1
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
2
|
Weng W, Fu J, Cheng F, Wang Y, Zhang J. Integrated Bulk and Single-Cell RNA-Sequencing Reveals the Effects of Circadian Rhythm Disruption on the Metabolic Reprogramming of CD4+ T Cells in Alzheimer's Disease. Mol Neurobiol 2024; 61:6013-6030. [PMID: 38265551 DOI: 10.1007/s12035-023-03907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Although growing evidence suggests close correlations between Alzheimer's disease (AD) and circadian rhythm disruption (CRD), few studies have focused on the influence of circadian rhythm on levels of immune cells in AD. We aimed to delineate the mechanism underlying the effects of circadian related genes on T cell immune function in AD. A total of 112 brain samples were used to construct the CRD-related model by performing weighted gene co-expression network analysis and machine learning algorithms (LASSO, SVM-RFE, and RF). The ssGSEA method was used to calculate the CRDscore in order to quantify CRD status. Using single-cell transcriptome data of CSF cells, we investigated the CD4+ T cell metabolism and cell-cell communication in high- and low-risk CRD groups. Connectivity map (CMap) was applied to explore small molecule drugs targeting CRD, and the expression of the signature gene GPR4 was further validated in AD. The CRDscore algorithm, which is based on 23 circadian-related genes, can effectively classify the CRD status in AD datasets. The single-cell analysis revealed that the CD4+ T cells with high CRDscore were characterized by hypometabolism. Cell communication analysis revealed that CD4+ T cells might be involved in promoting CD8+ T cell adhesion under CRD, which may facilitate T cell infiltration into the brain parenchyma. Overall, this study indicates the potential connotation of circadian rhythm in AD, providing insights into understanding T cell metabolic reprogramming under CRD.
Collapse
Affiliation(s)
- Weipin Weng
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhan Fu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fan Cheng
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yixuan Wang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Zhang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Neurology, Turpan City People's Hospital, Tulufan, China.
| |
Collapse
|
3
|
Ritson M, Wheeler-Jones CPD, Stolp HB. Endothelial dysfunction in neurodegenerative disease: Is endothelial inflammation an overlooked druggable target? J Neuroimmunol 2024; 391:578363. [PMID: 38728929 DOI: 10.1016/j.jneuroim.2024.578363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Neurological diseases with a neurodegenerative component have been associated with alterations in the cerebrovasculature. At the anatomical level, these are centred around changes in cerebral blood flow and vessel organisation. At the molecular level, there is extensive expression of cellular adhesion molecules and increased release of pro-inflammatory mediators. Together, these has been found to negatively impact blood-brain barrier integrity. Systemic inflammation has been found to accelerate and exacerbate endothelial dysfunction, neuroinflammation and degeneration. Here, we review the role of cerebrovasculature dysfunction in neurodegenerative disease and discuss the potential contribution of intermittent pro-inflammatory systemic disease in causing endothelial pathology, highlighting a possible mechanism that may allow broad-spectrum therapeutic targeting in the future.
Collapse
Affiliation(s)
- Megan Ritson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | | | - Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
4
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Gunawan C, Fleming C, Irga PJ, Jien Wong R, Amal R, Torpy FR, Mojtaba Golzan S, McGrath KC. Neurodegenerative effects of air pollutant Particles: Biological mechanisms implicated for Early-Onset Alzheimer's disease. ENVIRONMENT INTERNATIONAL 2024; 185:108512. [PMID: 38412566 DOI: 10.1016/j.envint.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Sporadic Alzheimer's disease (AD) occurs in 99% of all cases and can be influenced by air pollution such as diesel emissions and more recently, an iron oxide particle, magnetite, detected in the brains of AD patients. However, a mechanistic link between air pollutants and AD development remains elusive. AIM To study the development of AD-relevant pathological effects induced by air pollutant particle exposures and their mechanistic links, in wild-type and AD-predisposed models. METHODS C57BL/6 (n = 37) and APP/PS1 transgenic (n = 38) mice (age 13 weeks) were exposed to model pollutant iron-based particle (Fe0-Fe3O4, dTEM = 493 ± 133 nm), hydrocarbon-based diesel combustion particle (43 ± 9 nm) and magnetite (Fe3O4, 153 ± 43 nm) particles (66 µg/20 µL/third day) for 4 months, and were assessed for behavioural changes, neuronal cell loss, amyloid-beta (Aβ) plaque, immune response and oxidative stress-biomarkers. Neuroblastoma SHSY5Y (differentiated) cells were exposed to the particles (100 μg/ml) for 24 h, with assessments on immune response biomarkers and reactive oxygen species generation. RESULTS Pollutant particle-exposure led to increased anxiety and stress levels in wild-type mice and short-term memory impairment in AD-prone mice. Neuronal cell loss was shown in the hippocampal and somatosensory cortex, with increased detection of Aβ plaque, the latter only in the AD-predisposed mice, with the wild-type not genetically disposed to form the plaque. The particle exposures however, increased AD-relevant immune system responses, including inflammation, in both strains of mice. Exposures also stimulated oxidative stress, although only observed in wild-type mice. The in vitro studies complemented the immune response and oxidative stress observations. CONCLUSIONS This study provides insights into the mechanistic links between inflammation and oxidative stress to pollutant particle-induced AD pathologies, with magnetite apparently inducing the most pathological effects. No exacerbation of the effects was observed in the AD-predisposed model when compared to the wild-type, indicating a particle-induced neurodegeneration that is independent of disease state.
Collapse
Affiliation(s)
- Cindy Gunawan
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, Australia.
| | - Charlotte Fleming
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Peter J Irga
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Roong Jien Wong
- School of Chemical Engineering, University of New South Wales, Australia; Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Rose Amal
- School of Chemical Engineering, University of New South Wales, Australia
| | - Fraser R Torpy
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - S Mojtaba Golzan
- Vision Science Group, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Kristine C McGrath
- School of Life Sciences, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
7
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
8
|
Wu CY, Peng PW, Renn TY, Lee CJ, Chang TM, Wei AIC, Liu JF. CX3CL1 induces cell migration and invasion through ICAM-1 expression in oral squamous cell carcinoma cells. J Cell Mol Med 2023. [PMID: 37082943 DOI: 10.1111/jcmm.17750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.
Collapse
Affiliation(s)
- Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Pei-Wen Peng
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ting-Yi Renn
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei City, Taiwan
| | - Tsung-Ming Chang
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| |
Collapse
|
9
|
Custodia A, Aramburu-Núñez M, Rodríguez-Arrizabalaga M, Pías-Peleteiro JM, Vázquez-Vázquez L, Camino-Castiñeiras J, Aldrey JM, Castillo J, Ouro A, Sobrino T, Romaus-Sanjurjo D. Biomarkers Assessing Endothelial Dysfunction in Alzheimer's Disease. Cells 2023; 12:cells12060962. [PMID: 36980302 PMCID: PMC10047803 DOI: 10.3390/cells12060962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common degenerative disorder in the elderly in developed countries. Currently, growing evidence is pointing at endothelial dysfunction as a key player in the cognitive decline course of AD. As a main component of the blood-brain barrier (BBB), the dysfunction of endothelial cells driven by vascular risk factors associated with AD allows the passage of toxic substances to the cerebral parenchyma, producing chronic hypoperfusion that eventually causes an inflammatory and neurotoxic response. In this process, the levels of several biomarkers are disrupted, such as an increase in adhesion molecules that allow the passage of leukocytes to the cerebral parenchyma, increasing the permeability of the BBB; moreover, other vascular players, including endothelin-1, also mediate artery inflammation. As a consequence of the disruption of the BBB, a progressive neuroinflammatory response is produced that, added to the astrogliosis, eventually triggers neuronal degeneration (possibly responsible for cognitive deterioration). Recently, new molecules have been proposed as early biomarkers for endothelial dysfunction that can constitute new therapeutic targets as well as early diagnostic and prognostic markers for AD.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mariña Rodríguez-Arrizabalaga
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Vázquez-Vázquez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Camino-Castiñeiras
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel Aldrey
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Mapping the dynamics of insulin-responsive pathways in the blood-brain barrier endothelium using time-series transcriptomics data. NPJ Syst Biol Appl 2022; 8:29. [PMID: 35974022 PMCID: PMC9381797 DOI: 10.1038/s41540-022-00235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 01/11/2023] Open
Abstract
Critical functions of the blood-brain barrier (BBB), including cerebral blood flow, energy metabolism, and immunomodulation, are regulated by insulin signaling pathways. Therefore, endothelial insulin resistance could lead to BBB dysfunction, which is associated with neurodegenerative diseases such as Alzheimer's disease (AD). The current study aims to map the dynamics of insulin-responsive pathways in polarized human cerebral microvascular endothelial cell (hCMEC/D3) monolayers. RNA-Sequencing was performed on hCMEC/D3 monolayers with and without insulin treatment at various time points. The Short Time-series Expression Miner (STEM) method was used to identify gene clusters with distinct and representative expression patterns. Functional annotation and pathway analysis of genes from selected clusters were conducted using Webgestalt and Ingenuity Pathway Analysis (IPA) software. Quantitative expression differences of 16,570 genes between insulin-treated and control monolayers were determined at five-time points. The STEM software identified 12 significant clusters with 6880 genes that displayed distinct temporal patterns upon insulin exposure, and the clusters were further divided into three groups. Gene ontology (GO) enrichment analysis demonstrated that biological processes protecting BBB functions such as regulation of vascular development and actin cytoskeleton reorganization were upregulated after insulin treatment (Group 1 and 2). In contrast, GO pathways related to inflammation, such as response to interferon-gamma, were downregulated (Group 3). The IPA analyses further identified insulin-responsive cellular and molecular pathways that are associated with AD pathology. These findings unravel the dynamics of insulin action on the BBB endothelium and inform about downstream signaling cascades that are potentially disrupted due to brain insulin resistance prevalent in AD.
Collapse
|
11
|
Beneficial Effects of Spirulina Consumption on Brain Health. Nutrients 2022; 14:nu14030676. [PMID: 35277035 PMCID: PMC8839264 DOI: 10.3390/nu14030676] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
Spirulina is a microscopic, filamentous cyanobacterium that grows in alkaline water bodies. It is extensively utilized as a nutraceutical food supplement all over the world due to its high levels of functional compounds, such as phycocyanins, phenols and polysaccharides, with anti-inflammatory, antioxidant, immunomodulating properties both in vivo and in vitro. Several scientific publications have suggested its positive effects in various pathologies such as cardiovascular diseases, hypercholesterolemia, hyperglycemia, obesity, hypertension, tumors and inflammatory diseases. Lately, different studies have demonstrated the neuroprotective role of Spirulina on the development of the neural system, senility and a number of pathological conditions, including neurological and neurodegenerative diseases. This review focuses on the role of Spirulina in the brain, highlighting how it exerts its beneficial anti-inflammatory and antioxidant effects, acting on glial cell activation, and in the prevention and/or progression of neurodegenerative diseases, in particular Parkinson’s disease, Alzheimer’s disease and Multiple Sclerosis; due to these properties, Spirulina could be considered a potential natural drug.
Collapse
|
12
|
LaRocca TJ, Cavalier AN, Roberts CM, Lemieux MR, Ramesh P, Garcia MA, Link CD. Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiol Dis 2021; 159:105493. [PMID: 34464705 PMCID: PMC8502211 DOI: 10.1016/j.nbd.2021.105493] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/08/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The amyloid beta (Aβ) peptide is believed to play a central role in Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. However, the natural, evolutionarily selected functions of Aβ are incompletely understood. Here, we report that nanomolar concentrations of Aβ act synergistically with known cytokines to promote pro-inflammatory activation in primary human astrocytes (a cell type increasingly implicated in brain aging and AD). Using transcriptomics (RNA-seq), we show that Aβ can directly substitute for the complement component C1q in a cytokine cocktail previously shown to induce astrocyte immune activation. Furthermore, we show that astrocytes synergistically activated by Aβ have a transcriptional signature similar to neurotoxic "A1" astrocytes known to accumulate with age and in AD. Interestingly, we find that this biological action of Aβ at low concentrations is distinct from the transcriptome changes induced by the high/supraphysiological doses of Aβ often used in in vitro studies. Collectively, our results suggest an important, cytokine-like function for Aβ and a novel mechanism by which it may directly contribute to the neuroinflammation associated with brain aging and AD.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America; Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University (Current), Fort Collins, CO, United States of America.
| | - Alyssa N Cavalier
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America; Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University (Current), Fort Collins, CO, United States of America
| | - Christine M Roberts
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Maddie R Lemieux
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Pooja Ramesh
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Micklaus A Garcia
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
13
|
Guo L, Liu Y, Wang J. Preservation Analysis on Spatiotemporal Specific Co-expression Networks Suggests the Immunopathogenesis of Alzheimer's Disease. Front Aging Neurosci 2021; 13:727928. [PMID: 34539387 PMCID: PMC8446362 DOI: 10.3389/fnagi.2021.727928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
The occurrence and development of Alzheimer’s disease (AD) is a continuous clinical and pathophysiological process, molecular biological, and brain functional change often appear before clinical symptoms, but the detailed underlying mechanism is still unclear. The expression profiling of postmortem brain tissue from AD patients and controls provides evidence about AD etiopathogenesis. In the current study, we used published AD expression profiling data to construct spatiotemporal specific coexpression networks in AD and analyzed the network preservation features of each brain region in different disease stages to identify the most dramatically changed coexpression modules and obtained AD-related biological pathways, brain regions and circuits, cell types and key genes based on these modules. As result, we constructed 57 spatiotemporal specific networks (19 brain regions by three disease stages) in AD and observed universal expression changes in all 19 brain regions. The eight most dramatically changed coexpression modules were identified in seven brain regions. Genes in these modules are mostly involved in immune response-related pathways and non-neuron cells, and this supports the immune pathology of AD and suggests the role of blood brain barrier (BBB) injuries. Differentially expressed genes (DEGs) meta-analysis and protein–protein interaction (PPI) network analysis suggested potential key genes involved in AD development that might be therapeutic targets. In conclusion, our systematical network analysis on published AD expression profiling data suggests the immunopathogenesis of AD and identifies key brain regions and genes.
Collapse
Affiliation(s)
- Liyuan Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yushan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
|
15
|
Iannucci J, Rao HV, Grammas P. High Glucose and Hypoxia-Mediated Damage to Human Brain Microvessel Endothelial Cells Induces an Altered, Pro-Inflammatory Phenotype in BV-2 Microglia In Vitro. Cell Mol Neurobiol 2020; 42:985-996. [PMID: 33136275 PMCID: PMC8942976 DOI: 10.1007/s10571-020-00987-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
Abstract
Diabetes is strongly linked to the development of Alzheimer’s disease (AD), though the mechanisms for this enhanced risk are unclear. Because vascular inflammation is a consistent feature of both diabetes and AD, the cerebral microcirculation could be a key target for the effects of diabetes in the brain. The goal of this study is to explore whether brain endothelial cells, injured by diabetes-related insults, glucose and hypoxia, can affect inflammatory and activation processes in microglia in vitro. Human brain microvascular endothelial cells (HBMVECs) were either treated with 5 mM glucose (control), 30 mM glucose (high glucose), exposed to hypoxia, or exposed to hypoxia plus high glucose. HBMVEC-conditioned medium was then used to treat BV-2 microglia. Alterations in microglia phenotype were assessed through measurement of nitric oxide (NO), cytokine production, microglial activation state markers, and microglial phagocytosis. HBMVECs were injured by exposure to glucose and/or hypoxia, as assessed by release of LDH, interleukin (IL)-1β, and reactive oxygen species (ROS). HBMVECs injured by glucose and hypoxia induced increases in microglial production of NO, tumor necrosis factor-α (TNFα) and matrix metalloproteinase (MMP)-9. Injured HBMVECs significantly increased microglial expression of CD11c and CLEC7A, and decreased expression of the homeostatic marker P2RY12. Finally, bead uptake by BV-2 cells, an index of phagocytic ability, was elevated by conditioned media from injured HBMVECs. The demonstration that injury to brain endothelial cells by diabetic-associated insults, glucose and hypoxia, promotes microglial inflammation supports the idea that the cerebral microcirculation is a critical locus for the deleterious effects of diabetes in the AD brain.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States. .,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Haripriya Vittal Rao
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States.,Wake Forest Baptist Medical Center, Winston-Salem, Wake Forest, NC, 27101, USA
| | - Paula Grammas
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
16
|
Michalicova A, Majerova P, Kovac A. Tau Protein and Its Role in Blood-Brain Barrier Dysfunction. Front Mol Neurosci 2020; 13:570045. [PMID: 33100967 PMCID: PMC7554615 DOI: 10.3389/fnmol.2020.570045] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining the specialized microenvironment of the central nervous system (CNS). In aging, the stability of the BBB declines and the permeability increases. The list of CNS pathologies involving BBB dysfunction is growing. The opening of the BBB and subsequent infiltration of serum components to the brain can lead to a host of processes resulting in progressive synaptic, neuronal dysfunction, and detrimental neuroinflammatory changes. Such processes have been implicated in different diseases, including vascular dementia, stroke, Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, hypoxia, ischemia, and diabetes mellitus. The BBB damage is also observed in tauopathies that lack amyloid-β overproduction, suggesting a role for tau in BBB damage. Tauopathies represent a heterogeneous group of around 20 different neurodegenerative diseases characterized by abnormal deposition of the MAPT in cells of the nervous system. Neuropathology of tauopathies is defined as intracellular accumulation of neurofibrillary tangles (NFTs) consisting of aggregated hyper- and abnormal phosphorylation of tau protein and neuroinflammation. Disruption of the BBB found in tauopathies is driven by chronic neuroinflammation. Production of pro-inflammatory signaling molecules such as cytokines, chemokines, and adhesion molecules by glial cells, neurons, and endothelial cells determine the integrity of the BBB and migration of immune cells into the brain. The inflammatory processes promote structural changes in capillaries such as fragmentation, thickening, atrophy of pericytes, accumulation of laminin in the basement membrane, and increased permeability of blood vessels to plasma proteins. Here, we summarize the knowledge about the role of tau protein in BBB structural and functional changes.
Collapse
Affiliation(s)
- Alena Michalicova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| |
Collapse
|
17
|
Klohs J. An Integrated View on Vascular Dysfunction in Alzheimer's Disease. NEURODEGENER DIS 2020; 19:109-127. [PMID: 32062666 DOI: 10.1159/000505625] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebrovascular disease is a common comorbidity in patients with Alzheimer's disease (AD). It is believed to contribute additively to the cognitive impairment and to lower the threshold for the development of dementia. However, accumulating evidence suggests that dysfunction of the cerebral vasculature and AD neuropathology interact in multiple ways. Vascular processes even proceed AD neuropathology, implicating a causal role in the etiology of AD. Thus, the review aims to provide an integrated view on vascular dysfunction in AD. SUMMARY In AD, the cerebral vasculature undergoes pronounced cellular, morphological and structural changes, which alters regulation of blood flow, vascular fluid dynamics and vessel integrity. Stiffening of central blood vessels lead to transmission of excessive pulsatile energy to the brain microvasculature, causing end-organ damage. Moreover, a dysregulated hemostasis and chronic vascular inflammation further impede vascular function, where its mediators interact synergistically. Changes of the cerebral vasculature are triggered and driven by systemic vascular abnormalities that are part of aging, and which can be accelerated and aggravated by cardiovascular diseases. Key Messages: In AD, the cerebral vasculature is the locus where multiple pathogenic processes converge and contribute to cognitive impairment. Understanding the molecular mechanism and pathophysiology of vascular dysfunction in AD and use of vascular blood-based and imaging biomarker in clinical studies may hold promise for future prevention and therapy of the disease.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland, .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,
| |
Collapse
|
18
|
Herman FJ, Simkovic S, Pasinetti GM. Neuroimmune nexus of depression and dementia: Shared mechanisms and therapeutic targets. Br J Pharmacol 2019; 176:3558-3584. [PMID: 30632147 DOI: 10.1111/bph.14569] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Dysfunctional immune activity is a physiological component of both Alzheimer's disease (AD) and major depressive disorder (MDD). The extent to which altered immune activity influences the development of their respective cognitive symptoms and neuropathologies remains under investigation. It is evident, however, that immune activity affects neuronal function and circuit integrity. In both disorders, alterations are present in similar immune networks and neuroendocrine signalling pathways, immune responses persist in overlapping neuroanatomical locations, and morphological and structural irregularities are noted in similar domains. Epidemiological studies have also linked the two disorders, and their genetic and environmental risk factors intersect along immune-activating pathways and can be synonymous with one another. While each of these disorders individually contains a large degree of heterogeneity, their shared immunological components may link distinct phenotypes within each disorder. This review will therefore highlight the shared immune pathways of AD and MDD, their overlapping neuroanatomical features, and previously applied, as well as novel, approaches to pharmacologically manipulate immune pathways, in each neurological condition. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Francis J Herman
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA
| | - Sherry Simkovic
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA
| | - Giulio M Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA.,Geriatrics Research. Education, and Clinical Center, JJ Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
19
|
Mun J, Kang HM, Jung J, Park C. Role of hydrogen sulfide in cerebrovascular alteration during aging. Arch Pharm Res 2019; 42:446-454. [DOI: 10.1007/s12272-019-01135-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023]
|
20
|
Tangestani Fard M, Stough C. A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Front Aging Neurosci 2019; 11:56. [PMID: 30930767 PMCID: PMC6425084 DOI: 10.3389/fnagi.2019.00056] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Age is associated with increased risk for several disorders including dementias, cardiovascular disease, atherosclerosis, obesity, and diabetes. Age is also associated with cognitive decline particularly in cognitive domains associated with memory and processing speed. With increasing life expectancies in many countries, the number of people experiencing age-associated cognitive impairment is increasing and therefore from both economic and social terms the amelioration or slowing of cognitive aging is an important target for future research. However, the biological causes of age associated cognitive decline are not yet, well understood. In the current review, we outline the role of inflammation in cognitive aging and describe the role of several inflammatory processes, including inflamm-aging, vascular inflammation, and neuroinflammation which have both direct effect on brain function and indirect effects on brain function via changes in cardiovascular function.
Collapse
Affiliation(s)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
21
|
The exploration of novel Alzheimer's therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed Pharmacother 2018; 109:2513-2526. [PMID: 30551512 DOI: 10.1016/j.biopha.2018.11.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Novel drug development is onerous, time consuming and overpriced process with particularly low success and relatively high enfeebling rates. To overcome this burden, drug repositioning approach is being used to predict the possible therapeutic effects of FDA approved drugs in different diseases. Herein, we designed a computational and enzyme inhibitory mechanistic approach to fetch the promising drugs from the pool of FDA approved drugs against AD. The binding interaction patterns and conformations of screened drugs within active region of AChE were confirmed through molecular docking profiles. The possible associations of selected drugs with AD genes were predicted by pharmacogenomics analysis and confirmed through data mining. The stability behaviour of docked complexes (Drugs-AChE) were checked by MD simulations. The possible therapeutic potential of repositioned drugs against AChE were checked by in vitro analysis. Taken together, Cinitapride displayed a comparable results with standard and can be used as possible therapeutic agent in the treatment of AD.
Collapse
|
22
|
Masoumi J, Abbasloui M, Parvan R, Mohammadnejad D, Pavon-Djavid G, Barzegari A, Abdolalizadeh J. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides 2018; 70:76-86. [PMID: 29807653 DOI: 10.1016/j.npep.2018.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high outbreak rates. It is estimated that about 35 million individuals around the world suffered from dementia in 2010. AD is expected to increase twofold every 20 years and, by 2030, approximately 65 million people could suffer from this illness. AD is determined clinically by a cognitive impairment and pathologically by the production of amyloid beta (Aβ), neurofibrillary tangles, toxic free radicals and inflammatory mediators in the brain. There is still no treatment to cure or even alter the progressive course of this disease; however, many new therapies are being investigated and are at various stages of clinical trials. Neuropeptides are signaling molecules used by neurons to communicate with each other. One of the important neuropeptides is apelin, which can be isolated from bovine stomach. Apelin and its receptor APJ have been shown to broadly disseminate in the neurons and oligodendrocytes of the central nervous system. Apelin-13 is known to be the predominant neuropeptide in neuroprotection. It is involved in the processes of memory and learning as well as the prevention of neuronal damage. Studies have shown that apelin can directly or indirectly prevent the production of Aβ and reduce its amounts by increasing its degradation. Phosphorylation and accumulation of tau protein may also be inhibited by apelin. Apelin is considered as an anti-inflammatory agent by preventing the production of inflammatory mediators such as interleukin-1β and tumor necrosis factor alpha. It has been shown that in vivo and in vitro anti-apoptotic effects of apelin have prevented the death of neurons. In this review, we describe the various functions of apelin associated with AD and present an integrated overview of recent findings that, in general, recommend apelin as a promising therapeutic agent in the treatment of this ailment.
Collapse
Affiliation(s)
- Javad Masoumi
- Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Abbasloui
- Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Parvan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Research Centre for Pharmaceotical Nanotechnology, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer's disease. Neurobiol Dis 2017; 107:41-56. [PMID: 27425887 PMCID: PMC5600438 DOI: 10.1016/j.nbd.2016.07.007] [Citation(s) in RCA: 487] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by the pathological accumulation of amyloid beta (Aβ) peptides and neurofibrillary tangles containing hyperphosphorylated neuronal tau protein. AD pathology is also characterized by chronic brain inflammation, which promotes disease pathogenesis. In this context, the blood-brain barrier (BBB), a highly specialized endothelial cell membrane that lines cerebral microvessels, represents the interface between neural cells and circulating cells of the immune system. The BBB thus plays a key role in the generation and maintenance of chronic inflammation during AD. The BBB operates within the neurovascular unit (NVU), which includes clusters of glial cells, neurons and pericytes. The NVU becomes dysfunctional during AD, and each of its components may undergo functional changes that contribute to neuronal injury and cognitive deficit. In transgenic animals with AD-like pathology, recent studies have shown that circulating leukocytes migrate through the activated brain endothelium when certain adhesion molecules are expressed, penetrating into the brain parenchyma, interacting with the NVU components and potentially affecting their structural integrity and functionality. Therefore, migrating immune system cells in cerebral vessels act in concert with the modified BBB and may be integrated into the dysfunctional NVU. Notably, blocking the adhesion mechanisms controlling leukocyte-endothelial interactions inhibits both Aβ deposition and tau hyperphosphorylation, and reduces memory loss in AD models. The characterization of molecular mechanisms controlling vascular inflammation and leukocyte trafficking could therefore help to determine the basis of BBB dysfunction during AD and may lead to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Elena Zenaro
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Gennj Piacentino
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
24
|
Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood–Brain Barrier Pathology in Alzheimer's and Parkinson's Disease: Implications for Drug Therapy. Cell Transplant 2017; 16:285-99. [PMID: 17503739 DOI: 10.3727/000000007783464731] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The blood–brain barrier (BBB) is a tightly regulated barrier in the central nervous system. Though the BBB is thought to be intact during neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), recent evidence argues otherwise. Dysfunction of the BBB may be involved in disease progression, eliciting of peripheral immune response, and, most importantly, altered drug efficacy. In this review, we will give a brief overview of the BBB, its components, and their functions. We will critically evaluate the current literature in AD and PD BBB pathology resulting from insult, neuroinflammation, and neurodegeneration. Specifically, we will discuss alterations in tight junction, transport and endothelial cell surface proteins, and vascular density changes, all of which result in altered permeability. Finally, we will discuss the implications of BBB dysfunction in current and future therapeutics. Developing a better appreciation of BBB dysfunction in AD and PD may not only provide novel strategies in treatment, but will prove an interesting milestone in understanding neurodegenerative disease etiology and progression.
Collapse
Affiliation(s)
- Brinda S Desai
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
25
|
Chang R, Knox J, Chang J, Derbedrossian A, Vasilevko V, Cribbs D, Boado RJ, Pardridge WM, Sumbria RK. Blood-Brain Barrier Penetrating Biologic TNF-α Inhibitor for Alzheimer's Disease. Mol Pharm 2017; 14:2340-2349. [PMID: 28514851 DOI: 10.1021/acs.molpharmaceut.7b00200] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) driven processes are involved at multiple stages of Alzheimer's disease (AD) pathophysiology and disease progression. Biologic TNF-α inhibitors (TNFIs) are the most potent class of TNFIs but cannot be developed for AD since these macromolecules do not cross the blood-brain barrier (BBB). A BBB-penetrating TNFI was engineered by the fusion of the extracellular domain of the type II human TNF receptor (TNFR) to a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), designated as the cTfRMAb-TNFR fusion protein. The cTfRMAb domain functions as a molecular Trojan horse, binding to the mouse TfR and ferrying the biologic TNFI across the BBB via receptor-mediated transcytosis. The aim of the study was to examine the effect of this BBB-penetrating biologic TNFI in a mouse model of AD. Six-month-old APPswe, PSEN 1dE9 (APP/PS1) transgenic mice were treated with saline (n = 13), the cTfRMAb-TNFR fusion protein (n = 12), or etanercept (non-BBB-penetrating biologic TNFI; n = 11) 3 days per week intraperitoneally. After 12 weeks of treatment, recognition memory was assessed using the novel object recognition task, mice were sacrificed, and brains were assessed for amyloid beta (Aβ) load, neuroinflammation, BBB damage, and cerebral microhemorrhages. The cTfRMAb-TNFR fusion protein caused a significant reduction in brain Aβ burden (both Aβ peptide and plaque), neuroinflammatory marker ICAM-1, and a BBB disruption marker, parenchymal IgG, and improved recognition memory in the APP/PS1 mice. Fusion protein treatment resulted in low antidrug-antibody formation with no signs of either immune reaction or cerebral microhemorrhage development with chronic 12-week treatment. Chronic treatment with the cTfRMAb-TNFR fusion protein, a BBB-penetrating biologic TNFI, offers therapeutic benefits by targeting Aβ pathology, neuroinflammation, and BBB-disruption, overall improving recognition memory in a transgenic mouse model of AD.
Collapse
Affiliation(s)
- Rudy Chang
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute , Claremont, California 91711, United States
| | - Jillian Knox
- Department of Neuroscience, Claremont McKenna College , Claremont, California 91711, United States
| | - Jae Chang
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute , Claremont, California 91711, United States
| | - Aram Derbedrossian
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute , Claremont, California 91711, United States
| | - Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders, University of California , Irvine, California 92697, United States
| | - David Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California , Irvine, California 92697, United States
| | - Ruben J Boado
- ArmaGen, Inc. , Calabasas, California 91302, United States
| | | | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute , Claremont, California 91711, United States.,Department of Neurology, University of California , Irvine, California 92697, United States
| |
Collapse
|
26
|
Walker DG, Lue LF, Tang TM, Adler CH, Caviness JN, Sabbagh MN, Serrano GE, Sue LI, Beach TG. Changes in CD200 and intercellular adhesion molecule-1 (ICAM-1) levels in brains of Lewy body disorder cases are associated with amounts of Alzheimer's pathology not α-synuclein pathology. Neurobiol Aging 2017; 54:175-186. [PMID: 28390825 DOI: 10.1016/j.neurobiolaging.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Enhanced inflammation has been associated with Alzheimer's disease (AD) and diseases with Lewy body (LB) pathology, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). One issue is whether amyloid and tangle pathology, features of AD, or α-synuclein LB pathology have similar or different effects on brain inflammation. An aim of this study was to examine if certain features of inflammation changed in brains with increasing LB pathology. To assess this, we measured levels of the anti-inflammatory protein CD200 and the pro-inflammatory protein intercellular adhesion molecule-1 (ICAM-1) in cingulate and temporal cortex from a total of 143 cases classified according to the Unified Staging System for LB disorders. Changes in CD200 and ICAM-1 levels did not correlate with LB pathology, but with AD pathology. CD200 negatively correlated with density of neurofibrillary tangles, phosphorylated tau, and amyloid plaque density. ICAM-1 positively correlated with these AD pathology measures. Double immunohistochemistry for phosphorylated α-synuclein and markers for microglia showed limited association of microglia with LB pathology, but microglia strongly associated with amyloid plaques or phosphorylated tau. These results suggest that there are different features of inflammatory pathology in diseases associated with abnormal α-synuclein compared with AD.
Collapse
Affiliation(s)
- Douglas G Walker
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Lih-Fen Lue
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tiffany M Tang
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - John N Caviness
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | | | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | |
Collapse
|
27
|
Devassy JG, Leng S, Gabbs M, Monirujjaman M, Aukema HM. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. Adv Nutr 2016; 7:905-16. [PMID: 27633106 PMCID: PMC5015035 DOI: 10.3945/an.116.012187] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alzheimer disease (AD) is becoming one of the most prevalent neurodegenerative conditions worldwide. Although the disease progression is becoming better understood, current medical interventions can only ameliorate some of the symptoms but cannot slow disease progression. Neuroinflammation plays an important role in the advancement of this disorder, and n-3 (ω-3) polyunsaturated fatty acids (PUFAs) are involved in both the reduction in and resolution of inflammation. These effects may be mediated by the anti-inflammatory and proresolving effects of bioactive lipid mediators (oxylipins) derived from n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in fish oil. Although interventions have generally used fish oil containing both EPA and DHA, several studies that used either EPA or DHA alone or specific oxylipins derived from these fatty acids indicate that they have distinct effects. Both DHA and EPA can reduce neuroinflammation and cognitive decline, but EPA positively influences mood disorders, whereas DHA maintains normal brain structure. Fewer studies with a plant-derived n-3 PUFA, α-linolenic acid, suggest that other n-3 PUFAs and their oxylipins also may positively affect AD. Further research identifying the unique anti-inflammatory and proresolving properties of oxylipins from individual n-3 PUFAs will enable the discovery of novel disease-management strategies in AD.
Collapse
Affiliation(s)
| | | | | | | | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; and Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| |
Collapse
|
28
|
Di Marco LY, Venneri A, Farkas E, Evans PC, Marzo A, Frangi AF. Vascular dysfunction in the pathogenesis of Alzheimer's disease--A review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol Dis 2015; 82:593-606. [PMID: 26311408 DOI: 10.1016/j.nbd.2015.08.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
Late-onset dementia is a major health concern in the ageing population. Alzheimer's disease (AD) accounts for the largest proportion (65-70%) of dementia cases in the older population. Despite considerable research effort, the pathogenesis of late-onset AD remains unclear. Substantial evidence suggests that the neurodegenerative process is initiated by chronic cerebral hypoperfusion (CCH) caused by ageing and cardiovascular conditions. CCH causes reduced oxygen, glucose and other nutrient supply to the brain, with direct damage not only to the parenchymal cells, but also to the blood-brain barrier (BBB), a key mediator of cerebral homeostasis. BBB dysfunction mediates the indirect neurotoxic effects of CCH by promoting oxidative stress, inflammation, paracellular permeability, and dysregulation of nitric oxide, a key regulator of regional blood flow. As such, BBB dysfunction mediates a vicious circle in which cerebral perfusion is reduced further and the neurodegenerative process is accelerated. Endothelial interaction with pericytes and astrocytes could also play a role in the process. Reciprocal interactions between vascular dysfunction and neurodegeneration could further contribute to the development of the disease. A comprehensive overview of the complex scenario of interacting endothelium-mediated processes is currently lacking, and could prospectively contribute to the identification of adequate therapeutic interventions. This study reviews the current literature of in vitro and ex vivo studies on endothelium-mediated mechanisms underlying vascular dysfunction in AD pathogenesis, with the aim of presenting a comprehensive overview of the complex network of causative relationships. Particular emphasis is given to vicious circles which can accelerate the process of neurovascular degeneration.
Collapse
Affiliation(s)
- Luigi Yuri Di Marco
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK.
| | - Annalena Venneri
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK; IRCCS San Camillo Foundation Hospital, Venice, Italy
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Paul C Evans
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK
| | - Alberto Marzo
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood-Brain Barrier Disruption, and Synaptic Disorder. Mol Neurobiol 2015; 53:2451-2467. [PMID: 26019015 DOI: 10.1007/s12035-015-9212-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Elevated plasma total homocysteine (Hcy) level is associated with an increased risk of Alzheimer's disease (AD). During transsulfuration pathways, Hcy is metabolized into hydrogen sulfide (H2S), which is a synaptic modulator, as well as a neuro-protective agent. However, the role of hydrogen sulfide, as well as N-methyl-D-aspartate receptor (NMDAR) activation, in hyperhomocysteinemia (HHcy) induced blood-brain barrier (BBB) disruption and synaptic dysfunction, leading to AD pathology is not clear. Therefore, we hypothesized that the inhibition of neuronal NMDA-R by H2S and MK801 mitigate the Hcy-induced BBB disruption and synapse dysfunction, in part by decreasing neuronal matrix degradation. Hcy intracerebral (IC) treatment significantly impaired cerebral blood flow (CBF), and cerebral circulation and memory function. Hcy treatment also decreases the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in the brain along with increased expression of NMDA-R (NR1) and synaptosomal Ca(2+) indicating excitotoxicity. Additionally, we found that Hcy treatment increased protein and mRNA expression of intracellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 and also increased MMP-2 and MMP-9 activity in the brain. The increased expression of ICAM-1, glial fibrillary acidic protein (GFAP), and the decreased expression of vascular endothelial (VE)-cadherin and claudin-5 indicates BBB disruption and vascular inflammation. Moreover, we also found decreased expression of microtubule-associated protein 2 (MAP-2), postsynaptic density protein 95 (PSD-95), synapse-associated protein 97 (SAP-97), synaptosomal-associated protein 25 (SNAP-25), synaptophysin, and brain-derived neurotrophic factor (BDNF) showing synapse dysfunction in the hippocampus. Furthermore, NaHS and MK801 treatment ameliorates BBB disruption, CBF, and synapse functions in the mice brain. These results demonstrate a neuro-protective effect of H2S over Hcy-induced cerebrovascular pathology through the NMDA receptor. Our present study clearly signifies the therapeutic ramifications of H2S for cerebrovascular diseases such as Alzheimer's disease. Graphical Abstract ᅟ.
Collapse
|
30
|
Inhibition of monocyte adhesion to brain-derived endothelial cells by dual functional RNA chimeras. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e209. [PMID: 25368913 PMCID: PMC4459546 DOI: 10.1038/mtna.2014.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
Because adhesion of leukocytes to endothelial cells is the first step of vascular-neuronal inflammation, inhibition of adhesion and recruitment of leukocytes to vascular endothelial cells will have a beneficial effect on neuroinflammatory diseases. In this study, we used the pRNA of bacteriophage phi29 DNA packaging motor to construct a novel RNA nanoparticle for specific targeting to transferrin receptor (TfR) on the murine brain-derived endothelial cells (bEND5) to deliver ICAM-1 siRNA. This RNA nanoparticle (FRS-NPs) contained a FB4 aptamer targeting to TfR and a siRNA moiety for silencing the intercellular adhesion molecule-1 (ICAM-1). Our data indicated that this RNA nanoparticle was delivered into murine brain-derived endothelial cells. Furthermore, the siRNA was released from the FRS-NPs in the cells and knocked down ICAM-1 expression in the TNF-α–stimulated cells and in the cells under oxygen-glucose deprivation/reoxygenation (OGD/R) condition. The functional end points of the study indicated that FRS-NPs significantly inhibited monocyte adhesion to the bEND5 cells induced by TNF-α and OGD/R. In conclusion, our approach using RNA nanotechnology for siRNA delivery could be potentially applied for inhibition of inflammation in ischemic stroke and other neuroinflammatory diseases, or diseases affecting endothelium of vasculature.
Collapse
|
31
|
Kwak M, Kim DJ, Lee MR, Wu Y, Han L, Lee SK, Fan R. Nanowire array chips for molecular typing of rare trafficking leukocytes with application to neurodegenerative pathology. NANOSCALE 2014; 6:6537-50. [PMID: 24705924 PMCID: PMC4048658 DOI: 10.1039/c3nr06465d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective hematological analysis of the CSF from patients.
Collapse
Affiliation(s)
- Minsuk Kwak
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Klohs J, Rudin M, Shimshek DR, Beckmann N. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease. Front Aging Neurosci 2014; 6:32. [PMID: 24659966 PMCID: PMC3952109 DOI: 10.3389/fnagi.2014.00032] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023] Open
Abstract
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland ; Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Derya R Shimshek
- Autoimmunity, Transplantation and Inflammation/Neuroinflammation Department, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Nicolau Beckmann
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research Basel, Switzerland
| |
Collapse
|
33
|
Xu F, Piett C, Farkas S, Qazzaz M, Syed NI. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain 2013; 6:29. [PMID: 23782671 PMCID: PMC3695839 DOI: 10.1186/1756-6606-6-29] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/15/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs), owing to their effective antimicrobial properties, are being widely used in a broad range of applications. These include, but are not limited to, antibacterial materials, the textile industry, cosmetics, coatings of various household appliances and medical devices. Despite their extensive use, little is known about AgNP safety and toxicity vis-à-vis human and animal health. Recent studies have drawn attention towards potential neurotoxic effects of AgNPs, however, the primary cellular and molecular targets of AgNP action/s remain to be defined. RESULTS Here we examine the effects of ultra fine scales (20 nm) of AgNPs at various concentrations (1, 5, 10 and 50 μg/ml) on primary rat cortical cell cultures. We found that AgNPs (at 1-50 μg/ml) not only inhibited neurite outgrowth and reduced cell viability of premature neurons and glial cells, but also induced degeneration of neuronal processes of mature neurons. Our immunocytochemistry and confocal microscopy studies further demonstrated that AgNPs induced the loss of cytoskeleton components such as the β-tubulin and filamentous actin (F-actin). AgNPs also dramatically reduced the number of synaptic clusters of the presynaptic vesicle protein synaptophysin, and the postsynaptic receptor density protein PSD-95. Finally, AgNP exposure also resulted in mitochondria dysfunction in rat cortical cells. CONCLUSIONS Taken together, our data show that AgNPs induce toxicity in neurons, which involves degradation of cytoskeleton components, perturbations of pre- and postsynaptic proteins, and mitochondrial dysfunction leading to cell death. Our study clearly demonstrates the potential detrimental effects of AgNPs on neuronal development and physiological functions and warns against its prolific usage.
Collapse
|
34
|
Niranjan R. Molecular Basis of Etiological Implications in Alzheimer’s Disease: Focus on Neuroinflammation. Mol Neurobiol 2013; 48:412-28. [DOI: 10.1007/s12035-013-8428-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
|
35
|
Death by a thousand cuts in Alzheimer's disease: hypoxia--the prodrome. Neurotox Res 2013; 24:216-43. [PMID: 23400634 DOI: 10.1007/s12640-013-9379-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/21/2013] [Indexed: 12/30/2022]
Abstract
A wide range of clinical consequences may be associated with obstructive sleep apnea (OSA) including systemic hypertension, cardiovascular disease, pulmonary hypertension, congestive heart failure, cerebrovascular disease, glucose intolerance, impotence, gastroesophageal reflux, and obesity, to name a few. Despite this, 82 % of men and 93 % of women with OSA remain undiagnosed. OSA affects many body systems, and induces major alterations in metabolic, autonomic, and cerebral functions. Typically, OSA is characterized by recurrent chronic intermittent hypoxia (CIH), hypercapnia, hypoventilation, sleep fragmentation, peripheral and central inflammation, cerebral hypoperfusion, and cerebral glucose hypometabolism. Upregulation of oxidative stress in OSA plays an important pathogenic role in the milieu of hypoxia-induced cerebral and cardiovascular dysfunctions. Strong evidence underscores that cerebral amyloidogenesis and tau phosphorylation--two cardinal features of Alzheimer's disease (AD), are triggered by hypoxia. Mice subjected to hypoxic conditions unambiguously demonstrated upregulation in cerebral amyloid plaque formation and tau phosphorylation, as well as memory deficit. Hypoxia triggers neuronal degeneration and axonal dysfunction in both cortex and brainstem. Consequently, neurocognitive impairment in apneic/hypoxic patients is attributable to a complex interplay between CIH and stimulation of several pathological trajectories. The framework presented here helps delineate the emergence and progression of cognitive decline, and may yield insight into AD neuropathogenesis. The global impact of CIH should provide a strong rationale for treating OSA and snoring clinically, in order to ameliorate neurocognitive impairment in aged/AD patients.
Collapse
|
36
|
Wennström M, Nielsen HM. Cell adhesion molecules in Alzheimer's disease. Degener Neurol Neuromuscul Dis 2012; 2:65-77. [PMID: 30890880 DOI: 10.2147/dnnd.s19829] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell adhesion molecules (CAMs) mediate interactions between cells and their surroundings that are vital to processes controlling for cell survival, activation, migration, and plasticity. However, increasing evidence suggests that CAMs also mediate mechanisms involved in several neurological diseases. This article reviews the current knowledge on the role of CAMs in amyloid-β (Aβ) metabolism, cell plasticity, neuroinflammation, and vascular changes, all of which are considered central to the pathogenesis and progression of Alzheimer's disease (AD). This paper also outlines the possible roles of CAMs in current and novel AD treatment strategies.
Collapse
Affiliation(s)
- Malin Wennström
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden,
| | | |
Collapse
|
37
|
Reale M, Kamal MA, Velluto L, Gambi D, Di Nicola M, Greig NH. Relationship between inflammatory mediators, Aβ levels and ApoE genotype in Alzheimer disease. Curr Alzheimer Res 2012; 9:447-57. [PMID: 22272623 PMCID: PMC5215089 DOI: 10.2174/156720512800492549] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/05/2011] [Accepted: 11/09/2011] [Indexed: 11/22/2022]
Abstract
Activation of inflammatory processes is observed within the brain as well as periphery of subjects with Alzheimer's disease (AD). Whether or not inflammation represents a possible cause of AD or occurs as a consequence of the disease process, or, alternatively, whether the inflammatory response might be beneficial to slow the disease progression remains to be elucidated. The cytokine IL-18 shares with IL-1 the same pro-inflammatory features. Consequent to these similarities, IL-18 and its endogenous inhibitor, IL-18BP, were investigated in the plasma of AD patients versus healthy controls (HC). An imbalance of IL-18 and IL-18BP was observed in AD, with an elevated IL-18/IL-18BP ratio that might be involved in disease pathogenesis. As part of the inflammatory response, altered levels of RANTES, MCP-1 and ICAM- 1, molecules involved in cell recruitment to inflammatory sites, were observed in AD. Hence, correlations between IL-18 and other inflammatory plasma markers were analyzed. A negative correlation was observed between IL-18 and IL-18BP in both AD and HC groups. A positive correlation was observed between IL-18 and ICAM-1 in AD patients, whereas a negative correlation was evident in the HC group. IL-18 positively correlated with Aβ in both groups, and no significant correlations were observed between IL-18, RANTES and MCP-1. An important piece of evidence supporting a pathophysiologic role for inflammation in AD is the number of inflammatory mediators that have been found to be differentially regulated in AD patients, and specific ones may provide utility as part of a biomarker panel to not only aid early AD diagnosis, but follow its progression.
Collapse
Affiliation(s)
- M Reale
- Dept. of Oncology and Experimental Medicine, Unit of Immunodiagnostic, University "G. D'Annunzio", Chieti, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. J Neuroinflammation 2011; 8:26. [PMID: 21439035 PMCID: PMC3072921 DOI: 10.1186/1742-2094-8-26] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/25/2011] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related disorder characterized by progressive cognitive decline and dementia. Alzheimer's disease is an increasingly prevalent disease with 5.3 million people in the United States currently affected. This number is a 10 percent increase from previous estimates and is projected to sharply increase to 8 million by 2030; it is the sixth-leading cause of death. In the United States the direct and indirect costs of Alzheimer's and other dementias to Medicare, Medicaid and businesses amount to more than $172 billion each year. Despite intense research efforts, effective disease-modifying therapies for this devastating disease remain elusive. At present, the few agents that are FDA-approved for the treatment of AD have demonstrated only modest effects in modifying clinical symptoms for relatively short periods and none has shown a clear effect on disease progression. New therapeutic approaches are desperately needed. Although the idea that vascular defects are present in AD and may be important in disease pathogenesis was suggested over 25 years ago, little work has focused on an active role for cerebrovascular mechanisms in the pathogenesis of AD. Nevertheless, increasing literature supports a vascular-neuronal axis in AD as shared risk factors for both AD and atherosclerotic cardiovascular disease implicate vascular mechanisms in the development and/or progression of AD. Also, chronic inflammation is closely associated with cardiovascular disease, as well as a broad spectrum of neurodegenerative diseases of aging including AD. In this review we summarize data regarding, cardiovascular risk factors and vascular abnormalities, neuro- and vascular-inflammation, and brain endothelial dysfunction in AD. We conclude that the endothelial interface, a highly synthetic bioreactor that produces a large number of soluble factors, is functionally altered in AD and contributes to a noxious CNS milieu by releasing inflammatory and neurotoxic species.
Collapse
Affiliation(s)
- Paula Grammas
- Garrison Institute on Aging, and Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
39
|
Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, Dasuri K, Keller JN. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 2010; 114:344-61. [PMID: 20477933 PMCID: PMC2910139 DOI: 10.1111/j.1471-4159.2010.06803.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.
Collapse
Affiliation(s)
- Romina M. Uranga
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | - Christopher D. Morrison
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Sun Ok Fernandez-Kim
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Philip J. Ebenezer
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Kalavathi Dasuri
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
40
|
Janciauskiene S, Erikson C, Warkentin S. A link between sICAM-1, ACE and parietal blood flow in the aging brain. Neurobiol Aging 2009; 30:1504-11. [DOI: 10.1016/j.neurobiolaging.2007.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 05/05/2007] [Accepted: 08/16/2007] [Indexed: 02/07/2023]
|
41
|
Nielsen HM, Londos E, Minthon L, Janciauskiene SM. Soluble adhesion molecules and angiotensin-converting enzyme in dementia. Neurobiol Dis 2007; 26:27-35. [PMID: 17270454 DOI: 10.1016/j.nbd.2006.11.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/22/2006] [Accepted: 11/22/2006] [Indexed: 12/13/2022] Open
Abstract
We aimed to determine plasma and cerebrospinal fluid (CSF) levels of angiotensin-converting enzyme (ACE) and the soluble forms of intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1) and platelet endothelial cell adhesion molecule-1 (sPECAM-1) as surrogate markers for endothelial cell activation in clinically diagnosed patients with Alzheimer's disease (AD, n=260), dementia with Lewy bodies (DLB, n=39) and non-demented controls (n=34). Plasma sICAM-1 and sPECAM-1 were higher and CSF sVCAM-1 were lower in AD and DLB patients than in controls (p<0.001). DLB patients had higher CSF sICAM-1, but lower CSF sVCAM-1 (p<0.001). No difference in ACE levels was found between the dementia groups and controls. In controls and AD patients CSF sICAM and sVCAM-1 strongly correlated with each other and with blood barrier permeability whereas in DLB group these correlations were weaker. The observed patterns in adhesion molecules may reflect distinctions in the pathophysiological basis of their generation in dementia patients.
Collapse
Affiliation(s)
- Henrietta M Nielsen
- Chronic Inflammatory and Degenerative Disease Research Unit, Department of Clinical Sciences, Lund University, 205 02 Malmö, Sweden.
| | | | | | | |
Collapse
|
42
|
Miguel-Hidalgo JJ, Nithuairisg S, Stockmeier C, Rajkowska G. Distribution of ICAM-1 immunoreactivity during aging in the human orbitofrontal cortex. Brain Behav Immun 2007; 21:100-11. [PMID: 16824729 PMCID: PMC2921168 DOI: 10.1016/j.bbi.2006.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/19/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022] Open
Abstract
Neurological and psychiatric alterations during aging are associated with increased cerebrovascular disturbances and inflammatory markers such as Intercellular Adhesion Molecule-1 (ICAM-1). We investigated whether the distribution of ICAM-1 immunoreactivity (ICAM-1-I) in histological sections from the left orbitofrontal cortex (ORB) was altered during normal aging. Postmortem tissue from the ORB of nine younger (27-54 years old) and 10 older (60-86) human subjects was collected. Cryostat sections were immunostained only with antibodies to ICAM-1 or together with an antibody to glial fibrillary acidic protein (GFAP). The total area fraction of ICAM-1-I, and the fraction of vascular and extravascular ICAM-1-I were quantified in the gray matter. Furthermore, we examined the association of extravascular ICAM-1-I to GFAP immunoreactive (GFAP-IR) astrocytes. In all subjects, brain blood vessels were similarly ICAM-1 immunoreactive, and in some subjects there was a variable number of extravascular patches of ICAM-1-I. The area fraction of ICAM-1-I was 120% higher (p<.0001) in the old subjects than in the young subjects. This increase localized mostly to the extravascular ICAM-1-I in register with GFAP-IR astrocytes. A much smaller, also age-dependent increase occurred in vascular ICAM-1-I. Our results indicate a dramatic increase in extravascular ICAM-1-I associated to GFAP-IR astrocytes in the ORB in normal aging. This increase may contribute to an enhanced risk for brain inflammatory processes during aging, although a role of extravascular ICAM-1 as a barrier to further inflammation cannot be ruled out.
Collapse
Affiliation(s)
- Jose Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
43
|
Austin SA, Floden AM, Murphy EJ, Combs CK. Alpha-synuclein expression modulates microglial activation phenotype. J Neurosci 2006; 26:10558-63. [PMID: 17035541 PMCID: PMC6674709 DOI: 10.1523/jneurosci.1799-06.2006] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent Parkinson's disease research has focused on understanding the function of the cytosolic protein, alpha-synuclein, and its contribution to disease mechanisms. Within neurons, alpha-synuclein is hypothesized to have a role in regulating synaptic plasticity, vesicle release, and trafficking. In contrast, glial-expressed alpha-synuclein remains poorly described. Here, we examine the consequence of a loss of alpha-synuclein expression on microglial activation. Using a postnatal brain-derived culture system, we defined the phenotype of microglia from wild-type and knock-out alpha-synuclein mice (Scna-/-). Scna-/- microglia displayed a basally increased reactive phenotype compared with the wild-type cells and an exacerbated reactive phenotype after stimulation. They also exhibited dramatic morphologic differences compared with wild-type, presenting as large, ramified cells filled with vacuole-like structures. This corresponded with increased protein levels of activation markers, CD68 and beta1 integrin, in the Scna-/- cells. More importantly, Scna-/- microglia, after stimulation, secreted elevated levels of proinflammatory cytokines, TNFalpha (tumor necrosis factor alpha) and IL-6 (interleukin-6), compared with wild type. However, despite the reactive phenotype, Scna-/- cells had impaired phagocytic ability. We demonstrate for the first time that alpha-synuclein plays a critical role in modulating microglial activation state. We suggest that altered microglial alpha-synuclein expression will affect their phenotype as has already been demonstrated in neurons. This has direct ramifications for the contribution of microglia to the pathophysiology of disease, particularly in familial cases linked to altered alpha-synuclein expression.
Collapse
Affiliation(s)
- Susan A. Austin
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Angela M. Floden
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Eric J. Murphy
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Colin K. Combs
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| |
Collapse
|
44
|
Dimopoulos N, Piperi C, Salonicioti A, Mitropoulos P, Kallai E, Liappas I, Lea RW, Kalofoutis A. Indices of low-grade chronic inflammation correlate with early cognitive deterioration in an elderly Greek population. Neurosci Lett 2006; 398:118-23. [PMID: 16426755 DOI: 10.1016/j.neulet.2005.12.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/13/2005] [Accepted: 12/23/2005] [Indexed: 01/16/2023]
Abstract
Elevated serum levels of adhesion molecules (AM) reflect low-grade chronic inflammation and have been associated with several conditions of neuronal damage. The aim of the present study was the investigation of possible correlation between early cognitive decline and inflammatory processes in the elderly as indicated by plasma C-reactive protein (CRP) and AM levels. Thirty-seven subjects with dementia were selected from a community-dwelling, genetically isolated, geriatric population (above 60 years of age) based on the Mini Mental State Examination scale (MMSE) and the Diagnostic and Statistical Manual (DSM-IV) criteria. In parallel, a group of 33 age-matched healthy controls were selected from the same population. The levels of CRP (mg/l), sICAM-1 (ng/ml) and sVCAM-1 (ng/ml) were measured in the serum samples of both groups. Serum concentrations of all three molecules sICAM-1, sVCAM-1 and CRP were significantly higher in the dementia group when compared to controls (656.78 +/- 161.51 versus 467.05 +/- 231.26, p < 0.01; 631.64 +/- 149.76 versus 449.04 +/- 285.27, p < 0.01; 1.53 +/- 0.97 versus 0.7221 +/- 0.61, p < 0.01, respectively). Furthermore, a positive correlation was observed between the three molecules studied and the degree of severity of cognitive impairment. The findings of this study enhance the hypothesis of the presence of an underlying inflammatory process leading to cognitive deterioration and predisposing dementia in the elderly. The present work supports the evaluation of inflammatory molecules as early indicators of cognitive decline in elderly individuals.
Collapse
Affiliation(s)
- Nikolaos Dimopoulos
- Laboratory of Biological Chemistry, University of Athens Medical School, M. Asias 75, Goudi 11527, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Solerte SB, Ferrari E, Cuzzoni G, Locatelli E, Giustina A, Zamboni M, Schifino N, Rondanelli M, Gazzaruso C, Fioravanti M. Decreased release of the angiogenic peptide vascular endothelial growth factor in Alzheimer's disease: recovering effect with insulin and DHEA sulfate. Dement Geriatr Cogn Disord 2005; 19:1-10. [PMID: 15383738 DOI: 10.1159/000080963] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2004] [Indexed: 01/12/2023] Open
Abstract
Changes of vascular endothelial growth factor (VEGF) secretion have recently been demonstrated in patients with Alzheimer's disease (AD). Since VEGF has been involved in brain angiogenesis, neuroprotection and cerebromicrovascular exchange of substrates and nutrients, the study of VEGF could have important relapses into the pathogenesis and treatment of AD. Within this context, 35 healthy subjects (16 of young and 19 of old age), 18 patients with dementia of the vascular type (VAD) and 22 with dementia of the Alzheimer's type (AD) were included in the study. VEGF levels were determined in the supernates of circulating natural killer (NK) immune cells isolated by immunomagnetic separation (pure CD16 + CD56 + NK cells at a final density of 7.75 x 10(6) cells/ml). VEGF was measured in spontaneous conditions (without modulation) and after exposure of NK cells with IL-2, lipopolysaccharide (LPS), dehydroepiandrosterone sulfate (DHEAS), LPS + insulin, amyloid-beta (Abeta) fragment 1-42, the inactive sequence Abeta(40-1) and Abeta(1-42) + insulin. A significant decrease in VEGF released by NK cells was demonstrated in AD subjects compared to the other groups. No differences of VEGF levels were found between healthy subjects of old age and the VAD group. The incubation with LPS and DHEAS significantly increased, in a dose-dependent manner, VEGF levels in AD as well as in healthy subjects of young and old age and in VAD patients. The incubation of NK cells with Abeta(1-42) completely suppressed VEGF generation in AD subjects, also reducing VEGF release in the other groups. The co-incubation of NK with LPS + insulin, at different molar concentrations, significantly restored (4- and 6-fold increase from LPS alone) VEGF in AD, also enhancing VEGF secretion in healthy subjects and the VAD group, while the co-incubation of NK with Abeta(1-42) + insulin promptly abolished the negative effects of Abeta(1-42) on VEGF release. These data might suggest that the decreased VEGF secretion by peripheral immune cells of AD subjects could have a negative role for brain angiogenesis, neuroprotection and for brain microvascular permeability to nutrients, increasing brain frailty towards hypoxic injuries. On the contrary, insulin and DHEAS could have beneficial effects in AD, as well as in VAD and in physiological aging, by increasing, in a dose-dependent fashion, VEGF availability by peripheral and resident immune and endothelial cells, so contributing to increase its circulating pool.
Collapse
Affiliation(s)
- Sebastiano Bruno Solerte
- Department of Internal Medicine and Geriatrics, University of Pavia, Pavia, Piazza Borromeo 2, IT-27100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rentzos M, Michalopoulou M, Nikolaou C, Cambouri C, Rombos A, Dimitrakopoulos A, Vassilopoulos D. The role of soluble intercellular adhesion molecules in neurodegenerative disorders. J Neurol Sci 2004; 228:129-35. [PMID: 15694193 DOI: 10.1016/j.jns.2004.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/08/2004] [Accepted: 11/02/2004] [Indexed: 12/11/2022]
Abstract
UNLABELLED Immunological disturbances have been implicated in the pathogenesis of some neurodegenerative disorders like Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Adhesion molecules are markers of activated endothelial cells upregulated by action of cytokines. MATERIALS AND METHODS To investigate the activation or not of the vascular cells in AD and ALS, serum soluble intercellular adhesion molecule-1 (ICAM-1) and soluble E-selectin were evaluated (enzyme-like immunosorbent assay, ELISA) in 22 patients with Alzheimer's disease (AD), 20 patients with amyotrophic lateral sclerosis (ALS), 34 patients with non-inflammatory neurological diseases (NIND) and 15 control subjects. RESULTS Patients with AD had higher s-ICAM-1 levels compared to NIND patients and control subjects (p<0.0027 and p<0.04, respectively). Patients with ALS had not higher s-ICAM-1 levels compared to NIND patients and control subjects (p<0.21 and p<0.31, respectively). Soluble-E-selectin levels in AD and ALS patients were not statistically different compared to NIND patients and controls (p<0.4, p<0.9 and p<0.3, p<0.19, respectively). CONCLUSIONS The presence of high s-ICAM values may be related to immunological processes involved in pathogenetic mechanisms of AD. The not statistically significant values of s-E selectin, a glycoprotein considered an exclusive marker of endothelial activation, seem to suggest the neural rather than the endothelial s-ICAM origin in patients with AD. The low values of s-ICAM-1 and sE-selectin in the serum of ALS patients do not exclude the presence of an unconventional immunological abnormality in this disorder.
Collapse
Affiliation(s)
- M Rentzos
- Department of Neurology, Aeginition Hospital, Athens Medical School, 72-74 Vas.Sophias Av, Greece.
| | | | | | | | | | | | | |
Collapse
|
47
|
Morgan C, Colombres M, Nuñez MT, Inestrosa NC. Structure and function of amyloid in Alzheimer's disease. Prog Neurobiol 2004; 74:323-49. [PMID: 15649580 DOI: 10.1016/j.pneurobio.2004.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 10/26/2004] [Indexed: 12/21/2022]
Abstract
This review is focused on the structure and function of Alzheimer's amyloid deposits. Amyloid formation is a process in which normal well-folded cellular proteins undergo a self-assembly process that leads to the formation of large and ordered protein structures. Amyloid deposition, oligomerization, and higher order polymerization, and the structure adopted by these assemblies, as well as their functional relationship with cell biology are underscored. Numerous efforts have been directed to elucidate these issues and their relation with senile dementia. Significant advances made in the last decade in amyloid structure, dynamics and cell biology are summarized and discussed. The mechanism of amyloid neurotoxicity is discussed with emphasis on the Wnt signaling pathway. This review is focused on Alzheimer's amyloid fibrils in general and has been divided into two parts dealing with the structure and function of amyloid.
Collapse
Affiliation(s)
- Carlos Morgan
- Centro FONDAP de Regulación Celular y Patología Joaquín V. Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | |
Collapse
|
48
|
Rentzos M, Michalopoulou M, Nikolaou C, Cambouri C, Rombos A, Dimitrakopoulos A, Kapaki E, Vassilopoulos D. Serum levels of soluble intercellular adhesion molecule-1 and soluble endothelial leukocyte adhesion molecule-1 in Alzheimer's disease. J Geriatr Psychiatry Neurol 2004; 17:225-31. [PMID: 15533994 DOI: 10.1177/0891988704269822] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serum soluble intercellular adhesion molecule-1 (s-ICAM-1) and soluble E-selectin (s-ELAM-1) were evaluated in 25 patients with Alzheimer's disease (AD), 54 patients with noninflammatory neurological diseases (NIND), and 15 control subjects. Patients with AD had a higher s-ICAM-1 level compared with the NIND patients and the control subjects (P< .001 and P< .04, respectively). The presence of high s-ICAM-1 values may be related to immunological processes involved in pathogenetic mechanisms of AD. The not statistically significant values of (s-ELAM-1), a glycoprotein considered an exclusive marker of endothelial activation, compared with the NIND patients and healthy subjects (P< .47 and P< .17, respectively), seem to suggest the neural rather than the endothelial s-ICAM origin in patients with AD.
Collapse
Affiliation(s)
- M Rentzos
- Department of Neurology, Aeginition Hospital, Athens Medical School, Vass. Sophias av. 72-74, 11528 Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jeong EM, Moon CH, Kim CS, Lee SH, Baik EJ, Moon CK, Jung YS. Cadmium stimulates the expression of ICAM-1 via NF-kappaB activation in cerebrovascular endothelial cells. Biochem Biophys Res Commun 2004; 320:887-92. [PMID: 15240131 DOI: 10.1016/j.bbrc.2004.05.218] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Indexed: 11/23/2022]
Abstract
Cadmium (Cd), a ubiquitous heavy metal, has been shown to accumulate in the central nervous system, especially outside of the blood-brain barrier (BBB), suggesting a potential toxicity to nervous tissue. Thus, we investigated the effect of Cd on intercellular adhesion molecule-1 (ICAM-1) expression, as an indicator of BBB injury, in mouse brain microvessel endothelial cells (bEnd.3 cells). The treatment with Cd increased the expression of ICAM-1 at the levels of protein and mRNA, and these increases were almost completely inhibited by a specific NF-kappaB inhibitor SN50. The treatment with Cd induced the translocation of NF-kappaB from cytosolic to membrane fraction and increased DNA binding activity of NF-kappaB, and this NF-kappaB activation was inhibited by SN50. Interestingly, Cd did not trigger the degradation of IkappaBalpha, suggesting that Cd-induced ICAM-1 expression is mediated through IkappaBalpha degradation-independent pathway. Instead, tyrosine phosphorylation of IkappaBalpha was significantly elevated by Cd treatment, and this elevation was blocked by genistein, a protein tyrosine kinase inhibitor. In summary, the present results suggest that Cd stimulates the expression of ICAM-1 in bEnd.3 cells, via NF-kappaB activation that is mediated by the tyrosine phosphorylation of IkappaBalpha.
Collapse
Affiliation(s)
- Euy-Myoung Jeong
- Department of Physiology, School of Medicine, Ajou University, Suwon 442-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Hanson AJ, Prasad JE, Nahreini P, Andreatta C, Kumar B, Yan XD, Prasad KN. Overexpression of amyloid precursor protein is associated with degeneration, decreased viability, and increased damage caused by neurotoxins (prostaglandins A1 and E2, hydrogen peroxide, and nitric oxide) in differentiated neuroblastoma cells. J Neurosci Res 2003; 74:148-59. [PMID: 13130517 DOI: 10.1002/jnr.10726] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inflammatory reactions are considered one of the important etiologic factors in the pathogenesis of Alzheimer's disease (AD). Prostaglandins such as PGE2 and PGA1 and free radicals are some of the agents released during inflammatory reactions, and they are neurotoxic. The mechanisms of their action are not well understood. Increased levels of beta-amyloid fragments (Abeta40 and Abeta42), generated through cleavage of amyloid precursor protein (APP), oxidative stress, and proteasome inhibition, are also associated with neurodegeneration in AD brains. Therefore, we investigated the effect of PGs and oxidative stress on the degeneration and viability of cyclic AMP-induced differentiated NB cells overexpressing wild-type APP (NBP2-PN46) under the control of the CMV promotor in comparison with differentiated vector (NBP2-PN1) or parent (NBP2) control cells. Results showed that differentiated NBP2-PN46 cells exhibited enhanced spontaneous degeneration and decreased viability in comparison with differentiated control cells, without changing the level of Abeta40 and Abeta42. PGA1 or PGE2 treatment of differentiated cells caused increased degeneration and reduced viability in all three cell lines. These effects of PGs are not due to alterations in the levels of vector-derived APP mRNA or human APP holoprotein, secreted levels of Abeta40 and Abeta42, or proteasome activity. H2O2 or SIN-1 (an NO donor) treatment did not change vector-derived APP mRNA levels, but H2O2 reduced the level of human APP protein more than SIN-1. Furthermore, SIN-1 increased the secreted level of Abeta40, but not of Abeta42, whereas H2O2 had no effect on the level of secreted Abeta fragments. Both H2O2 and SIN-1 inhibited proteasome activity in the intact cells. The failure of neurotoxins to alter APP mRNA levels could be due to the fact that they do not affect CMV promoter activity. These results suggest that the mechanisms of action of PGs on neurodegeneration are different from those of H2O2 and SIN-1 and that the mechanisms of neurotoxicity of H2O2 and SIN-1 are, at least in part, different from each other.
Collapse
Affiliation(s)
- Amy J Hanson
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|