1
|
Blanke EN, Holmes GM. Dysfunction of pancreatic exocrine secretion after experimental spinal cord injury. Exp Neurol 2025; 389:115257. [PMID: 40221007 PMCID: PMC12063635 DOI: 10.1016/j.expneurol.2025.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Pancreatic exocrine dysfunction is an underdiagnosed comorbidity in individuals living with spinal cord injury (SCI) who often present cholestasis, acute pancreatitis or high levels of serum pancreatic enzymes. Parasympathetic control of pancreatic exocrine secretion (PES) is mediated in the medullary dorsal vagal complex in part through cholecystokinin (CCK) release. Our previous reports indicate high thoracic (T3-) SCI reduces vagal afferent sensitivity to GI regulatory peptides, like CCK and thyrotropin releasing hormone (TRH). To date, the effects of experimental SCI on PES are unknown. Here we investigated the modulation of PES following T3-SCI in rats. We measured PES volume and amylase concentration in control and T3-SCI rats (3-days or 3-weeks after injury) following: (i) intra-duodenal administration of a mixed-nutrient liquid meal (Ensure® ™) or (ii) central TRH injection (100 pmol) in the dorsal motor nucleus of the vagus. In a separate cohort of overnight-fasted rats, basal serum amylase levels were measured. The baseline volume of PES secretion was lower in 3-week rats destined to receive Ensure® or TRH following T3-SCI surgery compared to control. PES protein concentration was significantly reduced at baseline in 3-week T3-SCI and elevated in 3-day and 3-week T3-SCI rats postprandially but only elevated in 3-day rats following TRH microinjection. Serum amylase activity levels were elevated in 3-day T3-SCI rats and remained at similar levels post 3-weeks T3-SCI. Our data suggest that vagally-mediated regulation of multiple visceral organs is disrupted in the days and weeks following experimental SCI.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States of America; Department of Biology, Pennsylvania State University, York, PA 17403, United States of America
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States of America.
| |
Collapse
|
2
|
Larauche M, Kim YS, Mulak A, Duboc H, Taché Y. Intracerebroventricular administration of TRH Agonist, RX-77368 alleviates visceral pain induced by colorectal distension in rats. Peptides 2024; 175:171181. [PMID: 38423212 PMCID: PMC11841477 DOI: 10.1016/j.peptides.2024.171181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/18/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Thyrotropin-releasing hormone (TRH) acts centrally to exert pleiotropic actions independently from its endocrine function, including antinociceptive effects against somatic pain in rodents. Whether exogenous or endogenous activation of TRH signaling in the brain modulates visceral pain is unknown. Adult male Sprague-Dawley rats received an intracerebroventricular (ICV) injection of the stable TRH analog, RX-77368 (10, 30 and 100 ng/rat) or saline (5 µl) or were semi-restrained and exposed to cold (4°C) for 45 min. The visceromotor response (VMR) to graded phasic colorectal distensions (CRD) was monitored using non-invasive intracolonic pressure manometry. Naloxone (1 mg/kg) was injected subcutaneously 10 min before ICV RX-77368 or saline. Fecal pellet output was monitored for 1 h after ICV injection. RX-77368 ICV (10, 30 and 100 ng/rat) reduced significantly the VMR by 56.7%, 67.1% and 81.1% at 40 mmHg and by 30.3%, 58.9% and 87.4% at 60 mmHg respectively vs ICV saline. Naloxone reduced RX-77368 (30 and 100 ng, ICV) analgesic response by 51% and 28% at 40 mmHg and by 30% and 33% at 60 mmHg respectively, but had no effect per se. The visceral analgesia was mimicked by the acute exposure to cold. At the doses of 30 and 100 ng, ICV RX-77368 induced defecation within 30 min. These data established the antinociceptive action of RX-77368 injected ICV in a model of visceral pain induced by colonic distension through recruitment of both opioid and non-opioid dependent mechanisms.
Collapse
Affiliation(s)
- Muriel Larauche
- Digestive Diseases Research Center and G. Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, CA 90073, USA.
| | - Yong Sung Kim
- Digestive Diseases Research Center and G. Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, CA 90073, USA
| | - Agata Mulak
- Digestive Diseases Research Center and G. Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, CA 90073, USA
| | - Henri Duboc
- Digestive Diseases Research Center and G. Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, CA 90073, USA
| | - Yvette Taché
- Digestive Diseases Research Center and G. Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, CA 90073, USA
| |
Collapse
|
3
|
Ghatak S, Dolatabadi N, Gao R, Wu Y, Scott H, Trudler D, Sultan A, Ambasudhan R, Nakamura T, Masliah E, Talantova M, Voytek B, Lipton SA. NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Mol Psychiatry 2021; 26:5751-5765. [PMID: 32467645 PMCID: PMC7704704 DOI: 10.1038/s41380-020-0776-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
Beginning at early stages, human Alzheimer's disease (AD) brains manifest hyperexcitability, contributing to subsequent extensive synapse loss, which has been linked to cognitive dysfunction. No current therapy for AD is disease-modifying. Part of the problem with AD drug discovery is that transgenic mouse models have been poor predictors of potential human treatment. While it is undoubtedly important to test drugs in these animal models, additional evidence for drug efficacy in a human context might improve our chances of success. Accordingly, in order to test drugs in a human context, we have developed a platform of physiological assays using patch-clamp electrophysiology, calcium imaging, and multielectrode array (MEA) experiments on human (h)iPSC-derived 2D cortical neuronal cultures and 3D cerebral organoids. We compare hiPSCs bearing familial AD mutations vs. their wild-type (WT) isogenic controls in order to characterize the aberrant electrical activity in such a human context. Here, we show that these AD neuronal cultures and organoids manifest increased spontaneous action potentials, slow oscillatory events (~1 Hz), and hypersynchronous network activity. Importantly, the dual-allosteric NMDAR antagonist NitroSynapsin, but not the FDA-approved drug memantine, abrogated this hyperactivity. We propose a novel model of synaptic plasticity in which aberrant neural networks are rebalanced by NitroSynapsin. We propose that hiPSC models may be useful for screening drugs to treat hyperexcitability and related synaptic damage in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Nima Dolatabadi
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Richard Gao
- Cognitive Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yin Wu
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Henry Scott
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dorit Trudler
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Abdullah Sultan
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Rajesh Ambasudhan
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Tomohiro Nakamura
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Maria Talantova
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| | - Bradley Voytek
- Cognitive Science, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Kavli Institute of Brain and Mind and Halicioglu Data Science Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stuart A Lipton
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA. .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Swartz EM, Holmes GM. Gastric vagal motoneuron function is maintained following experimental spinal cord injury. Neurogastroenterol Motil 2014; 26:1717-29. [PMID: 25316513 PMCID: PMC4245370 DOI: 10.1111/nmo.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/13/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Clinical reports indicate that spinal cord injury (SCI) initiates profound gastric dysfunction. Gastric reflexes involve stimulation of sensory vagal fibers, which engage brainstem circuits that modulate efferent output back to the stomach, thereby completing the vago-vagal reflex. Our recent studies in a rodent model of experimental high thoracic (T3-) SCI suggest that reduced vagal afferent sensitivity to gastrointestinal (GI) stimuli may be responsible for diminished gastric function. Nevertheless, derangements in efferent signals from the dorsal motor nucleus of the vagus (DMV) to the stomach may also account for reduced motility. METHODS We assessed the anatomical, neurophysiological, and functional integrity of gastric-projecting DMV neurons in T3-SCI rats using: (i) retrograde labeling of gastric-projecting DMV neurons; (ii) whole cell recordings from gastric-projecting neurons of the DMV; and, (iii) in vivo measurements of gastric contractions following unilateral microinjection of thyrotropin-releasing hormone (TRH) into the DMV. KEY RESULTS Immunohistochemical analysis of gastric-projecting DMV neurons demonstrated no difference between control and T3-SCI rats. Whole cell in vitro recordings showed no alteration in DMV membrane properties and the neuronal morphology of these same, neurobiotin-labeled, DMV neurons were unchanged after T3-SCI with regard to cell size and dendritic arborization. Central microinjection of TRH induced a significant facilitation of gastric contractions in both control and T3-SCI rats and there were no significant dose-dependent differences between groups. CONCLUSIONS & INFERENCES Our data suggest that the acute, 3 day to 1 week post-SCI, dysfunction of vagally mediated gastric reflexes do not include derangements in the efferent DMV motoneurons.
Collapse
Affiliation(s)
| | - Gregory M. Holmes
- Corresponding author: Dr. Gregory M. Holmes, Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033,
| |
Collapse
|
5
|
Gourcerol G, Adelson DW, Million M, Wang L, Taché Y. Modulation of gastric motility by brain-gut peptides using a novel non-invasive miniaturized pressure transducer method in anesthetized rodents. Peptides 2011; 32:737-46. [PMID: 21262308 PMCID: PMC3060955 DOI: 10.1016/j.peptides.2011.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/11/2011] [Accepted: 01/11/2011] [Indexed: 01/18/2023]
Abstract
Acute in vivo measurements are often the initial, most practicable approach used to investigate the effects of novel compounds or genetic manipulations on the regulation of gastric motility. Such acute methods typically involve either surgical implantation of devices or require intragastric perfusion of solutions, which can substantially alter gastric activity and may require extended periods of time to allow stabilization or recovery of the preparation. We validated a simple, non-invasive novel method to measure acutely gastric contractility, using a solid-state catheter pressure transducer inserted orally into the gastric corpus, in fasted, anesthetized rats or mice. The area under the curve of the phasic component (pAUC) of intragastric pressure (IGP) was obtained from continuous manometric recordings of basal activity and in responses to central or peripheral activation of cholinergic pathways, or to abdominal surgery. In rats, intravenous ghrelin or intracisternal injection of the thyrotropin-releasing hormone agonist, RX-77368, significantly increased pAUC while coeliotomy and cacal palpation induced a rapid onset inhibition of phasic activity lasting for the 1-h recording period. In mice, RX-77368 injected into the lateral brain ventricle induced high-amplitude contractions, and carbachol injected intraperitoneally increased pAUC significantly, while coeliotomy and cecal palpation inhibited baseline contractile activity. In wild-type mice, cold exposure (15 min) increased gastric phasic activity and tone, while there was no gastric response in corticotropin releasing factor (CRF)-overexpressing mice, a model of chronic stress. Thus, the novel solid-state manometric approach provides a simple, reliable means for acute pharmacological studies of gastric motility effects in rodents. Using this method we established in mice that the gastric motility response to central vagal activation is impaired under chronic expression of CRF.
Collapse
Affiliation(s)
- Guillaume Gourcerol
- CURE/Digestive Diseases Research Center, and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
6
|
Potent hyperglycemic and hyperinsulinemic effects of thyrotropin-releasing hormone microinjected into the rostroventrolateral medulla and abnormal responses in type 2 diabetic rats. Neuroscience 2010; 169:706-19. [PMID: 20457219 DOI: 10.1016/j.neuroscience.2010.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 02/07/2023]
Abstract
We identified ventrolateral medullary nuclei in which thyrotropin-releasing hormone (TRH) regulates glucose metabolism by modulating autonomic activity. Immunolabeling revealed dense prepro-TRH-containing fibers innervating the rostroventrolateral medulla (RVLM) and nucleus ambiguus (Amb), which contain, respectively, pre-sympathetic motor neurons and vagal motor neurons. In anesthetized Wistar rats, microinjection of the stable TRH analog RX77368 (38-150 pmol) into the RVLM dose-dependently and site-specifically induced hyperglycemia and hyperinsulinemia. At 150 pmol, blood glucose reached a peak of 180+/-18 mg% and insulin increased 4-fold. The strongest hyperglycemic effect was induced when RX77368 was microinjected into C1 area containing adrenalin cells. Spinal cord transection at cervical-7 abolished the hyperglycemia induced by RVLM RX77368, but not the hyperinsulinemic effect. Bilateral vagotomy prevented the rise in insulin, resulting in a prolonged hyperglycemic response. The hyperglycemic and hyperinsulinemic effects of the TRH analog in the RVLM was peptide specific, since angiotensin II or a substance P analog at the same dose had weak or no effects. Microinjection of RX77368 into the Amb stimulated insulin secretion without influencing glucose levels. In conscious type 2 diabetic Goto-Kakizaki (GK) rats, intracisternal injection of RX77368 induced a remarkably amplified hyperglycemic effect with suppressed insulin response compared to Wistar rats. RX77368 microinjected into the RVLM of anesthetized GK rats induced a significantly potentiated hyperglycemic response and an impaired insulin response, compared to Wistar rats. These results indicate that the RVLM is a site at which TRH induces sympathetically-mediated hyperglycemia and vagally-mediated hyperinsulinemia, whereas the Amb is mainly a vagal activating site for TRH. Hyperinsulinemia induced by TRH in the RVLM is not secondary to the hyperglycemic response. The potentiated hyperglycemic and suppressed hyperinsulinemic responses in diabetic GK rats indicate that an unbalanced "sympathetic-over-vagal" activation by TRH in brainstem RVLM contributes to the pathophysiology of impaired glucose homeostasis in type 2 diabetes.
Collapse
|
7
|
Nakade Y, Tsuchida D, Fukuda H, Iwa M, Pappas TN, Takahashi T. Restraint stress augments postprandial gastric contractions but impairs antropyloric coordination in conscious rats. Am J Physiol Regul Integr Comp Physiol 2005; 290:R616-24. [PMID: 16254129 DOI: 10.1152/ajpregu.00161.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Central corticotropin-releasing factor (CRF) plays an important role in mediating restraint stress-induced delayed gastric emptying. However, it is unclear how restraint stress modulates gastric motility to delay gastric emptying. Inasmuch as solid gastric emptying is regulated via antropyloric coordination, we hypothesized that restraint stress impairs antropyloric coordination, resulting in delayed solid gastric emptying in conscious rats. Two strain gauge transducers were sutured onto the serosal surface of the antrum and pylorus, and postprandial gastric motility was monitored before, during, and after restraint stress. Antropyloric coordination, defined as a propagated single contraction from the antrum to the pylorus within 10 s, was followed by > or = 20 s of quiescence. Restraint stress enhanced postprandial gastric motility in the antrum and pylorus to 140 +/- 9% and 134 +/- 9% of basal, respectively (n = 6). The number of episodes of antropyloric coordination before restraint stress, 2.4 +/- 0.4/10 min, was significantly reduced to 0.6 +/- 0.3/10 min by restraint stress. Intracisternal injection of the CRF type 2 receptor antagonist astressin 2B (60 microg) or guanethidine partially restored restraint stress-induced impairment of antropyloric coordination (1.6 +/- 0.3/10 min, n = 6). The restraint stress-induced augmentation of antral and pyloric contractions was increased by astressin 2B and guanethidine but abolished by atropine, hexamethonium, and vagotomy. Restraint stress enhanced postprandial gastric motility via a vagal cholinergic pathway. Restraint stress-induced delay of solid gastric emptying is due to impairment of antropyloric coordination. Restraint stress-induced impairment of antropyloric coordination might be mediated via a central CRF pathway.
Collapse
Affiliation(s)
- Yukiomi Nakade
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
8
|
Yuan PQ, Kimura H, Million M, Bellier JP, Wang L, Ohning GV, Taché Y. Central vagal stimulation activates enteric cholinergic neurons in the stomach and VIP neurons in the duodenum in conscious rats. Peptides 2005; 26:653-64. [PMID: 15752581 PMCID: PMC8082755 DOI: 10.1016/j.peptides.2004.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 11/12/2004] [Accepted: 11/17/2004] [Indexed: 11/23/2022]
Abstract
The influence of central vagal stimulation induced by 2h cold exposure or intracisternal injection of thyrotropin-releasing hormone (TRH) analog, RX-77368, on gastro-duodenal enteric cholinergic neuronal activity was assessed in conscious rats with Fos and peripheral choline acetyltransferase (pChAT) immunoreactivity (IR). pChAT-IR was detected in 68%, 70% and 73% of corpus, antrum and duodenum submucosal neurons, respectively, and in 65% of gastric and 46% of duodenal myenteric neurons. Cold and RX-77368 induced Fos-IR in over 90% of gastric submucosal and myenteric neurons, while in duodenum only 25-27% of submucosal and 50-51% myenteric duodenal neurons were Fos positive. In the stomach, cold induced Fos-IR in 93% of submucosal and 97% of myenteric pChAT-IR neurons, while in the duodenum only 7% submucosal and 5% myenteric pChAT-IR neurons were Fos positive. In the duodenum, cold induced Fos in 91% of submucosal and 99% of myenteric VIP-IR neurons. RX-77368 induces similar percentages of Fos/pChAT-IR and Fos/VIP-IR neurons. These results indicate that increased central vagal outflow activates cholinergic neurons in the stomach while in the duodenum, VIP neurons are preferentially stimulated.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- CURE: Digestive Diseases Research Center, VA Greater Los Angeles Healthcare System, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Joh T, Oshima T, Takahashi N, Kaneko H, Sasaki M, Kataoka H, Watanabe K, Sobue M, Suzuki H, Nomura T, Ohara H, Itoh M. Evaluation of early gastric mucosal permeability induced by central thyrotropin-releasing hormone administration. Am J Physiol Gastrointest Liver Physiol 2005; 288:G230-4. [PMID: 15499083 DOI: 10.1152/ajpgi.00100.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Accumulating evidence suggests that central thyrotropin-releasing hormone (TRH) administration induces gastric erosion 4 h after administration through the vagal nerves. However, early changes in the gastric mucosa during these 4 h have not been described. To assess early changes in the gastric mucosa after intracisternal injection of a stable TRH analog, pGlu-His-(3,3'-dimethyl)-ProNH2 (RX-77368), we measured the blood-to-lumen 51Cr-labeled EDTA clearance and examined the effects of vagotomy, atropine, omeprazole, and hydrochloric acid (HCl) on RX-77368-induced mucosal permeability. A cytoprotective dose of RX-77368 (1.5 ng) did not increase mucosal permeability. However, higher doses significantly increased mucosal permeability. Permeability peaked within 20 min and gradually returned to control levels in response to a 15-ng dose (submaximal dose). Increased mucosal permeability was not recovered after a 150-ng dose (ulcerogenic dose). This increase in permeability was inhibited by vagotomy or atropine. Intragastric perfusion with HCl did not change the RX-77368 (15 ng)-induced increase in permeability, but completely inhibited the recovery of permeability after the peak. Pretreatment with omeprazole did not change the RX-77368 (15 ng)-induced increase in permeability, but quickened the recovery of permeability after the peak. These data indicate that the RX-77368-induced increase in permeability is mediated via the vagal-cholinergic pathway and is not a secondary change in RX-77368-induced acid secretion. Inhibited recovery of permeability on exposure to an ulcerogenic RX-77368 dose or on exposure to HCl plus a submaximal dose of RX-77368 may be crucial for the induction of gastric mucosal lesions by central RX-77368 administration.
Collapse
Affiliation(s)
- Takashi Joh
- Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Goto M, Yoneda M, Nakamura K, Terano A, Haneda M. Effect of central thyrotropin-releasing hormone on pancreatic blood flow in rats. ACTA ACUST UNITED AC 2004; 121:57-63. [PMID: 15256274 DOI: 10.1016/j.regpep.2004.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 04/07/2004] [Accepted: 04/21/2004] [Indexed: 11/17/2022]
Abstract
Central neuropeptides play a role in physiological regulation through the autonomic nervous system. Thyrotropin-releasing hormone (TRH) is a neuropeptide distributed throughout the central nervous system and acts as a neurotransmitter to regulate gastric and hepatic functions through vagal-cholinergic pathways. In this study, the central effect of TRH on pancreatic blood flow was investigated in urethane-anesthetized rats. Pancreatic blood flow was determined by laser Doppler flowmetery. After measurement of basal blood flow, a stable TRH analog, RX 77368 (1-50 ng) or saline was injected intracisternally. Pancreatic blood flow was observed for 120 min thereafter. In some experiments, pretreatment with atropine methyl nitrate (0.15 mg/kg, i.p.), NG-nitro-L-arginine-methyl ester (10 mg/kg, i.v.), or 6-hydroxydopamine (6-OHDA;180 mg/kg, i.p.), or subdiaphragmatic vagotomy was performed. Intracisternal injection of TRH analog dose-dependently increased pancreatic blood flow with a peak response occurring 30 min after injection. The stimulatory effect of TRH analog on pancreatic blood flow was blocked by vagotomy, atropine, and NG-nitro-L-arginine-methyl ester, but not by 6-hydroxydopamine. Intravenous administration of the TRH analog did not influence pancreatic blood flow in the same animal model. These results indicate that TRH acts in the central nervous system to stimulate pancreatic blood flow through vagal-cholinergic and nitric oxide-dependent pathways.
Collapse
Affiliation(s)
- Manabu Goto
- Second Department of Medicine, Asahikawa Medical College, Asahikawa, Japan
| | | | | | | | | |
Collapse
|
11
|
Sato Y, Yoneda M, Nakamura K, Makino I, Terano A. Protective effect of central thyrotropin-releasing hormone on carbon tetrachloride-induced acute hepatocellular necrosis in rats. J Hepatol 2003; 39:47-54. [PMID: 12821043 DOI: 10.1016/s0168-8278(03)00146-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS Thyrotropin-releasing hormone (TRH) acts in the brain to stimulate hepatic proliferation and blood flow through vagal-muscarinic and prostaglandin-mediated pathways. Hepatic blood flow and prostaglandins are well recognized as cytoprotective factors for liver damage, and central TRH is known to play a role in gastric cytoprotection. The effect of central TRH on carbon tetrachloride (CCl(4))-induced acute hepatocellular necrosis was investigated in rats. METHODS Male fasted rats were injected with either TRH analog, RX 77368 (1-10 ng), or vehicle intracisternally, and CCl(4) (2.0 ml/kg) was injected subcutaneously 60 min later. Acute hepatocellular necrosis was assessed by serum hepatic enzymes and histological changes 24 h after CCl(4). RESULTS Intracisternal TRH dose-dependently inhibited elevation of serum alanine aminotransferase level induced by CCl(4). Intracisternal TRH reduced CCl(4)-induced hepatic histological changes. The cytoprotective effect of central TRH on CCl(4)-induced acute hepatocellular necrosis was abolished by hepatic branch vagotomy, atropine, indomethacin and N(G)-nitro-L-arginine methyl ester, but not by 6-hydroxydopamine. Intravenous TRH did not influence CCl(4)-induced acute hepatocellular necrosis. CONCLUSIONS These results suggest that the cytoprotective effect of central TRH on acute hepatocellular necrosis is mediated through vagal-muscarinic, and prostaglandin- and nitric oxide-dependent pathways.
Collapse
Affiliation(s)
- Yoichi Sato
- Second Department of Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | | | | | | | | |
Collapse
|
12
|
Prokai L. Central nervous system effects of thyrotropin-releasing hormone and its analogues: opportunities and perspectives for drug discovery and development. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 59:133-69. [PMID: 12458966 DOI: 10.1007/978-3-0348-8171-5_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Besides its well-known endocrine role in the thyroid system, thyrotropin-releasing hormone (L-pyroglutamyl-L-histidyl-L-prolinamide) has been long recognized as a modulatory neuropeptide. After a brief overview of the extrahypothalamic and receptor distribution, and of the neurophysiological, neuropharmacological and neurochemical effects of this tripeptide, this review discusses efforts devoted to enhance therapeutically beneficial central nervous system effects via structural modifications of the endogenous peptide. An enormous array of maladies affecting the brain and the spinal cord has been a potential target for therapeutic interventions involving agents derived from thyrotropin-releasing hormone as a molecular lead. Successful development of several centrally active analogues and recent accounts of efforts aimed at improving metabolic stability, selectivity and bioavailability are highlighted.
Collapse
Affiliation(s)
- Laszlo Prokai
- Center for Drug Discovery, College of Pharmacy, and the McKnight Brain Institute, University of Florida Health Science Center, Gainesville, FL 32610-0497, USA
| |
Collapse
|
13
|
Yoneda M, Kurosawa M, Watanobe H, Shimada T, Terano A. Brain-gut axis of the liver: the role of central neuropeptides. J Gastroenterol 2002; 37 Suppl 14:151-6. [PMID: 12572884 DOI: 10.1007/bf03326435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Masashi Yoneda
- Department of Gastroenterology, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | |
Collapse
|
14
|
Chen CY, Million M, Adelson DW, Martínez V, Rivier J, Taché Y. Intracisternal urocortin inhibits vagally stimulated gastric motility in rats: role of CRF(2). Br J Pharmacol 2002; 136:237-47. [PMID: 12010772 PMCID: PMC1573349 DOI: 10.1038/sj.bjp.0704713] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Corticotropin-releasing factor (CRF) acts in the brain to inhibit thyrotropin-releasing hormone (TRH) analogue, RX-77368-induced vagal stimulation of gastric motility. We investigated CRF receptor-mediated actions of rat urocortin (rUcn) injected intracisternally (ic) on gastric motor function. 2. Urethane-anaesthetized rats with strain gauges on the gastric corpus were injected i.c. with rUcn and 20 min later, with i.c. RX-77368. CRF antagonists were injected i.c. 10 min before rUcn. 3. RX-77368 (1.5, 3, 10, 30 and 100 ng, i.c.) dose-dependently increased corpus contractions, expressed as total area under the curve (AUC, mV min(-1)) to 2.6+/-2.5, 6.1+/-5.9, 9.8+/-2.6, 69.7+/-21.7 and 74.9+/-28.7 respectively vs 0.2+/-0.1 after i.c. saline. Ucn (1, 3 or 10 microg) inhibited RX-77368 (30 ng)-induced increase in total AUC by 28, 62 and 93% respectively vs i.c. saline+RX-77368. 4. The CRF(1)/CRF(2) antagonist, astressin-B (60 microg, i.c.) completely blocked i.c. rUcn (3 microg, i.c.)-induced inhibition of gastric motility stimulated by RX-77368 (30 ng). 5. The selective CRF(2) antagonist, astressin(2)-B (30, 60 or 100 microg, i.c. ) dose-dependently prevented i.c. rUCn action while the CRF(1) antagonist, NBI-27914 did not. 6. In conscious rats, rUcn (0.6 or 1 microg, i.c.) inhibited gastric emptying of an ingested chow meal by 61 and 92% respectively. rUcn action was antagonized by astressin(2)-B. 7. These data show that i.c. rUcn acts through CRF(2) receptors to inhibit central vagal gastric contractile response and postoprandial emptying.
Collapse
Affiliation(s)
- C -Y Chen
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
| | - M Million
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
| | - D W Adelson
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
| | - V Martínez
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
| | | | - Y Taché
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California, U.S.A
- Author for correspondence:
| |
Collapse
|
15
|
Miampamba M, Yang H, Sharkey KA, Taché Y. Intracisternal TRH analog induces Fos expression in gastric myenteric neurons and glia in conscious rats. Am J Physiol Gastrointest Liver Physiol 2001; 280:G979-91. [PMID: 11292608 DOI: 10.1152/ajpgi.2001.280.5.g979] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of gastric myenteric cells by intracisternal injection of the stable thyrotropin-releasing hormone (TRH) analog RX-77368, at a dose inducing near maximal vagal cholinergic stimulation of gastric functions, was investigated in conscious rats. Fos immunoreactivity was assessed in gastric longitudinal muscle-myenteric plexus whole mount preparations 90 min after intracisternal injection. Fos-immunoreactive cells were rare in controls (~1 cell/ganglion), whereas intracisternal RX-77368 (50 ng) increased the number to 24.8 +/- 1.8 and 26.8 +/- 2.2 cells/ganglion in the corpus and antrum, respectively. Hexamethonium (20 mg/kg sc) prevented Fos expression by 90%, whereas atropine (2 mg/kg sc) had no effect. The neuronal marker protein gene product 9.5 and the glial markers S-100 and glial fibrillary acidic proteins showed that RX-77368 induced Fos in both myenteric neurons and glia. Vesicular ACh transporter and calretinin were detected around the activated myenteric neurons. These results indicated that central vagal efferent stimulation by intracisternal RX-77368 activates gastric myenteric neurons as well as glial cells mainly through nicotinic ACh receptors in conscious rats.
Collapse
Affiliation(s)
- M Miampamba
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Bldg 115, Rm. 203, Los Angeles, CA 90073, USA.
| | | | | | | |
Collapse
|
16
|
Király A, Süto G, Tam B, Hermann V, Mózsik G. Vagus-mediated activation of mucosal mast cells in the stomach: effect of ketotifen on gastric mucosal lesion formation and acid secretion induced by a high dose of intracisternal TRH analogue. JOURNAL OF PHYSIOLOGY, PARIS 2000; 94:131-4. [PMID: 10791694 DOI: 10.1016/s0928-4257(00)00153-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TRH analogue, RX 77368, injected intracisternally (i.c.) at high dose (3 microg/rat) produces gastric mucosal lesion formation through vagal-dependent pathway. The gastric mucosal hyperemia induced by i.c. RX 77368 was shown to be mediated by muscarinic vagal efferent fibres and mast cells. Furthermore, electrical vagal stimulation was observed to induce gastric mucosal mast cell degranulation. The aim of the study was to assess the influence of ketotifen, a mast cell stabilizer, on RX 77368-induced gastric lesion formation and gastric acid secretion. RX 77368 (3 microg, i.c.) or vehicle (10 microL, i.c.) was delivered 240 min prior to the sacrifice of the animals. Ketotifen or vehicle (0.9% NaCl, 0.5 mL) was injected intraperitoneally (i.p.) at a dose of 10 mg x kg(-1) 30 min before RX 77368 injection. The extent of mucosal damage was planimetrically measured by a video image analyzer (ASK Ltd., Budapest) device. In the gastric acid secretion studies, the rats were pretreated with ketotifen (10 mg x kg(-1), i.p.) or vehicle (0.9% NaCl, 0.5 mL, i.p.), 30 min later pylorus-ligation was performed and RX 77368 (3 microg, i.c.) or vehicle (0.9% NaCl, 10 microL, i.c.) was injected. The rats were killed 240 min after i.c. injection, and the gastric acid secretion was measured through the titration of gastric contents with 0.1 N NaOH to pH 7.0. RX 77368 (3 microg, i.c.) resulted in a gastric mucosal lesion formation involving 8.2% of the corpus mucosa (n = 7). Ketotifen elicited an 85% inhibition on the development of mucosal lesions (n = 7, P < 0.001) whereas ketotifen alone had no effect on the lesion formation in the mucosa (n = 7). The RX 77368 induced increase of gastric acid secretion was not influenced by ketotifen pretreatment in 4-h pylorus-ligated animals. Central vagal activation induced mucosal lesion formation is mediated by the activation of mucosal mast cells in the stomach. Mast cell inhibition by ketotifen does not influence gastric acid secretion induced by i.c. TRH analogue in 4-h pylorus-ligated rats.
Collapse
Affiliation(s)
- A Király
- First Department of Medicine, Medical University of Pécs, Hungary
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- E A Nillni
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence 02903, USA.
| | | |
Collapse
|
18
|
Martinez V, Wu SV, Taché Y. Intracisternal antisense oligodeoxynucleotides to the thyrotropin-releasing hormone receptor blocked vagal-dependent stimulation of gastric emptying induced by acute cold in rats. Endocrinology 1998; 139:3730-5. [PMID: 9724024 DOI: 10.1210/endo.139.9.6195] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cold exposure increases TRH gene expression in hypothalamic and raphe nuclei and results in a vagal activation of gastric function. We investigated the role of medullary TRH receptors in cold (4-6 C, 90 min)-induced stimulation of gastric motor function in fasted conscious rats using intracisternal injections of TRH receptor (TRHr) antisense oligodeoxynucleotides (100 microg twice, -48 and -24 h). The gastric emptying of a methyl-cellulose solution was assessed by the phenol red method. TRH (0.1 microg) or the somatostatin subtype 5-preferring analog, BIM-23052 (1 microg), injected intracisternally increased basal gastric emptying by 34% and 47%, respectively. TRHr antisense, which had no effect on basal emptying, blocked TRH action but did not influence that of BIM-23052. Cold exposure increased gastric emptying by 64%, and the response was inhibited by vagotomy, atropine (0.1 mg/kg, i.p.), and TRHr antisense (intracisternally). Saline or mismatched oligodeoxynucleotides, injected intracisternally under similar conditions, did not alter the enhanced gastric emptying induced by cold or intracisternal injection of TRH or BIM-23052. These results indicate that TRH receptor activation in the brain stem mediates acute cold-induced vagal cholinergic stimulation of gastric transit, and that medullary TRH may play a role in the autonomic visceral responses to acute cold.
Collapse
Affiliation(s)
- V Martinez
- CURE: Digestive Diseases Research Center, West Los Angeles Veterans Administration Medical Center, and the Department of Medicine, University of California School of Medicine, 90073, USA
| | | | | |
Collapse
|
19
|
Yoneda M. Regulation of hepatic function by brain neuropeptides. World J Gastroenterol 1998; 4:192-196. [PMID: 11819273 PMCID: PMC4723454 DOI: 10.3748/wjg.v4.i3.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/1998] [Revised: 05/15/1998] [Accepted: 06/02/1998] [Indexed: 02/06/2023] Open
|
20
|
Abstract
Considerable progress has been made in the understanding of the formation of gastric erosions by the use of animals. The role of gastric acid secretion in their pathogenesis has been clarified. Gastric erosions are associated with the presence of acid in the stomach and slow gastric contractions. With several different experimental procedures, the animal's body temperature falls; preventing the fall averts erosions. A fall in body temperature or exposure to cold are associated with the secretion of thyrotropin-releasing hormone (TRH), and both increased and decreased concentration of corticotropin-releasing factor (CRH) in discrete regions of rat brains. Thyrotropin-releasing hormone when injected into specific sites in the brain produces gastric erosions and increases acid secretion and slow contractions, whereas CRH has the opposite effects. One of the major sites of interaction of the two peptides is in the dorsal motor complex of the vagus nerve. Thyrotropin-releasing hormone increases serotonin (5-HT) secretion into the stomach. Serotonin counter-regulates acid secretion and slow contractions. Many other peptides injected into discrete brain sites stimulate or inhibit gastric acid secretion.
Collapse
Affiliation(s)
- H Weiner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, School of Medicine 90095, USA
| |
Collapse
|
21
|
Morrow NS, Hodgson DM, Garrick T. Microinjection of thyrotropin-releasing hormone analogue into the central nucleus of the amygdala stimulates gastric contractility in rats. Brain Res 1996; 735:141-8. [PMID: 8905179 DOI: 10.1016/0006-8993(96)00580-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect on gastric contractility following bilateral microinjection of thyrotropin-releasing hormone (TRH) analog, RX 77368, into the central nucleus of the amygdala was examined in fasted, urethane-anesthetized rats. Extraluminal force transducers were used to measure gastric corpus contractility. Bilateral microinjection of RX 77368 (0.5 microgram, 1.0 microgram, n = 6 each) stimulated gastric contractility for up to 120 min post-injection, P < 0.05. Gastric contractility was not significantly stimulated by microinjection of 0.1 microgram RX 77368, 0.1% bovine serum albumin (BSA) into the central nucleus or RX 77368 (0.5 microgram, 1.0 microgram) into sites adjacent to the central nucleus. Peak responses (1.0 microgram) occurred 40 min post-injection and represented a 16-26-fold increase over basal values. The frequency of gastric contraction waves was attenuated for 0-90 min in rats receiving central amygdaloid microinjection of RX 77368 (0.1, 0.5 or 1.0 microgram) versus rats microinjected with the vehicle or RX 77368 into sites adjacent to the central nuclei. The stimulatory effect of RX 77368 (1.0 microgram) on gastric contractility was abolished by subdiaphragmatic vagotomy. These results indicate that the TRH analog, RX 77368, acts within the central amygdala to vagally stimulate gastric contractility.
Collapse
Affiliation(s)
- N S Morrow
- CURE/UCLA Digestive Diseases Research Center, Department of Psychiatry, Department of Veterans Affairs Medical Center 90073, USA
| | | | | |
Collapse
|
22
|
Tachibana M, Takeuchi K, Okabe S. Role of the sympathetic nervous system in gastric functional changes induced by thyrotropin-releasing hormone in rats. JAPANESE JOURNAL OF PHARMACOLOGY 1995; 67:157-64. [PMID: 7616690 DOI: 10.1254/jjp.67.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We determined the changes in gastric functions and systemic blood pressure in response to thyrotropin-releasing hormone (TRH) simultaneously in anesthetized rats and examined the role of the sympathetic nervous system in these changes. TRH injected i.c. increased gastric acid secretion, contraction and mucosal blood flow, and produced hemorrhagic lesions in the glandular stomach. These responses to TRH were almost completely inhibited by bilateral cervical vagotomy or atropine. The increased gastric acid secretion and contraction in response to TRH were significantly augmented by pretreatment with yohimbine but not with prazosin. Bilateral adrenalectomy also potentiated the gastric acid secretory and contractile responses to TRH. Neither prazosin, yohimbine nor adrenalectomy had any appreciable effect on the increased gastric mucosal blood flow induced by TRH. TRH-induced gastric mucosal lesions were significantly aggravated by yohimbine and adrenalectomy. In vagotomized rats, TRH significantly suppressed the gastric functional changes induced by electrical stimulation of the vagus nerves. These data suggest that while gastric functional changes and mucosal lesions induced by TRH mainly occur through stimulation of the vagus nerves, these responses are extensively modified by the sympathetic nervous system including the adrenal glands.
Collapse
Affiliation(s)
- M Tachibana
- Department of Applied Pharmacology, Kyoto Pharmaceutical University, Japan
| | | | | |
Collapse
|
23
|
Morrow NS, Novin D, Garrick T. Microinjection of thyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus stimulates gastric contractility. Brain Res 1994; 644:243-50. [PMID: 8050036 DOI: 10.1016/0006-8993(94)91686-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Changes in gastric contractility following microinjection of thyrotropin-releasing hormone (TRH) into the paraventricular nucleus of the hypothalamus (PVN) were examined in fasted, urethane-anesthetized rats. Gastric contractility was measured with extraluminal force transducers and analysed by computer. Unilateral and bilateral PVN microinjections of TRH (0.5 and 1.0 microgram) significantly increased the force index of gastric contractions from 0 to 60 min postinjection, when compared with animals microinjected with 0.1 microgram TRH, 0.1% BSA or TRH (0.5 and 1.0 microgram TRH) in sites adjacent to the PVN. The gastric force index was also significantly elevated from 61 to 120 min postinjection in rats receiving bilateral PVN microinjections of TRH (0.5 and 1.0 microgram). Peak gastric responses occurred within 10-20 min postinjection and represented an approximately eight-fold increase over basal values. In the remaining groups, the force index was not significantly altered from preinjection values. The excitatory action of TRH (1.0 microgram) on gastric contractility was completely abolished by subdiaphragmatic vagotomy. These results suggest that TRH acts within the PVN to stimulate gastric contractility via vagal-dependent pathways.
Collapse
Affiliation(s)
- N S Morrow
- Department of Psychiatry, Department of Veterans Affairs Medical Center, West Los Angeles, CA 90073
| | | | | |
Collapse
|
24
|
Okumura T, Uehara A, Watanabe Y, Taniguchi Y, Kitamori S, Namiki M. Site-specific formation of thyrotropin-releasing hormone-induced gastric ulcers through the vagal system. Scand J Gastroenterol 1994; 29:226-31. [PMID: 8209181 DOI: 10.3109/00365529409090468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The left and right dorsal motor nuclei (DMN) separately innervate the anterior and posterior gastric walls through the left and right gastric branches of the vagus nerve (GBVN) in rats. The present study was carried out to investigate the effects of selective centrally originated excitation of the unilateral vagal system on the gastric area in which vagus-induced gastric ulcers developed. Since intracisternally injected thyrotropin-releasing hormone (TRH) stimulates neurons in the bilateral DMNs to produce gastric ulcers, selective stimulation of the unilateral vagal system was produced by contralateral gastric branch vagotomy before intracisternal injection of TRH. Intracisternal injection of TRH (2 micrograms/rat) into left gastric branch-vagotomized rats resulted in lesion formation only on the posterior gastric wall and not on the anterior wall. In contrast, in right gastric branch-vagotomized rats TRH-induced gastric lesions were observed only on the anterior gastric wall and not on the posterior wall. These results suggest that selective stimulation of the left or right DMN induces site-specific ulcer formation through the left or right GBVN. Next, gastric acid secretion was determined in pylorus-ligated rats to examine a role of acid hypersecretion in site-specific ulcer formation caused by TRH. Of interest was that gastric acid secretion in unilaterally vagotomized rats given TRH intracisternally was significantly smaller than that in sham-operated rats given intracisternal saline, although the former rats developed gastric ulcers, whereas the latter did not. It is therefore speculated that gastric hyperacidity plays a less important role in the peripheral mechanisms of TRH-induced site-specific gastric ulceration.
Collapse
Affiliation(s)
- T Okumura
- Dept. of Internal Medicine (III), Asahikawa Medical College, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Garrick T, Yang H, Trauner M, Livingston E, Taché Y. Thyrotropin-releasing hormone analog injected into the raphe pallidus and obscurus increases gastric contractility in rats. Eur J Pharmacol 1992; 223:75-81. [PMID: 1478259 DOI: 10.1016/0014-2999(92)90820-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study was performed to investigate the influence of the chemical stimulation of medullary raphe nuclei by the stable TRH (thyrotropin-releasing hormone) analog, RX 77368, on gastric contractility. Urethane-anesthetized rats were acutely implanted with miniature strain gauge force transducers on the corpus of the stomach for continuous recording of gastric contractility. Traces were analyzed by computer. Microinjections of vehicle or RX 77368 into the raphe pallidus or raphe obscurus were performed using pressure injection of 50 nl through glass micropipettes 30 min following basal recording of gastric contractility. RX 77368 (0.7-77 pmol) dose dependently stimulated gastric contractility when microinjected into the raphe pallidus and raphe obscurus. The stimulation of gastric contractions induced by microinjection of RX 77368 (77 pmol) into these raphe nuclei was completely blocked by vagotomy and prevented (raphe obscurus) or reduced (raphe pallidus) by atropine. RX 77368 (7.7-77 pmol) microinjected into the inferior olive, pyramidal tract, medial lemiscus was ineffective. These results demonstrate that chemical stimulation of the raphe pallidus and obscurus by RX 77368 stimulates gastric contractility through vagal and muscarinic pathways. These data suggest a role for medullary raphe nuclei in the central vagal regulation of gastric contractility.
Collapse
Affiliation(s)
- T Garrick
- Department of Psychiatry, West Los Angeles Veterans Affairs Medical Center, CA 90073
| | | | | | | | | |
Collapse
|
26
|
Bond EF, Heitkemper MM, Gruver MK. Mediation of thyrotropin-releasing hormone induced gastric motility increases in developing rats. Eur J Pharmacol 1992; 217:127-35. [PMID: 1425933 DOI: 10.1016/0014-2999(92)90831-n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Centrally administered thyrotropin-releasing hormone (TRH) induces vagally mediated gastrointestinal effects which may be cholinergic, serotonergic or a combination. This study investigated mediation of TRH-stimulated gastric motility in developing rats. A serotonin (5-HT) antagonist (5-HT2, ketanserin or xylamidine; 5-HT3, MDL 72222) or an acetylcholine receptor blocker (atropine) was administered intraperitoneally 30 min prior to intracisternal TRH (5-10 micrograms). The 5-HT-depleting para-chlorophenylalanine (p-CPA) was administered 48 or 72 h prior to TRH. Gastric motility, monitored via extraluminal strain gauge, was not increased with TRH in atropine-pretreated rats. MDL 72222 had a significant age-related effect on TRH-induced gastric motility increases while 5-HT2 antagonists and p-CPA treatment did not. Thus, acetylcholine receptor blockade inhibits TRH-stimulated gastric motility in young and adult rats while 5-HT3 antagonism eliminates the motility response in young (7 and 10 days) rats.
Collapse
Affiliation(s)
- E F Bond
- Department of Physiological Nursing, University of Washington, Seattle 98195
| | | | | |
Collapse
|
27
|
Yoneda M, Taché Y. Central thyrotropin-releasing factor analog prevents ethanol-induced gastric damage through prostaglandins in rats. Gastroenterology 1992; 102:1568-74. [PMID: 1568566 DOI: 10.1016/0016-5085(92)91715-g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of intracisternal injection of the stable thyrotropin-releasing factor (TRH) analog RX 77368 on gastric lesions induced by 60% ethanol and gastric prostaglandin E2 (PGE2) release were studied in rats. RX 77368 (1.0 and 1.5 ng) injected intracisternally inhibited (by 58% and 78%, respectively) macroscopic gastric damage induced by ethanol. Higher doses (3 and 300 ng) inhibited ethanol-induced gastric injury only in rats pretreated with omeprazole (20 mg/kg SC). Gastric acid output measured in conscious rats 2 hours after pylorus ligation was not modified by intracisternal injection of RX 77368 at 1.5 ng but was significantly increased by 54% at the 3-ng dose. The protective effect of TRH analog (1.5 ng) was completely abolished by indomethacin (5 mg/kg IP) and atropine (2 mg/kg SC) pretreatment. In pylorus-ligated rats, intracisternal RX 77368 (1.5 ng) inhibited ethanol-induced gastric lesions by 64%. Intracisternal injection of RX 77368 (1.5 ng) increased PGE2 levels measured in the effluent of dialysis fibers implanted into the corpus submucosa of urethane-anesthetized rats. Peripheral administration of omeprazole, atropine, indomethacin, or RX 77368 (1.5 ng IV) did not influence gastric damage induced by ethanol. These data show that the stable TRH analog, RX 77368, injected intracisternally at low non-secretory doses acts in the brain to protect against ethanol lesions through prostaglandin and cholinergic pathways. These findings suggest that central vagal activation induced by TRH may play a role in the control of mucosal integrity against ethanol through cholinergic prostaglandin release.
Collapse
Affiliation(s)
- M Yoneda
- Center for Ulcer Research and Education, Veterans Administration Medical Center, Los Angeles, California
| | | |
Collapse
|
28
|
Shockley RA, LePard KJ, Stephens RL. Fluoxetine pretreatment potentiates intracisternal TRH analogue-stimulated gastric acid secretion in rats. REGULATORY PEPTIDES 1992; 38:121-8. [PMID: 1574606 DOI: 10.1016/0167-0115(92)90050-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Central injection of TRH or its metabolically stable analogue RX 77368 has been demonstrated to produce a vagal-dependent stimulation in gastric acid secretion. Accumulating evidence exists regarding the interaction of serotonin (5HT) with TRH containing neuronal systems. This study was performed to assess the effect of pretreatment with the 5HT uptake inhibitor fluoxetine on the TRH analogue-induced gastric acid secretory response. Systemic fluoxetine (30 mumol/kg, i.v.) produced a 43-85% increase in the intracisternal RX 77368 (78-780 pmol)-induced gastric acid output, while not affecting the basal acid response. The acid response to a lower dose of RX 77368 (26 pmol) was not altered. In addition, intracisternal fluoxetine (180 nmol) produced a 71% augmentation of the acid secretory response of i.c. RX 77368 (260 pmol). Intracisternal injection of lower doses (60, 120 nmol), or intravenous injection of 180 nmol of fluoxetine was ineffective in altering the intracisternal RX 77368-induced acid response. Pretreatment with the noradrenergic or dopaminergic uptake inhibitor desipramine or GBR 12909 did not alter the RX 77368-stimulated gastric acid secretory response. The results show that fluoxetine pretreatment potentiates the effect of intracisternal RX 77368 on acid secretion. The effect appears to be impulse dependent, and central sites of action are involved. The data suggest an interaction of synaptic serotonin with a RX 77368-elicited event (activation of TRH receptors, second messenger systems and/or firing of the motor vagus) results in potentiation of the RX 77368-induced gastric response.
Collapse
Affiliation(s)
- R A Shockley
- Department of Physiology, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
29
|
Okumura T, Uehara A, Kitamori S, Watanabe Y, Taniguchi Y, Tsuji K, Namiki M. Basic fibroblast growth factor (bFGF) acts centrally in the brain to inhibit gastric emptying in rats. Neurosci Lett 1992; 137:53-5. [PMID: 1625818 DOI: 10.1016/0304-3940(92)90296-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, we evaluated the central nervous system action of basic fibroblast growth factor (bFGF) on gastric emptying of a liquid meal in conscious rats using a Phenol red method. Intracisternal injection of bFGF dose-dependently inhibited gastric emptying, while intraperitoneal injection of bFGF at the same doses failed to alter gastric emptying. These results suggest for the first time that bFGF acts in the central nervous system to delay gastric emptying.
Collapse
Affiliation(s)
- T Okumura
- Department of Internal Medicine III, Asahikawa Medical College, Hokkaido, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Heitkemper MM, Bond EF. Morphine inhibits TRH-induced gastric contractile activity. REGULATORY PEPTIDES 1991; 36:99-109. [PMID: 1796184 DOI: 10.1016/0167-0115(91)90198-p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study investigated the effect of centrally and peripherally administered thyrotropin releasing hormone (TRH) on gastric contractile activity of rats 14, 21, 28 and adult (greater than or equal to 50) days (D) of age, and the effect of morphine pretreatment on that response. Rats were anesthetized with urethane, then a tension transducer was implanted on the anterior gastric corpus. Following baseline recording, rats were pretreated with intraperitoneal morphine (2 mg/kg). TRH (5 micrograms) in saline or saline alone (0.6 microliters) was then injected into the cisternum magnum. Additionally, dose response to TRH was examined in 14- and 50-day-old rats. Intracisternal TRH induced a dose-related increase in gastric contractile activity in both 14- and 50-day-old rats. Higher doses of TRH (10 and 30 micrograms) prolonged the response as compared to low doses. Peripheral morphine pretreatment blocked the TRH-induced increase in gastric contractile activity in all age groups although a higher morphine dose (10 mg/kg) was needed to block the effect in 28D rats. Intravenous TRH (5, 10, 30 micrograms) produced an increase in gastric contractile activity in 14D rats which was blocked by vagotomy.
Collapse
Affiliation(s)
- M M Heitkemper
- Department of Physiological Nursing, University of Washington, Seattle 98195
| | | |
Collapse
|
31
|
Stephens RL. Disparate effects of intracisternal RX 77368 and ODT8-SS on gastric acid and serotonin release: role of adrenal catecholamines. REGULATORY PEPTIDES 1991; 36:21-8. [PMID: 1686663 DOI: 10.1016/0167-0115(91)90192-j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intracisternal injection of the thyrotropin releasing hormone (TRH) analogue RX 77368 (100 ng) or the somatostatin analogue ODT8-SS (1 microgram) produced an 82% and 101% increase in gastric acid secretion in 2 h pylorus-ligated rats. In contrast, dissimilar effects were produced by intracisternal injection of these peptides on the secretion of serotonin into the gastric lumen. Intracisternal RX 77368 (100 ng) produced a 496% increase in intraluminal serotonin release, while in contrast, intracisternal ODT8-SS (1 microgram) produced a 78% inhibition in intraluminal serotonin release. Bilateral adrenalectomy reversed the stimulatory effect of intracisternal RX 77368 (100 ng) on serotonin, but not acid release. The data reveal a difference in the ability of the two peptides, which act as gastric secretagogues, to produce intraluminal acid and serotonin release, and suggest that combined activation of the vagus and the adrenal gland are important in mediating basal and RX 77368-stimulated serotonin release into the gastric lumen. In particular, differential effects on adrenal catecholamine release are implicated in the divergent effects of the two peptides.
Collapse
Affiliation(s)
- R L Stephens
- Ohio State University, Department of Physiology, Columbus 43210
| |
Collapse
|
32
|
Heymann-Mönnikes I, Taché Y, Trauner M, Weiner H, Garrick T. CRF microinjected into the dorsal vagal complex inhibits TRH analog- and kainic acid-stimulated gastric contractility in rats. Brain Res 1991; 554:139-44. [PMID: 1933296 DOI: 10.1016/0006-8993(91)90181-t] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of CRF microinjected into the dorsal vagal complex (DVC) on centrally-stimulated gastric contractility was investigated in fasted, urethane-anesthetized rats. Miniature strain gauge force transducers were acutely implanted on the corpus of the stomach and contractility was analyzed by computer. Microinjection of the stable thyrotropin-releasing hormone (TRH) analog, RX 77368, (26 pmol) into the DVC induced a 12.2-fold stimulation of gastric contractility within 30 min. Corticotropin-releasing factor (CRF) (63-210 pmol) microinjected into the DVC concomitantly with RX 77368 (26 pmol) induced a dose-related inhibition of stimulated gastric contractility. Neither CRF alone (210 pmol) nor vehicle modified basal gastric contractility. Microinjection of kainic acid (141 pmol) into the raphe pallidus nucleus induced a 3.6-fold stimulation of gastric contractility after 45 min. This stimulation was suppressed by bilateral microinjection of CRF (105 pmol/site) into the DVC. These results demonstrate that CRF acts in the DVC to inhibit centrally-stimulated gastric contractility and suggest that TRH and CRF may interact in the DVC to regulate gastric motor function.
Collapse
Affiliation(s)
- I Heymann-Mönnikes
- Department Psychiatry and Research, West Los Angeles Veterans Administration Medical Center, CA
| | | | | | | | | |
Collapse
|
33
|
Iwase M, Shioda S, Nakai Y, Homma I. Immunocytochemistry of thyrotropin-releasing hormone in the rabbit medulla oblongata. Brain Res Bull 1991; 26:49-57. [PMID: 1901752 DOI: 10.1016/0361-9230(91)90191-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The distribution and ultrastructure of thyrotropin-releasing hormone-like immunoreactive (TRH-LI) neurons were examined in rabbit medulla oblongata. TRH-LI cell bodies were located in the ventral region of the medulla oblongata: in the paraolivary and parapyramidal regions, regions in and around the pyramidal tract, the dorsolateral region of the lateral reticular nucleus, and the raphe nuclei. The paraolivary and parapyramidal regions contained most of the TRH-LI cell bodies in the medulla oblongata. TRH-LI neurons processes were densely distributed in the dorsal vagal complex and the area postrema. Electron-microscopic immunocytochemical studies revealed TRH-LI neurons at the obex level in the paraolivary region of rabbits. TRH-like immunoreactivity was localized in larger granular vesicles. TRH-LI somata and dendrites received synaptic inputs from both TRH-LI and unlabeled axon terminals. More than half of the TRH-LI axon terminals made synapses with somata or processes of TRH-LI neurons. These observations, together with previous reports that TRH causes respiratory facilitation, suggest that TRH-LI neurons in the paraolivary region in rabbits may be involved in respiratory functions.
Collapse
Affiliation(s)
- M Iwase
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | | | | | | |
Collapse
|
34
|
Lynn RB, Feng HS, Han J, Brooks FP. Gastric effects of thyrotropin-releasing hormone microinjected into the dorsal vagal nucleus in cats. Life Sci 1991; 48:1247-54. [PMID: 1900557 DOI: 10.1016/0024-3205(91)90519-h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigated the gastric acid secretory and motility responses to microinjection of thyrotropin-releasing hormone (TRH) into the dorsal motor nucleus of the vagus (DMV) in anesthetized cats. Gastric acid output was collected every 15 min through a gastric cannula after saline flush and titrated to pH 7.0. Antral and corpus contractions were continuously recorded by extraluminal force transducers. TRH dissolved in 200 nl of saline and microinjected unilaterally into the DMV induced a dose-dependent (50-200 ng) increase in gastric acid secretion. The acid secretory response began in the first 15 min collection and lasted 45 min. TRH frequently increased the force of contractions of the antrum and corpus within one minute of microinjection. The minimal effective dose for eliciting increased motility was lower than for inducing acid secretion. These results demonstrate that TRH acts in the DMV of cats to stimulate gastric acid secretion and contractions.
Collapse
Affiliation(s)
- R B Lynn
- University of Pennsylvania, School of Medicine, Philadelphia 19104
| | | | | | | |
Collapse
|
35
|
Heymann-Mönnikes I, Livingston EH, Taché Y, Sierra A, Weiner H, Garrick T. Bombesin microinjected into the dorsal vagal complex inhibits TRH-stimulated gastric contractility in rats. Brain Res 1990; 533:309-14. [PMID: 2126976 DOI: 10.1016/0006-8993(90)91354-j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of centrally injected bombesin on central and peripheral stimulated gastric contractility were investigated in fasted urethane-anesthetized rats. Miniature strain gauge force transducers were acutely implanted on the corpus of the stomach and gastric contractility was analyzed by computer. Intracisternal injection of the stable thyrotropin-releasing hormone (TRH)-analog RX 77368 (77 pmol) induced a stimulation of gastric contractility for 40 min. Intracisternal injection of bombesin (62-620 pmol) followed 30 min later by that of RX 77368 resulted in a dose-related inhibition of the TRH-analog-induced gastric contractility. Intracisternal injection of bombesin (620 pmol) did not modify gastric contractility stimulated by intravenous carbachol. Stimulation of gastric contractility induced by TRH-analog microinjected into the dorsal vagal complex (DVC) was dose-related suppressed by concomitant injections of bombesin (6.2-620 pmol). Neither bombesin alone (6.2 pmol) nor vehicle modified basal gastric contractility. These results demonstrate that bombesin acts within the brain to inhibit vagally stimulated gastric contractility and that the DVC is a sensitive site for bombesin inhibitory action. These findings suggest a possible interaction between TRH and bombesin in the central vagal regulation of gastric contractility.
Collapse
Affiliation(s)
- I Heymann-Mönnikes
- Department of Psychiatry, West Los Angeles Veterans Administration Medical Center, CA 90073
| | | | | | | | | | | |
Collapse
|
36
|
Stephens RL, Garrick T, Weiner H, Taché Y. Endogenous serotonin produces an inhibitory tone on vagally stimulated gastric function. Ann N Y Acad Sci 1990; 597:114-27. [PMID: 2143641 DOI: 10.1111/j.1749-6632.1990.tb16162.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of depletion of serotonin stores on vagally stimulated gastric acid secretion and motility was studied in rats. Pretreatment of rats with parachlorophenylalanine (p-CPA) produced a 57% reduction in the intraluminal gastric release of serotonin and a 43-100% potentiation of the gastric acid secretory response elicited by intracisternal injection of the stable TRH analogue RX 77368 in conscious pylorusligated rats or in urethane-anesthetized rats with an acute gastric fistula. p-CPA also enhanced the vagally stimulated gastric acid output produced by intravenous injection of baclofen. In contrast, p-CPA pretreament had no effect on gastric acid secretion stimulated by bethanechol, histamine, or pentagastrin. Selective depletion of central serotonin stores by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) given alone or combined with parachloroamphetamine pretreatment did not alter RX 77368-stimulated gastric acid secretion. In addition, gastric contractility stimulated by intracisternal injection of RX 77368 was significantly enhanced by p-CPA but not by 5,7-DHT pretreatment; whereas the contractile response to carbachol was not altered by p-CPA pretreatment. These results suggest that depletion of peripheral but not central serotonergic stores potentiates gastric acid secretion and contractility stimulated by vagally, but not peripherally, acting gastric stimulants. Thus, peripheral serotonin may exert an inhibitory tone on vagally stimulated gastric acid secretion and motility in the rat.
Collapse
Affiliation(s)
- R L Stephens
- Department of Physiology, College of Medicine, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
37
|
Garrick T. The role of gastric contractility and brain thyrotropin-releasing hormone in cold restraint-induced gastric mucosal injury. Ann N Y Acad Sci 1990; 597:51-70. [PMID: 2117415 DOI: 10.1111/j.1749-6632.1990.tb16158.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- T Garrick
- Brain Research Institute, University of California, Los Angeles
| |
Collapse
|
38
|
Bond E, Heitkemper M. Thyrotropin-releasing hormone stimulates intestinal transit in young rats. REGULATORY PEPTIDES 1990; 27:263-71. [PMID: 2109338 DOI: 10.1016/0167-0115(90)90045-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of intracisternal injection of thyrotropin-releasing hormone (TRH) on small intestinal transit of a charcoal bolus was investigated in 14-, 21-, 28- and 35-day-old and adult rats. Intracisternal TRH (15 micrograms in 2 microliters) was administered, and transit (distance traveled by the charcoal) was measured 120 min later. In all age groups, intracisternal TRH increased charcoal transit significantly (P less than 0.05) as compared to saline-treated controls. This increase in transit was not mimicked by intravascular TRH, and it was blocked in all age groups by prior intraperitoneal injection of atropine (2 micrograms/g body weight). Vagotomy blocked TRH-induced increases in small intestine transit in rats of 28 days and older. Prior intraperitoneal injection of the antiserotonin compound, cyproheptadine (1 microgram/g body weight) reduced TRH-induced increases in small intestine transit in all age groups. These results demonstrate that centrally administered TRH stimulates small intestine transit through both cholinergic and serotonergic mechanisms in rats as early as 14 days of age.
Collapse
Affiliation(s)
- E Bond
- Department of Physiological Nursing, University of Washington, Seattle 98195
| | | |
Collapse
|
39
|
Taché Y, Garrick T, Raybould H. Central nervous system action of peptides to influence gastrointestinal motor function. Gastroenterology 1990; 98:517-28. [PMID: 2104814 DOI: 10.1016/0016-5085(90)90849-v] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The central action of peptides to influence GI motility in experimental animals is summarized in Table 1. TRH stimulates gastric, intestinal, and colonic contractility in rats and in several experimental species. A number of peptides including calcitonin, CGRP, neurotensin, NPY, and mu opioid peptides act centrally to induce a fasted MMC pattern of intestinal motility in fed animals while GRF and substance P shorten its duration. The dorsal vagal complex is site of action for TRH-, bombesin-, and somatostatin-induced stimulation of gastric contractility, and for CCK-, oxytocin- and substance P-induced decrease in gastric contractions or intraluminal pressure. The mechanisms through which TRH, bombesin, calcitonin, neurotensin, CCK, and oxytocin alter GI motility are vagally mediated. An involvement of central peptidergic neurons in the regulation of gut motility has recently been demonstrated in Aplysia, indicating that such regulatory mechanisms are important in the phylogenesis. Alterations of the pattern of GI motor activity are associated with functional changes in transit. TRH is so far the only centrally acting peptide stimulating simultaneously gastric, intestinal, and colonic transit in various animals species. Opioid peptides acting on mu receptor subtypes in the brain exert the opposite effect and inhibit concomitantly gastric, intestinal, and colonic transit. Bombesin and CRF were found to act centrally to inhibit gastric and intestinal transit and to stimulate colonic transit in the rat. The antitransit effect of calcitonin and CGRP is limited to the stomach and small intestine. The delay in GI transit is associated with reduced GI contractility for most of the peptides except central bombesin that increases GI motility. Nothing is known about brain sites through which these peptides act to alter gastric emptying and colonic transit. Regarding brain sites influencing intestinal transit, TRH-induced stimulation of intestinal transit in the rat is localized in the lateral and medial hypothalamus and medial septum. The periaqueductal gray matter is a responsive site for mu receptor agonist- and neurotensin-induced inhibition of intestinal transit. The neural pathways from the brain to the gut whereby these peptides express their stimulatory or inhibitory effects on GI transit is vagal dependent with the exception of calcitonin. It is not known whether the vagally mediated inhibition of GI transit by these peptides results from a decrease activity of vagal preganglionic fibers synapsing with excitatory myenteric neurons or an activation of vagal preganglionic neurons synapsing with inhibitory myenteric neurons. The lack of specific antagonists for these peptides has hampered the assessment of their physiological role.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y Taché
- Center for Ulcer Research and Education, Veterans' Administration Medical Center, Los Angeles, California
| | | | | |
Collapse
|
40
|
Wong WS, Rahwan RG, Stephens RL. Antiulcer activity of the calcium antagonist propyl-methylenedioxyindene. IV. Effects on gastric lesions in rats induced by cold-restraint stress and thyrotropin-releasing hormone. Life Sci 1990; 47:1483-9. [PMID: 2123509 DOI: 10.1016/0024-3205(90)90528-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Propyl-methylenedioxyindene (pr-MDI; 30 mg/kg, i.p.), an intracellular calcium antagonist, significantly reduced the number and size of erosions per stomach induced by cold-restraint stress by 69% and 86%, respectively. Our previous findings indicate that the antiulcer activity of pr-MDI is highly correlated with its inhibitory effect on gastric motor activity. Since central TRH is suggested as the brain mediator responsible for cold-restraint stress gastric ulcers in rats, the inhibitory action of pr-MDI was evaluated in the TRH-induced gastric lesion model. Pr-MDI (30 mg/kg) did not reduce the gastric erosions induced by intracisternal administration of 100ng RX77368, a stable thyrotropin-releasing hormone (TRH) analogue, even though it abolished the RX77368-induced stimulation of gastric emptying, gastric acidity, and acid output. Since pr-MDI (30 mg/kg, i.p.) significantly inhibited the stimulation of gastric motility by both cold-restraint stress and TRH, but only cold-restraint stress-induced gastric erosions were effectively reduced by the drug, the present findings suggest a possible dissociation between the ulcerogenic mechanisms of cold-restraint stress and intracisternal administration of TRH.
Collapse
Affiliation(s)
- W S Wong
- Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
41
|
Thiefin G, Taché Y, Leung FW, Guth PH. Central nervous system action of thyrotropin-releasing hormone to increase gastric mucosal blood flow in the rat. Gastroenterology 1989; 97:405-11. [PMID: 2501141 DOI: 10.1016/0016-5085(89)90076-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The central nervous system effects of thyrotropin-releasing hormone (TRH) on gastric acid secretion and mucosal blood flow were studied in rats. Corpus mucosal blood flow was measured by the hydrogen gas clearance technique and acid output by a continuous gastric perfusion method in fasted, urethane-anesthetized rats. Thyrotropin-releasing hormone (1 or 5 micrograms) injected into the cerebral lateral ventricle induced concomitant increases in gastric acid secretion and mucosal blood flow. Intravenous infusion of step doses of TRH (60 and 180 micrograms/kg.h) had no effect on these parameters. Bilateral vagotomy and atropine (0.15 mg/kg) completely blocked the effects of intracerebroventricular injection of TRH (5 micrograms) on gastric acid secretion and mucosal blood flow. In contrast, intravenous omeprazole (20 mumol/kg) completely inhibited the increase in gastric acid secretion but not the increase in mucosal blood flow elicited by intracerebroventricular administration of TRH (5 micrograms). These results demonstrate that TRH acts in the brain to stimulate gastric acid secretion and mucosal blood flow through vagal dependent pathways and peripheral muscarinic receptors. Part of the effect of central TRH on gastric mucosal blood flow is not secondary to the stimulation of acid secretion and appears to represent a direct cholinergic vasodilatory response.
Collapse
Affiliation(s)
- G Thiefin
- Research Service, West Los Angeles, Veterans Administration Medical Center, California
| | | | | | | |
Collapse
|
42
|
TACHÉ YVETTE, STEPHENS ROBERTL, ISHIKAWA TOSHIO. Central Nervous System Action of TRH to Influence Gastrointestinal Function and Ulceration. Ann N Y Acad Sci 1989. [DOI: 10.1111/j.1749-6632.1989.tb54495.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Taché Y, Stephens RL, Ishikawa T. Central nervous system action of TRH to influence gastrointestinal function and ulceration. Ann N Y Acad Sci 1989; 553:269-85. [PMID: 2497674 DOI: 10.1111/j.1749-6632.1989.tb46649.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is clear evidence in rats that TRH acts in the brain to stimulate gastric acid, pepsin, and serotonin secretion, mucosal blood flow, contractility, emptying, and ulceration through activation of parasympathetic outflow to the stomach (TABLE 3). A number of TRH analogues, including some devoid of TSH-releasing activity, mimic the effects of TRH. The most sensitive TRH sites of action to elicit gastric acid secretion and motility are located in the dorsal vagal complex and include the dorsal vagal, nucleus tractus solitarius, and nucleus ambiguus. The gastrointestinal tract is one of the most responsive visceral systems to the central effects of TRH, because doses in the range of 1-10 pmol in the dorsal vagal complex stimulate gastric function, whereas stimulation of cardiovascular and respiratory function on microinjection of the brainstem nuclei requires higher doses. Although fewer investigations have been carried out in other species, evidence from the available data clearly indicates that TRH acts in the brain to increase gastric secretion and motility in the rabbit, sheep, and cat. Lack of stimulation of gastric acid secretion after third ventricle injection in the dog may be related to species difference or to rapid degradation of the peptide before it reaches its site of action. TRH acts centrally to stimulate gastric function and also intestinal secretion, motility, and transit as reported mostly in rabbits (TABLE 3). TRH produces enteropooling and release of serotonin in portal blood, increases duodenal and intestinal contractility and colonic transit, and elicits diarrhea. All these effects were shown to be vagally mediated. Stimulation of intestinal motility and transit by central injection of TRH has been observed in rats and sheep. The biological activity of centrally injected TRH is well correlated with the presence of TRH immunoreactivity and receptors in the dorsal vagal complex containing afferent and efferent connections to the stomach. Moreover, endogenous release of brain TRH in rats mimics the stimulatory effect of centrally injected TRH on gastric function. Although the lack of a specific TRH antagonist has hampered assessment of the physiological role of TRH, converging neuropharmacological, neuroanatomical, and physiological findings support the concept that TRH in the dorsal vagal complex may play a physiological role in the vagal regulation of gastrointestinal function.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y Taché
- Center for Ulcer Research and Education, Veterans Administration Medical Center, Los Angeles, California
| | | | | |
Collapse
|
44
|
Garrick T, Veiseh A, Sierra A, Weiner H, Taché Y. Corticotropin-releasing factor acts centrally to suppress stimulated gastric contractility in the rat. REGULATORY PEPTIDES 1988; 21:173-81. [PMID: 3134672 DOI: 10.1016/0167-0115(88)90101-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of intracisternal (i.c.) and intravenous (i.v.) administration of corticotropin-releasing factor (CRF) on gastric contractility stimulated by i.c. injection of the TRH analog RX77368 [p-Glu-His-(3,3'-dimethyl)-Pro-NH2], 2-deoxy-D-glucose (2DG) and i.v. infusion of carbachol were evaluated in rats under urethane anesthesia. Gastric contractility was monitored using acutely implanted extraluminal force transducers sutured to the corpus of the stomach. I.c. injection of CRF (6.3-210 pmol) resulted in a dose dependent suppression of gastric contractility stimulated by RX77368 (260 pmol) and 2DG (6 mg). Gastric inhibitory response to i.c. CRF was rapid in onset and lasted at least 45 min. Carbachol (200 mg/kg/h)-induced stimulation of gastric contractility was not modified by i.c. injection of CRF. The stimulation of contractility caused by both i.v. carbachol and i.c. 2DG were completely inhibited by atropine (1 mg/kg, i.v.). CRF (210 pmol) given i.v. suppressed RX77368-stimulated gastric contractions, but was less than 1/10 as potent as administered i.c. I.v. CRF (210 pmol) did not alter 2DG- or carbachol-induced gastric contractions. These results demonstrate that the i.c. administration of CRF acts within the brain to inhibit gastric contractility elicited by vagus-dependent mechanisms.
Collapse
Affiliation(s)
- T Garrick
- Department of Psychiatry, West Los Angeles Veterans Administration Medical Center, Wadsworth Division 90073
| | | | | | | | | |
Collapse
|
45
|
Taché Y, Maeda-Hagiwara M, Goto Y, Garrick T. Central nervous system action of TRH to stimulate gastric function and ulceration. Peptides 1988; 9 Suppl 1:9-13. [PMID: 2856654 DOI: 10.1016/0196-9781(88)90216-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracisternal or intracerebroventricular injection of TRH (0.1-10 micrograms) in rats stimulated the secretion of gastric acid and pepsin secretion, increased gastric mucosal blood flow and gastric contractility and emptying, induced gastric hemorrhagic lesions and aggravated experimental ulcers elicited by aspirin, serotonin or indomethacin. TRH action was dose-dependent, rapid in onset and central nervous system-mediated by activation of the parasympathetic outflow to the stomach and cholinergic receptors. The stable TRH analog, RX 77368, was more potent and longer lasting than TRH. TRH and its stable analog appear as new chemical probes to produce centrally-mediated vagal-dependent stimulation of gastric function and experimental ulcers. The physiologic role of endogenous TRH in the central regulation of gastric function and ulceration remains to be established.
Collapse
Affiliation(s)
- Y Taché
- Center for Ulcer Research and Education, VA Wadsworth Medical Center, University of California, School of Medicine, Los Angeles 90073
| | | | | | | |
Collapse
|
46
|
Abstract
Stereotaxic microinjection of thyrotropin releasing hormone (TRH) into 16 brain areas revealed that only three sites, the medial septum and the lateral and anterior hypothalami, were sensitive to a 1.0 ug dose in stimulating intestinal transit in anesthetized rats. The medial septum and anterior hypothalamus also responded to 0.1 ug, but not to 0.01 ug, of TRH. Because TRH and its receptors are distributed in these brain areas, the present results suggest a possible role for this peptide in the central regulation of gastrointestinal activity.
Collapse
Affiliation(s)
- M A Carino
- Department of Pharmacology, University of Washington School of Medicine, Seattle 98195
| | | |
Collapse
|
47
|
Maeda-Hagiwara M, Taché Y. Central nervous system action of TRH to stimulate gastric emptying in rats. REGULATORY PEPTIDES 1987; 17:199-207. [PMID: 3108965 DOI: 10.1016/0167-0115(87)90063-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of intracisternal injection of TRH on gastric emptying of a liquid meal was investigated in 24 h fasted rats using the phenol red method. Intracisternal injection of TRH, RX 77368, or [N-Val2]-TRH, an analog devoid of TSH-releasing activity, 5 min prior to a meal, stimulated gastric emptying measured 20 min later. TRH action was dose dependent (1-100 ng), and rapid in onset. The calculated time for emptying half of the meal was decreased from 16 +/- 3 min (control group) to 4 +/- 1 min (TRH 30 ng). The stable analog, RX 77368, unlike TRH, stimulated gastric emptying when the meal was given 60 min after peptide injection. Intravenous injection of atropine (2.5 micrograms) inhibited and that of carbachol (1 microgram) stimulated gastric emptying whereas i.v. injection of TRH (0.1-1 microgram) had no effect. Vagotomy but not adrenalectomy reversed the increase in gastric emptying induced by intracisternal TRH. Atropine blocked the stimulatory effect of TRH and carbachol. These results demonstrate that TRH acts within the brain to stimulate gastric emptying through vagus-dependent and cholinergic pathways whereas alterations of adrenal and pituitary-thyroid secretion do not play an important role.
Collapse
|