1
|
Lai AY, Bazzigaluppi P, Morrone CD, Hill ME, Stefanovic B, McLaurin J. Compromised Cortical-Hippocampal Network Function From Transient Hypertension: Linking Mid-Life Hypertension to Late Life Dementia Risk. Front Neurosci 2022; 16:897206. [PMID: 35812238 PMCID: PMC9260147 DOI: 10.3389/fnins.2022.897206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Mid-life hypertension is a major risk factor for developing dementia later in life. While anti-hypertensive drugs restore normotension, dementia risk remains above baseline suggesting that brain damage sustained during transient hypertension is irreversible. The current study characterized a rat model of transient hypertension with an extended period of normotensive recovery: F344 rats were treated with L-NG-Nitroarginine methyl ester (L-NAME) for 1 month to induce hypertension then allowed up to 4 months of recovery. With respect to cognitive deficits, comparison between 1 month and 4 months of recovery identified initial deficits in spatial memory that resolved by 4 months post-hypertension; contrastingly, loss of cognitive flexibility did not. The specific cells and brain regions underlying these cognitive deficits were investigated. Irreversible structural damage to the brain was observed in both the prefrontal cortex and the hippocampus, with decreased blood vessel density, myelin and neuronal loss. We then measured theta-gamma phase amplitude coupling as a readout for network function, a potential link between the observed cognitive and pathological deficits. Four months after hypertension, we detected decreased theta-gamma phase amplitude coupling within each brain region and a concurrent increase in baseline connectivity between the two regions reflecting an attempt to maintain function that may account for the improvement in spatial memory. Our results demonstrate that connectivity between prefrontal cortex and hippocampus is a vulnerable network affected by transient hypertension which is not rescued over time; thus demonstrating for the first time a mechanistic link between the long-term effects of transient hypertension and dementia risk.
Collapse
Affiliation(s)
- Aaron Y. Lai
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- *Correspondence: Aaron Y. Lai,
| | - Paolo Bazzigaluppi
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Mary E. Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion. Proc Natl Acad Sci U S A 2021; 118:2023749118. [PMID: 34155102 DOI: 10.1073/pnas.2023749118] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rises in local neural activity trigger local increases of cerebral blood flow, which is essential to match local energy demands. However, the specific location of microvascular flow control is incompletely understood. Here, we used two-photon microscopy to observe brain microvasculature in vivo. Small spatial movement of a three-dimensional (3D) vasculature makes it challenging to precisely measure vessel diameter at a single x-y plane. To overcome this problem, we carried out four-dimensional (x-y-z-t) imaging of brain microvessels during exposure to vasoactive molecules in order to constrain the impact of brain movements on the recordings. We demonstrate that rises in synaptic activity, acetylcholine, nitric oxide, cyclic guanosine monophosphate, ATP-sensitive potassium channels, and endothelin-1 exert far greater effects on brain precapillary sphincters and first-order capillaries than on penetrating arterioles or downstream capillaries, but with similar kinetics. The high level of responsiveness at precapillary sphincters and first-order capillaries was matched by a higher level of α-smooth muscle actin in pericytes as compared to penetrating arterioles and downstream capillaries. Mathematical modeling based on 3D vasculature reconstruction showed that precapillary sphincters predominantly regulate capillary blood flow and pressure as compared to penetrating arterioles and downstream capillaries. Our results confirm a key role for precapillary sphincters and pericytes on first-order capillaries as sensors and effectors of endothelium- or brain-derived vascular signals.
Collapse
|
3
|
Bazzigaluppi P, Beckett TL, Koletar MM, Hill ME, Lai A, Trivedi A, Thomason L, Dorr A, Gallagher D, Librach CL, Joo IL, McLaurin J, Stefanovic B. Combinatorial Treatment Using Umbilical Cord Perivascular Cells and Aβ Clearance Rescues Vascular Function Following Transient Hypertension in a Rat Model of Alzheimer Disease. Hypertension 2019; 74:1041-1051. [PMID: 31476904 PMCID: PMC6739147 DOI: 10.1161/hypertensionaha.119.13187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Supplemental Digital Content is available in the text. Transient hypertension is a risk factor for Alzheimer disease (AD), but the effects of this interaction on brain vasculature are understudied. Addressing vascular pathology is a promising avenue to potentiate the efficacy of treatments for AD. We used arterial spin labeling magnetic resonance imaging to longitudinally assess brain vascular function and immunohistopathology to examine cerebrovascular remodeling and amyloid load. Hypertension was induced for 1 month by administration of l-NG-nitroarginine-methyl-ester in TgF344-AD rats at the prodromal stage. Following hypertension, nontransgenic rats showed transient cerebrovascular changes, whereas TgF344-AD animals exhibited sustained alterations in cerebrovascular function. Human umbilical cord perivascular cells in combination with scyllo-inositol, an inhibitor of Aβ oligomerization, resulted in normalization of hippocampal vascular function and remodeling, in contrast to either treatment alone. Prodromal stage hypertension exacerbates latter AD pathology, and the combination of human umbilical cord perivascular cells with amyloid clearance promotes cerebrovascular functional recovery.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Tina L Beckett
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Margaret M Koletar
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Mary E Hill
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Aaron Lai
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Arunachala Trivedi
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Lynsie Thomason
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Adrienne Dorr
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | | | - Clifford L Librach
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.).,Division of Obstetrics and Gynaecology, Laboratory Medicine and Pathobiology (C.L.), University of Toronto, Canada.,CReATe Research Program, Toronto, Canada (D.G., C.L.L.)
| | - Illsung L Joo
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - JoAnne McLaurin
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.)
| | - Bojana Stefanovic
- From the Sunnybrook Research Institute, Toronto, Canada (P.B., T.L.B., M.M.K., M.E.H., A.L., A.T., L.T., A.D., C.L.L., I.L.J., J.M., B.S.).,Department of Medical Biophysics (B.S.), University of Toronto, Canada
| |
Collapse
|
4
|
Majzúnová M, Pakanová Z, Kvasnička P, Bališ P, Čačányiová S, Dovinová I. Age-dependent redox status in the brain stem of NO-deficient hypertensive rats. J Biomed Sci 2017; 24:72. [PMID: 28893245 PMCID: PMC5594586 DOI: 10.1186/s12929-017-0366-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The brain stem contains important nuclei that control cardiovascular function via the sympathetic nervous system (SNS), which is strongly influenced by nitric oxide. Its biological activity is also largely determined by oxygen free radicals. Despite many experimental studies, the role of AT1R-NAD(P)H oxidase-superoxide pathway in NO-deficiency is not yet sufficiently clarified. We determined changes in free radical signaling and antioxidant and detoxification response in the brain stem of young and adult Wistar rats during chronic administration of exogenous NO inhibitors. METHODS Young (4 weeks) and adult (10 weeks) Wistar rats were treated with 7-nitroindazole (7-NI group, 10 mg/kg/day), a specific nNOS inhibitor, with NG-nitro-L-arginine-methyl ester (L-NAME group, 50 mg/kg/day), a nonspecific NOS inhibitor, and with drinking water (Control group) during 6 weeks. Systolic blood pressure was measured by non-invasive plethysmography. Expression of genes (AT1R, AT2R, p22phox, SOD and NOS isoforms, HO-1, MDR1a, housekeeper GAPDH) was identified by real-time PCR. NOS activity was detected by conversion of [3H]-L-arginine to [3H]-L-citrulline and SOD activity was measured using UV VIS spectroscopy. RESULTS We observed a blood pressure elevation and decrease in NOS activity only after L-NAME application in both age groups. Gene expression of nNOS (youngs) and eNOS (adults) in the brain stem decreased after both inhibitors. The radical signaling pathway triggered by AT1R and p22phox was elevated in L-NAME adults, but not in young rats. Moreover, L-NAME-induced NOS inhibition increased antioxidant response, as indicated by the observed elevation of mRNA SOD3, HO-1, AT2R and MDR1a in adult rats. 7-NI did not have a significant effect on AT1R-NADPH oxidase-superoxide pathway, yet it affected antioxidant response of mRNA expression of SOD1 and stimulated total activity of SOD in young rats and mRNA expression of AT2R in adult rats. CONCLUSION Our results show that chronic NOS inhibition by two different NOS inhibitors has age-dependent effect on radical signaling and antioxidant/detoxificant response in Wistar rats. While 7-NI had neuroprotective effect in the brain stem of young Wistar rats, L-NAME- induced NOS inhibition evoked activation of AT1R-NAD(P)H oxidase pathway in adult Wistar rats. Triggering of the radical pathway was followed by activation of protective compensation mechanism at the gene expression level.
Collapse
Affiliation(s)
- Miroslava Majzúnová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovakia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Kvasnička
- Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Peter Bališ
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovakia
| | - Soňa Čačányiová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovakia
| | - Ima Dovinová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovakia.
| |
Collapse
|
5
|
Borror A. Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise. Med Hypotheses 2017; 106:1-5. [DOI: 10.1016/j.mehy.2017.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/09/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022]
|
6
|
Rocha JN. Effect of S-methyl-l-thiocitrulline dihydrochloride on rat micturition reflex. Int Braz J Urol 2016; 42:1018-1027. [PMID: 24893916 PMCID: PMC5066901 DOI: 10.1590/s1677-5538.ibju.2015.0153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 01/19/2016] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To evaluate the effect of neuronal nitric oxide synthase on the striated urethral sphincter and the urinary bladder. MATERIALS AND METHODS A coaxial catheter was implanted in the proximal urethra and another one in the bladder of female rats, which were anesthetized with subcutaneous injection of urethane. The urethral pressure with saline continuous infusion and bladder isovolumetric pressure were simultaneously recorded. Two groups of rats were formed. In group I, an intrathecal catheter was implanted on the day of the experiment at the L6-S1 level of the spinal cord; in group II, an intracerebroventricular cannula was placed 5-6 days before the experiment. RESULTS It was verified that the group treated with S-methyl-L-thio-citrulline, via intrathecal pathway, showed complete or partial inhibition of the urethral sphincter relaxation and total inhibition of the micturition reflexes. The urethral sphincter and the detrusor functions were recovered after L-Arginine administration. When S-methyl-Lthio-citrulline was administered via intracerebroventricular injection, there was a significant increase of urethral sphincter tonus while preserving the sphincter relaxation and the detrusor contractions, at similar levels as before the use of the drugs. Nevertheless there was normalization of the urethral tonus when L-Arginine was applied. CONCLUSIONS The results indicate that, in female rats anaesthetized with urethane, the nNOS inhibitor administrated through the intrathecal route inhibits urethral sphincter relaxation, while intracerebroventricular injection increases the sphincter tonus, without changing bladder function. These changes were reverted by L-Arginine administration. These findings suggest that the urethral sphincter and detrusor muscle function is modulated by nitric oxide.
Collapse
Affiliation(s)
- Jeová Nina Rocha
- Divisão de Urologia, Faculdade de Medicina Ribeirão Preto, Universidade de São Paulo, SP, Brasil
| |
Collapse
|
7
|
Kuroda K, Suzumura K, Shirakawa T, Hiraishi T, Nakahara Y, Fushiki H, Honda S, Naraoka H, Miyoshi S, Aoki Y. Investigation of Mechanisms for MK-801-Induced Neurotoxicity Utilizing Metabolomic Approach. Toxicol Sci 2015; 146:344-53. [PMID: 26018836 DOI: 10.1093/toxsci/kfv100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single treatment of rats with the noncompetitive N-methyl-D-aspartate receptor antagonist MK-801 induces neuronal cell degeneration and death in the retrosplenial/posterior cingulate cortex (RS/PC) region, along with local cerebral glucose utilization. However, the relationship between this neuronal cell degeneration and death and glucose utilization remains unclear. To investigate the mechanism of MK-801-induced neurotoxicity and its relation to glucose utilization, changes in endogenous metabolites in the RS/PC region of MK-801 treated rats were assessed using metabolomics. Inverse correlation between citrulline and arginine levels suggested increased nitric oxide (NO) production. In addition, decreased levels of purine metabolites suggested enhanced xanthine oxidase activity accompanied with reactive oxygen species (ROS) production. Histopathological analysis confirmed that the production of ROS in the RS/PC region was increased by MK-801 and that the nonspecific NO synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) prevented MK-801-induced neuronal cell death. These results suggest that NO increases oxidative stress-related cell death. Increased levels of metabolites of glucose metabolism suggested enhanced energy production via glycolysis. To confirm the relationship between NO and glucose utilization, positron emission tomography (PET) imaging with [(18)F] fluoro-2-deoxy-d-glucose ([(18)F] FDG) was conducted. [(18)F] FDG-PET imaging accompanied by co-treatment of L-NAME with MK-801 demonstrated that L-NAME ameliorated MK-801-induced glucose utilization.In conclusion, MK-801 induces NO and ROS production in the RS/PC region, which might subsequently induce oxidative stress and in turn neuronal cell death. In addition, MK-801-induced NO production increased glucose utilization and affected glucose metabolism, the imbalance of which might generate additional oxidative stress related to neuronal cell death.
Collapse
Affiliation(s)
- Kanae Kuroda
- *Drug Safety Research Labs, Drug Discovery Research, Astellas Pharma Inc, Yodogawa-Ku, Osaka 532-8514, Japan; and
| | - Kenichi Suzumura
- Translational Science Research Labs, Drug Discovery Research, Astellas Pharma Inc, Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - Takafumi Shirakawa
- *Drug Safety Research Labs, Drug Discovery Research, Astellas Pharma Inc, Yodogawa-Ku, Osaka 532-8514, Japan; and
| | - Tomoko Hiraishi
- Translational Science Research Labs, Drug Discovery Research, Astellas Pharma Inc, Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - Yutaka Nakahara
- *Drug Safety Research Labs, Drug Discovery Research, Astellas Pharma Inc, Yodogawa-Ku, Osaka 532-8514, Japan; and
| | - Hiroshi Fushiki
- Translational Science Research Labs, Drug Discovery Research, Astellas Pharma Inc, Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - Sokichi Honda
- Translational Science Research Labs, Drug Discovery Research, Astellas Pharma Inc, Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - Hitoshi Naraoka
- *Drug Safety Research Labs, Drug Discovery Research, Astellas Pharma Inc, Yodogawa-Ku, Osaka 532-8514, Japan; and
| | - Sosuke Miyoshi
- Translational Science Research Labs, Drug Discovery Research, Astellas Pharma Inc, Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - Yoshinobu Aoki
- *Drug Safety Research Labs, Drug Discovery Research, Astellas Pharma Inc, Yodogawa-Ku, Osaka 532-8514, Japan; and
| |
Collapse
|
8
|
Branco LG, Soriano RN, Steiner AA. Gaseous Mediators in Temperature Regulation. Compr Physiol 2014; 4:1301-38. [DOI: 10.1002/cphy.c130053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Kwiatkoski M, Soriano RN, da Silva GSF, Francescato HD, Coimbra TM, Glass ML, Carnio EC, Branco LGS. Endogenous preoptic hydrogen sulphide attenuates hypoxia-induced hyperventilation. Acta Physiol (Oxf) 2014; 210:913-27. [PMID: 24119224 DOI: 10.1111/apha.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/06/2013] [Accepted: 09/26/2013] [Indexed: 11/27/2022]
Abstract
AIM We hypothesized that hydrogen sulphide (H2 S), acting specifically in the anteroventral preoptic region (AVPO - an important integrating site of thermal and cardiorespiratory responses to hypoxia in which H2 S synthesis has been shown to be increased under hypoxic conditions), modulates the hypoxic ventilatory response. METHODS To test this hypothesis, we measured pulmonary ventilation (V˙E) and deep body temperature of rats before and after intracerebroventricular (icv) or intra-AVPO microinjection of aminooxyacetate (AOA; CBS inhibitor) or Na2 S (H2 S donor) followed by 60 min of hypoxia exposure (7% O2 ). Furthermore, we assessed the AVPO levels of H2 S of rats exposed to hypoxia. Control rats were kept under normoxia. RESULTS Microinjection of vehicle, AOA or Na2 S did not change V˙E under normoxic conditions. Hypoxia caused an increase in ventilation, which was potentiated by microinjection of AOA because of a further augmented tidal volume. Conversely, treatment with Na2 S significantly attenuated this response. The in vivo H2 S data indicated that during hypoxia the lower the deep body temperature the smaller the degree of hyperventilation. Under hypoxia, H2 S production was found to be increased in the AVPO, indicating that its production is responsive to hypoxia. The CBS inhibitor attenuated the hypoxia-induced increase in the H2 S synthesis, suggesting an endogenous synthesis of the gas. CONCLUSION These data provide solid evidence that AVPO H2 S production is stimulated by hypoxia, and this gaseous messenger exerts an inhibitory modulation of the hypoxic ventilatory response. It is probable that the H2 S modulation of hypoxia-induced hyperventilation is at least in part in proportion to metabolism.
Collapse
Affiliation(s)
- M. Kwiatkoski
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - R. N. Soriano
- Nursing School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - G. S. F. da Silva
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - H. D. Francescato
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - T. M. Coimbra
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - M. L. Glass
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - E. C. Carnio
- Nursing School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - L. G. S. Branco
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
10
|
García-Galiano D, Pineda R, Roa J, Ruiz-Pino F, Sánchez-Garrido MA, Castellano JM, Aguilar E, Navarro VM, Pinilla L, Tena-Sempere M. Differential modulation of gonadotropin responses to kisspeptin by aminoacidergic, peptidergic, and nitric oxide neurotransmission. Am J Physiol Endocrinol Metab 2012; 303:E1252-63. [PMID: 23011064 DOI: 10.1152/ajpendo.00250.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Kisspeptins (Kp), products of the Kiss1 gene, have emerged as essential elements in the control of GnRH neurons and gonadotropic secretion. However, despite considerable progress in the field, to date limited attention has been paid to elucidate the potential interactions of Kp with other neurotransmitters known to centrally regulate the gonadotropic axis. We characterize herein the impact of manipulations of key aminoacidergic (glutamate and GABA), peptidergic (NKB, Dyn, and MCH), and gaseous [nitric oxide (NO)] neurotransmission on gonadotropin responses to Kp-10 in male rats. Blockade of ionotropic glutamate receptors (of the NMDA and non-NMDA type) variably decreased LH responses to Kp-10, whereas activation of both ionotropic and metabotropic receptors, which enhanced LH and FSH release per se, failed to further increase gonadotropin responses to Kp-10. In fact, coactivation of metabotropic receptors attenuated LH and FSH responses to Kp-10. Selective activation of GABA(A) receptors decreased Kp-induced gonadotropin secretion, whereas their blockade elicited robust LH and FSH bursts and protracted responses to Kp-10 when combined with GABA(B) receptor inhibition. Blockade of Dyn signaling (at κ-opioid receptors) enhanced LH responses to Kp-10, whereas activation of Dyn and NKB signaling modestly reduced Kp-induced LH and FSH release. Finally, MCH decreased basal LH secretion and modestly reduced FSH responses to Kp-10, whereas LH responses to Kp-10 were protracted after inhibition of NO synthesis. In summary, we present herein evidence for the putative roles of glutamate, GABA, Dyn, NKB, MCH, and NO in modulating gonadotropic responses to Kp in male rats. Our pharmacological data will help to characterize the central interactions and putative hierarchy of key neuroendocrine pathways involved in the control of the gonadotropic axis.
Collapse
Affiliation(s)
- David García-Galiano
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Demchenko IT, Moskvin AN, Krivchenko AI, Piantadosi CA, Allen BW. Nitric oxide-mediated central sympathetic excitation promotes CNS and pulmonary O₂ toxicity. J Appl Physiol (1985) 2012; 112:1814-23. [PMID: 22442027 PMCID: PMC3379151 DOI: 10.1152/japplphysiol.00902.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/16/2012] [Indexed: 01/29/2023] Open
Abstract
In hyperbaric oxygen (HBO(2)) at or above 3 atmospheres absolute (ATA), autonomic pathways link central nervous system (CNS) oxygen toxicity to pulmonary damage, possibly through a paradoxical and poorly characterized relationship between central nitric oxide production and sympathetic outflow. To investigate this possibility, we assessed sympathetic discharges, catecholamine release, cardiopulmonary hemodynamics, and lung damage in rats exposed to oxygen at 5 or 6 ATA. Before HBO(2) exposure, either a selective inhibitor of neuronal nitric oxide synthase (NOS) or a nonselective NOS inhibitor was injected directly into the cerebral ventricles to minimize effects on the lung, heart, and peripheral circulation. Experiments were performed on both anesthetized and conscious rats to differentiate responses to HBO(2) from the effects of anesthesia. EEG spikes, markers of CNS toxicity in anesthetized animals, were approximately four times as likely to develop in control rats than in animals with central NOS inhibition. In inhibitor-treated animals, autonomic discharges, cardiovascular pressures, catecholamine release, and cerebral blood flow all remained below baseline throughout exposure to HBO(2). In control animals, however, initial declines in these parameters were followed by significant increases above their baselines. In awake animals, central NOS inhibition significantly decreased the incidence of clonic-tonic convulsions or delayed their onset, compared with controls. The novel findings of this study are that NO produced by nNOS in the periventricular regions of the brain plays a critical role in the events leading to both CNS toxicity in HBO(2) and to the associated sympathetic hyperactivation involved in pulmonary injury.
Collapse
Affiliation(s)
- Ivan T Demchenko
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
12
|
Soriano R, Kwiatkoski M, Batalhao M, Branco L, Carnio E. Interaction between the carbon monoxide and nitric oxide pathways in the locus coeruleus during fever. Neuroscience 2012; 206:69-80. [DOI: 10.1016/j.neuroscience.2012.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/06/2011] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
|
13
|
Wood KC, Batchelor AM, Bartus K, Harris KL, Garthwaite G, Vernon J, Garthwaite J. Picomolar nitric oxide signals from central neurons recorded using ultrasensitive detector cells. J Biol Chem 2011; 286:43172-81. [PMID: 22016390 PMCID: PMC3234811 DOI: 10.1074/jbc.m111.289777] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a widespread signaling molecule with potentially multifarious actions of relevance to health and disease. A fundamental determinant of how it acts is its concentration, but there remains a lack of coherent information on the patterns of NO release from its sources, such as neurons or endothelial cells, in either normal or pathological conditions. We have used detector cells having the highest recorded NO sensitivity to monitor NO release from brain tissue quantitatively and in real time. Stimulation of NMDA receptors, which are coupled to activation of neuronal NO synthase, routinely generated NO signals from neurons in cerebellar slices. The average computed peak NO concentrations varied across the anatomical layers of the cerebellum, from 12 to 130 pm. The mean value found in the hippocampus was 200 pm. Much variation in the amplitudes recorded by individual detector cells was observed, this being attributable to their location at variable distances from the NO sources. From fits to the data, the NO concentrations at the source surfaces were 120 pm to 1.4 nm, and the underlying rates of NO generation were 36–350 nm/s, depending on area. Our measurements are 4–5 orders of magnitude lower than reported by some electrode recordings in cerebellum or hippocampus. In return, they establish coherence between the NO concentrations able to elicit physiological responses in target cells through guanylyl cyclase-linked NO receptors, the concentrations that neuronal NO synthase is predicted to generate locally, and the concentrations that neurons actually produce.
Collapse
Affiliation(s)
- Katherine C Wood
- Wolfson Institute for Biomedical Research, University College London, London WCIE 6BT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Whitaker AM, Sulzer JK, Molina PE. Augmented central nitric oxide production inhibits vasopressin release during hemorrhage in acute alcohol-intoxicated rodents. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1529-39. [PMID: 21849630 DOI: 10.1152/ajpregu.00035.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute alcohol intoxication (AAI) attenuates the AVP response to hemorrhage, contributing to impaired hemodynamic counter-regulation. This can be restored by central cholinergic stimulation, implicating disrupted signaling regulating AVP release. AVP is released in response to hemorrhage and hyperosmolality. Studies have demonstrated nitric oxide (NO) to play an inhibitory role on AVP release. AAI has been shown to increase NO content in the paraventricular nucleus. We hypothesized that the attenuated AVP response to hemorrhage during AAI is the result of increased central NO inhibition. In addition, we predicted that the increased NO tone during AAI would impair the AVP response to hyperosmolality. Conscious male Sprague-Dawley rats (300-325 g) received a 15-h intragastric infusion of alcohol (2.5 g/kg + 300 mg·kg(-1)·h(-1)) or dextrose prior to a 60-min fixed-pressure hemorrhage (∼40 mmHg) or 5% hypertonic saline infusion (0.05 ml·kg(-1)·min(-1)). AAI attenuated the AVP response to hemorrhage, which was associated with increased paraventricular NO content. In contrast, AAI did not impair the AVP response to hyperosmolality. This was accompanied by decreased paraventricular NO content. To confirm the role of NO in the alcohol-induced inhibition of AVP release during hemorrhage, the nitric oxide synthase inhibitor, nitro-l-arginine methyl ester (l-NAME; 250 μg/5 μl), was administered centrally prior to hemorrhage. l-NAME did not further increase AVP levels during hemorrhage in dextrose-treated animals; however, it restored the AVP response during AAI. These results indicate that AAI impairs the AVP response to hemorrhage, while not affecting the response to hyperosmolality. Furthermore, these data demonstrate that the attenuated AVP response to hemorrhage is the result of augmented central NO inhibition.
Collapse
Affiliation(s)
- Annie M Whitaker
- Louisiana State University Health Science Center, Department of Physiology and Alcohol and Drug Abuse, Center of Excellence, New Orleans, Louisiana 70112-1393, USA
| | | | | |
Collapse
|
15
|
Wegener G, Volke V. Nitric Oxide Synthase Inhibitors as Antidepressants. Pharmaceuticals (Basel) 2010; 3:273-299. [PMID: 27713253 PMCID: PMC3991030 DOI: 10.3390/ph3010273] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/07/2010] [Accepted: 01/19/2010] [Indexed: 11/22/2022] Open
Abstract
Affective and anxiety disorders are widely distributed disorders with severe social and economic effects. Evidence is emphatic that effective treatment helps to restore function and quality of life. Due to the action of most modern antidepressant drugs, serotonergic mechanisms have traditionally been suggested to play major roles in the pathophysiology of mood and stress-related disorders. However, a few clinical and several pre-clinical studies, strongly suggest involvement of the nitric oxide (NO) signaling pathway in these disorders. Moreover, several of the conventional neurotransmitters, including serotonin, glutamate and GABA, are intimately regulated by NO, and distinct classes of antidepressants have been found to modulate the hippocampal NO level in vivo. The NO system is therefore a potential target for antidepressant and anxiolytic drug action in acute therapy as well as in prophylaxis. This paper reviews the effect of drugs modulating NO synthesis in anxiety and depression.
Collapse
Affiliation(s)
- Gregers Wegener
- Centre for Psychiatric Research, University of Aarhus, Skovagervej 2, DK-8240 Risskov, Denmark.
| | - Vallo Volke
- Department of Physiology, University of Tartu, Ravila 19, EE-70111 Tartu, Estonia.
| |
Collapse
|
16
|
Young CN, Fisher JP, Gallagher KM, Whaley-Connell A, Chaudhary K, Victor RG, Thomas GD, Fadel PJ. Inhibition of nitric oxide synthase evokes central sympatho-excitation in healthy humans. J Physiol 2009; 587:4977-86. [PMID: 19723781 DOI: 10.1113/jphysiol.2009.177204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Animal studies have indicated that nitric oxide is a key signalling molecule involved in the tonic restraint of central sympathetic outflow from the brainstem. Extension of these findings to humans has been difficult because systemic infusion of nitric oxide synthase (NOS) inhibitors increases blood pressure due to inhibition of endothelial NOS, resulting in activation of the arterial baroreflex and subsequent inhibition of central sympathetic outflow. To overcome this confounding inhibitory influence of the baroreflex, in the current study we directly measured skin sympathetic nerve activity (SNA), which is not under baroreceptor control. Healthy, normotensive humans were studied before, during a 60 min intravenous infusion of the NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 4 mg kg(1)), and for 120 min following the infusion (i.e. 180 min total). Skin SNA and arterial blood pressure (BP) were continuously measured. BP was increased from baseline at the end of the l-NAME infusion (14 +/- 2 mmHg; P < 0.05) and remained significantly elevated for the remainder of the experiment (18 +/- 3 mmHg; P < 0.05). Similarly, systemic NOS inhibition produced time-dependent increases in skin SNA, such that skin SNA was elevated at the end of the l-NAME infusion (total activity, 200 +/- 22% baseline; P = 0.08) and was further increased at the end of the study protocol (total activity, 350 +/- 41% baseline; P < 0.05). Importantly, skin SNA remained unchanged during time and hypertensive (phenylephrine) control experiments. These findings indicate that pharmacological inhibition of NOS causes sympathetic activation and support a role of nitric oxide in central sympathetic control in humans.
Collapse
Affiliation(s)
- Colin N Young
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide 2009; 21:92-103. [PMID: 19602444 PMCID: PMC2779337 DOI: 10.1016/j.niox.2009.07.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/06/2009] [Indexed: 01/10/2023]
Abstract
Clarity about the nitric oxide (NO) concentrations existing physiologically is essential for developing a quantitative understanding of NO signalling, for performing experiments with NO that emulate reality, and for knowing whether or not NO concentrations become abnormal in disease states. A decade ago, a value of about 1 μM seemed reasonable based on early electrode measurements and a provisional estimate of the potency of NO for its guanylyl cyclase-coupled receptors, which mediate physiological NO signal transduction. Since then, numerous efforts to measure NO concentrations directly using electrodes in cells and tissues have yielded an irreconcilably large spread of values. In compensation, data from several alternative approaches have now converged to provide a more coherent picture. These approaches include the quantitative analysis of NO-activated guanylyl cyclase, computer modelling based on the type, activity and amount of NO synthase enzyme contained in cells, the use of novel biosensors to monitor NO release from single endothelial cells and neurones, and the use of guanylyl cyclase as an endogenous NO biosensor in tissue subjected to a variety of challenges. All these independent lines of evidence suggest the physiological NO concentration range to be 100 pM (or below) up to ∼5 nM, orders of magnitude lower than was once thought.
Collapse
Affiliation(s)
- Catherine N Hall
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | | |
Collapse
|
18
|
Hall CN, Attwell D. Assessing the physiological concentration and targets of nitric oxide in brain tissue. J Physiol 2008; 586:3597-615. [PMID: 18535091 DOI: 10.1113/jphysiol.2008.154724] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Low nanomolar concentrations of nitric oxide activate guanylyl cyclase to produce cGMP, which has diverse physiological effects. Higher concentrations inhibit mitochondrial respiration at cytochrome c oxidase and this has been proposed to be important physiologically, increasing oxygen permeation into tissue (by reducing the oxygen use of cells near blood vessels), activating AMP kinase, and regulating the relationship between cerebral blood flow and oxygen use. It is unclear, however, whether nitric oxide can accumulate physiologically to concentrations at which inhibition of respiration occurs. In rat cerebellar slices, we activated nitric oxide production from each isoform of nitric oxide synthase. Only activation of inducible nitric oxide synthase, which is expressed pathologically, caused any significant inhibition of respiration. Modelling oxygen and nitric oxide concentrations predicted that, in vivo, physiological nitric oxide levels are too low to affect respiration. Even pathologically, the nitric oxide concentration may only rise to 2.5 nm, producing a 1.5% inhibition of respiration. Thus, under physiological conditions, nitric oxide signals do not inhibit respiration but are well-tuned to the dynamic range of guanylyl cyclase activation.
Collapse
Affiliation(s)
- Catherine N Hall
- Department of Physiology, University College London, Gower St, London WC1E 6BT, UK.
| | | |
Collapse
|
19
|
Torrecilla M, Ruiz-Ortega JA, Ugedo L, Pineda J. Excitatory regulation of noradrenergic neurons by l-arginine/nitric oxide pathway in the rat locus coeruleus in vivo. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:337-47. [PMID: 17473915 DOI: 10.1007/s00210-007-0163-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 04/04/2007] [Indexed: 11/28/2022]
Abstract
To elucidate conflicting findings about the role of L-arginine/nitric oxide (NO) pathway in the locus coeruleus (LC), we investigated the effects of different drugs affecting NO concentrations by single-unit extracellular recordings from LC neurons in vivo and in vitro. In anesthetized rats, central (3.8-15.3 nmol i.c.v.) and local (16.5-66 pmol into the LC) administrations of the NO donor sodium nitroprusside, but not those of the inactive analogue potassium ferricyanide (16.5-66 pmol into the LC), increased by 65-84% the firing rate of LC neurons. In brain slices, low concentrations (50-200 microM) of diethylamine/NO complex, a short-lived NO releaser, also increased the neuron firing rate, although higher drug concentrations (400-800 microM) caused slowly reversible reductions of the firing activity. On the other hand, the NO synthase inhibitors N(omega)-nitro-L-arginine methyl ester (L-NAME) (148-371 nmol i.c.v.) and N(omega)-nitro-L-arginine (L-NA) (46 nmol i.c.v.) gradually decreased the firing rate of LC neurons, whereas the NO synthase substrate L-arginine (0.71-1.42 micromol i.c.v. and 0.6-4.8 nmol into the LC) increased the neuron activity. The latter effect was not mimicked by the vehicle or the less active isomer D-arginine (0.6-4.8 nmol into the LC). Unexpectedly, pretreatment with high concentrations of L-NAME (371 nmol and 18.5 micromol i.c.v.) or L-NA (45.6 nmol i.c.v. and 0.24 nmol into the LC) failed to block the effect of L-arginine. The glutamate receptor antagonist kynurenic acid (1 micromol i.c.v.) strongly reduced the effect of L-arginine but not that of sodium nitroprusside. These data confirm in vivo a direct excitatory effect of NO on LC neurons and suggest a tonic regulation of noradrenergic neurons by NO in vivo. L-arginine also excites LC neurons, but this effect may be caused by a nitric-oxide-unrelated glutamate-receptor-mediated mechanism.
Collapse
Affiliation(s)
- María Torrecilla
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country (UPV/EHU), Sarriena Auzoa z/g, E-48940, Leioa, Bizkaia, Spain
| | | | | | | |
Collapse
|
20
|
Abstract
Nitric oxide (NO) functions as an intercellular messenger throughout the brain. For this role to be performed efficiently, there must be a mechanism for neutralizing NO, but whether an active biological process exists, or whether NO is lost mainly through diffusion is unclear. To investigate this issue, rat cerebellar slices were exposed to constant levels of NO and the cGMP generated within the slice used as an indicator of NO concentrations therein. NO was about 1000-fold less potent in slices (EC50, 1 microM) than in separated cells from the same tissue (EC50, 1.6 nM), consistent with access of NO to the slice interior being greatly hindered by inactivation. Supporting this interpretation, immunohistochemical analysis indicated a marked concentration gradient of cGMP across the thickness of slices exposed to subsaturating NO concentrations, signifying a marked NO gradient. Several known NO-degrading processes, including reaction with lipid peroxyl radicals, erythrocytes and superoxide ions, were eliminated as contributing factors, indicating a novel mechanism. A diffusion-inactivation model was used to estimate the kinetics of NO consumption by the slices. The best fits to experimental data indicated a Michaelis-Menten-type reaction having a Vmax of 1-2 microM s-1 and a Km of around 10 nM. The rates predict that inactivation would impose a very short half-life (<10 ms) on NO in physiological concentrations (up to 10 nM) and that it would play an important role in shaping the NO concentration profiles when it is synthesized by multiple nearby sites.
Collapse
Affiliation(s)
- C N Hall
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
21
|
Green KL, Gatto GJ, Grant KA. The Nitric Oxide Synthase Inhibitor l-NAME (N
ω-Nitro-L-Arginine Methyl Ester) Does Not Produce Discriminative Stimulus Effects Similar to Ethanol. Alcohol Clin Exp Res 2006; 21:483-488. [DOI: 10.1111/j.1530-0277.1997.tb03794.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Naik AK, Tandan SK, Kumar D, Dudhgaonkar SP. Nitric oxide and its modulators in chronic constriction injury-induced neuropathic pain in rats. Eur J Pharmacol 2005; 530:59-69. [PMID: 16364289 DOI: 10.1016/j.ejphar.2005.11.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022]
Abstract
This study was conducted to examine the role of nitric oxide (NO) in peripheral neuropathy induced by chronic constriction injury of sciatic nerve of rats by using NO precursor, NO donors and nitric oxide synthase (NOS) inhibitors. Chronic constriction injury of sciatic nerve of rats resulted in peripheral neuropathy as confirmed by nociceptive behavioural tests using mechanical, thermal and cold allodynia. NO precursor, L-arginine and NO donors sodium nitroprusside, S-nitroso-N-acetylpenicillamine potentiated the hyperalgesia and allodynia significantly suggesting proalgesic effect in neuropathic rats. Intracerebroventricular (i.c.v.) administration of rats with NOS inhibitors such as L-N(G)-nitroarginine methyl ester, N-iminoethyl lysine and 7-nitroindazole did not show any effect but i.p. administration of NOS inhibitors aminoguanidine, L-N(G)-nitroarginine methyl ester and 7-nitroindazole caused alleviation of pain. The study confirms the involvement of endogenously synthesized and exogenously administered NO in chronic constriction injury-induced neuropathy in rats. Significant increase in the levels of nitrate and nitrite in ligated sciatic nerve suggest that local up regulation of NO in the production and maintenance of neuropathic pain. In conclusion, initial attempt to manipulate L-arginine: NO pathway is indicative of therapeutic potential of these interventions in the management of neuropathic pain.
Collapse
Affiliation(s)
- Ajit K Naik
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar
| | | | | | | |
Collapse
|
23
|
Watts J, Whitton PS, Pearce B. Unexpected effects of nitric oxide synthase inhibitors on extracellular nitrite levels in the hippocampus in vivo. Pharmacology 2005; 74:163-8. [PMID: 15897676 DOI: 10.1159/000085774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 03/15/2005] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine whether extracellular nitric oxide levels in the hippocampus of freely moving animals were reduced by the administration of nitric oxide synthase (NOS) inhibitors via a microdialysis probe. Our results show that extracellular nitrite levels were increased following the infusion of N-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI), in the case of the latter, the response was biphasic. In contrast, infusion of both inhibitors together resulted in a substantial reduction in nitrite when compared to control. More predictably, the infusion of NMDA elicited an increase in extracellular nitrite levels. This effect was biphasic, the second phase occurring some 3 h after the drug infusion period had ended. When NMDA was infused in the presence of L-NAME, no agonist-induced increase in nitrite production was recorded, in fact nitrite levels were found to decline to below control values. There was no immediate increase in nitrite levels when NMDA was infused in the presence of 7-NI, although this may have been partially obscured by the biphasic effect of the inhibitor. It did appear, however, that the second phase of the NMDA-induced response was attenuated by 7-NI. No NMDA-evoked increase in nitrite was evident when the agonist was infused in the presence of a combination of both inhibitors. We have no clear explanation for the data presented here but suggest that up-regulated activity of particular NOS isoforms might compensate for the inhibition of the other by a mechanism yet to be elucidated. In addition, we propose that caution be exercised when interpreting results from in vivo microdialysis studies where NOS inhibitors are administered directly into the brain via a probe.
Collapse
Affiliation(s)
- Jo Watts
- Department of Pharmacology, The School of Pharmacy, London, UK
| | | | | |
Collapse
|
24
|
Zhang Y, Zhang J, Zhao B. Nitric oxide synthase inhibition prevents neuronal death in the developing visual cortex. Eur J Neurosci 2004; 20:2251-9. [PMID: 15525266 DOI: 10.1111/j.1460-9568.2004.03708.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During postnatal development of the visual cortex of golden hamster, there is a transient increase in both the expression and the activity of nitric oxide synthase (NOS), which coincides temporally with the formation of ipsilateral retino-collicular and retino-geniculate projections and the functional differentiation of primary visual cortex, suggesting the involvement of NO in the maturation of the visual cortex. In the present study, an inhibitor of NOS, N-nitro-L-arginine (L-NNA) was used to block the NOS activity of newborn golden hamster, and effects on development were examined. L-NNA treatment caused an increase in mortality, and suppression of both body weight gain and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity in the early phase of treatment (before postnatal day 14, PD14). The growth of NADPH-d-positive neurons in the visual cortex was also suppressed by the treatment. In control animals, significant numbers of apoptotic neurons were detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay on PD14, and this apoptosis mainly affected cells in cortical layers II and III. NOS inhibition largely rescued neurons from undergoing apoptosis, indicating that NO may serve as a signal triggering apoptosis and play a role in the maturation of the visual cortex.
Collapse
Affiliation(s)
- Yueting Zhang
- Laboratory of Visual Information Processing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, ChaoYang District, Beijing 100101, People's Republic of China
| | | | | |
Collapse
|
25
|
Hara S, Mukai T, Kurosaki K, Mizukami H, Kuriiwa F, Endo T. Different response to exogenous l-arginine in nitric oxide production between hippocampus and striatum of conscious rats: a microdialysis study. Neurosci Lett 2004; 366:302-7. [PMID: 15288439 DOI: 10.1016/j.neulet.2004.05.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/20/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
We previously showed that systemic administration of a nitric oxide (NO) precursor, L-arginine (L-Arg), failed to reverse suppression by NO synthase (NOS) inhibitors of chemically induced shaking behavior in rats, leading to the hypothesis that exogenous L-Arg might be non-uniformly supplied to brain regions susceptible to NOS inhibitors. In the present study, therefore, we examined the effect of exogenous L-Arg on the extracellular levels of the oxidative nitric oxide (NO) products, nitrite (NO2-) and nitrate (NO3-), in two different brain regions, the hippocampus and the striatum, of conscious rats by means of in vivo brain microdialysis. The basal NO2- levels in the two brain regions were comparable, while the NO3- level was significantly lower in the hippocampus than the striatum. The addition of 10 mM L-Arg, but not D-Arg, to the perfusing solution significantly increased NO2- and NO3- in the hippocampus and NO2- alone in the striatum. These increases were abolished by 1 mM N(omega)-nitro-L-arginine, an NOS inhibitor. L-Arg at 1mM was able to significantly increase NO2-, but not NO3-, in the hippocampus to a level comparable with that at 10 mM L-Arg, while it had no effect in the striatum. L-Arg (500 mg/kg, i.p.) induced a significant increase in NO2- and NO3- in the hippocampus, but not in the striatum. These results suggest that the striatum may have a lower ability to enhance NO production by utilising exogenous L-Arg than the hippocampus, despite higher basal NO production.
Collapse
Affiliation(s)
- Shuichi Hara
- Department of Forensic Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Moreno-López B, Romero-Grimaldi C, Noval JA, Murillo-Carretero M, Matarredona ER, Estrada C. Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. J Neurosci 2004; 24:85-95. [PMID: 14715941 PMCID: PMC6729566 DOI: 10.1523/jneurosci.1574-03.2004] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The subventricular zone of the rodent brain retains the capacity of generating new neurons in adulthood. The newly formed neuroblasts migrate rostrally toward the olfactory bulb, where they differentiate as granular and periglomerular interneurons. The reported presence of differentiated neurons expressing the neuronal isoform of nitric oxide synthase (NOS) in the periphery of the neurogenic region and the organization of their varicose axons as a network in which the precursors are immersed raised the hypothesis that endogenous nitric oxide (NO) may participate in the control of neurogenesis in the subventricular zone. Systemic administration of the NOS inhibitors N(omega)-nitro-L-arginine methyl ester or 7-nitroindazole to adult mice produced a dose- and time-dependent increase in the number of mitotic cells in the subventricular zone, rostral migratory stream, and olfactory bulb, but not in the dentate gyrus of the hippocampus, without affecting apoptosis. In the subventricular zone, this effect was exerted selectively on a precursor subpopulation expressing nestin but not neuronal or glial cell-specific proteins. In addition, in the olfactory bulb, analysis of maturation markers in the newly generated neurons indicated that chronic NOS inhibition caused a delay in neuronal differentiation. Postmitotic cell survival and migration were not affected when NO production was impaired. Our results suggest that NO, produced by nitrergic neurons in the adult mouse subventricular zone and olfactory bulb, exerts a negative control on the size of the undifferentiated precursor pool and promotes neuronal differentiation.
Collapse
|
27
|
Echeverry MB, Guimarães FS, Del Bel EA. Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions. Neuroscience 2004; 125:981-93. [PMID: 15120858 DOI: 10.1016/j.neuroscience.2003.12.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 01/26/2023]
Abstract
RATIONALE Microinjection into the dentate gyrus of the hippocampus of N(omega)-nitro-l-arginine methyl ester hydrochloride (l-NAME), a nitric oxide synthase (NOS) inhibitor, induces antinociceptive effect 5 days after a single restraint episode. The mechanisms of this stress-antinociceptive modulatory effect have not been investigated but may involve plastic changes in the hippocampal formation (HF). OBJECTIVE The objective of the present study was to investigate possible mechanisms of the stress-modulating effect on antinociception induced by NOS inhibition in the hippocampus. We analyzed the effects of restraint stress on neuronal NOS (nNOS) expression and nicotinamide adenine dinucleotide phosphate-diaphorase histochemical activity (NADPH-d) in the HF and related brain regions. METHODS Male Wistar rats (n=6-11/group) were submitted to a single (acute stress) or repeated (5 days) episodes of 2-h restraint. Control animals remained in their home cages being all animals daily handled during this period. In the fifth day, animals received unilateral microinjection of l-NAME (150 nmol/0.2 microl) or saline (control) into the dentate gyrus of the dorsal hippocampus (DG). Immediately before and after drug microinjection tail-flick reflex latency or hotplate licking reaction was measured. Animals were killed i. immediately; ii. 5 days after acute stress; or iii. after repeated stress. NADPH-d and nNOS expression were quantified in the HF, caudate-putamen, secondary somatosensorial, entorhinal and piriform cortices and amygdaloid complex. RESULTS Five days after one or five restraint episodes l-NAME microinjection into the DG elicited antinociceptive effect (analysis of variance [ANOVA], P<0.05). Acute restraint stress induced a significant increase in the density of neurons expressing NADPH-d and nNOS in the amygdaloid nuclei. nNOS expression increased also in the DG and piriform cortex. Five days after a single or repeated restraint stress there was an additional increase in NADPH-d- and nNOS-positive neurons in CA1, CA3, and entorhinal cortex. No changes were seen in non-limbic regions such as the caudate-putamen and secondary somatosensorial cortex. CONCLUSION The results confirm that the dorsal hippocampus participates in the modulation of stress consequences. They also show that a single stress episode causes acute changes in nitric oxide system in the amygdala complex and delayed modifications in the HF. The delayed (5 days) antinociceptive effect of NOS inhibition in the HF after a single restraint episode suggests that those latter modifications may have functional consequences. It remains to be tested if the acute amygdala and delayed hippocampal changes are causally related.
Collapse
Affiliation(s)
- M B Echeverry
- Department of Pharmacology, Medical School, Campus USP, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
28
|
Giusti-Paiva A, Ruginsk SG, de Castro M, Elias LLK, Carnio EC, Antunes-Rodrigues J. Role of nitric oxide in lipopolysaccharide-induced release of vasopressin in rats. Neurosci Lett 2003; 346:21-4. [PMID: 12850538 DOI: 10.1016/s0304-3940(03)00543-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the role of nitric oxide (NO) in vasopressin (AVP) release induced by intravenous lipopolysaccharide (LPS) in rats previously treated with intracerebroventricular (i.c.v.) saline, L-NAME, L-arginine or sodium nitroprusside (SNP). In control rats given i.c.v. saline, L-NAME, L-arginine or SNP, AVP levels did not change from baseline. After LPS, plasma AVP increased, reaching a peak at 60 min, and returning to basal levels 4 h later in all i.c.v. pre-treated groups (P<0.05). The LPS administration in rats previously treated with L-NAME induced higher AVP levels (P<0.05) that remained elevated throughout the period of the experiment (P<0.05). These findings confirm the inhibitory role of NO in AVP secretion induced by LPS.
Collapse
Affiliation(s)
- Alexandre Giusti-Paiva
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Kittner H, Franke H, Fischer W, Schultheis N, Krügel U, Illes P. Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology 2003; 28:435-44. [PMID: 12629523 DOI: 10.1038/sj.npp.1300043] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The widespread and abundant distribution of P2Y receptors in the mammalian brain suggests important functions for these receptors in the CNS. To study a possible involvement of the P2Y receptors in the regulation of fear and anxiety, the influences of the P2Y(1,11,12) receptor-specific agonist adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS), the P2X(1,3) receptor agonist alpha,beta-methylene ATP (alpha,betameATP), the unspecific P2 receptor antagonist pyridoxalphosphate-6-azopheny l-2',4'-disulfonic acid (PPADS), and the specific P2Y(1) receptor antagonist N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS 2179) on the elevated plus-maze behavior of the rat were investigated. All tested compounds were given intracerebroventricularly (0.5 microl). ADPbetaS (50 and 500 fmol) produced an anxiolytic-like behavioral profile reflected by an increase of the open arm exploration. The anxiolytic-like effects were antagonized by pretreatment with PPADS (5 pmol) or MRS 2179 (5 pmol). Both compounds caused anxiogenic-like effects when given alone. Furthermore, the anxiolytic-like effects of ADPbetaS could be antagonized by pretreatment with the nitric oxide synthase (NOS) inhibitor N(w)-nitro-L-arginine methyl ester (L-NAME). In addition, the anxiogenic-like effects of PPADS were reversed by the pretreatment with L-arginine (500 pmol), which is the natural substrate for NOS, but not by D-arginine (500 pmol), which is not. Immunofluorescence staining revealed the presence of P2Y(1) receptors on neurons in different brain regions such as hypothalamus, amygdala, hippocampus and the periaqueductal gray. Furthermore, the colocalization of P2Y(1) receptors and neuronal NOS (nNOS) on some neurons in these regions could be demonstrated. The highest density of P2Y(1)- and nNOS-immunoreactivity was detected in the dorsomedial hypothalamic nucleus. Taken together, the present results suggest that P2Y(1) receptors are involved in the modulation of anxiety in the rat. The anxiolytic-like effects after stimulation of P2Y(1) receptors seem to be in close connection with the related nitric oxide production.
Collapse
Affiliation(s)
- Holger Kittner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The pressor effect of N -nitric-l-arginine methyl ester (l-NAME) in rats has been attributed to the inhibition of the endothelial nitric oxide synthase; however, recent findings suggest that the central and sympathetic nervous systems may be also involved. In the present work, the authors attempted to study the possible central and sympathetic mechanisms involved in the pressor effect of l-NAME. They compared mean arterial pressure response during 1 h of continuous infusion of normal saline or l-NAME (0.031 mg. kg. min ) in Wistar rats treated with reserpine, adrenal medullectomy, pithing, and pithing + medullectomy. After 15-20 min infusion, a significantly greater increase of mean arterial pressure was observed in anesthetized rats with l-NAME and l-NAME + medullectomy versus rats with l-NAME + reserpine and l-NAME + pithing, and the magnitude of the difference increased further during the continuous 1-h l-NAME infusion. Adrenal medullectomy totally abolished the pressor effect of l-NAME in pithed group. The present findings suggest that the central and sympathetic nervous systems play important roles in the maintenance of the pressor effect of l-NAME, while the adrenal medulla becomes important only when the sympathetic nervous system has been suppressed.
Collapse
Affiliation(s)
- Fengyang Huang
- Departamento de Farmacobiología, CINVESTAV-IPN, México, D.F., México
| | | | | |
Collapse
|
31
|
Echeverry MB, Guimarães FS, Oliveira MA, do Prado WA, Del Bel EA. Delayed stress-induced antinociceptive effect of nitric oxide synthase inhibition in the dentate gyrus of rats. Pharmacol Biochem Behav 2002; 74:149-56. [PMID: 12376162 DOI: 10.1016/s0091-3057(02)00964-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stimulation of the hippocampal formation can modulate nociceptive mechanisms, whereas painful stimuli can activate this structure. Stress exposure can produce plastic changes in the hippocampus. Nitric oxide (NO) is an important neuroregulatory agent present in the hippocampus. The objective of the present study was to investigate the effects of intrahippocampal administration of N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NO synthase (NOS), on nociceptive processes in stressed and nonstressed rats. Male Wistar rats (n=6-11/group) received unilateral microinjection of L-NAME (50-300 nmol/0.2 microl) into the dentate gyrus (DG) of the dorsal hippocampus. Immediately after the injection tail-flick reflex latency was measured. Stressed animals were submitted to 2 h of restraint and tested immediately or 1, 2, 5 or 10 days later. L-NAME failed to modify nociception in nonstressed rats. However, 5 days after, restraint L-NAME, at all doses tested, produced an antinociceptive effect (ANOVA, P<.05). The dose-response curve had an inverted U shape. L-NAME antinociceptive effect was antagonized by previous treatment with L-arginine (150 nmol/0.2 microl, P<.05). The results suggest that the modulation of nociceptive processes by NO in the dorsal hippocampus is dependent on previous stress exposure and on poststress interval.
Collapse
Affiliation(s)
- Marcela B Echeverry
- Department of Physiology, Medical School, Campus USP, SP, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
32
|
Pokk P, Väli M. Effects of nitric oxide synthase inhibitors 7-NI, L-NAME, and L-NOARG in staircase test. Arch Med Res 2002; 33:265-8. [PMID: 12031632 DOI: 10.1016/s0188-4409(02)00365-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The objective of the study was to investigate the effects of the nitric oxide synthase (NOS) inhibitors 7-nitroindazole (7-NI), N(G)-nitro-L-arginine (L-NOARG), and N(G)-nitro-L-arginine methyl ester (L-NAME) on the behavior of mice in the staircase test. METHODS NOS inhibitors 7-NI (20-120 mg/kg), L-NOARG (20 and 40 mg/kg), and L-NAME (20 and 40 mg/kg) were administered intraperitoneally (i.p.) 30 min prior to the staircase test. Staircase test consisted of placing a mouse in an enclosed staircase with five steps and recording the number of rearings made and the number of steps climbed during a 3-min period. RESULTS 7-NI and L-NOARG did not have a significant effect on the behavior of mice in the staircase test. L-NAME caused a decrease in the number of rearings without changes in the number of steps taken. CONCLUSIONS NOS inhibitor L-NAME but not 7-NI or L-NAME induced an anxiolytic effect in the staircase test.
Collapse
Affiliation(s)
- Paavo Pokk
- Department of Pharmacology, Faculty of Medicine, University of Tartu, Estonia.
| | | |
Collapse
|
33
|
Pokk P, Väli M. The effects of the nitric oxide synthase inhibitors on the behaviour of small-platform-stressed mice in the plus-maze test. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:241-7. [PMID: 11817500 DOI: 10.1016/s0278-5846(01)00261-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Effects of the nitric oxide synthase (NOS) inhibitors 7-nitroindazole (7-NI), N(G)-nitro-L-arginine (L-NOARG) and N(G)-nitro-L-arginine methyl ester (L-NAME) on the behaviour of control and small-platform (SP)-stressed mice in the plus-maze test were studied. SP stress was induced by placing mice on SPs (3.5 cm diameter) surrounded by water for 24 h. This model contains several factors of stress like rapid eye movement (REM) sleep deprivation, isolation, immobilization and falling into the water. The plus-maze test was carried out with control and SP-stressed mice. SP stress induced an anxiolytic-like effect that was evidenced by increased percentage of time spent on the open arms of the plus-maze. The administration of NOS inhibitors 7-NI (20.0-120.0 mg/kg) and L-NOARG (20.0 and 40.0 mg/kg) induced an anxiolytic effect and the administration of L-NAME (20.0 and 40.0 mg/kg)--an anxiogenic effect in control mice. In SP-stressed mice, the effects of NOS inhibitors were changed. Contrary to control mice, 7-NI at a dose of 20.0 mg/kg induced an anxiogenic effect in SP-stressed mice and other doses of 7-NI, with exception of 80.0 mg/kg, as well as L-NOARG and L-NAME were without any effect. On the basis of these data, we can propose that SP stress induced changes in the function of L-arginine-NOS-NO pathways. It is also proposed that the behavioural effects of NOS inhibitors can be changed in stressed animals.
Collapse
Affiliation(s)
- Paavo Pokk
- Department of Pharmacology, Faculty of Medicine, University of Tartu, Estonia.
| | | |
Collapse
|
34
|
Abstract
1. The functioning of nitric oxide (NO) as a biological messenger necessitates that there be an inactivation mechanism. Cell suspensions from a rat brain region rich in the NO signalling pathway (cerebellum) were used to investigate the existence of such a mechanism and to determine its properties. 2. The cells consumed NO in a manner that could not be explained by reaction with O(2), superoxide ions or contaminating red blood cells. Functionally, the mechanism was able to convert constant rates of NO formation into low steady-state NO concentrations. For example, with NO produced at 90 nM min(-1), the cells (20 x 10(6) ml(-1)) held NO at 20 nM. Various other cell types behaved similarly. 3. The influence of NO inactivation on the ability of NO to access its receptor, soluble guanylyl cyclase, was explored by measuring cGMP accumulation in response to the clamped NO concentrations. The extrapolated steady-state EC(50) for NO was 2 nM, a concentration readily achieved by low NO release rates, despite inactivation. 4. When confronted by higher NO release rates for several minutes, the clamping mechanism failed, resulting in a progressive rise in NO concentration. While the clamp was maintained, cellular respiration was unaffected but, as it failed, respiration became inhibited by NO. The IC(50) was measured to be 120 nM (at 100-140 microM O(2)). 5. It is concluded that cerebellar (and other) cells possess a powerful NO inactivation mechanism that, extrapolated to the whole tissue, would impose on NO a half-life of around 100 ms. This and other properties of the device appear ideal for shaping low-level NO signals for activating its receptor, soluble guanylyl cyclase, whilst avoiding adverse effects on mitochondrial function. The exhaustibility of the mechanism provides a scenario for NO to become toxic.
Collapse
Affiliation(s)
- C Griffiths
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
35
|
Abstract
Many properties of nitric oxide, NO, (localization, diffusiveness, half-life, vasodilatory affects) have supported its potential role in mediating the link between local cerebral activity and blood flow. However, evidence that both supports and refutes a role for NO in functional hyperemia have been presented. The present study employed multiple nitric oxide synthase inhibitors, two anesthetic regimes and laser-Doppler flowmetry to test the hypothesis that NO is critically involved in mediating the functional hyperemic response within rodent whisker-barrel cortex (WBC). In urethane anesthetized animals, functional hyperemic responses were obtained both before and after 1 mg/kg atropine infusion, 30 mg/kg i.v. L-NAME (N-Nitro-L-arginine methylester) infusion, 30 mg/kg L-NA (N-Nitro-L-arginine) infusion or 25 mg/kg 7-NI (7-nitroindazole). L-NAME was also tested in a group of animals pretreated with halothane before urethane anesthesia. Neither the magnitude of the blood flow response nor its time course was altered by NO blockade or atropine administration when compared to pre-infusion controls in urethane anesthetized rats. In contrast, animals that were pretreated with halothane exhibited a 33% inhibition of functional hyperemia after L-NAME administration. Taken together, these data do not support a primary role for NO in rat WBC functional hyperemia and suggest that previous reports of inhibition may have been secondary to the anesthesia employed.
Collapse
Affiliation(s)
- R J Gerrits
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
36
|
Gargaglioni LH, Branco LG. Effect of nitric oxide in the nucleus isthmi on the hypoxic and hypercarbic drive to breathing of toads. Am J Physiol Regul Integr Comp Physiol 2001; 281:R338-45. [PMID: 11404310 DOI: 10.1152/ajpregu.2001.281.1.r338] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleus isthmi (NI) is a mesencephalic structure of the amphibian brain that has been reported to participate in CO(2) chemoreception and in the ventilatory response to hypoxia. However, no information exists about the modulators and/or mediators involved. In the present study, we assessed the participation of nitric oxide (NO) in the hypoxic and hypercarbic drive to breathing, specifically in the NI. We compared the ventilatory and cardiovascular responses with hypoxia and hypercarbia after microinjecting 100 nmol/0.5 microliter of N(G)-nitro-L-arginine methyl ester (L-NAME; an NO synthase blocker) into the NI of toads (Bufo paracnemis). L-NAME had no effect under resting conditions. Hypoxia elicited an increase in ventilation in control and vehicle toads by elevating tidal volume (V(T)). Hypercarbia caused hyperventilation in all groups due to an increase in both V(T) and frequency. The microinjection of L-NAME into the NI elicited an increase in ventilatory response to hypoxia and hypercarbia due to a higher V(T.) We conclude that NO in the NI has an inhibitory effect when the respiratory drive is high, acting on V(T).
Collapse
Affiliation(s)
- L H Gargaglioni
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14040 - 904 Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
37
|
Adams CE, Stevens KE, Kem WR, Freedman R. Inhibition of nitric oxide synthase prevents alpha 7 nicotinic receptor-mediated restoration of inhibitory auditory gating in rat hippocampus. Brain Res 2000; 877:235-44. [PMID: 10986337 DOI: 10.1016/s0006-8993(00)02677-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hippocampus rapidly inhibits its response to repetitive auditory stimulation, an example of an auditory sensory gating mechanism involved in human psychopathology. The neuronal basis of this inhibitory gating mechanism has been investigated in rats. Activation of the alpha 7 nicotinic receptor is required. alpha 7 nicotinic receptor activation also releases nitric oxide in the hippocampus and blockade of nitric oxide synthase reduces inhibitory gating of auditory response. There has not been a direct demonstration that blockade of nitric oxide synthase specifically prevents alpha 7 nicotinic receptor activation of the inhibition of auditory response. Therefore, the goal of the present study was to determine whether this functional effect of alpha 7 receptor activation requires release of nitric oxide. Lesions of the fimbria-fornix disrupt auditory gating by preventing cholinergic stimulation of the hippocampus. Following recovery from this surgery, rats were administered 3-(2,4-dimethoxybenzylidene) anabaseine (DMXB-A; 10 mg/kg, sc), an agonist at the alpha 7 receptor. DMXB-A restored auditory gating in the fimbria-fornix-lesioned rats, indicating that activation of the alpha 7 nicotinic receptor alone is sufficient to restore auditory gating following lesions of the fimbria-fornix. However, intracerebroventricular infusion of N(omega)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase, blocked the DMXB-A-mediated restoration of auditory gating; infusion of the inactive D-enantiomer did not. Restoration of auditory gating by DMXB-A in the fimbria-fornix-lesioned rats was blocked by intracerebroventricular infusion of alpha-bungarotoxin, but not by mecamylamine or dihydro-beta-erythroidine. Together, these data support the hypothesis that nitric oxide mediates alpha 7 nicotinic receptor activation of gating of auditory response in rat hippocampus.
Collapse
Affiliation(s)
- C E Adams
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
38
|
Lukácová N, Cízková D, Marsala M, Pavel J, Jalc P, Sulla I, Kafka J, Marsala J. Effect of midthoracic spinal cord constriction on catalytic nitric oxide synthase activity in the white matter columns of rabbit. Neurochem Res 2000; 25:1139-48. [PMID: 11055753 DOI: 10.1023/a:1007682315257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution and changes of catalytic nitric oxid synthase (cNOS) activity in the dorsal, lateral and ventral white matter columns at midthoracic level of the rabbit's spinal cord were studied in a model of surgically-induced spinal cord constriction performed at Th7 segment level and compared with the occurrence of nicotinamide adenine dinucleotide phosphate diaphorase expressing and neuronal nitric oxide synthase immunoreactive axons in the white matter of the control thoracic segments. Segmental and white-column dependent differences of cNOS activity were found in the dorsal (141.5 +/- 4.2 dpm/microm protein), lateral (87.3 +/- 11.5 dpm/microm protein) and ventral (117.1 +/- 7.6 dpm/microm protein) white matter columns in the Th5-Th6 segments and in the dorsal (103.3 +/- 15.5 dpm/microm protein), lateral (54.9 +/- 4.9 dpm/microm protein), and ventral (86.1 +/- 6.8 dpm/microm protein) white matter columns in the Th8-Th9 segments. A surgically-induced constriction of Th7 segment caused a disproportionate response of cNOS activity in the rostrally (Th5-Th6) and caudally (Th8-Th9) located segments in both lateral and ventral white matter columns. While a statistically significant decrease of cNOS activity was detected above the constriction site in the ventral columns, a considerable, statistically significant increase of cNOS activity was noted in the white lateral columns below the site of constriction. It is reasoned that the changes of cNOS activity may have adverse effects on nitric oxide (NO) production in the white matter close to the site of constriction injury, thus broadening the scope of the secondary mechanisms that play a role in neuronal trauma.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kindig CA, Gallatin LL, Erickson HH, Fedde MR, Poole DC. Cardiorespiratory impact of the nitric oxide synthase inhibitor L-NAME in the exercising horse. RESPIRATION PHYSIOLOGY 2000; 120:151-66. [PMID: 10773245 DOI: 10.1016/s0034-5687(00)00096-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate the role of nitric oxide, NO, in facilitating cardiorespiratory function during exercise, five horses ran on a treadmill at speeds that yielded 50, 80 and 100% of peak pulmonary oxygen uptake (V(O(2)) peak) as determined on a maximal incremental test. Each horse underwent one control (C) and one (NO-synthase inhibitor; N(G)-L-nitro-arginine methyl ester (L-NAME), 20 mg/kg) trial in randomized order. Pulmonary gas exchange (open flow system), arterial and mixed-venous blood gases, cardiac output (Fick Principle), and pulmonary and systemic conductances were determined. L-NAME reduced exercise tolerance, as well as cardiac output (C, 291+/-34; L-NAME, 246+/-38 L/min), body O(2) delivery (C, 74.4+/-5. 5; L-NAME, 62.1+/-5.6 L/min), and both pulmonary (C, 3.07+/-0.26; L-NAME, 2.84+/-0.35 L/min per mmHg) and systemic (C, 1.55+/-0.24; L-NAME, 1.17+/-0.16 L/min per mmHg) effective vascular conductances at peak running speeds (all P<0.05). On the 50 and 80% trials, L-NAME increased O(2) extraction, which compensated for the reduced body O(2) delivery and prevented a fall in V(O(2)). However, at peak running speed in the L-NAME trial, an elevated O(2) extraction (P<0. 05) was not sufficient to prevent V(O(2)) from falling consequent to the reduced O(2) delivery. At the 50 and 80% running speeds (as for peak), L-NAME reduced pulmonary and systemic effective conductances. These data demonstrate that the NO synthase inhibitor, L-NAME, induces a profound hemodynamic impairment at submaximal and peak running speeds in the horse thereby unveiling a potentially crucial role for NO in mediating endothelial function during exercise.
Collapse
Affiliation(s)
- C A Kindig
- Departments of Anatomy and Physiology and Kinesiology, Veterinary Medical Sciences, 1600 Denison Avenue, Kansas State University, Manhattan, KS 66506-5602, USA
| | | | | | | | | |
Collapse
|
40
|
Mertineit C, Samlalsingh-Parker J, Glibetic M, Ricard G, Noya FJD, Aranda JV. Nitric oxide, prostaglandins, and impaired cerebral blood flow autoregulation in group B streptococcal neonatal meningitis. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired autoregulation of cerebral blood flow (CBF) contributes to CNS damage during neonatal meningitis. We tested (i) the hypothesis that cerebrovascular autoregulation is impaired during early onset group B streptococcal (GBS) meningitis, (ii) whether this impairment is regulated by vasoactive mediators such as prostaglandins and (or) nitric oxide (NO), and (iii) whether this impairment is preventable by specific and (or) nonspecific inhibitors: dexamethasone, ibuprofen, and Nω-nitro-L-arginine, a NO inhibitor. Sterile saline or 109colony-forming units (cfu) of heat-killed GBS was injected into the cerebral ventricle of newborn piglets. CBF autoregulation was determined by altering cerebral perfusion pressure (CPP) with balloon-tipped catheters placed in the aorta. GBS produced a narrow range of CBF autoregulation due to an impairment at the upper limit of CPP. We report that in vivo in the early stages (first 2 h) of induced GBS inflammation (i) GBS impairs the upper limit of cerebrovascular autoregulation; (ii) ibuprofen, dexamethasone, and Nω-nitro-L-arginine not only prevent this GBS-induced autoregulatory impairment but improve the range of cerebrovascular autoregulation; (iii) these autoregulatory changes do not involve circulating cerebral prostanoids; and (iv) the observed changes correlate with the induction of NO synthase gene expression. Thus, acute early onset GBS-induced impairment of the upper limit of CBF autoregulation can be correlated with increases of NO synthase production, suggesting that NO is a vasoactive mediator of CBF.Key words: cerebrovascular autoregulation, group B Streptococcus, neonatal meningitis, anti-inflammatory agents, prostanoids, nitric oxide synthase, gene expression, nitric oxide.
Collapse
|
41
|
Lukácová N, Cízková D, Marsala M, Jalc P, Marsala J. Segmental and laminar distributions of nicotinamide adenine dinucleotide phosphate-diaphorase-expressing and neuronal nitric oxide synthase-immunoreactive neurons versus radioassay detection of catalytic nitric oxide synthase activity in the rabbit spinal cord. Neuroscience 1999; 94:229-37. [PMID: 10613513 DOI: 10.1016/s0306-4522(99)00233-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distributions of neuronal nitric oxide synthase-immunoreactive neurons and of nicotinamide adenine dinucleotide phosphate-diaphorase activity were studied in the C6, Th2, L1, L5, S2 and S3 segments and laminae in the rabbit spinal cord and compared with the catalytic nitric oxide synthase activity, determined by monitoring the conversion of [3H]arginine to [3H]citrulline in the same segments and laminae. Morphologically, a heterogeneous population of nicotinamide adenine dinucleotide phosphate-diaphorase-expressing and neuronal nitric oxide synthase-immunoreactive neurons was detected in the superficial and deep dorsal horn and the pericentral region in all segments studied, and in the intermediolateral cell column of the thoracic and lumbosacral segments. A disproportionate distribution of both neuronal categories which had a significantly higher number of nicotinamide adenine dinucleotide phosphate-diaphorase-expressing rather than neuronal nitric oxide synthase-immunoreactive cell bodies was found in all segments. The catalytic nitric oxide synthase activity was distributed unequally in the C6, Th2, L1, L5, S2 and S3 segments, with a comparatively low value in the Th2 segment (70 +/- 5.1 d.p.m./microg protein) in comparison with the S3 segment, where the highest level (140 +/- 5.5 d.p.m./microg protein) was found. A close correlation between the number of neuronal nitric oxide synthase-immunoreactive somata and catalytic nitric oxide synthase activity was revealed in the dorsal horn (laminae I-VI). Whereas a low number of neuronal nitric oxide synthase-immunoreactive somata in laminae VII-X was found in the L5, S2 and S3 segments, the values of catalytic nitric oxide synthase activity in the same laminae and segments were found to be exceedingly high. These findings indicate that the occurrence of many neuronal nitric oxide synthase-immunoreactive fibers (mainly axons), and dense, punctate, non-somatic neuronal nitric oxide synthase immunopositivity in the neuropil staining of the same laminae and segments, can substantially enhance catalytic nitric oxide synthase activity.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
42
|
Ashwal S, Tone B, Tian HR, Cole DJ, Liwnicz BH, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion in the rat pup. Pediatr Res 1999; 46:390-400. [PMID: 10509358 DOI: 10.1203/00006450-199910000-00006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our studies examined the hypothesis that the distribution of cerebral injury after a focal ischemic insult in the immature rat pup is associated with the regional distribution of nitric oxide synthase (NOS) activity and that differences in the vulnerability to ischemia between pup and adult might be related to differences in cofactor availability. We measured NOS activity in well-defined regions prone to become either core or penumbra in controls and at different times (end of occlusion, 0.5 h, and 24 h reperfusion) after middle cerebral artery occlusion (MCAO) from the right and left hemispheres in a 14- to 18-day-old rat pup filament model. Three groups of corresponding isoflurane sham controls were also included. "Core" NOS activity for combined right and left hemispheres ranged from 113% to 217% more than "penumbral" regions in control and sham groups. In the three MCAO groups, marked decreases in ischemic core and penumbral NOS activity were seen; however, core NOS remained higher than penumbral regions bilaterally. The effects of cofactor addition (10 microM tetrahydrobiopterin, 3 microM flavin adenine dinucleotide, and 3 microM flavin mononucleotide) on NOS activity were similar in "core" and "penumbral" regions in control and sham groups. However, after 24 h MCAO, cofactor addition preferentially increased NOS activity in the ischemic hemisphere. Co-factor addition in the pup also had a greater effect on enhancing NOS activity in all regions compared with the adult. Greater NOS activity in core regions in the rat pup, as in the adult, could in part, explain the increased vulnerability of that region to ischemia. NOS activity also can be influenced by the availability of cofactors and this effect may be greater in the immature animal.
Collapse
Affiliation(s)
- S Ashwal
- Department of Pediatrics, Loma Linda University School of Medicine, California 92350, USA
| | | | | | | | | | | |
Collapse
|
43
|
Xiong H, Yamada K, Han D, Nabeshima T, Enikolopov G, Carnahan J, Nawa H. Mutual regulation between the intercellular messengers nitric oxide and brain-derived neurotrophic factor in rodent neocortical neurons. Eur J Neurosci 1999; 11:1567-76. [PMID: 10215909 DOI: 10.1046/j.1460-9568.1999.00567.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diffusible factors, nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) are both suggested to be intercellular messengers that have similar synaptic activities and developmental influences in the brain. In the present study, we have analysed their mutual regulation with respect to their production in rodent neocortical neurons. Some of the cultured rat neocortical neurons exhibited immunoreactivity for both neuronal NO synthase (NOS) and the BDNF receptor trkB. Neuronal NOS appeared to be activated autonomously and produced NO in culture as monitored by nitrite accumulation. Inhibition of the endogenous NO production in culture by a NOS inhibitor, NG-monomethyl-L-arginine (NMMA), enhanced basal expression of BDNF mRNA and protein. Similarly, cerebroventricular administration of another NOS inhibitor, N-omega-nitro-L-arginine methylester (L-NAME), but not D-NAME or saline, increased BDNF content in the neocortex. In the opposite direction, however, BDNF appeared to function as a positive regulator for NO synthesis. Addition of BDNF upregulated the neuronal NOS expression as well as NO production in neocortical culture. In agreement, BDNF knock-out mice exhibited significant impairment of neuronal NOS expression in the neocortex. Taken together, these observations suggest that the trans-synaptic signalling molecules, NO and BDNF, influence the production of each other and mutually regulate the strength of their intercellular communications.
Collapse
Affiliation(s)
- H Xiong
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Won Sohn N, Greenberg JH, Hand PJ. Chronic inhibition of NOS does not prevent plasticity of rat somatosensory (S1) cortex following deafferentation. Brain Res 1999; 816:396-404. [PMID: 9878850 DOI: 10.1016/s0006-8993(98)01161-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nitric oxide (NO) has been proposed as an intercellular messenger mediating postsynaptic to presynaptic information transfer in the induction of long-term potentiation. A number of studies support the possible involvement of NO in synaptic plasticity. NO may have a role in synaptogenesis and synaptic plasticity in developing rat brain and may play a fundamental part in the process of regeneration, plasticity, and retargeting of axons following injury. We examined the possible role of NO on plasticity in the rat first somatosensory cortex with [14C]2-deoxyglucose (2-DG) autoradiography in rats treated daily with l-nitroarginine (l-NA) following neonatal unilateral vibrissae deafferentation. After 6 weeks of l-NA treatment, the local cerebral glucose utilization (LCGU) and the spatial extent of the metabolic activation following stimulation of the spared whisker was measured. NOS catalytic activity exhibited significant inhibition throughout the treatment period. Vibrissae deafferentation produced a small but not statistically significant increase of LCGU in the vibrissa activated C3 barrel, and l-NA treatment did not alter the activation of LCGU in the deafferented cortex following whisker stimulation. Additionally, l-NA treatment did not alter the area of metabolic activation on either the non-deafferented side or the deafferented side. Deafferentation produced a 298% increase in the metabolic representation of the spared C3 barrel following stimulation in the saline treated animals, a 257% increase in the chronically l-NA treated animals, and a 256% increase in the short-term treated animals, all with respect to the response in the non-deafferented cortex. Metabolic plasticity in the barrel cortex was not attenuated by l-NA treatment. These results show that nitric oxide does not play a major role on developmental cortical plasticity induced by vibrissae deafferentation in the rat.
Collapse
Affiliation(s)
- N Won Sohn
- Cerebrovascular Research Center, School of Medicine, 429 Johnson Pavilion, 3610 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
45
|
Sakima A, Teruya H, Yamazato M, Matayoshi R, Muratani H, Fukiyama K. Prolonged NOS inhibition in the brain elevates blood pressure in normotensive rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R410-7. [PMID: 9688675 DOI: 10.1152/ajpregu.1998.275.2.r410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Systemic inhibition of nitric oxide synthase (NOS) evokes hypertension, which is enhanced by salt loading, partly via augmented sympathetic activity. We investigated whether inhibition of brain NOS elevates blood pressure (BP) in normotensive rats and, if so, whether the BP elevation is enhanced by salt loading. After a 2-wk low-salt (0.3%) diet, male Sprague-Dawley (SD) rats were divided into four groups. Groups 1 and 2 received a chronic intracerebroventricular infusion of 0.5 mg . kg-1 . day-1 of NG-monomethyl-L-arginine (L-NMMA), and groups 3 and 4 were given artificial cerebrospinal fluid (aCSF). Groups 1 and 3 were placed on a high-salt (8%) diet, whereas groups 2 and 4 were on a low-salt diet. On day 9 or 10, group 1 showed significantly higher mean arterial pressure (MAP) in a conscious unrestrained state (129 +/- 3 mmHg vs. 114 +/- 3, 113 +/- 1, and 108 +/- 3 mmHg in groups 2, 3, and 4, respectively, P < 0.05). On a high-salt diet, response of renal sympathetic nerve activity but not of BP to air-jet stress was significantly larger in rats given L-NMMA than in rats given aCSF (29 +/- 4% vs. 19 +/- 3%, P < 0.05). When the intracerebroventricular infusions were continued for 3 wk, MAP was significantly higher in rats given L-NMMA than in rats given aCSF irrespective of salt intake, although the difference was approximately 7 mmHg. Thus chronic inhibition of NOS in the brain only slightly elevates BP in SD rats. Salt loading causes a more rapid rise in BP. The mechanisms of the BP elevation and its acceleration by salt loading remain to be elucidated.
Collapse
Affiliation(s)
- A Sakima
- Third Department of Internal Medicine, University of the Ryukyus School of Medicine, 207 Uehara, Nishihara-cho, Okinawa 903-01, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Hall S, Milne B, Jhamandas K. Excitatory action of N-methyl-D-aspartate on the rat locus coeruleus is mediated by nitric oxide: an in vivo voltammetric study. Brain Res 1998; 796:176-86. [PMID: 9689468 DOI: 10.1016/s0006-8993(98)00345-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biochemical, electrophysiological and behavioural studies have provided evidence that activation of N-methyl-D-aspartate (NMDA) receptors contributes to the hyperactivity of noradrenergic neurons of the locus coeruleus (LC) in precipitated opioid withdrawal. Recently, it was demonstrated that central administration of nitric oxide (NO) synthase inhibitors suppresses this hyperactivity suggesting that NO mediates the NMDA receptor activation of LC in opioid withdrawal. Using a combination of microdialysis and in vivo voltammetry, this study examined whether local application of NMDA to the LC in opioid naive animals mimics the NO-dependent LC response seen in opioid withdrawal. In the urethane anaesthetized rat, perfusion of the LC (2 microliters min-1) with a solution of NMDA (5 mmol) via a microdialysis probe for 9 min resulted in a rapid and robust increase (290.1 +/- 32.2% above baseline) in the catechol oxidation current (CA.OC) recorded from the LC using differential normal pulse voltammetry (DNPV). The NMDA microdialysis also produced a large increase in the blood pressure (150.4 +/- 6.9% above baseline). An injection of the non-competitive NMDA receptor antagonist (+)MK-801 (0.5 mg kg-1 i.v.), given 45 min after the start of NMDA application, rapidly returned both the CA.OC signal and the blood pressure response to baseline levels. Pretreatment of animals with intraventricular nitric oxide synthase (NOS) inhibitor, N omega-nitro-L-arginine methyl ester (L-NAME) (100 micrograms) significantly inhibited NOS activity in the LC, PAG-PVG and cerebellum. This dose of L-NAME, administered prior to application of NMDA by microdialysis abolished the NMDA-induced rise in the CA.OC recorded in the LC and the increase in systolic blood pressure. The results show that in voltammetry experiments, NMDA produces hyperactivity of LC and hypertension, responses that are dependent upon the synthesis of NO. Thus, in opioid naive rats, regional NMDA application via microdialysis mimics characteristics of the LC response that occur during the antagonist-precipitated opioid withdrawal.
Collapse
Affiliation(s)
- S Hall
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
47
|
Manohar M, Goetz TE. L-NAME does not affect exercise-induced pulmonary hypertension in thoroughbred horses. J Appl Physiol (1985) 1998; 84:1902-8. [PMID: 9609783 DOI: 10.1152/jappl.1998.84.6.1902] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The present study was carried out to examine the effects of nitric oxide synthase inhibition with Nomega-nitro-L-arginine methyl ester (L-NAME) on the right atrial as well as on the pulmonary arterial, capillary, and venous blood pressures of horses during rest and exercise performed at maximal heart rate (HRmax). Experiments were carried out on seven healthy, sound, exercise-trained Thoroughbred horses. Using catheter-tip manometers, with signals referenced at the point of the shoulder, we determined phasic and mean right atrial and pulmonary vascular pressures in two sets of experiments [control (no medications) and L-NAME (20 mg/kg iv given 10 min before exercise studies)]. The studies were carried out in random order 7 days apart. Measurements were made at rest and during treadmill exercise performed on a 5% uphill grade at 6, 8, and 14.2 m/s. Exercise on a 5% uphill grade at 14.2 m/s elicited HRmax and could not be sustained for >90 s. In quietly standing horses, L-NAME administration caused a significant rise in right atrial, as well as pulmonary arterial, capillary, and venous pressures. This indicates that nitric oxide synthase inhibition modifies the basal pulmonary vasomotor tone. In both treatments, exercise caused progressive significant increments in right atrial and pulmonary vascular pressures, but the values recorded in the L-NAME study were not different from those in the control study. The extent of exercise-induced tachycardia was significantly decreased in the L-NAME study at 6 and 8 m/s but not at 14.2 m/s. Thus, L-NAME administration may not modify the equine pulmonary vascular tone during exercise at HRmax. However, as indicated by a significant reduction in heart rate, L-NAME seems to modify the sympathoneurohumoral response to submaximal exercise.
Collapse
Affiliation(s)
- M Manohar
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
48
|
Van Muiswinkel FL, Drukarch B, Steinbusch HW, De Vente J. Sustained pharmacological inhibition of nitric oxide synthase does not affect the survival of intrastriatal rat fetal mesencephalic transplants. Brain Res 1998; 792:48-58. [PMID: 9593818 DOI: 10.1016/s0006-8993(98)00120-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of the present study was to investigate the potential role of the free radical nitric oxide (NO) in the development of fetal rat mesencephalic neurons grafted in a 6-hydroxydopamine (6-OHDA) lesioned rat model of Parkinson's disease. First, using nitric oxide synthase (NOS)-immunocytochemistry and reduced nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry, we investigated the presence of the neuronal isoform of NOS (nNOS) in intrastriatal mesencephalic grafts. During the course of the experiment (16 weeks) an increase in the staining intensity and the number of nNOS/NADPH-d positive cells within the grafts was observed, as well as a gradual maturation of dopaminergic neurons. In addition, within both the host striatal and grafted mesencephalic tissue, a NO-dependent accumulation of cyclic guanosine monophosphate (cGMP) was detected, indicating the presence of guanylate cyclase, i.e., the target-enzyme for NO. Secondly, to determine the impact of NO on the survival of grafted dopaminergic neurons, 6-OHDA lesioned rats received mesencephalic grafts and were subsequently treated with the competitive NOS-inhibitor Nomega-nitro-l-arginine methylester (l-NAME). After chronic treatment for 4 weeks, tyrosine hydroxylase immunocytochemistry revealed no apparent differences between the survival of grafted dopaminergic neurons in control- or l-NAME treated animals, respectively. As the maturation of grafted dopaminergic neurons coincides with a gradual increase in the expression of nNOS within the graft and since dopaminergic cell numbers are not changed upon administration of l-NAME, it is concluded that endogenously produced and potentially toxic NO does not affect the survival of grafted fetal dopaminergic neurons.
Collapse
Affiliation(s)
- F L Van Muiswinkel
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences, Vrije Universiteit, Faculty of Medicine, Department of Pharmacology, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ. Core and Penumbral Nitric Oxide Synthase Activity During Cerebral Ischemia and Reperfusion. Stroke 1998. [DOI: 10.1161/01.str.29.5.1037] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background and Purpose
—The present studies examined the hypothesis that the distribution of cerebral injury after a focal ischemic insult is associated with the regional distribution of nitric oxide synthase (NOS) activity.
Methods
—Based on previous studies that certain anatomically well-defined areas are prone to become either core or penumbra after middle cerebral artery occlusion (MCAO), we measured NOS activity in these areas from the right and left hemispheres in a spontaneously hypertensive rat filament model. Four groups were studied: (1) controls (immediate decapitation); (2) 1.5 hours of MCAO with no reperfusion (R0); (3) 1.5 hours of MCAO with 0.5 hour of reperfusion (R0.5); and (4) 1.5 hours of MCAO with 24 hours of reperfusion (R24). Three groups of corresponding isoflurane sham controls were also included: 1.5 (S1.5) or 2 (S2.0) hours of anesthesia and 1.5 hours of anesthesia+24 hours of observation (S24).
Results
—Control core NOS activity for combined right and left hemispheres was 129% greater than penumbral NOS activity (
P
<0.05). Combined core NOS activity was also greater (
P
<0.05) in the three sham groups: 208%, 122%, and 161%, respectively. In the three MCAO groups, ischemic and nonischemic core NOS remained higher than penumbral regions (
P
<0.05). However, NOS activity was lower in the ischemic than in the nonischemic core in all three groups: R0 (29% lower), R0.5 (48%), and R24 (86%) (
P
<0.05). Addition of cofactors (10 μmol/L tetrahydrobiopterin, 3 μmol/L flavin adenine dinucleotide, and 3 μmol/L flavin mononucleotide) increased NOS activity in all groups and lessened the decrease in ischemic core and penumbral NOS.
Conclusions
—Greater NOS activity in core regions could explain in part the increased vulnerability of that region to ischemia and could theoretically contribute to the progression of the infarct over time. The data also suggest that NOS activity during ischemia and reperfusion could be influenced by the availability of cofactors.
Collapse
Affiliation(s)
- Stephen Ashwal
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| | - Beatriz Tone
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| | - Hui Rou Tian
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| | - Daniel J. Cole
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| | - William J. Pearce
- From the Departments of Pediatrics (S.A., B.T.), Anesthesiology (H.R.T., D.J.C.), and Physiology, Division of Perinatal Biology (W.J.P.), Loma Linda University School of Medicine, Loma Linda, Calif
| |
Collapse
|
50
|
Kadekaro M, Terrell ML, Liu H, Gestl S, Bui V, Summy-Long JY. Effects of L-NAME on cerebral metabolic, vasopressin, oxytocin, and blood pressure responses in hemorrhaged rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R1070-7. [PMID: 9575971 DOI: 10.1152/ajpregu.1998.274.4.r1070] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NG-nitro-L-arginine methyl ester (L-NAME; 250 micrograms/5 microliters), an inhibitor of NO synthase, or the vehicle artificial cerebrospinal fluid (aCSF; 5 microliters) was administered intracerebroventricularly to conscious rats hemorrhaged (0.7 ml/min) to a 20% volume depletion. Hypotension was maximal 5 min after hemorrhage ended, with compensatory recovery to basal levels 20 min later, regardless of drug treatment. L-NAME, however, elevated (P < 0.05) blood pressure (vs. aCSF controls) 40-45 min after intracerebroventricular administration. In normovolemic rats, L-NAME produced a significant pressor response and increased plasma levels of vasopressin (VP) and oxytocin (OT). After hemorrhage, both hormone levels increased, but only OT was further enhanced by L-NAME. Thus centrally produced NO tonically inhibits OT and VP secretion under basal normovolemic conditions and selectively inhibits OT release during hypovolemia. Hemorrhage increased the rates of glucose utilization in the neural lobe, indicative of enhanced efferent neural functional activity. L-NAME further enhanced the metabolic activity in the entire hypothalamoneurohypophysial system of hemorrhaged animals. Several other brain structures involved in the regulation of blood pressure and the stress response were also metabolically affected by the hemorrhage and L-NAME.
Collapse
Affiliation(s)
- M Kadekaro
- Division of Neurosurgery, University of Texas Medical Branch at Galveston 77555-0517, USA
| | | | | | | | | | | |
Collapse
|