1
|
Meulia T, Stewart L, Goodin M. Sonchus yellow net virus core particles form on ring-like nuclear structure enriched in viral phosphoprotein. Virus Res 2018; 258:64-67. [PMID: 30308212 DOI: 10.1016/j.virusres.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/27/2022]
Abstract
The phosphoprotein (P) of the nucleorhabdovirus sonchus yellow net virus has been shown to accumulate in ring-shaped structures in virus-infected nuclei. Further examination by live-cell imaging, in combination with structural examination by transmission electron microscopy and immunolocalization demonstrated that P-rings do not form in association with nucleoli. Furthermore, viral cores were shown to condense on the nucleoplasm-contacting surface of the rings. The data presented here offer evidence for the site of nucleocapsid assembly in SYNV-infected nuclei.
Collapse
Affiliation(s)
- Tea Meulia
- Molecular and Cellular Imaging Center, Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691, USA
| | - Lucy Stewart
- USDA-ARS Plant Pathology, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Michael Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
2
|
Jackson AO, Dietzgen RG, Goodin MM, Li Z. Development of Model Systems for Plant Rhabdovirus Research. Adv Virus Res 2018; 102:23-57. [PMID: 30266175 DOI: 10.1016/bs.aivir.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter reviews the discoveries and initial characterizations (1930-1990) of three plant rhabdoviruses, sonchus yellow net virus, potato yellow dwarf virus, and lettuce necrotic yellows virus, that have become model systems for research on this group of enveloped negative-strand RNA plant viruses. We have used our personal perspectives to review the early historical studies of these viruses, the important technologies and tools, such as density gradient centrifugation, that were developed during the research, and to highlight the eminent scientists involved in these discoveries. Early studies on sites of virus replication, virion structure, physicochemical composition, and the use of protoplasts and vector insect cell culture for virus research are discussed, and differences between the nuclear and cytoplasmic lifestyles of plant rhabdoviruses are contrasted. Finally, we briefly summarize the genome organization and more recent developments culminating in the development of a reverse genetics system for plant negative-strand RNA viruses.
Collapse
Affiliation(s)
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | | | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Anderson G, Jang C, Wang R, Goodin M. Mapping the nuclear localization signal in the matrix protein of potato yellow dwarf virus. J Gen Virol 2018; 99:743-752. [PMID: 29616892 DOI: 10.1099/jgv.0.001051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.
Collapse
Affiliation(s)
- Gavin Anderson
- Anderson Craft Ales, 1030 Elias St, London, ON N5W 3P6, Canada
| | - Chanyong Jang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Renyuan Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Michael Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
4
|
Jang C, Wang R, Wells J, Leon F, Farman M, Hammond J, Goodin MM. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus. J Gen Virol 2017; 98:1526-1536. [PMID: 28635588 PMCID: PMC5656794 DOI: 10.1099/jgv.0.000771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022] Open
Abstract
The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12 792 nt long and organized into seven ORFs with the gene order 3'-N-X-P-Y-M-G-L-5', which encodes the nucleocapsid, phospho, movement, matrix, glyco, and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. Cloned ORFs for each gene, except L, were used to construct a protein interaction and localization map (PILM) for this virus, which shares greater than 80 % amino acid similarity in all ORFs except X and P with the sanguinolenta strain of this species (SYDV). Protein localization patterns and interactions unique to each viral strain were identified, resulting in strain-specific PILMs. Localization of CYDV and SYDV proteins in virus-infected cells mapped subcellular loci likely to be sites of replication, morphogenesis and movement.
Collapse
Affiliation(s)
- Chanyong Jang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Renyuan Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Joseph Wells
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Fabian Leon
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - John Hammond
- USDA-ARS, United States National Arboretum, Beltsville, MD, USA
| | - Michael M. Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Bandyopadhyay A, Kopperud K, Anderson G, Martin K, Goodin M. An integrated protein localization and interaction map for Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus. Virology 2010; 402:61-71. [PMID: 20362316 PMCID: PMC2873121 DOI: 10.1016/j.virol.2010.03.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/13/2010] [Accepted: 03/05/2010] [Indexed: 01/15/2023]
Abstract
The genome of Potato yellow dwarf virus (PYDV; Nucleorhabdovirus type species) was determined to be 12,875 nucleotides (nt). The antigenome is organized into seven open reading frames (ORFs) ordered 3'-N-X-P-Y-M-G-L-5', which likely encode the nucleocapsid, phospho, movement, matrix, glyco and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. The ORFs are flanked by a 3' leader RNA of 149 nt and a 5' trailer RNA of 97 nt, and are separated by conserved intergenic junctions. Phylogenetic analyses indicated that PYDV is closely related to other leafhopper-transmitted rhabdoviruses. Functional protein assays were used to determine the subcellular localization of PYDV proteins. Surprisingly, the M protein was able to induce the intranuclear accumulation of the inner nuclear membrane in the absence of any other viral protein. Finally, bimolecular fluorescence complementation was used to generate the most comprehensive protein interaction map for a plant-adapted rhabdovirus to date.
Collapse
|
6
|
Ghosh D, Brooks RE, Wang R, Lesnaw J, Goodin MM. Cloning and subcellular localization of the phosphoprotein and nucleocapsid proteins of Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus. Virus Res 2008; 135:26-35. [PMID: 18387687 DOI: 10.1016/j.virusres.2008.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/07/2008] [Accepted: 02/10/2008] [Indexed: 11/15/2022]
Abstract
We have cloned and characterized mRNAs corresponding to the phosphoprotein (P) and nucleocapsid (N) genes of the sanguinolenta strain of Potato yellow dwarf virus (PYDV). The P and N messenger RNAs both begin with a common AAACA pentanucleotide and are 1546nt and 962nt in length, and capable of encoding 52kDa and 31kDa proteins, respectively. The N mRNA contains a 12nt 5' non-translated sequence (NTS) and a 83nt 3'-NTS. Similarly, the P mRNA has a 19nt 5'-NTS and a 125nt 3'-NTS. Primary structure analyses revealed three potential phosphorylation sites in the P protein and six in the N protein. Despite a lack of predictable nuclear localization signals (NLSs) in either protein, transient expression of the P and N proteins in N. benthamiana showed that both proteins are targeted exclusively to nuclei. Phylogenetic analyses showed that PYDV is most closely related to Maize mosaic virus and Taro vein chlorosis virus, which also lack predictable NLSs in their N proteins. The present data further distinguish PYDV from SYNV and suggest that, together, these viruses serve to provide a more comprehensive view of rhabdovirus cell biology, which can be studied in a common host plant.
Collapse
Affiliation(s)
- Debasish Ghosh
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | | | |
Collapse
|
7
|
Goodin M, Yelton S, Ghosh D, Mathews S, Lesnaw J. Live-cell imaging of rhabdovirus-induced morphological changes in plant nuclear membranes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:703-9. [PMID: 16042016 DOI: 10.1094/mpmi-18-0703] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Potato yellow dwarf virus (PYDV) and Sonchus yellow net virus (SYNV) belong to the genus Nucleorhabdovirus. These viruses replicate in nuclei of infected cells and mature virions accumulate in the perinuclear space after budding through the inner nuclear membrane. Infection of transgenic Nicotiana benthamiana 16c plants (which constitutively express green fluorescent protein (GFP) targeted to endomembranes) with PYDV or SYNV resulted in virus-specific patterns of accumulation of both GFP and membranes within nuclei. Using immunolocalization and a lipophilic fluorescent dye, we show that the sites of the relocalized membranes were coincident with foci of accumulation of the SYNV nucleocapsid protein. In contrast to the effects of PYDV and SYNV, inoculation of 16c plants with plus-strand RNA viruses did not result in accumulation of intranuclear GFP. Instead, such infections resulted in accumulation of GFP around nuclei, in a manner consistent with proliferation of the endoplasmic reticulum. We propose that the relocalization of GFP in 16c plants can be used to study sites of rhabdovirus accumulation in live cells. This study is the first to use live-cell imaging to characterize the effects of rhabdoviruses on plant nuclear membranes.
Collapse
Affiliation(s)
- Michael Goodin
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA.
| | | | | | | | | |
Collapse
|
8
|
Jackson AO, Dietzgen RG, Goodin MM, Bragg JN, Deng M. Biology of plant rhabdoviruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:623-60. [PMID: 16078897 DOI: 10.1146/annurev.phyto.43.011205.141136] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Rhabdoviridae, whose members collectively infect invertebrates, animals, and plants, form a large family that has important consequences for human health, agriculture, and wildlife ecology. Plant rhabdoviruses can be separated into the genera Cytorhabdovirus and Nucleorhabdovirus, based on their sites of replication and morphogenesis. This review presents a general overview of classical and contemporary findings about rhabdovirus ecology, pathology, vector relations, and taxonomy. The genome organization and structure of several recently sequenced nucleorhabdoviruses and cytorhabdoviruses is integrated with new cell biology findings to provide a model for the replication of the two genera. A prospectus outlines the exciting opportunities for future research that will contribute to a more detailed understanding of the biology, biochemistry, replication and host interactions of the plant rhabdoviruses.
Collapse
Affiliation(s)
- Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Sequence complementarity of sonchus yellow net virus RNA with RNA isolated from the polysomes of infected tobacco. Virology 1979; 97:90-9. [DOI: 10.1016/0042-6822(79)90375-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/1979] [Indexed: 11/17/2022]
|
11
|
|
12
|
Bell CD, Omar SA, Lee PE. Electron microscopic localization of wheat striate mosaic virus in its leafhopper vector, Endria inimica. Virology 1978; 86:1-9. [PMID: 664219 DOI: 10.1016/0042-6822(78)90002-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
Kitajima EW, Müller GW, Costa AS, Yuki W. Short, rod-like particles associated with Citrus leprosis. Virology 1972; 50:254-8. [PMID: 4117125 DOI: 10.1016/0042-6822(72)90366-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
De Zoeten GA, Gaard G, Diez FB. Nuclear vesiculation associated with pea enation mosaic virus-infected plant tissue. Virology 1972; 48:638-47. [PMID: 4113241 DOI: 10.1016/0042-6822(72)90148-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Lee PE, Peters D. Electron microscopy of sowthistle yellow vein virus in cells of sowthistle plants. Virology 1972; 48:739-48. [PMID: 4113244 DOI: 10.1016/0042-6822(72)90157-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Carothers ZB. Membrane Continuity between Plasmalemma and Nuclear Envelope in Spermatogenic Cells of Blasia. Science 1972; 175:652-4. [PMID: 17808806 DOI: 10.1126/science.175.4022.652] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ultrastructural study of liverwort antheridia showed that the spherical nuclei of some late-stage androgonial cells lie close to or appressed to the cell walls. In some cells the outer membrane of the nuclear envelope curves toward the wall and continues without interruption around the cell periphery as the plasmalemma. Subject to its confirmation as a natural occurrence, this evidence appears to support Robertson's concept of cellular organization.
Collapse
|
21
|
|
22
|
Carothers ZB. Studies of spermatogenesis in the Hepaticae. 3. Continuity between plasma membrane and nuclear envelope in androgonial cells of Blasia. J Cell Biol 1972; 52:273-82. [PMID: 5061948 PMCID: PMC2108634 DOI: 10.1083/jcb.52.2.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
An ultrastructural study of late-stage androgonial cells of Blasia pusilla, a thallose liverwort, showed the nearly spherical nuclei often lying close or appressed to the cell walls. In some cells the two membranes comprising the nuclear envelope separated, the inner membrane continuing intact as a limiting boundary of the nucleus and the membrane on the outer, cytoplasmic side recurving away from the nucleus to continue without evident interruption around the periphery of the cell as the plasma membrane. It is believed that Blasia offers the first completely convincing demonstration of the heretofore problematic continuity of cytoplasmic membranes. A possible sequence of events leading to this unusual relationship between nucleus and cytoplasm is suggested. The sequence includes blebbing of the outer membrane of the nuclear envelope and subsequent membrane proliferation, apparent isolation of cytoplasmic ground substance, fusion of internal membrane with the ectoplast, and migration that finally brings the nucleus into flat contact with the wall. While this manifestation of membrane continuity may be anomalous, it is not presently considered the result of cell injury.
Collapse
|
23
|
|
24
|
|
25
|
Whitcomb RF, Davis RE. Evidence on Possible Mycoplasma Etiology of Aster Yellows Disease II. Suppression of Aster Yellows in Insect Vectors. Infect Immun 1970; 2:209-15. [PMID: 16557821 PMCID: PMC415990 DOI: 10.1128/iai.2.2.209-215.1970] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlortetracycline or chloramphenicol (but not kanamycin, penicillin, or erythromycin), when administered in hydroponic solution to diseased aster, reduced the availability of the aster yellows (AY) agent to nymphs of
Macrosteles fascifrons
(Stål). Insects exposed to healthy plants whose roots were immersed in chlortetracycline were able to acquire AY agent from diseased plants the day after removal from the antibiotic-treated plants, but the latent period of the ensuing disease in the insects was prolonged. Chlortetracycline or tylosin tartrate blocked AY infection in nymphs injected with a mixture of antibiotic and the AY agent, but polymyxin, neomycin, vancomycin, penicillin, carbomycin, or chloramphenicol did not. All tetracyclines tested, methacycline, oxytetracycline, and chlortetracycline, produced a dramatic reduction in the ability of infected vectors to transmit AY agent. Tylosin tartrate also reduced transmission when injected into AY-transmitting vectors, but carbomycin, spectinomycin, cycloserine, penicillin, erythromycin, or kanamycin had no such effect. During the first 10 days after injection of tylosin tartrate or oxytetracycline into transmitting vectors, ability of the insects to transmit AY decayed rapidly. Transmission by insects injected with buffer alone, after decreasing the first day after injection, gradually returned to its normal level in less than 1 week. By 2 to 3 weeks after injection with tylosin or oxytetracycline, ability to transmit AY was regained by vectors. The results suggest that tetracycline antibiotics and tylosin tartrate inhibit multiplication of AY agent in the insect. The spectrum of antibiotic activity in the insect is consistent with the hypothesis that AY and other plant yellows diseases are caused by mycoplasma-like organisms.
Collapse
Affiliation(s)
- R F Whitcomb
- Entomology Research Division and Plant Virology Laboratory, Crops Research Division, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705
| | | |
Collapse
|
26
|
Lee PE. Developmental stages of wheat striate mosaic virus. JOURNAL OF ULTRASTRUCTURE RESEARCH 1970; 31:282-90. [PMID: 5445837 DOI: 10.1016/s0022-5320(70)90132-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
|
28
|
|
29
|
|
30
|
Rubio-Huertos M, Bos L. Morphology and intracellular localization of bacilliform virus particles associated with the clover enation disease. ACTA ACUST UNITED AC 1969. [DOI: 10.1007/bf01975503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Kitajima EW, Lauritis JA, Swift H. Morphology and intracellular localization of a bacilliform latent virus in sweet clover. JOURNAL OF ULTRASTRUCTURE RESEARCH 1969; 29:141-50. [PMID: 5349782 DOI: 10.1016/s0022-5320(69)80060-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
|
33
|
Affiliation(s)
- E Shikata
- Department of Botany, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
34
|
Hummeler K, Tomassini N, Sokol F, Kuwert E, Koprowski H. Morphology of the nucleoprotein component of rabies virus. J Virol 1968; 2:1191-9. [PMID: 4881422 PMCID: PMC375452 DOI: 10.1128/jvi.2.10.1191-1199.1968] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intracytoplasmic ground substance, or matrix, associated with the development of rabies virus and the nucleocapsid of the virus were investigated. The filaments of the matrix were identified as virus-specific by means of ferritin-labeled antibodies. In thin sections, the diameter was 15 nm and the strands seemed to be incorporated into virions during morphogenesis of the virus. The nucleocapsid was isolated from purified virus preparations and was studied in negative contrast. The rabies nucleocapsid appeared as a single-stranded helix with a diameter of 16 nm and a periodicity of 7.5 nm; its length was in excess of 1 mum.
Collapse
|
35
|
Hills GJ, Campbell RN. Morphology of broccoli necrotic yellows virus. JOURNAL OF ULTRASTRUCTURE RESEARCH 1968; 24:134-44. [PMID: 5683702 DOI: 10.1016/s0022-5320(68)80022-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Richardson J, Sylvester ES. Further evidence of multiplication of sowthistle yellow vein virus in its aphid vector, Hyperomyzus lactucae. Virology 1968; 35:347-55. [PMID: 5662866 DOI: 10.1016/0042-6822(68)90213-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
Wolanski BS, Francki RI, Chambers TC. Structure of lettuce necrotic yellows virus. I. Electron microscopy of negatively stained preparations. Virology 1967; 33:287-96. [PMID: 4861247 DOI: 10.1016/0042-6822(67)90147-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
|
43
|
Sinha RC, Chiykowski LN. Multiplication of wheat striate mosaic virus in its leafhopper vector Endria inimica. Virology 1967; 32:402-5. [PMID: 6028937 DOI: 10.1016/0042-6822(67)90290-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|