Klein A, Giugliani R, Deon M, Mello CF. Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta Mol Basis Dis 2004; 1688:26-32. [PMID: 14732478 DOI: 10.1016/j.bbadis.2003.10.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a hereditary disorder of peroxisomal metabolism biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in different tissues and in biological fluids. The disease is clinically characterized by central and peripheral demyelination and adrenal insufficiency, which is closely related to the increased concentrations of these fatty acids. However, the mechanisms underlying the brain damage in X-ALD are poorly known. Considering that free radical generation is involved in various neurodegenerative disorders, like Parkinson disease, multiple sclerosis and Alzheimer's disease, in the present study we evaluated various oxidative stress parameters, namely chemiluminescence, thiobarbituric acid reactive species (TBA-RS), total radical-trapping antioxidant potential (TRAP), and total antioxidant reactivity (TAR) in plasma of X-ALD patients, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes and fibroblasts from these patients. It was verified a significant increase of plasma chemiluminescence and TBA-RS, reflecting induction of lipid peroxidation, as well as a decrease of plasma TAR, indicating a deficient capacity to rapidly handle an increase of reactive species. We also observed a significant increase of erythrocytes GPx activity and of catalase and SOD activities in fibroblasts from the patients studied. It is therefore proposed that oxidative stress may be involved in pathophysiology of X-ALD.
Collapse
Affiliation(s)
- C R Vargas
- Department of Clinical Analysis, Pharmacy Faculty, UFRGS, Rua Ramiro Barcelos, 2350 CEP 90.035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Infante JP, Tschanz CL, Shaw N, Michaud AL, Lawrence P, Brenna JT. Straight-chain acyl-CoA oxidase knockout mouse accumulates extremely long chain fatty acids from alpha-linolenic acid: evidence for runaway carousel-type enzyme kinetics in peroxisomal beta-oxidation diseases. Mol Genet Metab 2002; 75:108-19. [PMID: 11855929 DOI: 10.1006/mgme.2001.3279] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extremely long chain polyunsaturated fatty acids (ELCPs) with >24 carbons and four or more double bonds are normally found in excitatory tissues but have no known function, and are greatly increased in brain and other tissues of humans with peroxisomal disorders. Straight-chain acyl-CoA oxidase (AOX) catalyzes the first, rate-limiting step of peroxisomal beta-oxidation of very-long-chain saturated and unsaturated fatty acids. We have studied the polyunsaturated fatty acid metabolism of AOX knockout mice (AOX-/- as a model of human AOX deficiency (pseudo-neonatal adrenoleukodystrophy), and as a genetic tool to test the putative peroxisomal beta-oxidation involvement in polyunsaturated fatty acid synthesis. Liver lipids of 26-day-old weanling AOX-/- mice livers accumulate n-3 and n-6 ELCPs from C24 to C30 with 5 and 6 double bonds, have 356 +/- 66 microg/g docosahexaenoic acid (22:6n-3), similar to congenic (AOX -/* = AOX+/+ and AOX+/-) controls (401 +/- 96 microg/g), but increased 22:5n-6 (22.4 +/- 3.7 vs 6.4 +/- 1.5 microg/g). AOX+/* mice injected intraperitoneally at 23 days with [U-(13)C]-18:3n-3 show strong labeling of 22:6n-3 after 72 h, whereas AOX -/- mice display less labeling of 22:6n-3 but strong tracer incorporation into 24:6n-3, 26:6n-3, and 28:6n-3, after the same period. These data suggest that ELCPs are natural runaway elongation by-products of 22:6n-3 and 22:5n-6 synthesis, which are normally disposed of by peroxisomal beta-oxidation. Under conditions with impaired peroxisomal beta-oxidation, such as Zellweger syndrome and adrenoleukodystrophies, ELCPs accumulate due to increased synthesis and impaired disposal. Two mechanisms for the formation of these runaway elongation by-products and the involvement of secondary carnitine deficiency in this process are proposed: n-3 ELCPs are synthesized by a carnitine-dependent multifunctional mitochondrial docosahexaenoic acid synthase (mtDHAS) which normally synthesizes primarily 22:6n-3, while n-6 ELCPs are synthesized by independent elongation enzymes in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Juan P Infante
- Institute for Theoretical Biochemistry and Molecular Biology, Ithaca, New York, 14852
| | | | | | | | | | | |
Collapse
|
16
|
Infante JP, Huszagh VA. Zellweger syndrome knockout mouse models challenge putative peroxisomal beta-oxidation involvement in docosahexaenoic acid (22:6n-3) biosynthesis. Mol Genet Metab 2001; 72:1-7. [PMID: 11161822 DOI: 10.1006/mgme.2000.3101] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The putative involvement of peroxisomal beta-oxidation in the biosynthetic pathway of docosahexaenoic acid (22:6n-3, DHA) synthesis is critically reviewed in light of experiments with two recently developed knockout mouse models for Zellweger syndrome, a peroxisomal disorder affecting brain development. These mice were generated by targeted disruption of the PEX2 and PEX5 peroxisomal assembly genes encoding targeting signal receptor peroxins for the recognition and transport of a set of peroxisomal enzymes, including those of peroxisomal beta-oxidation, to the peroxisomal matrix. Analysis of esterified 22:6n-3 concentrations in PEX2-/- and PEX5-/- mice do not support the hypothesized requirement of peroxisomal beta-oxidation in 22:6n-3 synthesis, as only brain, but not liver or plasma, 22:6n-3 levels were decreased. Supplementation of PEX5+/- dams with 22:6n-3, although restoring the levels of brain 22:6n-3 in total lipids to that of controls, did not normalize the phenotype. These decreased brain 22:6n-3 concentrations appear to be secondary to impaired plasmalogen (sn-1-alkyl-, alkenyl-2-acyl glycerophospholipids) synthesis, probably at the level of the dihydroxyacetonephosphate acyltransferase (DHAP-AT), a peroxisomal enzyme catalyzing the first step in the synthesis of 22:6n-3-rich plasmalogens. To diminish the confounding effects of impaired plasmalogen synthesis in the brains of these Zellweger syndrome mouse models, kinetic experiments with labeled precursors, such as 18:3n-3 or 20:5n-3, in liver or isolated hepatocytes, which have negligible amounts of plasmalogens, are suggested to establish the rates of 22:6n-3 biosynthesis and precursor-product relationships. Similar experiments using brain of the acyl-CoA oxidase knockout mouse model are proposed to confirm the lack of peroxisomal beta-oxidation involvement in 22:6n-3 synthesis, since this mutation would not impair plasmalogen synthesis.
Collapse
Affiliation(s)
- J P Infante
- Institute for Theoretical Biochemistry and Molecular Biology, Ithaca, New York 14852, USA.
| | | |
Collapse
|
17
|
Antoku Y, Tsukamoto K, Miyoshi Y, Nagino H, Anezaki M, Suwa K, Narabe Y. Correlations of elevated levels of hexacosanoate in erythrocyte membranes with risk factors for atherosclerosis. Atherosclerosis 2000; 153:169-73. [PMID: 11058712 DOI: 10.1016/s0021-9150(00)00393-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We analyzed erythrocyte membrane C26:0 from 504 volunteers by high-performance liquid chromatography. The associations between the elevated levels of erythrocyte membrane C26:0 (0.20 or greater than 0.20%) and sex, obesity (body mass index> or =26.4), smoking (> or =20 cigarettes per day), present illnesses and past diseases were examined with the chi(2) test. The correlations among age and the levels of erythrocyte membrane C26:0, plasma total cholesterol, triglycerides, LDL cholesterol and HDL cholesterol were analyzed using Spearman's correlation coefficient. Moreover, the frequencies of high levels of erythrocyte membrane C26:0 were examined in male and female subjects divided into seven age groups. The elevated levels of erythrocyte membrane C26:0 were significantly more frequent in male subjects than in females, and were closely associated with obesity, smoking, and atherosclerosis-related diseases of present illnesses. The levels of erythrocyte membrane C26:0 were highly correlated with age and the levels of plasma total cholesterol, triglycerides and LDL cholesterol, and inversely with those of HDL cholesterol. The frequency of high levels of erythrocyte membrane C26:0 in male subjects was greater than that in female subjects in all of the seven age groups. Elevated levels of erythrocyte membrane C26:0 may be closely related with atherosclerosis.
Collapse
Affiliation(s)
- Y Antoku
- Department of Neurology, National Chikugo Hospital, 515 Kurakazu, Fukuoka Pref. 833-0054, Chikugo City, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Vargas CR, Coelho DDM, Barschak AG, Souza CFD, Puga AC, Schwartz IV, Jardim L, Giugliani R. X-linked adrenoleukodystrophy: clinical and laboratory findings in 15 Brazilian patients. Genet Mol Biol 2000. [DOI: 10.1590/s1415-47572000000200002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenoleukodystrophy (X-ALD) is an X-linked recessively inherited peroxisomal disorder, phenotypically heterogeneous, characterized by progressive white-matter demyelination of the central nervous system and adrenocortical insufficiency. We investigated 15 male X-ALD patients varying in age from 7 to 39, diagnosed among 108 suspected patients referred for investigation. Plasma levels of very long chain fatty acids (VLCFA) were measured at our laboratory using gas chromatography (GC). Eleven cases of childhood X-ALD and four cases of adrenomyeloneuropathy (AMN) were diagnosed. Adrenal leukodystrophy insufficiency and limb weakness were the most frequent symptoms, appearing in 12, 8 and 6 of the patients, respectively. Physician awareness of X-ALD seems inadequate to judge by age at diagnosis and lengthy interval between the start of symptoms and diagnosis. This is the first published series of Brazilian patients with X-ALD. We determined signs and symptoms relevant for diagnosis, as early identification seems important for treatment outcome. In addition, diagnosis identifies carriers, who could benefit from genetic counselling and prenatal diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura Jardim
- Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul
| | - Roberto Giugliani
- Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brasil
| |
Collapse
|
19
|
Abstract
The Drosophila melanogaster recessive mutant bubblegum (bgm) exhibits adult neurodegeneration, with marked dilation of photoreceptor axons. The bubblegum mutant shows elevated levels of very long chain fatty acids (VLCFAs), as seen in the human disease adrenoleukodystrophy (ALD). In ALD, the excess can be lowered by dietary treatment with "Lorenzo's oil," a mixture of unsaturated fatty acids. Feeding the fly mutant one of the components, glyceryl trioleate oil, blocked the accumulation of excess VLCFAs as well as development of the pathology. Mutant flies thus provide a potential model system for studying mechanisms of neurodegenerative disease and screening drugs for treatment.
Collapse
Affiliation(s)
- K T Min
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
20
|
Affiliation(s)
- P Aubourg
- Medical School, University of Paris V-René Descartes, Inserm U342, France
| | | |
Collapse
|
21
|
Ruiz M, Pampols T, Girós M. Glycerol trioleate/glycerol trierucate therapy in X-linked adrenoleukodystrophy: saturated and unsaturated fatty acids in blood cells. Implications for the follow-up. J Inherit Metab Dis 1996; 19:188-92. [PMID: 8739962 DOI: 10.1007/bf01799426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M Ruiz
- Institut de Bioquímica Clínica, Avinguda Flor de maig s/n, Barcelona, Spain
| | | | | |
Collapse
|
22
|
Abstract
Fatty acids with greater than 22 carbon atoms (very long chain fatty acids, VLCFA) are present in small amounts in most animal tissues. Saturated and monoenoic VLCFA are major components of brain, while the polyenoic VLCFA occur in significant amounts in certain specialized animal tissues such as retina and spermatozoa. Biosynthesis of VLCFA occurs by carbon chain elongation of shorter chain fatty acid precursors while beta-oxidation takes place almost exclusively in peroxisomes. Mitochondria are unable to oxidize VLCFA because they lack a specific VLCFA coenzyme A synthetase, the first enzyme in the beta-oxidation pathway. VLCFA accumulate in the tissues of patients with inherited abnormalities in peroxisomal assembly, and also in individuals with defects in enzymes catalyzing individual reactions along the beta-oxidation pathway. It is believed that the accumulation of VLCFA in patient tissues contributes to the severe pathological changes which are a feature of these conditions. However, little is known of the role of VLCFA in normal cellular processes, and of the molecular basis for their contribution to the disease process. The present review provides an outline of the current knowledge of VLCFA including their biosynthesis, degradation, possible function and involvement in human disease.
Collapse
Affiliation(s)
- A Poulos
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, South Australia
| |
Collapse
|
23
|
Poulos A, Gibson R, Sharp P, Beckman K, Grattan-Smith P. Very long chain fatty acids in X-linked adrenoleukodystrophy brain after treatment with Lorenzo's oil. Ann Neurol 1994; 36:741-6. [PMID: 7979219 DOI: 10.1002/ana.410360509] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The fatty acid composition of postmortem brain and liver from an adrenoleukodystrophy patient whose diet was supplemented with Lorenzo's oil (glycerol trioleate and glycerol trierucate) for 9 months was determined. The diet depressed plasma and liver saturated very long chain fatty acids (24:0 and 26:0) and increased plasma and liver erucic (22:1) and nervonic (24:1) acids. The levels of plasma linoleic (18:2 n-6), eicosopentaenoic (20:5 n-3), and docosahexaenoic (22:6 n-3) acids were also reduced, while the biochemical marker for essential fatty acid deficiency (20:3 n-9) was markedly increased in liver. However, we were unable to detect any corresponding changes in brain indicating that little erucic acid crossed the blood-brain barrier. Our findings suggest that dietary supplementation with Lorenzo's oil is of limited value in correcting the accumulation of saturated very long chain fatty acids in the brain of patients with adrenoleukodystrophy.
Collapse
Affiliation(s)
- A Poulos
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, Australia
| | | | | | | | | |
Collapse
|
24
|
Maeda K, Suzuki Y, Yajima S, Asano J, Yamaguchi S, Matsumoto N, Borel J, Moser HW, Orii T. Improvement of clinical and MRI findings in a boy with adrenoleukodystrophy by dietary erucic acid therapy. Brain Dev 1992; 14:409-12. [PMID: 1492654 DOI: 10.1016/s0387-7604(12)80350-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A 5-year-old boy with adrenoleukodystrophy, with clinical symptoms of visual, mental and motor disturbances which progressed rapidly, was treated with Lorenzo's oil consisting 1 volume of glyceryl trierucate and 4 volumes of glyceryl trioleate. Five months after initiation of this therapy, ability to swallow was enhanced and T2-weighted magnetic resonance imaging of the brain revealed regression of high intensity area of the parieto-occipital white matter.
Collapse
Affiliation(s)
- K Maeda
- Department of Pediatrics, Shizuoka Saiseikai General Hospital, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wilson R, Tocher DR, Sargent JR. Effects of exogenous monounsaturated fatty acids on fatty acid metabolism in cultured skin fibroblasts from adrenoleukodystrophy patients. J Neurol Sci 1992; 109:207-14. [PMID: 1634904 DOI: 10.1016/0022-510x(92)90170-p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The conversion of [1-14C]16:0 to very-long-chain saturated fatty acids (VLCSFA) was greater in fibroblasts from adrenoleukodystrophy (ALD) patients than fibroblasts from normal subjects. Added 23:1(n-9) decreased the formation of VLCSFA from [1-14C]16:0 in ALD fibroblasts to the value found in normal fibroblasts. Chain-elongation as well as extensive chain-shortening of added 20:1(n-9), 22:1(n-9), 23:1(n-9) and 24:1(n-9) occurred in both normal and ALD fibroblasts, with chain-shortening being less in ALD than in normal fibroblasts. Added 18:1(n-9) together with 22:1(n-9) reduced the levels of both VLCSFA and total n-6 and n-3 polyunsaturated fatty acids (PUFA) in normal and ALD fibroblasts. The levels of total (n-6) and (n-3) PUFA but not the levels of VLCSFA were readily restored by culturing the cells in the presence of 18:1(n-9), 22:1(n-9), 18:2(n-6) and 18:3(n-3). The results are consistent with added monounsaturated fatty acids reducing levels of VLCSFA in ALD fibroblasts by depressing their biosynthesis from 16:0. They also support the use of oils rich in long chain monoenes as a dietary therapy for ALD patients but caution that the PUFA status of ALD patients should be monitored with a view to dietary supplementation, if necessary, with PUFA.
Collapse
Affiliation(s)
- R Wilson
- Department of Biological and Molecular Sciences, School of Natural Sciences, University of Stirling, Scotland, UK
| | | | | |
Collapse
|