1
|
Wahlers A, Kustikova O, Zipfel PF, Itoh K, Koester M, Heberlein C, Li Z, Schiedlmeier B, Skerka C, Fehse B, Baum C. Upstream conserved sequences of mouse leukemia viruses are important for high transgene expression in lymphoid and hematopoietic cells. Mol Ther 2002; 6:313-20. [PMID: 12231166 DOI: 10.1006/mthe.2002.0671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Highly conserved enhancer sequences located in the upstream part of the long terminal repeat (LTR) of murine leukemia retroviruses (MLV) were reported to compromise viral gene expression in multipotent embryonic cells in vitro and to reduce the likelihood for maintenance of retroviral gene expression in hematopoietic cells in vivo. We show that deletion of these sequences (nucleotides +37 to +95) attenuates rather than increases the transcriptional activity of retroviral vectors in hematopoietic cells almost independently of the developmental lineage (erythroid, myeloid, or lymphoid). Expression rates of modified vectors were reduced by as much as 34-65%, although the strong enhancer array located in the direct repeat of the LTR was preserved. Sequence analysis and electrophoretic mobility shift assays revealed the presence of a highly conserved binding site for NFAT (nuclear factor of activated T cells) proteins that immediately neighbors a known binding site for the transcription factor Yin-Yang1 (YY1) [corrected]. Specific inactivation of the NFAT site reduced transgene expression in all cell types investigated and had a similar effect as the destruction of a neighboring SP1 motif. Combined destruction of individual motifs for NFAT, SP1, and E twenty-six transcription factors (ETS) resulted in a severe attenuation (by 40-60%) of the retroviral enhancer. These results provide novel clues for the manipulation of retrovirus replication and vector tropism.
Collapse
Affiliation(s)
- Anke Wahlers
- Heinrich-Pette-Institute, Department of Cell and Virus Genetics, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Avilés Mendoza GJ, Seidel NE, Otsu M, Anderson SM, Simon-Stoos K, Herrera A, Hoogstraten-Miller S, Malech HL, Candotti F, Puck JM, Bodine DM. Comparison of five retrovirus vectors containing the human IL-2 receptor gamma chain gene for their ability to restore T and B lymphocytes in the X-linked severe combined immunodeficiency mouse model. Mol Ther 2001; 3:565-73. [PMID: 11319919 DOI: 10.1006/mthe.2001.0292] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
X-linked severe combined immunodeficiency (XSCID) is caused by mutations in the IL-2 receptor gamma chain (IL2RG) gene, resulting in absent T lymphocytes and nonfunctional B lymphocytes. Recently T lymphocyte production and B lymphocyte function were restored in XSCID patients infused with autologous stem cells transduced with a retrovirus containing the human IL2RG cDNA. To optimize the expression of human IL2RG for future clinical trials, we compared five retroviral vectors expressing human IL2RG from different LTR enhancer-promoter elements in a mouse model. Northern and Southern blot analysis of hematopoietic tissues from repopulated mice revealed that the retroviral vector with the highest expression per copy number was MFG-S-hIL2RG, followed by MND-hIL2RG. All five vectors were capable of restoring lymphopoiesis in irradiated XSCID mice transplanted with transduced IL2RG-deficient hematopoietic stem cells. Transduction of IL2RG-deficient hematopoietic stem cells with all five vectors restored T lymphopoiesis in transplanted stem cell-deficient W/W(v) mouse recipients. However, only XSCID stem cells transduced with the MFG-S-hIL2RG vector generated B lymphocytes in W/W(v) mice. We conclude that the MFG-S-hIL2RG vector provides the best opportunity for in vivo selection and development of B and T lymphocytes for human XSCID gene therapy.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- B-Lymphocytes/metabolism
- Blotting, Northern
- Blotting, Southern
- DNA, Complementary/metabolism
- Disease Models, Animal
- Female
- Flow Cytometry
- Genetic Linkage
- Genetic Therapy/methods
- Genetic Vectors
- Hematopoietic Stem Cells/metabolism
- Humans
- Lymphocytes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Models, Genetic
- Mutation
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, Interleukin-2/genetics
- Retroviridae/genetics
- Retroviridae/metabolism
- Severe Combined Immunodeficiency/therapy
- T-Lymphocytes/metabolism
- Time Factors
- Transduction, Genetic
- X Chromosome/genetics
Collapse
Affiliation(s)
- G J Avilés Mendoza
- Hematopoiesis Section, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yuen PH, Kwak YT. R7, a spontaneous mutant of Moloney murine sarcoma virus 124 with three direct repeats and an in-frame truncated gag-mos gene, induces brain lesions. Virology 1997; 236:213-8. [PMID: 9299634 DOI: 10.1006/viro.1997.8729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated Recombinant 7 (R7), a spontaneous mutant of SV7, a molecular clone of MoMuSV124. Like SV7, R7 induces subcutaneous fibrosarcomas, spleen tumors, and mesentery tumors infiltrated by proliferating vessels lined by transformed endothelial cells. However, it also induces brain lesions. We have molecularly cloned and sequenced the R7 proviral DNA and shown that the R7 genome consists of 3401 bp. It has three direct repeats in each enhancer. Its coding sequence consists of only 176 bp of p15, 263 bp of p30, a 7-bp insertion, and 853 bp of an N-terminally truncated mos gene. From the sequence of R7 we have deduced that the truncated mos sequence is in-frame with all of the gag sequence and the 7-bp insertion. The incorporation of the 3' end of the p15 sequence further suggests that the R7 Gag-Mos is myristylated. We have also shown that the molecularly cloned R7 virus transformed NIH/3T3 fibroblasts about sevenfold better than the parental SV7. We have also confirmed that molecularly cloned R7 induces the same disease phenotype as that induced by the nonmolecularly cloned R7.
Collapse
Affiliation(s)
- P H Yuen
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas 78957, USA
| | | |
Collapse
|
4
|
Challita PM, Skelton D, el-Khoueiry A, Yu XJ, Weinberg K, Kohn DB. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J Virol 1995; 69:748-55. [PMID: 7815539 PMCID: PMC188638 DOI: 10.1128/jvi.69.2.748-755.1995] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Infection by murine retroviruses in embryonic carcinoma (EC) and embryonic stem cells is highly restricted. The transcriptional unit of the Moloney murine leukemic virus (MoMuLV) long terminal repeat (LTR) is inactive in EC and embryonic stem cells in association with increased proviral methylation. In this study, expression in F9 EC cells was achieved from novel retroviral vectors containing three modifications in the MoMuLV-based retroviral vector: presence of the myeloproliferative sarcoma virus LTR, substitution of the primer binding site, and either deletion of a negative control region at the 5' end of the LTR or insertion of a demethylating sequence. We conclude that inhibition of expression from the MoMuLV LTR in EC cells is mediated through the additive effects of multiple cis-acting elements affecting the state of methylation of the provirus.
Collapse
Affiliation(s)
- P M Challita
- Department of Microbiology, University of Southern California School of Medicine, Los Angeles
| | | | | | | | | | | |
Collapse
|
5
|
Mukhopadhyaya R, Richardson J, Nazarov V, Corbin A, Koller R, Sitbon M, Wolff L. Different abilities of Friend murine leukemia virus (MuLV) and Moloney MuLV to induce promonocytic leukemia are due to determinants in both psi-gag-PR and env regions. J Virol 1994; 68:5100-7. [PMID: 7518530 PMCID: PMC236453 DOI: 10.1128/jvi.68.8.5100-5107.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Moloney murine leukemia virus (M-MuLV) is capable of inducing promonocytic leukemia in 50% of adult BALB/c mice that have received peritoneal injections of pristane, but Friend MuLV strain 57 (F-MuLV) is nonleukemogenic under similar conditions. It was shown earlier that these differences could not be mapped to the U3 region of the virus long terminal repeat, indicating the probable influence of structural genes and/or R-U5 sequences. In this study, reciprocal chimeras containing exchanged structural genes and R-U5 sequences from these two closely related viruses were analyzed for differences in ability to induce disease. Results showed that two regions of F-MuLV, psi-gag-PR and env, when substituted for those of M-MuLV were dramatically disease attenuating. The 5'-most region, which is widely distributed, overlaps with the 5' end of the env intron and includes the RNA packaging region, psi, the entire gag coding region, and the viral protease coding region (PR) of pol. It was also found that reciprocal constructs having substitutions of both of these regions of M-MuLV in an F-MuLV background allowed full reestablishment of promonocytic leukemia. These leukemias were positive for c-myb rearrangements which are characteristic of M-MuLV-induced promonocytic leukemias. Neither region alone, however, was sufficient to produce disease with a greater incidence than 13%. Further studies demonstrated that the inability of viruses with psi, gag, PR, or env sequences from F-MuLV to induce leukemia in this model system was not due to their inability to replicate in hematopoietic tissue, to integrate into the c-myb locus early on after infection in vivo, or to express gag-myb mRNA characteristic of M-MuLV-induced preleukemic cells and acute leukemia.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- DNA, Viral
- Epitopes
- Female
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/immunology
- Friend murine leukemia virus/pathogenicity
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/physiology
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Myeloid/microbiology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mutagenesis, Insertional
- Precancerous Conditions/microbiology
- Tumor Virus Infections/microbiology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/physiology
Collapse
Affiliation(s)
- R Mukhopadhyaya
- Laboratory of Genetics, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | |
Collapse
|
6
|
van den Wollenberg DJ, Hoeben RC, van Ormondt H, van der Eb AJ. Insertion of the human cytomegalovirus enhancer into a myeloproliferative sarcoma virus long terminal repeat creates a high-expression retroviral vector. Gene X 1994; 144:237-41. [PMID: 8039708 DOI: 10.1016/0378-1119(94)90383-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A new retroviral vector is characterized in which the enhancer in the long terminal repeat of myeloproliferative sarcoma virus (MPSV) is combined with the strong and universally active immediate-early human cytomegalovirus (hCMV) enhancer. We demonstrate that insertion of the hCMV enhancer increases the amount of vector-specific mRNA in various rodent cell lines and in human diploid fibroblasts, by at least 3-5-fold. The vector may be particularly useful if high expression of two genes is desired.
Collapse
|
7
|
Engelke U, Lipsick JS. Transformation of myelomonocytic cells by the avian myeloblastosis virus is determined by the v-myb oncogene, not by the unique long terminal repeats of the virus. J Virol 1994; 68:2752-5. [PMID: 8139052 PMCID: PMC236755 DOI: 10.1128/jvi.68.4.2752-2755.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The avian myeloblastosis virus (AMV) induces acute monoblastic leukemia in chickens and transforms only myelomonocytic cells in vitro. The long terminal repeat (LTR) regulatory region of AMV is unique among the known classes of avian retrovirus LTRs. We demonstrate that the substitution of the AMV LTRs by Rous sarcoma virus LTRs did not alter the cell type specificity or the transforming ability of the virus.
Collapse
Affiliation(s)
- U Engelke
- Department of Pathology, Stanford University School of Medicine, California 94305-5324
| | | |
Collapse
|
8
|
Hawley RG, Fong AZ, Burns BF, Hawley TS. Transplantable myeloproliferative disease induced in mice by an interleukin 6 retrovirus. J Exp Med 1992; 176:1149-63. [PMID: 1402659 PMCID: PMC2119383 DOI: 10.1084/jem.176.4.1149] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lethally irradiated mice transplanted with bone marrow cells infected with a novel recombinant retrovirus (murine stem cell virus-interleukin 6 [MSCV-IL-6]) bearing a mouse IL-6 gene developed a fatal myeloproliferative disease within 4 wk of engraftment. The hematologic manifestations of the syndrome included elevated peripheral leukocyte counts (up to 430 x 10(3) cells/mm3) with a predominance of neutrophilic granulocytes, microcytic anemia, and thrombocytosis or thrombocytopenia. The mice showed extensive neutrophil infiltration of the lungs, liver, and occasionally lymph nodes, plus splenomegaly resulting from enhanced splenic myelopoiesis (30-60-fold increase in progenitor numbers). Despite the chronic stimulation of neutrophil excess by IL-6, bone marrow from affected mice was capable of repopulating the hematopoietic tissues (bone marrow and spleen) of lethally irradiated hosts during repeated serial transplantation. In the longest documented case, the progeny of a single MSCV-IL-6-marked cell transferred the myeloproliferative disease to two secondary, four tertiary, and two quaternary recipients (the clone endured for a total of 72 wk). These results, demonstrating considerable proliferative longevity of the IL-6-producing cells, support an in vivo role of IL-6 in the maintenance of hematopoietic precursors. Dysregulated IL-6 production also had significant systemic effects. The mice displayed increased mesangial cell proliferation in the kidney, frequent liver abnormalities, and marked alterations in plasma protein levels. Unlike previous studies where constitutive expression of exogenous IL-6 genes resulted in lymphoproliferative disorders characterized by massive plasmacytosis, minimal plasma cell expansion occurred in the MSCV-IL-6 mice during the observation period. Potential explanations for the differences in disease phenotypes observed in the present and previous studies are different cell types expressing the exogenous IL-6 genes, higher sustained circulating levels of IL-6 achieved using the MSCV-IL-6 retroviral delivery system, and/or the premature death (3-15 wk after transplantation) of the MSCV-IL-6 mice before the onset of plasmacytosis. This animal model should prove useful for further investigation of the function of IL-6 in normal and abnormal hematopoiesis and in inflammatory responses.
Collapse
Affiliation(s)
- R G Hawley
- Division of Cancer Research, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Masuda M, Remington MP, Hoffman PM, Ruscetti SK. Molecular characterization of a neuropathogenic and nonerythroleukemogenic variant of Friend murine leukemia virus PVC-211. J Virol 1992; 66:2798-806. [PMID: 1560524 PMCID: PMC241036 DOI: 10.1128/jvi.66.5.2798-2806.1992] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PVC-211 murine leukemia virus (MuLV) is a replication-competent, ecotropic type C retrovirus that was isolated after passage of the Friend virus complex through F344 rats. Unlike viruses in the Friend virus complex, it does not cause erythroleukemia but causes a rapidly progressive hind limb paralysis when injected into newborn rats and mice. We have isolated an infectious DNA clone (clone 3d) of this virus which causes neurological disease in animals as efficiently as parental PVC-211 MuLV. The restriction map of clone 3d is very similar to that of the nonneuropathogenic, erythroleukemogenic Friend murine leukemia virus (F-MuLV), suggesting that PVC-211 MuLV is a variant of F-MuLV and that no major structural alteration was involved in its derivation. Studies with chimeric viruses between PVC-211 MuLV clone 3d and wild-type F-MuLV clone 57 indicate that at least one determinant for neuropathogenicity resides in the 2.1-kb XbaI-ClaI fragment containing the gp70 coding region of PVC-211 MuLV. Compared with nonneuropathogenic ecotropic MuLVs, the env gene of PVC-211 MuLV encodes four unique amino acids in the gp70 protein. Nucleotide sequence analysis also revealed a deletion in the U3 region of the long terminal repeat (LTR) of PVC-211 MuLV clone 3d compared with F-MuLV clone 57. In contrast to the env gene of PVC-211 MuLV, particular sequences within the U3 region of the viral LTR do not appear to be required for neuropathogenicity. However, the changes in the LTR of PVC-211 MuLV may be responsible for the failure of this virus to cause erythroleukemia, because chimeric viruses containing the U3 region of F-MuLV clone 57 were erythroleukemogenic whereas those with the U3 of PVC-211 MuLV clone 3d were not.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Base Sequence
- Cloning, Molecular
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Genes, env/genetics
- Genetic Variation
- Genome, Viral
- Hindlimb/pathology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/pathology
- Mice
- Molecular Sequence Data
- Paralysis/etiology
- Protein Processing, Post-Translational
- Rats
- Repetitive Sequences, Nucleic Acid/genetics
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- Tumor Cells, Cultured
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- M Masuda
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21702-1201
| | | | | | | |
Collapse
|
10
|
Hematologic disease induced in BALB/c mice by a bcr-abl retrovirus is influenced by the infection conditions. Mol Cell Biol 1992. [PMID: 1312670 DOI: 10.1128/mcb.12.4.1755] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Irradiated mice reconstituted with bone marrow cells infected with a retrovirus carrying the bcr-abl oncogene of human chronic myeloid leukemia are subject to a range of neoplastic hematopoietic diseases, both myeloid and lymphoid. Comparison of DBA/2 and C57BL/6 mice has revealed a marked strain difference in susceptibility to the various tumor types. The present study, performed with BALB/c mice, indicates that the kinetics and nature of the induced disease can be modulated by the infection procedure, as well as the genetic background, and that retroviral regulatory sequences may influence the outcome. A distinctive clonal myeloproliferative disorder, somewhat akin to chronic myeloid leukemia but with prominent erythroid and mast cell components, as well as granulocytic excess, was characterized.
Collapse
|
11
|
Elefanty AG, Cory S. Hematologic disease induced in BALB/c mice by a bcr-abl retrovirus is influenced by the infection conditions. Mol Cell Biol 1992; 12:1755-63. [PMID: 1312670 PMCID: PMC369619 DOI: 10.1128/mcb.12.4.1755-1763.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Irradiated mice reconstituted with bone marrow cells infected with a retrovirus carrying the bcr-abl oncogene of human chronic myeloid leukemia are subject to a range of neoplastic hematopoietic diseases, both myeloid and lymphoid. Comparison of DBA/2 and C57BL/6 mice has revealed a marked strain difference in susceptibility to the various tumor types. The present study, performed with BALB/c mice, indicates that the kinetics and nature of the induced disease can be modulated by the infection procedure, as well as the genetic background, and that retroviral regulatory sequences may influence the outcome. A distinctive clonal myeloproliferative disorder, somewhat akin to chronic myeloid leukemia but with prominent erythroid and mast cell components, as well as granulocytic excess, was characterized.
Collapse
Affiliation(s)
- A G Elefanty
- Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
12
|
Singh B, Stocking C, Walker R, Yang YD, Ostertag W, Arlinghaus RB. v-mos proteins encoded by myeloproliferative sarcoma virus and its ts159 mutant. J Virol 1992; 66:1267-72. [PMID: 1309903 PMCID: PMC240840 DOI: 10.1128/jvi.66.2.1267-1272.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The myeloproliferative sarcoma virus (MPSV) v-mos protein was predicted to be identical in size to p39c-mos because of an observed one-base deletion in the seventh codon of the env-mos open reading frame, which would allow translation to initiate at the methionine equivalent to codon 32 of the env-mos gene. On the basis of published results, p39c-mos is known to have greatly reduced in vitro protein kinase activity compared with p37env-mos encoded by Moloney murine sarcoma virus. Unexpectedly, the relative activity of the MPSV v-mos protein kinase was comparable to that of p37env-mos. Consistent with this finding, the size of MPSV v-mos protein was found to be similar to the size of p37env-mos. Moreover, the pattern and sizes of phosphorylated bands produced by autophosphorylation of the MPSV v-mos protein were similar to those of p37env-mos. These results were confirmed by in vitro transcription-translation of the MPSV v-mos gene. Resequencing portions of the MPSV mos gene failed to show the deletion within codon 7. Except for the codon 262 deletion, other mutations characteristic of MPSV and temperature-sensitive MPSV v-mos genes were confirmed. A glycine-to-arginine mutation at residue 338 of the MPSV env-mos sequence, previously shown to cause thermosensitivity of the mutant virus (termed ts159) transforming function, yielded a v-mos protein that had significantly reduced protein kinase activity in vitro. These findings indicate that MPSV, like other Moloney murine sarcoma virus strains, also encodes a functional env-mos protein.
Collapse
Affiliation(s)
- B Singh
- Department of Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | |
Collapse
|
13
|
Beck-Engeser G, Stocking C, Just U, Albritton L, Dexter M, Spooncer E, Ostertag W. Retroviral vectors related to the myeloproliferative sarcoma virus allow efficient expression in hematopoietic stem and precursor cell lines, but retroviral infection is reduced in more primitive cells. Hum Gene Ther 1991; 2:61-70. [PMID: 1863641 DOI: 10.1089/hum.1991.2.1-61] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Retroviral vectors are considered to be the most suited vehicles for somatic gene therapy with hematopoietic stem cells as targets. Retrovirus-mediated gene transfer into differentiation-restricted hematopoietic precursor (FDC-P1, FDC-P2) and multipotent progenitor (stem) cell lines (FDC-Pmix) is inefficient. Two cellular restrictions are involved. One is specific for stem but not precursor cells and is at the level of transcription. Due to a unique property of the transcriptional control region of the myeloproliferative sarcoma virus (MPSV), vectors derived from MPSV are not affected by this block. The second restriction occurs before proviral DNA synthesis and integration. This inhibition of effective viral infection depends on the state of differentiation, being more pronounced in multipotent clonogenic blast cells. This block to retroviral infection affects all retroviral vectors tested.
Collapse
Affiliation(s)
- G Beck-Engeser
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Keith WN, Brown R, Pragnell IB. Retrovirus mediated transfer and expression of GM-CSF in haematopoietic cells. Br J Cancer 1990; 62:388-94. [PMID: 1698441 PMCID: PMC1971443 DOI: 10.1038/bjc.1990.304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two retrovirus vectors were compared for their ability to express granulocyte-macrophage colony stimulating factor (GM-CSF) in a haematopoietic cell line, FDCP1, which is dependent on GM-CSF for survival. Both a MoMLV-based vector pVneoGM, and a MPSV-based vector, M3neoGM, were found to be capable of transmitting and expressing both GM-CSF and neomycin sequences in the myeloid FDCP1 cell line. Our results also demonstrate that pVneoGM is more efficient at generating GM-CSF independent colonies than M3neoGM. Analysis of cell lines derived after infection confirmed pVneoGM expressed higher levels of GM-CSF. Cell lines generated by infection with pVneoGM responded to levels of exogenous recombinant GM-CSF which did not stimulate growth of the parental cell line, suggesting autocrine stimulation may convey a proliferative advantage under sub-optimal growth conditions. Finally the parental vectors pVneo and M3neo were shown to be capable of expressing the neomycin gene in both murine haematopoietic progenitor and stem cells.
Collapse
Affiliation(s)
- W N Keith
- CRC Department of Medical Oncology, Beatson Institute for Cancer Research, Glasgow, UK
| | | | | |
Collapse
|
15
|
Laker C, Gräning G, Kelso A, Stocking C, Ostertag W. Abrogation of the requirement for feeder cell interaction and T cell receptor stimulation of lymphocytes infected with retroviral vectors. J Exp Med 1990; 172:447-56. [PMID: 2165126 PMCID: PMC2188329 DOI: 10.1084/jem.172.2.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infection of sensitive adult mice with myeloproliferative sarcoma virus (MPSV) results in a myeloproliferative syndrome. Two components of the viral genome are required to induce this unique pathology: the mos oncogene and sequences within the U3 region of the long terminal repeat (LTR). In studies designed to identify the target cell of MPSV and thus better understand the mechanism by which a myeloproliferative syndrome is induced, we have infected a series of T cell lines with MPSV-based vectors. The results presented here show that infection with neoR MPSV abrogates the requirement for an antigen-specific or feeder cell-dependent stimulation, without altering the requirement for interleukin 2. Significantly, this response is not dependent on the mos oncogene, but requires sequences within the U3 region of the MPSV LTR. No alteration in the constitutive or induced levels of lymphokines released by these cells was observed. These results suggest a model in which T cells acquire a proliferative advantage by uncoupling the proliferative response from the lymphokine synthesis that is induced by activation of the T cell receptor. These cells are thus poised for antigen stimulation and secretion of cytokines that stimulate myelopoiesis.
Collapse
Affiliation(s)
- C Laker
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
16
|
Golemis EA, Speck NA, Hopkins N. Alignment of U3 region sequences of mammalian type C viruses: identification of highly conserved motifs and implications for enhancer design. J Virol 1990; 64:534-42. [PMID: 2153223 PMCID: PMC249141 DOI: 10.1128/jvi.64.2.534-542.1990] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We aligned published sequences for the U3 region of 35 type C mammalian retroviruses. The alignment reveals that certain sequence motifs within the U3 region are strikingly conserved. A number of these motifs correspond to previously identified sites. In particular, we found that the enhancer region of most of the viruses examined contains a binding site for leukemia virus factor b, a viral corelike element, the consensus motif for nuclear factor 1, and the glucocorticoid response element. Most viruses containing more than one copy of enhancer sequences include these binding sites in both copies of the repeat. We consider this set of binding sites to constitute a framework for the enhancers of this set of viruses. Other highly conserved motifs in the U3 region include the retrovirus inverted repeat sequence, a negative regulatory element, and the CCAAT and TATA boxes. In addition, we identified two novel motifs in the promoter region that were exceptionally highly conserved but have not been previously described.
Collapse
Affiliation(s)
- E A Golemis
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
17
|
Friel J, Hughes D, Pragnell I, Stocking C, Laker C, Nowock J, Ostertag W, Padua RA. The malignant histiocytosis sarcoma virus, a recombinant of Harvey murine sarcoma virus and Friend mink cell focus-forming virus, has acquired myeloid transformation specificity by alterations in the long terminal repeat. J Virol 1990; 64:369-78. [PMID: 2152823 PMCID: PMC249111 DOI: 10.1128/jvi.64.1.369-378.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The malignant histiocytosis sarcoma virus (MHSV), in contrast to other viruses with the ras oncogene, induces acute histiocytosis in newborn and adult mice. Molecular structure and function studies were initiated to determine the basis of its unique macrophage-transforming potential. Characterization of the genomic structure showed that the virus evolved by recombination of the Harvey murine sarcoma virus (Ha-MuSV) and a virus of the Friend-mink cell focus-forming virus family. Structural analysis of MHSV showed two regions of the genome that are basically different from the Ha-MuSV: (i) the ras gene, which is altered by a point mutation in codon 181 leading to a Cys----Ser substitution of the p21 protein, and (ii) the U3 region of the long terminal repeat, which is largely derived from F-MCFV and contains a deletion of one direct repeat as well as a duplication of an altered enhancer-like region. Biological studies of Ha-MuSV, MHSV, and recombinants between the two viruses show that the U3 region of the MHSV long terminal repeat is essential for the malignancy and specificity of the disease. A contributing role of the ras point mutation in determining macrophage specificity, however, cannot be excluded.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Cell Transformation, Neoplastic
- Cloning, Molecular
- Codon/genetics
- DNA, Viral/genetics
- Genes, Viral
- Genes, ras
- Harvey murine sarcoma virus/genetics
- Harvey murine sarcoma virus/pathogenicity
- Histiocytosis/microbiology
- Leukemia Virus, Murine/genetics
- Mice
- Mice, Inbred BALB C
- Mink Cell Focus-Inducing Viruses/genetics
- Mink Cell Focus-Inducing Viruses/pathogenicity
- Molecular Sequence Data
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Sarcoma Viruses, Murine/genetics
- Sequence Homology, Nucleic Acid
- Spleen/microbiology
- Transfection
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- J Friel
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pierce JH. Oncogenes, growth factors and hematopoietic cell transformation. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 989:179-208. [PMID: 2557086 DOI: 10.1016/0304-419x(89)90042-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J H Pierce
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
19
|
Golemis E, Li Y, Fredrickson TN, Hartley JW, Hopkins N. Distinct segments within the enhancer region collaborate to specify the type of leukemia induced by nondefective Friend and Moloney viruses. J Virol 1989; 63:328-37. [PMID: 2783259 PMCID: PMC247688 DOI: 10.1128/jvi.63.1.328-337.1989] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nondefective Moloney and Friend murine leukemia viruses induce T-cell lymphomas and erythroleukemias, respectively, after being injected into newborn NFS mice. In previous studies, we showed that the distinct disease specificities of the two viruses could be switched by exchanging a small segment, about 200 nucleotides in length, encompassing their enhancer regions. This segment included the direct repeat sequence and an adjacent GC-rich region of about 20 nucleotides defined in studies of Moloney murine sarcoma virus enhancer-promoter function (L. A. Laimins, P. Gruss, R. Pozzatti, and G. Khoury, J. Virol. 49:183-189, 1984). The direct repeats of Friend and Moloney viruses are identical in a central core sequence of 32 nucleotides but have sequence differences on either side of this core as well as in their GC-rich segments. To determine whether disease specificity resides in part or in all of the direct repeat and GC-rich region, we constructed recombinants between Friend and Moloney viruses within this segment and tested them for their disease-inducing phenotypes. We found that disease specificity, in particular the ability of Friend virus sequence to confer erythroleukemogenicity on Moloney virus, is encoded throughout the region in at least three separable segments: the 5' and 3' halves of the direct repeat and the GC-rich segment. When just one of these segments (either both 5' halves of the direct repeat, both 3' halves, or just the GC-rich segment) from Friend virus was substituted into a Moloney virus genome, it conferred only a negligible or low incidence of erythroleukemia (less than or equal to 5% to between 10 and 15%). Any two segments together were considerably more potent (35 to 95% erythroleukemia), with the most effective pair being the two halves of the direct repeat. Individual segments and pairs of segments were considerably more potent determinants when they were matched with a genome of the same origin. Thus, although sequences outside the enhancer region are minor determinants of disease specificity when the enhancer is derived entirely from either Friend or Moloney virus, they can play a significant role when the enhancer is of mixed origin. Some recombinant enhancers conferred a long latent period of disease induction. This was particularly striking when the 5' halves of each copy of the direct repeat sequence were derived from Moloney virus and the 3' halves were derived from Friend virus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Golemis
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
20
|
Rassart E, Paquette Y, Jolicoeur P. Inability of Kaplan radiation leukemia virus to replicate on mouse fibroblasts is conferred by its long terminal repeat. J Virol 1988; 62:3840-8. [PMID: 2843678 PMCID: PMC253530 DOI: 10.1128/jvi.62.10.3840-3848.1988] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecularly cloned infectious Kaplan radiation leukemia virus has previously been shown to be unable to replicate on mouse fibroblasts (E. Rassart, M. Shang, Y. Boie, and P. Jolicoeur, J. Virol. 58:96-106, 1986). To map the viral sequences responsible for this, we constructed chimeric viral DNA genomes in vitro with parental cloned infectious viral DNAs from the nonfibrotropic (F-) BL/VL3 V-13 radiation leukemia virus and the fibrotropic (F+) endogenous BALB/c or Moloney murine leukemia viruses (MuLV). Infectious chimeric MuLVs, recovered after transfection of Ti-6 lymphocytes with these recombinant DNAs, were tested for capacity to replicate on mouse fibroblasts in vitro. We found that chimeric MuLVs harboring the long terminal repeat (LTR) of a fibrotropic MuLV replicated well on mouse fibroblasts. Conversely, chimeric MuLVs harboring the LTR of a nonfibrotropic MuLV were restricted on mouse fibroblasts. These results indicate that the LTR of BL/VL3 radiation leukemia virus harbors the primary determinant responsible for its inability to replicate on mouse fibroblasts in vitro. Our results also show that the primary determinant allowing F+ MuLVs (endogenous BALB/c and Moloney MuLVs) to replicate on mouse fibroblasts in vitro resides within the LTR.
Collapse
Affiliation(s)
- E Rassart
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | |
Collapse
|
21
|
Bowtell DD, Cory S, Johnson GR, Gonda TJ. Comparison of expression in hemopoietic cells by retroviral vectors carrying two genes. J Virol 1988; 62:2464-73. [PMID: 3373574 PMCID: PMC253405 DOI: 10.1128/jvi.62.7.2464-2473.1988] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In order to identify factors that influence expression by retroviral vectors in hemopoietic cells, we have compared viral RNA levels in cells infected with several different recombinant viruses. All of the vectors tested carry the neomycin resistance gene and provide for the insertion of a second gene which, in these studies, comprised sequences from the myc or myb oncogenes or the gene encoding granulocyte-macrophage colony-stimulating factor. The vectors utilize two different strategies for the coexpression of the two genes: alternate splicing and the use of a separate internal promoter. We found that expression in hemopoietic cells could be increased by substituting sequences from the myeloproliferative sarcoma virus long terminal repeat for those of the Moloney murine leukemia virus long terminal repeat. However, none of the vectors examined was able to express a second gene at levels equivalent to those achieved by the parental vectors carrying only the neomycin resistance gene. The reasons for this varied with the different vectors and included inefficient splicing and/or a reduction in the level of unspliced transcripts upon insertion of a second gene. Although the basis of the latter phenomenon is not clear, it is probably related to the position--near the 5' long terminal repeat--at which the second gene was inserted, since insertion of the same genes near the 3' end of another vector had no effect on viral RNA levels. In an attempt to circumvent some of these problems, we constructed a vector that employs an internal beta-actin promoter. Although this vector could express granulocyte-macrophage colony-stimulating factor sequences in a responsive hemopoietic cell line, the level of granulocyte-macrophage colony-stimulating factor produced was disappointingly low. The results from these studies suggest approaches to the design of improved vectors for effective expression of genes in hemopoietic cells.
Collapse
Affiliation(s)
- D D Bowtell
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Laker C, Stocking C, Bergholz U, Hess N, De Lamarter JF, Ostertag W. Autocrine stimulation after transfer of the granulocyte/macrophage colony-stimulating factor gene and autonomous growth are distinct but interdependent steps in the oncogenic pathway. Proc Natl Acad Sci U S A 1987; 84:8458-62. [PMID: 3317408 PMCID: PMC299563 DOI: 10.1073/pnas.84.23.8458] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autocrine stimulation of cells by aberrant synthesis of growth factor may lead to malignant transformation, either as a direct consequence of endogenous factor production or as a first step of a series of successive events. Introduction of the granulocyte/macrophage colony-stimulating factor (GM-CSF) cDNA clone into a vector based on the myeloproliferative sarcoma virus allowed efficient transfer and expression of GM-CSF in factor-dependent myeloid cell lines (FDC-P1 and FDC-P2). Factor-independent growth was acquired when the vector was introduced into the GM-CSF-responsive FDC-P1 cell line but not the multi-CSF-dependent FDC-P2 line. Nonlinear clonability in the absence of exogenous growth factor and growth inhibition by GM-CSF antiserum support a model of autocrine stimulation that requires interaction of factor and receptor at the outer membrane. However, many, but not all, infected FDC-P1 cells acquired subsequently a second mutation that abrogated the requirement of GM-CSF secretion and external interaction. The nature of the second step, which presumably leads to tumorigenicity of these cells, is not well understood, but its frequency could be correlated with the level of GM-CSF released by an individual cell clone.
Collapse
Affiliation(s)
- C Laker
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
23
|
Weiher H, Barklis E, Ostertag W, Jaenisch R. Two distinct sequence elements mediate retroviral gene expression in embryonal carcinoma cells. J Virol 1987; 61:2742-6. [PMID: 3612950 PMCID: PMC255781 DOI: 10.1128/jvi.61.9.2742-2746.1987] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Moloney murine leukemia virus (M-MuLV) and M-MuLV-derived retroviral vectors are not expressed in early mouse embryos or in embryonal carcinoma cells. M-MuLV-derived mutants or M-MuLV-related variants which transduce the neomycin phosphotransferase gene can, however, induce drug resistance in embryonal carcinoma cells with high efficiency. In this study we investigated the sequences critical for retroviral gene expression in two different embryonal carcinoma cell lines, F9 and PCC4. We show that two synergistically acting sequence elements mediate expression in embryonal carcinoma cells. One of these is located within the U3 region of the viral long terminal repeat, and the second one is in the 5' untranslated region of the retrovirus. The latter element, characterized by a single point mutation, affects the level of stable RNA in infected cells, suggesting a regulatory mechanism similar to that of human immunodeficiency virus in human T cells.
Collapse
|
24
|
Hilberg F, Stocking C, Ostertag W, Grez M. Functional analysis of a retroviral host-range mutant: altered long terminal repeat sequences allow expression in embryonal carcinoma cells. Proc Natl Acad Sci U S A 1987; 84:5232-6. [PMID: 3037539 PMCID: PMC298829 DOI: 10.1073/pnas.84.15.5232] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A retroviral host-range neomycin-resistant myeloproliferative sarcoma virus mutant, which is expressed in the embryonal carcinoma cell lines F9 and PCC4aza1R, was molecularly cloned and analyzed. This mutant virus, PCMV, differs from myeloproliferative sarcoma virus by two major deletions, one of which spans exactly a 75-base-pair repeat of the long terminal repeat. Functional analysis of recombinant viruses shows that the host-range expansion of PCMV is a property of nucleotide changes within the U3 region of the long terminal repeat. Furthermore, expression assays of chimeric long terminal repeats show that the enhancer region of PCMV joined to the promoter region of Moloney murine leukemia virus is sufficient to direct the synthesis of chloramphenicol acetyltransferase in F9 and PCC4 cells.
Collapse
|
25
|
Friel J, Stocking C, Stacey A, Ostertag W. A temperature-sensitive mutant of the myeloproliferative sarcoma virus, altered by a point mutation in the mos oncogene, has been modified as a selectable retroviral vector. J Virol 1987; 61:889-97. [PMID: 3027415 PMCID: PMC254034 DOI: 10.1128/jvi.61.3.889-897.1987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The myeloproliferative sarcoma virus (MPSV) is a mos-oncogenic retrovirus which induces an acute myeloproliferative disease in adult mice. The isolation and molecular cloning of two mutants of MPSV temperature sensitive (ts) for mos transformation (Kollek et al., J. Virol. 50:717-724, 1984) have been described previously. In this report, we describe the biological activity of these clones, the molecular basis of the ts lesion of one clone, and the construction of a selectable vector based on the MPSV ts genome. Both molecular clones, ts159 and ts124, proved to have retained the ts phenotype, the former being tighter for the induction and maintenance of the transformed phenotype. A single transition (G----A) at position 1888 in the mos coding region, resulting in the change of Gly to Arg at position 307, was responsible for the ts phenotype of clone ts159. Substitution of sequences carrying this mutation with the corresponding sequences of the wild-type virus generated a virus that was ts for transformation. Insertion of the dominant selectable marker gene for geneticin resistance (neor) into ts159 did not disrupt mos expression or its ts phenotype. neor-ts159 facilitates the study of mos action by allowing the selection of infected cells at the nonpermissive temperature before mos transformation has been induced. Furthermore, infected cells which show no obvious phenotype alteration due to mos expression can be identified by their Neor phenotype.
Collapse
|
26
|
Ostertag W, Stocking C, Johnson GR, Kluge N, Kollek R, Franz T, Hess N. Transforming genes and target cells of murine spleen focus-forming viruses. Adv Cancer Res 1987; 48:193-355. [PMID: 3039810 DOI: 10.1016/s0065-230x(08)60693-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|