1
|
Wang Y, Zou W, Niu Y, Wang S, Chen B, Xiong R, Zhang P, Luo Z, Wu Y, Fan C, Zhong Z, Xu P, Peng Y. Phosphorylation of enteroviral 2A pro at Ser/Thr125 benefits its proteolytic activity and viral pathogenesis. J Med Virol 2023; 95:e28400. [PMID: 36511115 PMCID: PMC10107306 DOI: 10.1002/jmv.28400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Enteroviral 2A proteinase (2Apro ), a well-established and important viral functional protein, plays a key role in shutting down cellular cap-dependent translation, mainly via its proteolytic activity, and creating optimal conditions for Enterovirus survival. Accumulated data show that viruses take advantage of various signaling cascades for their life cycle; studies performed by us and others have demonstrated that the extracellular signal-regulated kinase (ERK) pathway is essential for enterovirus A71 (EV-A71) and other viruses replication. We recently showed that ERK1/2 is required for the proteolytic activity of viral 2Apro ; however, the mechanism underlying the regulation of 2Apro remains unknown. Here, we demonstrated that the 125th residue Ser125 of EV-A71 2Apro or Thr125 of coxsackievirus B3 2Apro , which is highly conserved in the Enterovirus, was phosphorylated by ERK1/2. Importantly, 2Apro with phosphor-Ser/Thr125 had much stronger proteolytic activity toward eukaryotic initiation factor 4GI and rendered the virus more efficient for multiplication and pathogenesis in hSCARB2 knock-in mice than that in nonphospho-Ser/Thr125A (S/T125A) mutants. Notably, phosphorylation-mimic mutations caused deleterious changes in 2Apro catalytic function (S/T125D/E) and in viral propagation (S125D). Crystal structure simulation analysis showed that Ser125 phosphorylation in EV-A71 2Apro enabled catalytic Cys to adopt an optimal conformation in the catalytic triad His-Asp-Cys, which enhances 2Apro proteolysis. Therefore, we are the first to report Ser/Thr125 phosphorylation of 2Apro increases enteroviral adaptation to the host to ensure enteroviral multiplication, causing pathogenicity. Additionally, weakened viruses containing a S/T125A mutation could be a general strategy to develop attenuated Enterovirus vaccines.
Collapse
Affiliation(s)
- Yuya Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenjia Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Sanyuan Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bangtao Chen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rui Xiong
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yihong Peng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
2
|
Mou C, Wang Y, Pan S, Shi K, Chen Z. Porcine sapelovirus 2A protein induces mitochondrial-dependent apoptosis. Front Immunol 2022; 13:1050354. [PMID: 36505441 PMCID: PMC9732094 DOI: 10.3389/fimmu.2022.1050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Porcine sapelovirus (PSV) is an emerging pathogen associated with symptoms of enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in swine, resulting in significant economic losses. Although PSV is reported to trigger cell apoptosis, its specific molecular mechanism is unclear. In this research, the cell apoptosis induced by PSV infection and its underlying mechanisms were investigated. The morphologic features of apoptosis include nuclear condensation and fragmentation, were observed after PSV infection. The cell apoptosis was confirmed by analyzing the apoptotic rates, caspase activation, and PARP1 cleavage. Caspase inhibitors inhibited the PSV-induced intrinsic apoptosis pathway and reduced viral replication. Among the proteins encoded by PSV, 2A is an important factor in inducing the mitochondrial apoptotic pathway. The conserved residues H48, D91, and C164 related to protease activity in PSV 2A were crucial for 2A-induced apoptosis. In conclusion, our results provide insights into how PSV induces host cell apoptosis.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuxi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuonan Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China,*Correspondence: Zhenhai Chen,
| |
Collapse
|
3
|
Bouin A, Gretteau PA, Wehbe M, Renois F, N'Guyen Y, Lévêque N, Vu MN, Tracy S, Chapman NM, Bruneval P, Fornes P, Semler BL, Andreoletti L. Enterovirus Persistence in Cardiac Cells of Patients With Idiopathic Dilated Cardiomyopathy Is Linked to 5' Terminal Genomic RNA-Deleted Viral Populations With Viral-Encoded Proteinase Activities. Circulation 2020; 139:2326-2338. [PMID: 30755025 DOI: 10.1161/circulationaha.118.035966] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Group B enteroviruses are common causes of acute myocarditis, which can be a precursor of chronic myocarditis and dilated cardiomyopathy, leading causes of heart transplantation. To date, the specific viral functions involved in the development of dilated cardiomyopathy remain unclear. METHODS Total RNA from cardiac tissue of patients with dilated cardiomyopathy was extracted, and sequences corresponding to the 5' termini of enterovirus RNAs were identified. After next-generation RNA sequencing, viral cDNA clones mimicking the enterovirus RNA sequences found in patient tissues were generated in vitro, and their replication and impact on host cell functions were assessed on primary human cardiac cells in culture. RESULTS Major enterovirus B populations characterized by 5' terminal genomic RNA deletions ranging from 17 to 50 nucleotides were identified either alone or associated with low proportions of intact 5' genomic termini. In situ hybridization and immunohistological assays detected these persistent genomes in clusters of cardiomyocytes. Transfection of viral RNA into primary human cardiomyocytes demonstrated that deleted forms of genomic RNAs displayed early replication activities in the absence of detectable viral plaque formation, whereas mixed deleted and complete forms generated particles capable of inducing cytopathic effects at levels distinct from those observed with full-length forms alone. Moreover, deleted or full-length and mixed forms of viral RNA were capable of directing translation and production of proteolytically active viral proteinase 2A in human cardiomyocytes. CONCLUSIONS We demonstrate that persistent viral forms are composed of B-type enteroviruses harboring a 5' terminal deletion in their genomic RNAs and that these viruses alone or associated with full-length populations of helper RNAs could impair cardiomyocyte functions by the proteolytic activity of viral proteinase 2A in cases of unexplained dilated cardiomyopathy. These results provide a better understanding of the molecular mechanisms that underlie the persistence of EV forms in human cardiac tissues and should stimulate the development of new therapeutic strategies based on specific inhibitors of the coxsackievirus B proteinase 2A activity for acute and chronic cardiac infections.
Collapse
Affiliation(s)
- Alexis Bouin
- EA-4684 Cardiovir, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France (A.B., P.-A.G., M.W., F.R., Y.N., A.R., P.F., L.A.).,Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine (A.B., M.N.V., B.L.S.)
| | - Paul-Antoine Gretteau
- EA-4684 Cardiovir, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France (A.B., P.-A.G., M.W., F.R., Y.N., A.R., P.F., L.A.)
| | - Michel Wehbe
- EA-4684 Cardiovir, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France (A.B., P.-A.G., M.W., F.R., Y.N., A.R., P.F., L.A.).,Centre AZM pour la recherche en biotechnologie et ses applications, Université Libanaise, Tripoli, Lebanon (M.W.)
| | - Fanny Renois
- EA-4684 Cardiovir, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France (A.B., P.-A.G., M.W., F.R., Y.N., A.R., P.F., L.A.).,LUNAM University, Oniris, LABERCA, UMR INRA 1329, Nantes, France (F.R.).,CHU Robert Debré, Laboratoire de Virologie Médicale et Moléculaire, Reims, France (F.R., Y.N., N.L., P.F., L.A.)
| | - Yohan N'Guyen
- EA-4684 Cardiovir, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France (A.B., P.-A.G., M.W., F.R., Y.N., A.R., P.F., L.A.).,CHU Robert Debré, Laboratoire de Virologie Médicale et Moléculaire, Reims, France (F.R., Y.N., N.L., P.F., L.A.)
| | - Nicolas Lévêque
- CHU Robert Debré, Laboratoire de Virologie Médicale et Moléculaire, Reims, France (F.R., Y.N., N.L., P.F., L.A.).,EA-4331 LITEC, Faculty of Medicine and Pharmacy, University Hospital of Poitiers, France (N.L.)
| | - Michelle N Vu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine (A.B., M.N.V., B.L.S.)
| | - Steven Tracy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (S.T., N.M.C.)
| | - Nora M Chapman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (S.T., N.M.C.)
| | - Patrick Bruneval
- Service d'Anatomie Pathologique, Hôpital Européen Georges Pompidou, Paris, France (P.B.)
| | - Paul Fornes
- EA-4684 Cardiovir, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France (A.B., P.-A.G., M.W., F.R., Y.N., A.R., P.F., L.A.)
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine (A.B., M.N.V., B.L.S.)
| | - Laurent Andreoletti
- EA-4684 Cardiovir, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France (A.B., P.-A.G., M.W., F.R., Y.N., A.R., P.F., L.A.)
| |
Collapse
|
4
|
Adeyemi OO, Sherry L, Ward JC, Pierce DM, Herod MR, Rowlands DJ, Stonehouse NJ. Involvement of a Nonstructural Protein in Poliovirus Capsid Assembly. J Virol 2019; 93:e01447-18. [PMID: 30541849 PMCID: PMC6384072 DOI: 10.1128/jvi.01447-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Virus capsid proteins must perform a number of roles. These include self-assembly and maintaining stability under challenging environmental conditions, while retaining the conformational flexibility necessary to uncoat and deliver the viral genome into a host cell. Fulfilling these roles could place conflicting constraints on the innate abilities encoded within the protein sequences. In a previous study, we identified a number of mutations within the capsid-coding sequence of poliovirus (PV) that were established in the population during selection for greater thermostability by sequential treatment at progressively higher temperatures. Two mutations in the VP1 protein acquired at an early stage were maintained throughout this selection procedure. One of these mutations prevented virion assembly when introduced into a wild-type (wt) infectious clone. Here we show, by sequencing beyond the capsid-coding region of the heat-selected virions, that two mutations had arisen within the coding region of the 2A protease. Both mutations were maintained throughout the selection process. Introduction of these mutations into a wt infectious clone by site-directed mutagenesis considerably reduced replication. However, they permitted a low level of assembly of infectious virions containing the otherwise lethal mutation in VP1. The 2Apro mutations were further shown to slow the kinetics of viral polyprotein processing, and we suggest that this delay improves the correct folding of the mutant capsid precursor protein to permit virion assembly.IMPORTANCE RNA viruses, including poliovirus, evolve rapidly due to the error-prone nature of the polymerase enzymes involved in genome replication. Fixation of advantageous mutations may require the acquisition of complementary mutations which can act in concert to achieve a favorable phenotype. This study highlights a compensatory role of a nonstructural regulatory protein, 2Apro, for an otherwise lethal mutation of the structural VP1 protein to facilitate increased thermal resistance. Studying how viruses respond to selection pressures is important for understanding mechanisms which underpin emergence of resistance and could be applied to the future development of antiviral agents and vaccines.
Collapse
Affiliation(s)
- Oluwapelumi O Adeyemi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lee Sherry
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Danielle M Pierce
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David J Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Francisco E, Suthar M, Gale M, Rosenfeld AB, Racaniello VR. Cell-type specificity and functional redundancy of RIG-I-like receptors in innate immune sensing of Coxsackievirus B3 and encephalomyocarditis virus. Virology 2018; 528:7-18. [PMID: 30550976 DOI: 10.1016/j.virol.2018.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022]
Abstract
The contributions of RIG-I and MDA5 receptors to sensing viruses of the Picornaviridae family were investigated. The picornaviruses encephalomyocarditis virus (EMCV) and Coxsackievirus B3 (CVB3) are detected by both MDA5 and RIG-I in bone marrow derived macrophages. In macrophages from wild type mice, type I IFN is produced early after infection; IFNβ synthesis is reduced in the absence of each sensor, while IFNα production is reduced in the absence of MDA5. EMCV and CVB3 do not replicate in murine macrophages, and their detection is different in murine embryonic fibroblasts (MEFs), in which the viruses replicate to high titers. In MEFs RIG-I was essential for the expression of type I IFNs but contributes to increased yields of CVB3, while MDA5 inhibited CVB3 replication but in an IFN independent manner. These observations demonstrate functional redundancy within the innate immune response to picornaviruses.
Collapse
Affiliation(s)
- Esther Francisco
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons of Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | - Mehul Suthar
- Department of Pediatrics, Division of Infectious Disease, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Gale
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Amy B Rosenfeld
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons of Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | - Vincent R Racaniello
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons of Columbia University, 701 W. 168th St., New York, NY 10032, USA.
| |
Collapse
|
6
|
Younus A, Munawar S, Bhatti MF, Ikram A, Awan FM, Jabeen I, Virk N, Janjua HA, Arshad M. Structure-Function Mutational Analysis and Prediction of the Potential Impact of High Risk Non-Synonymous Single-Nucleotide Polymorphism on Poliovirus 2A Protease Stability Using Comprehensive Informatics Approaches. Genes (Basel) 2018; 9:228. [PMID: 29701718 PMCID: PMC5977168 DOI: 10.3390/genes9050228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
Polio viral proteinase 2A performs several essential functions in genome replication. Its inhibition prevents viral replication, thus making it an excellent substrate for drug development. In this study, the three-dimensional structure of 2A protease was determined and optimized by homology modelling. To predict the molecular basis of the interaction of small molecular agonists, docking simulations were performed on a structurally diverse dataset of poliovirus 2A protease (PV2Apr°) inhibitors. Docking results were employed to identify high risk missense mutations that are highly damaging to the structure, as well as the function, of the protease. Intrinsic disorder regions (IDRs), drug binding sites (DBS), and protein stability changes upon mutations were also identified among them. Our results demonstrated dominant roles for Lys 15, His 20, Cys 55, Cys 57, Cys 64, Asp 108, Cys 109 and Gly 110, indicating the presence of various important drug binding sites of the protein. Upon subjecting these sites to single-nucleotide polymorphism (SNP) analysis, we observed that out of 155 high risk SNPs, 139 residues decrease the protein stability. We conclude that these missense mutations can affect the functionality of the 2A protease, and that identified protein binding sites can be directed for the attachment and inhibition of the target proteins.
Collapse
Affiliation(s)
- Amna Younus
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Saba Munawar
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Aqsa Ikram
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Faryal Mehwish Awan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad 44000, Pakistan.
| |
Collapse
|
7
|
Duan H, Zhu M, Xiong Q, Wang Y, Xu C, Sun J, Wang C, Zhang H, Xu P, Peng Y. Regulation of enterovirus 2A protease-associated viral IRES activities by the cell's ERK signaling cascade: Implicating ERK as an efficiently antiviral target. Antiviral Res 2017; 143:13-21. [PMID: 28351508 DOI: 10.1016/j.antiviral.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
In a previous study the ERK1/2 pathway was found to be crucially involved in positive regulation of the enterovirus A 71(EV-A71) IRES (vIRES), thereby contributing to the efficient replication of an important human enterovirus causing death in young children (<5yrs) worldwide. This study focuses on unraveling more about the detailed mechanism of ERK's involvement in this regulation of vIRES. Through the use of siRNAs and specifically pharmacological inhibitor U0126, the ERK cascade was shown to positively regulate EV-A71-mediated cleavage of eIF4GI that established the cellular conditions which favour vIRES-dependent translation. Site-directed mutagenesis of the viral 2A protease (2Apro) was undertaken to show that the positive regulation of virus replication by the ERK cascade was mediated through effects on both the cis-cleavage of the viral polyprotein by 2Apro and its trans-cleavage of cellular eIF4GI. This ERK-2Apro linked network coordinating vIRES efficiency was also found in other important human enteroviruses. This identification of the ERK cascade as having a key role in maintaining the 2Apro proteolytic activity required to maximize enterovirus IRES activity, expands current understanding of the diverse functions of the ERK signaling cascade in the regulation of viral translation, therefore providing a potentially comprehensive drug target for anti-enterovirus infection.
Collapse
Affiliation(s)
- Hao Duan
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Meng Zhu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qing Xiong
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuya Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chao Xu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
| | - Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
| | - Hao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ping Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, China
| | - Yihong Peng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
8
|
Wu S, Wang Y, Lin L, Si X, Wang T, Zhong X, Tong L, Luan Y, Chen Y, Li X, Zhang F, Zhao W, Zhong Z. Protease 2A induces stress granule formation during coxsackievirus B3 and enterovirus 71 infections. Virol J 2014; 11:192. [PMID: 25410318 PMCID: PMC4247557 DOI: 10.1186/s12985-014-0192-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 10/26/2014] [Indexed: 02/02/2023] Open
Abstract
Background Stress granules (SGs) are granular aggregates in the cytoplasm that are formed under a variety of stress situations including viral infection. Previous studies indicate that poliovirus, a member of Picornaviridae, can induce SG formation. However, the exact mechanism by which the picornaviruses induce SG formation is unknown. Method The localization of SG markers in cells infected with coxsackievirus B3 (CVB3) or enterovirus 71 (EV71) and in cells expressing each viral protein was determined via immunofluorescence assays or plasmid transfection. Eight plasmids expressing mutants of the 2A protease (2Apro) of CVB3 were generated using a site-directed mutagenesis strategy. The cleavage efficiencies of eIF4G by CVB3 2Apro and its mutants were determined via western blotting assays. Results In this study, we found that CVB3 infection induced SG formation, as evidenced by the co-localization of some accepted SG markers in viral infection-induced granules. Furthermore, we identified that 2Apro of CVB3 was the key viral component that triggered SG formation. A 2Apro mutant with the G122E mutation, which exhibited very low cleavage efficiency toward eIF4G, significantly attenuated its capacity for SG induction, indicating that the protease activity was required for 2Apro to initiate SG formation. Finally, we observed that SGs also formed in EV71-infected cells. Expression of EV71 2Apro alone was also sufficient to cause SG formation. Conclusion Both CVB3 and EV71 infections can induce SG formation, and 2Apro plays a crucial role in the induction of SG formation during these infections. This finding may help us to better understand how picornaviruses initiate the SG response. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0192-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Ying Luan
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Xiaoyu Li
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Florida-Jacksonville, Jacksonville, FL, 32206, USA.
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
9
|
Kanduc D, Fasano C, Bavaro SL, Novello G, Lucchese G, Capone G. Peptide profiling of the route from Mahoney to Sabin, and return. J Basic Microbiol 2014; 54:369-77. [DOI: 10.1002/jobm.201200642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/07/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Candida Fasano
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Simona Lucia Bavaro
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Giuseppe Novello
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Guglielmo Lucchese
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Giovanni Capone
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| |
Collapse
|
10
|
Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates enterovirus and human rhinovirus infections. J Virol 2013; 87:10423-34. [PMID: 23903828 PMCID: PMC3807403 DOI: 10.1128/jvi.01049-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/19/2013] [Indexed: 01/12/2023] Open
Abstract
To successfully complete their replication cycles, picornaviruses modify several host proteins to alter the cellular environment to favor virus production. One such target of viral proteinase cleavage is AU-rich binding factor 1 (AUF1), a cellular protein that binds to AU-rich elements, or AREs, in the 3' noncoding regions (NCRs) of mRNAs to affect the stability of the RNA. Previous studies found that, during poliovirus or human rhinovirus infection, AUF1 is cleaved by the viral proteinase 3CD and that AUF1 can interact with the long 5' NCR of these viruses in vitro. Here, we expand on these initial findings to demonstrate that all four isoforms of AUF1 bind directly to stem-loop IV of the poliovirus 5' NCR, an interaction that is inhibited through proteolytic cleavage of AUF1 by the viral proteinase 3CD. Endogenous AUF1 was observed to relocalize to the cytoplasm of infected cells in a viral protein 2A-driven manner and to partially colocalize with the viral protein 3CD. We identify a negative role for AUF1 in poliovirus infection, as AUF1 inhibited viral translation and, ultimately, overall viral titers. Our findings also demonstrate that AUF1 functions as an antiviral factor during infection by coxsackievirus or human rhinovirus, suggesting a common mechanism that targets these related picornaviruses.
Collapse
Affiliation(s)
- Andrea L Cathcart
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697 USA
| | | | | |
Collapse
|
11
|
Fitzgerald KD, Chase AJ, Cathcart AL, Tran GP, Semler BL. Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections. J Virol 2013; 87:2390-400. [PMID: 23255796 PMCID: PMC3571363 DOI: 10.1128/jvi.02396-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/11/2012] [Indexed: 02/05/2023] Open
Abstract
Infection of mammalian cells by picornaviruses results in the nucleocytoplasmic redistribution of certain host cell proteins. These viruses interfere with import-export pathways, allowing for the cytoplasmic accumulation of nuclear proteins that are then available to function in viral processes. We recently described the cytoplasmic relocalization of cellular splicing factor SRp20 during poliovirus infection. SRp20 is an important internal ribosome entry site (IRES) trans-acting factor (ITAF) for poliovirus IRES-mediated translation; however, it is not known whether other picornaviruses utilize SRp20 as an ITAF and direct its cytoplasmic relocalization. Also, the mechanism by which poliovirus directs the accumulation of SRp20 in the cytoplasm of the infected cell is currently unknown. Work described in this report demonstrated that infection by another picornavirus (coxsackievirus B3) causes SRp20 to relocalize from the nucleus to the cytoplasm of HeLa cells, similar to poliovirus infection; however, SRp20 is relocalized to a somewhat lesser extent in the cytoplasm of HeLa cells during infection by yet another picornavirus (human rhinovirus 16). We show that expression of poliovirus 2A proteinase is sufficient to cause the nucleocytoplasmic redistribution of SRp20. Following expression of poliovirus 2A proteinase in HeLa cells, we detect cleavage of specific nuclear pore proteins known to be cleaved during poliovirus infection. We also find that expression of human rhinovirus 16 2A proteinase alone can cause efficient cytoplasmic relocalization of SRp20, despite the lower levels of SRp20 relocalization observed during rhinovirus infection compared to poliovirus. Taken together, these results further define the mechanism of SRp20 cellular redistribution during picornavirus infections, and they provide additional insight into some of the differences observed between human rhinovirus and other enterovirus infections.
Collapse
Affiliation(s)
- Kerry D Fitzgerald
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|
12
|
Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 2013; 110:E838-47. [PMID: 23401522 DOI: 10.1073/pnas.1218464110] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.
Collapse
|
13
|
The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011; 2011:369648. [PMID: 21541224 PMCID: PMC3085340 DOI: 10.1155/2011/369648] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022] Open
Abstract
After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families) as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.
Collapse
|
14
|
Abstract
Like other RNA viruses, coxsackievirus B5 (CVB5) exists as circulating heterogeneous populations of genetic variants. In this study, we present the reconstruction and characterization of a probable ancestral virion of CVB5. Phylogenetic analyses based on capsid protein-encoding regions (the VP1 gene of 41 clinical isolates and the entire P1 region of eight clinical isolates) of CVB5 revealed two major cocirculating lineages. Ancestral capsid sequences were inferred from sequences of these contemporary CVB5 isolates by using maximum likelihood methods. By using Bayesian phylodynamic analysis, the inferred VP1 ancestral sequence dated back to 1854 (1807 to 1898). In order to study the properties of the putative ancestral capsid, the entire ancestral P1 sequence was synthesized de novo and inserted into the replicative backbone of an infectious CVB5 cDNA clone. Characterization of the recombinant virus in cell culture showed that fully functional infectious virus particles were assembled and that these viruses displayed properties similar to those of modern isolates in terms of receptor preferences, plaque phenotypes, growth characteristics, and cell tropism. This is the first report describing the resurrection and characterization of a picornavirus with a putative ancestral capsid. Our approach, including a phylogenetics-based reconstruction of viral predecessors, could serve as a starting point for experimental studies of viral evolution and might also provide an alternative strategy for the development of vaccines.
Collapse
|
15
|
Hsu YY, Liu YN, Lu WW, Kung SH. Visualizing and quantifying the differential cleavages of the eukaryotic translation initiation factors eIF4GI and eIF4GII in the enterovirus-infected cell. Biotechnol Bioeng 2009; 104:1142-52. [PMID: 19655339 DOI: 10.1002/bit.22495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enterovirus (EV) infection has been shown to cause a marked shutoff of host protein synthesis, an event mainly achieved through the cleavages of eukaryotic translation initiation factors eIF4GI and eIF4GII that are mediated by viral 2A protease (2A(pro)). Using fluorescence resonance energy transfer (FRET), we developed genetically encoded and FRET-based biosensors to visualize and quantify the specific proteolytic process in intact cells. This was accomplished by stable expression of a fusion substrate construct composed of the green fluorescent protein 2 (GFP(2)) and red fluorescent protein 2 (DsRed2), with a cleavage motif on eIF4GI or eIF4GII connected in between. The FRET biosensor showed a real-time and quantifiable impairment of FRET upon EV infection. Levels of the reduced FRET closely correlated with the cleavage kinetics of the endogenous eIF4Gs isoforms. The FRET impairments were solely attributed to 2A(pro) catalytic activity, irrespective of other viral-encoded protease, the activated caspases or general inhibition of protein synthesis in the EV-infected cells. The FRET biosensors appeared to be a universal platform for several related EVs. The spatiotemporal and quantitative imaging enabled by FRET can shed light on the protease-substrate behaviors in their normal milieu, permitting investigation into the molecular mechanism underlying virus-induced host translation inhibition.
Collapse
Affiliation(s)
- Yueh-Ying Hsu
- Department of Biotechnology, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | | | | | | |
Collapse
|
16
|
The porcine reproductive and respiratory syndrome virus nsp2 cysteine protease domain possesses both trans- and cis-cleavage activities. J Virol 2009; 83:9449-63. [PMID: 19587037 DOI: 10.1128/jvi.00834-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N terminus of the replicase nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a putative cysteine protease domain (PL2). Previously, we demonstrated that deletion of either the PL2 core domain (amino acids [aa] 47 to 180) or the immediate downstream region (aa 181 to 323) is lethal to the virus. In this study, the PL2 domain was found to encode an active enzyme that mediates efficient processing of nsp2-3 in CHO cells. The PL2 protease possessed both trans- and cis-cleavage activities, which were distinguished by individual point mutations in the protease domain. The minimal size required to maintain these two enzymatic activities included nsp2 aa 47 to 240 (Tyr(47) to Cys(240)) and aa 47 to 323 (Tyr(47) to Leu(323)), respectively. Introduction of targeted amino acid mutations in the protease domain confirmed the importance of the putative Cys(55)- His(124) catalytic motif for nsp2/3 proteolysis in vitro, as were three additional conserved cysteine residues (Cys(111), Cys(142), and Cys(147)). The conserved aspartic acids (e.g., Asp(89)) were essential for the PL2 protease trans-cleavage activity. Reverse genetics revealed that the PL2 trans-cleavage activity played an important role in the PRRSV replication cycle in that mutations that impaired the PL2 protease trans function, but not the cis activity, were detrimental to viral viability. Lastly, the potential nsp2/3 cleavage site was probed. Mutations with the largest impact on in vitro cleavage were at or near the G(1196)|G(1197) dipeptide.
Collapse
|
17
|
Morrison JM, Racaniello VR. Proteinase 2Apro is essential for enterovirus replication in type I interferon-treated cells. J Virol 2009; 83:4412-22. [PMID: 19211759 PMCID: PMC2668472 DOI: 10.1128/jvi.02177-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 02/03/2009] [Indexed: 12/24/2022] Open
Abstract
The Picornaviridae family comprises a diverse group of small RNA viruses that cause a variety of human and animal diseases. Some of these viruses are known to induce cleavage of components of the innate immune system and to inhibit steps in the interferon pathway that lead to the production of type I interferon. There has been no study of the effect of picornaviral infection on the events that occur after interferons have been produced. To determine whether members of the Enterovirus genus can antagonize the antiviral activity of interferon-stimulated genes (ISGs), we pretreated cells with alpha interferon (IFN-alpha) and then infected the cells with poliovirus type 1, 2, or 3; enterovirus type 70; or human rhinovirus type 16. We found that these viruses were able to replicate in IFN-alpha-pretreated cells but that replication of vesicular stomatitis virus, a Rhabdovirus, and encephalomyocarditis virus (EMCV), a picornavirus of the Cardiovirus genus, was completely inhibited. Although EMCV is sensitive to IFN-alpha, coinfection of cells with poliovirus and EMCV leads to EMCV replication in IFN-alpha-pretreated cells. The enteroviral 2A proteinase (2A(pro)) is essential for replication in cells pretreated with interferon, because amino acid changes in this protein render poliovirus sensitive to IFN-alpha. The addition of the poliovirus 2A(pro) gene to the EMCV genome allowed EMCV to replicate in IFN-alpha-pretreated cells. These results support an inhibitory role for 2A(pro) in the most downstream event in interferon signaling, the antiviral activities of ISGs.
Collapse
Affiliation(s)
- Juliet M Morrison
- Department of Microbiology, Columbia University College of Physicians, New York, NY 10032, USA.
| | | |
Collapse
|
18
|
Someya Y, Takeda N, Wakita T. Saturation mutagenesis reveals that GLU54 of norovirus 3C-like protease is not essential for the proteolytic activity. J Biochem 2008; 144:771-80. [PMID: 18838436 PMCID: PMC7109903 DOI: 10.1093/jb/mvn130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/22/2008] [Indexed: 11/13/2022] Open
Abstract
The norovirus 3C-like protease is a member of the chymotrypsin-like serine protease superfamily. Previous characterization of its crystal structure has implicated the Glu54-His30-Cys139 triad in the catalysis. In the present study, the Glu54 residue of the protease was subjected to site-saturation mutagenesis, with the result that nearly half of the mutants retained the significant proteolytic activity. It was suggested that a carboxylate at position 54 was not essential for the activity. The in vitro assays of the proteolysis revealed that most of Glu54 mutants retained relatively high proteolytic activity. When the Glu54 mutation was combined with the Ser mutation of the Cys139 residue, a nucleophile, only the Asp54 and Gln54 mutations showed proteolytic activity comparable to that of the Ser139 single mutant, suggesting that a hydrogen bond between Glu54 and His30 was critical in the Ser139 background. These results suggested that the mechanism of the proteolysis by the wild-type norovirus 3C-like protease was different from that of typical chymotrypsin-like serine proteases.
Collapse
Affiliation(s)
- Yuichi Someya
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan.
| | | | | |
Collapse
|
19
|
Neznanov N, Dragunsky EM, Chumakov KM, Neznanova L, Wek RC, Gudkov AV, Banerjee AK. Different effect of proteasome inhibition on vesicular stomatitis virus and poliovirus replication. PLoS One 2008; 3:e1887. [PMID: 18382670 PMCID: PMC2268745 DOI: 10.1371/journal.pone.0001887] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/26/2008] [Indexed: 12/22/2022] Open
Abstract
Proteasome activity is an important part of viral replication. In this study, we examined the effect of proteasome inhibitors on the replication of vesicular stomatitis virus (VSV) and poliovirus. We found that the proteasome inhibitors significantly suppressed VSV protein synthesis, virus accumulation, and protected infected cells from toxic effect of VSV replication. In contrast, poliovirus replication was delayed, but not diminished in the presence of the proteasome inhibitors MG132 and Bortezomib. We also found that inhibition of proteasomes stimulated stress-related processes, such as accumulation of chaperone hsp70, phosphorylation of eIF2α, and overall inhibition of translation. VSV replication was sensitive to this stress with significant decline in replication process. Poliovirus growth was less sensitive with only delay in replication. Inhibition of proteasome activity suppressed cellular and VSV protein synthesis, but did not reduce poliovirus protein synthesis. Protein kinase GCN2 supported the ability of proteasome inhibitors to attenuate general translation and to suppress VSV replication. We propose that different mechanisms of translational initiation by VSV and poliovirus determine their sensitivity to stress induced by the inhibition of proteasomes. To our knowledge, this is the first study that connects the effect of stress induced by proteasome inhibition with the efficiency of viral infection.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America.
| | | | | | | | | | | | | |
Collapse
|
20
|
Barral PM, Morrison JM, Drahos J, Gupta P, Sarkar D, Fisher PB, Racaniello VR. MDA-5 is cleaved in poliovirus-infected cells. J Virol 2007; 81:3677-84. [PMID: 17267501 PMCID: PMC1866155 DOI: 10.1128/jvi.01360-06] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 01/18/2007] [Indexed: 12/17/2022] Open
Abstract
Infections with RNA viruses are sensed by the innate immune system through membrane-bound Toll-like receptors or the cytoplasmic RNA helicases RIG-I and MDA-5. It is believed that MDA-5 is crucial for sensing infections by picornaviruses, but there have been no studies on the role of this protein during infection with poliovirus, the prototypic picornavirus. Beginning at 4 h postinfection, MDA-5 protein is degraded in poliovirus-infected cells. Levels of MDA-5 declined beginning at 6 h after infection with rhinovirus type 1a or encephalomyocarditis virus, but the protein was stable in cells infected with rhinovirus type 16 or echovirus type 1. Cleavage of MDA-5 is not carried out by either poliovirus proteinase 2Apro or 3Cpro. Instead, degradation of MDA-5 in poliovirus-infected cells occurs in a proteasome- and caspase-dependent manner. Degradation of MDA-5 during poliovirus infection correlates with cleavage of poly(ADP) ribose polymerase (PARP), a hallmark of apoptosis. Induction of apoptosis by puromycin leads to cleavage of both PARP and MDA-5. The MDA-5 cleavage product observed in cells treated with puromycin is approximately 90 kDa, similar in size to the putative cleavage product observed in poliovirus-infected cells. Poliovirus-induced cleavage of MDA-5 may be a mechanism to antagonize production of type I interferon in response to viral infection.
Collapse
Affiliation(s)
- Paola M Barral
- Department of Urology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians & Surgeons, 701 W. 168th St., New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hsu YY, Liu YN, Wang W, Kao FJ, Kung SH. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 2007; 353:939-45. [PMID: 17207462 DOI: 10.1016/j.bbrc.2006.12.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP2)-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2Apro) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2Apro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.
Collapse
Affiliation(s)
- Yueh-Ying Hsu
- Faculty of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
22
|
Crowder S, Kirkegaard K. Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nat Genet 2005; 37:701-9. [PMID: 15965477 DOI: 10.1038/ng1583] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 04/14/2005] [Indexed: 11/09/2022]
Abstract
The high error rates of viral RNA-dependent RNA polymerases create heterogeneous viral populations whose disparate RNA genomes affect each other's survival. We systematically screened the poliovirus genome and identified four sets of dominant mutations. Mutated alleles in capsid- and polymerase-coding regions resulted in dominant negative phenotypes, probably due to the proteins' oligomeric properties. We also identified dominant mutations in an RNA element required for priming RNA synthesis (CRE) and in the protein primer (VPg), suggesting that nonproductive priming intermediates are inhibitory. Mutations that inhibit the activity of viral proteinase 2A were dominant, arguing that inhibition of its known intramolecular activity creates a toxic product. Viral products that, when defective, dominantly interfere with growth of nondefective viruses will probably be excellent drug targets because drug-sensitive viruses should be dominant over drug-resistant variants. Accordingly, a virus sensitive to anticapsid compound WIN51711 dominantly inhibited the intracellular growth of a drug-resistant virus. Therefore, dominant inhibitor screening should validate or predict targets for antiviral therapy with reduced risk for drug resistance.
Collapse
Affiliation(s)
- Scott Crowder
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124, USA
| | | |
Collapse
|
23
|
Inoue T, Alexandersen S, Clark AT, Murphy C, Quan M, Reid SM, Sakoda Y, Johns HL, Belsham GJ. Importance of arginine 20 of the swine vesicular disease virus 2A protease for activity and virulence. J Virol 2005; 79:428-40. [PMID: 15596836 PMCID: PMC538687 DOI: 10.1128/jvi.79.1.428-440.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major virulence determinant of swine vesicular disease virus (SVDV), an Enterovirus that causes an acute vesicular disease, has been mapped to residue 20 of the 2A protease. The SVDV 2A protease cleaves the 1D-2A junction in the viral polyprotein, induces cleavage of translation initiation factor eIF4GI, and stimulates the activity of enterovirus internal ribosome entry sites (IRESs). The 2A protease from an attenuated strain of SVDV (Ile at residue 20) is significantly defective at inducing cleavage of eIF4GI and the activation of IRES-dependent translation compared to the 2A protease from a pathogenic strain (J1/73, Arg at residue 20), but the two proteases have similar 1D-2A cleavage activities (Y. Sakoda, N. Ross-Smith, T. Inoue, and G. J. Belsham, J. Virol. 75:10643-10650, 2001). Residue 20 has now been modified to every possible amino acid, and the activities of each mutant 2A protease has been analyzed. Selected mutants were reconstructed into full-length SVDV cDNA, and viruses were rescued. The rate of virus growth in cultured swine kidney cells reflected the efficiency of 2A protease activity. In experimentally infected pigs, all four of the mutant viruses tested displayed much-reduced virulence compared to the J1/73 virus but a significant, albeit reduced, level of viral replication and excretion was detected. Direct sequencing of cDNA derived from samples taken early and late in infection indicated that a gradual selection-reversion to a more efficient protease occurred. The data indicated that extensive sequence change and selection may introduce a severe bottleneck in virus replication, leading to a decreased viral load and reduced or no clinical disease.
Collapse
Affiliation(s)
- Toru Inoue
- Department of Exotic Disease, National Institute of Animal Health, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Belov GA, Lidsky PV, Mikitas OV, Egger D, Lukyanov KA, Bienz K, Agol VI. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol 2004; 78:10166-77. [PMID: 15331749 PMCID: PMC514989 DOI: 10.1128/jvi.78.18.10166-10177.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poliovirus and some other picornaviruses trigger relocation of certain nuclear proteins into the cytoplasm. Here, by using a protein changing its fluorescence color with time and containing a nuclear localization signal (NLS), we demonstrate that the poliovirus-triggered relocation is largely due to the exit of presynthesized nuclear protein into the cytoplasm. The leakiness of the nuclear envelope was also documented by the inability of nuclei from digitonin-permeabilized, virus-infected (but not mock-infected) cells to retain an NLS-containing derivative of green fluorescent protein (GFP). The cytoplasm-to-nucleus traffic was also facilitated during infection, as evidenced by experiments with GAPDH (glyceraldehyde-3-phosphate dehydrogenase), cyclin B1, and an NLS-lacking derivative of GFP, which are predominantly cytoplasmic in uninfected cells. Electron microscopy demonstrated that a bar-like barrier structure in the channel of the nuclear pores, seen in uninfected cells, was missing in the infected cells, giving the impression of fully open pores. Transient expression of poliovirus 2A protease also resulted in relocation of the nuclear proteins. Lysates from poliovirus-infected or 2A-expressing cells induced efflux of 3xEGFP-NLS from the nuclei of permeabilized uninfected cells. This activity was inhibited by the elastase inhibitors elastatinal and N-(methoxysuccinyl)-L-alanyl-L-alanyl-L-prolyl-L-valine chloromethylketone (drugs known also to be inhibitors of poliovirus protease 2A), a caspase inhibitor zVAD(OMe), fmk, and some other protease inhibitors. These data suggest that 2A elicited nuclear efflux, possibly in cooperation with a zVAD(OMe).fmk-sensitive protease. However, poliovirus infection facilitated nuclear protein efflux also in cells deficient in caspase-3 and caspase-9, suggesting that the efflux may occur without the involvement of these enzymes. The biological relevance of nucleocytoplasmic traffic alterations in infected cells is discussed.
Collapse
Affiliation(s)
- George A Belov
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|
25
|
Foeger N, Schmid EM, Skern T. Human rhinovirus 2 2Apro recognition of eukaryotic initiation factor 4GI. Involvement of an exosite. J Biol Chem 2003; 278:33200-7. [PMID: 12791690 DOI: 10.1074/jbc.m304007200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 2A proteinase (2Apro) of human rhinovirus 2 is a cysteine proteinase with a unique chymotrypsin-like fold. During viral replication, 2Apro performs self-processing by cleaving between its own N terminus and the C terminus of the preceding protein, VP1. Subsequently, 2Apro cleaves the two isoforms of the cellular protein, eukaryotic initiation factor (eIF) 4G. We have previously shown that HRV2 2Apro can directly bind to eIF4G isoforms. Here we demonstrate using deletion mutants of eIF4GI that HRV2 2Apro requires eIF4GI amino acids 600-674 for binding; however, the amino acids at the cleavage site, Arg681 downward arrow Gly, are not required. The HRV2 2Apro binding domain for eIF4GI was identified by site-directed mutagenesis. Specifically, mutations Leu17 --> Arg and Asp35 --> Glu severely impaired HRV2 2Apro binding and thus processing of eIF4GI in rabbit reticulocyte lysates; self-processing, however, was not affected. Alanine scanning analysis further identified the loop containing residues Tyr32, Ser33, and Ser34 as important for eIF4GI binding. Although Asp35 is part of the catalytic triad, most of the eIF4GI binding domain lies in a unique exosite structure absent from other chymotrypsin-like enzymes and is distinct from the substrate binding cleft. The exosite represents a novel virulence determinant that may allow the development of specific inhibitors for HRV2 2Apro.
Collapse
Affiliation(s)
- Nicole Foeger
- Max F. Perutz Laboratories, and Department of Medical Biochemistry, Division of Biochemistry, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
27
|
Foeger N, Glaser W, Skern T. Recognition of eukaryotic initiation factor 4G isoforms by picornaviral proteinases. J Biol Chem 2002; 277:44300-9. [PMID: 12228254 DOI: 10.1074/jbc.m208006200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The leader proteinase (L(pro)) of foot and mouth disease virus is a papain-like cysteine proteinase. After processing itself from the polyprotein, L(pro) then cleaves the host protein eukaryotic initiation factor (eIf) 4GI, thus preventing protein synthesis from capped mRNA in the infected cell. We have investigated L(pro) interaction with eIF4GI and its isoform, eIF4GII. L(pro), expressed as a catalytically inactive fusion protein with glutathione S-transferase, binds specifically to eIF4G isomers in rabbit reticulocyte lysates. Deletion and specific mutagenesis were used to map the binding domain on L(pro) to residues 183-195 of the C-terminal extension and to residue Cys(133). These residues of the C-terminal extension and Cys(133) are adjacent in the crystal structure but lie about 25 A from the active site. The region on eIF4GI recognized by the L(pro) C-terminal extension was mapped to residues 640-669 using eIF4GI fragments generated by proteolysis or by in vitro translation. The L(pro) cleavage site at Gly(674) downward arrow Arg(675) was not necessary for binding. Similar experiments with human rhinovirus 2A proteinase (2A(pro)), a chymotrypsin-like cysteine proteinase that also cleaves eIF4G isoforms, revealed that 2A(pro) can also bind to eIF4GI fragments lacking its cleavage site. These experiments strongly suggest a novel interaction between picornaviral proteinases and eIF4G isoforms.
Collapse
Affiliation(s)
- Nicole Foeger
- Institute of Medical Biochemistry, Division of Biochemistry, University of Vienna, Vienna Bio Center, Dr. Bohr-Gasse 9/3, Austria
| | | | | |
Collapse
|
28
|
Kuo RL, Kung SH, Hsu YY, Liu WT. Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol 2002; 83:1367-1376. [PMID: 12029152 DOI: 10.1099/0022-1317-83-6-1367] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterovirus 71 (EV71) is the causative agent of human diseases with distinct severity, from mild hand-foot-and-mouth disease to severe neurological syndromes, such as encephalitis and meningitis. Infection of several different cell lines with EV71 causes extensive cytopathic effect, leading to destruction of the entire monolayer and the death of infected cells. In this study, cell death processes during EV71 infection and the underlying mechanisms of them were investigated. The hallmarks of apoptosis, nuclear condensation and fragmentation, were observed 24 h after infection. Apoptosis in infected cells was also confirmed by detectable cleavage of cellular DNA and degradation of poly(ADP-ribose) polymerase. Transient expression of EV71 2A protease (2A(pro)) alone resulted in the induction of apoptotic change. Infection of EV71 or expression of EV71 2A(pro) leads to cleavage of the eukaryotic initiation factor 4GI, a key factor for host protein synthesis. This study added one more example to the growing list of human viruses that induce apoptosis by a virus-encoded protein.
Collapse
Affiliation(s)
- Rei-Lin Kuo
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Republic of China1
| | - Szu-Hao Kung
- Faculty of Medical Technology and Institute of Biotechnology in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, 155 Li-Nong St Sec. 2, Shih-Pai, Taipei 112, Taiwan, Republic of China2
| | - Yueh-Ying Hsu
- Faculty of Medical Technology and Institute of Biotechnology in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, 155 Li-Nong St Sec. 2, Shih-Pai, Taipei 112, Taiwan, Republic of China2
| | - Wu-Tse Liu
- Division of Clinical Virology, Department of Pathology and Laboratory Medicine, Veterans General Hospital-Taipei, Taipei 112, Taiwan, Republic of China3
- Faculty of Medical Technology and Institute of Biotechnology in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, 155 Li-Nong St Sec. 2, Shih-Pai, Taipei 112, Taiwan, Republic of China2
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Republic of China1
| |
Collapse
|
29
|
Hegyi A, Friebe A, Gorbalenya AE, Ziebuhr J. Mutational analysis of the active centre of coronavirus 3C-like proteases. J Gen Virol 2002; 83:581-593. [PMID: 11842253 DOI: 10.1099/0022-1317-83-3-581] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Formation of the coronavirus replication-transcription complex involves the synthesis of large polyprotein precursors that are extensively processed by virus-encoded cysteine proteases. In this study, the coding sequence of the feline infectious peritonitis virus (FIPV) main protease, 3CL(pro), was determined. Comparative sequence analyses revealed that FIPV 3CL(pro) and other coronavirus main proteases are related most closely to the 3C-like proteases of potyviruses. The predicted active centre of the coronavirus enzymes has accepted unique replacements that were probed by extensive mutational analysis. The wild-type FIPV 3CL(pro) domain and 25 mutants were expressed in Escherichia coli and tested for proteolytic activity in a peptide-based assay. The data strongly suggest that, first, the FIPV 3CL(pro) catalytic system employs His(41) and Cys(144) as the principal catalytic residues. Second, the amino acids Tyr(160) and His(162), which are part of the conserved sequence signature Tyr(160)-Met(161)-His(162) and are believed to be involved in substrate recognition, were found to be indispensable for proteolytic activity. Third, replacements of Gly(83) and Asn(64), which were candidates to occupy the position spatially equivalent to that of the catalytic Asp residue of chymotrypsin-like proteases, resulted in proteolytically active proteins. Surprisingly, some of the Asn(64) mutants even exhibited strongly increased activities. Similar results were obtained for human coronavirus (HCoV) 3CL(pro) mutants in which the equivalent Asn residue (HCoV 3CL(pro) Asn(64)) was substituted. These data lead us to conclude that both the catalytic systems and substrate-binding pockets of coronavirus main proteases differ from those of other RNA virus 3C and 3C-like proteases.
Collapse
Affiliation(s)
- Annette Hegyi
- Institute of Virology and Immunology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany1
| | - Agnes Friebe
- Institute of Virology and Immunology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany1
| | - Alexander E Gorbalenya
- Advanced Biomedical Computing Center, 430 Miller Dr. Rm 228, SAIC/NCI-Frederick, Frederick, MD 21702-1201, USA2
| | - John Ziebuhr
- Institute of Virology and Immunology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany1
| |
Collapse
|
30
|
Zamora M, Marissen WE, Lloyd RE. Multiple eIF4GI-specific protease activities present in uninfected and poliovirus-infected cells. J Virol 2002; 76:165-77. [PMID: 11739682 PMCID: PMC135685 DOI: 10.1128/jvi.76.1.165-177.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) is required for shutoff of host cell translation during poliovirus (PV) infection of HeLa cells. Reports published by several groups have led to confusion whether this cleavage is mediated by viral 2A protease (2A(pro)) or a putative cellular enzyme (termed eIF4Gase) which is activated by 2A(pro) or other aspects of viral infection. Here we have further investigated eIF4Gase activities in PV-infected cells. Column purification of eIF4GI cleavage activity separated two activities which generated N-terminal cleavage products of different lengths. Both activities were detected using either native eIF4G or radiolabeled recombinant eIF4G as the substrate. Analysis of cleavage products formed by each activity on native and mutant substrates suggests that one activity cleaves eIF4G1 at or very near the 2A(pro) cleavage site and the other activity cleaves approximately 40 residues upstream of the 2A(pro) cleavage site. When PV infections in HeLa cells were supplemented with 2 mM guanidine, which indirectly limits expression of 2A(pro), two distinct C-terminal cleavage fragments of eIF4GI were detected. These C-terminal cleavage fragments of eIF4GI were purified from infected cells, and a new eIF4GI cleavage site was mapped to a unique site 43 amino acids upstream of the known 2A(pro) cleavage site. Further, eIF4GI cleavage in vivo could be blocked by addition of zVAD to PV-guanidine infections. zVAD is a broad-spectrum caspase inhibitor which had no effect on 2A(pro) cleavage activity or PV polyprotein processing. Lastly, similar types of eIF4Gase cleavage activities were also detected in uninfected cells under various conditions, including early apoptosis or during cell cycle transit. The data suggest that the same types of eIF4GI cleavage activities which are generated in PV-infected cells can also be generated in the absence of virus. Taken together, the data support a model in which multiple cellular activities process eIF4GI in PV-infected cells, in addition to 2A(pro).
Collapse
Affiliation(s)
- Miguel Zamora
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
31
|
Sakoda Y, Ross-Smith N, Inoue T, Belsham GJ. An attenuating mutation in the 2A protease of swine vesicular disease virus, a picornavirus, regulates cap- and internal ribosome entry site-dependent protein synthesis. J Virol 2001; 75:10643-50. [PMID: 11602706 PMCID: PMC114646 DOI: 10.1128/jvi.75.22.10643-10650.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulent and avirulent strains of swine vesicular disease virus (SVDV), a picornavirus, have been characterized previously. The major determinants for attenuation have been mapped to specific residues in the 1D-2A-coding region. The properties of the 2A proteases from the virulent and avirulent strains of SVDV have now been examined. Both proteases efficiently cleaved the 1D/2A junction in vitro and in vivo. However, the 2A protease of the avirulent strain of SVDV was much less effective than the virulent-virus 2A protease at inducing cleavage of translation initiation factor eIF4GI within transfected cells. Hence the virulent-virus 2A protease is much more effective at inhibiting cap-dependent protein synthesis. Furthermore, the virulent-virus 2A protease strongly stimulated the internal ribosome entry sites (IRESs) from coxsackievirus B4 and from SVDV, while the avirulent-virus 2A protease was significantly less active in these assays. Thus, the different properties of the 2A proteases from the virulent and avirulent strains of SVDV in regulating protein synthesis initiation reflect the distinct pathogenic properties of the viruses from which they are derived. A single amino acid substitution, adjacent to His21 of the catalytic triad, is sufficient to confer the characteristics of the virulent-strain 2A protease on the avirulent-strain protease. It is concluded that the efficiency of picornavirus protein synthesis, controlled directly by the IRES or indirectly by the 2A protease, can determine virus virulence.
Collapse
Affiliation(s)
- Y Sakoda
- Department of Exotic Disease, National Institute of Animal Health, Kodaira, Tokyo 187-0022, Japan
| | | | | | | |
Collapse
|
32
|
Vasiljeva L, Valmu L, Kääriäinen L, Merits A. Site-specific protease activity of the carboxyl-terminal domain of Semliki Forest virus replicase protein nsP2. J Biol Chem 2001; 276:30786-93. [PMID: 11410598 DOI: 10.1074/jbc.m104786200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The virus-specific components (nsP1-nsP4) of Semliki Forest virus RNA polymerase are synthesized as a large polyprotein (P1234), which is cleaved by a virus-encoded protease. Based on mutagenesis studies, nsP2 has been implicated as the protease moiety of P1234. Here, we show that purified nsP2 (799 amino acids) and its C-terminal domain Pro39 (amino acids 459-799) specifically process P1234 and its cleavage intermediates. Analysis of cleavage products of in vitro synthesized P12, P23, and P34 revealed cleavages at sites 1/2, 2/3, and 3/4. The cleavage regions of P1/2, P2/3, and P3/4 were expressed as thioredoxin fusion proteins (Trx12, Trx23, and Trx34), containing approximately 20 amino acids on each side of the cleavage sites. After exposure of these purified fusion proteins to nsP2 or Pro39, the reaction products were analyzed by SDS-polyacrylamide gel electrophoresis, mass spectrometry, and amino-terminal sequencing. The expected amino termini of nsP2, nsP3, and nsP4 were detected. The cleavage at 3/4 site was most efficient, whereas cleavage at 1/2 site required 5000-fold more of Pro39, and 2/3 site was almost resistant to cleavage. The activity of Pro39 was inhibited by N-ethylmaleimide, Zn(2+), and Cu(2+), but not by EDTA, phenylmethylsulfonyl fluoride, or pepstatin, in accordance with the thiol proteinase nature of nsP2.
Collapse
Affiliation(s)
- L Vasiljeva
- Program in Cellular Biotechnology, Institute of Biotechnology, Biocenter Viikki, P. O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Semple SJ, Pyke SM, Reynolds GD, Flower RL. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral Res 2001; 49:169-78. [PMID: 11428243 DOI: 10.1016/s0166-3542(01)00125-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chrysophanic acid (1,8-dihydroxy-3-methylanthraquinone), isolated from the Australian Aboriginal medicinal plant Dianella longifolia, has been found to inhibit the replication of poliovirus types 2 and 3 (Picornaviridae) in vitro. The compound inhibited poliovirus-induced cytopathic effects in BGM (Buffalo green monkey) kidney cells at a 50% effective concentration of 0.21 and 0.02 microgram/ml for poliovirus types 2 and 3, respectively. The compound inhibited an early stage in the viral replication cycle, but did not have an irreversible virucidal effect on poliovirus particles. Chrysophanic acid did not have significant antiviral activity against five other viruses tested: Coxsackievirus types A21 and B4, human rhinovirus type 2 (Picornaviridae), and the enveloped viruses Ross River virus (Togaviridae) and herpes simplex virus type 1 (Herpesviridae). Four structurally-related anthraquinones--rhein, 1,8-dihydroxyanthraquinone, emodin and aloe-emodin were also tested for activity against poliovirus type 3. None of the four compounds was as active as chrysophanic acid against the virus. The results suggested that two hydrophobic positions on the chrysophanic acid molecule (C-6 and the methyl group attached to C-3) were important for the compound's activity against poliovirus.
Collapse
Affiliation(s)
- S J Semple
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
34
|
Li X, Lu HH, Mueller S, Wimmer E. The C-terminal residues of poliovirus proteinase 2A(pro) are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage. J Gen Virol 2001; 82:397-408. [PMID: 11161279 DOI: 10.1099/0022-1317-82-2-397] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poliovirus proteinase 2A(pro) is an essential enzyme involved in cleavages of viral and cellular proteins during the infectious cycle. Evidence has been obtained that 2A(pro) is also involved in genome replication. All enteroviruses have a negatively charged cluster of amino acids at their C terminus (E(E)/(D)(E)/(D)AMEQ-NH(2)), a common motif suggesting function. When aligned with enterovirus sequences, the 2A(pro) proteinase of human rhinovirus type 2 (HRV2) has a shorter C terminus (EE.Q:-NH(2)) and, indeed, the HRV2 2A(pro) cannot substitute for poliovirus 2A(pro) to yield a viable chimeric virus. Here evidence is provided that the C-terminal cluster of amino acids plays an unknown role in poliovirus genome replication. Deletion of the EEAME sequence from poliovirus 2A(pro) is lethal without significantly influencing proteinase function. On the other hand, addition of EAME to HRV2 2A(pro), yielding a C terminus of this enzyme of EEEAMEQ:, stimulated RNA replication of a poliovirus/HRV2 chimera 100-fold. The novel role of the C-terminal sequence motif is manifested at the level of protein function, since silent mutations in its coding region had no effect on virus proliferation. Poliovirus type 1 Mahoney 2A(pro) could be provided in trans to rescue the lethal deletion EEAME in the poliovirus variant. Encapsidation studies left open the question of whether the C terminus of poliovirus 2A(pro) is involved in particle formation. It is concluded that the C terminus of poliovirus 2A(pro) is an essential domain for viral RNA replication but is not essential for proteolytic processing.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| | - Hui-Hua Lu
- Biochemistry and Molecular Biology, Chiron Corporation, Emeryville, CA 94608, USA2
| | - Steffen Mueller
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| |
Collapse
|
35
|
Wang QM. Protease inhibitors as potential antiviral agents for the treatment of picornaviral infections. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; Spec No:229-53. [PMID: 11548209 DOI: 10.1007/978-3-0348-7784-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The picornavirus family contains several human pathogens including human rhinovirus (HRV) and hepatitis A virus (HAV). In the case of HRVs, these small single-stranded positive-sense RNA viruses translate their genetic information into a polyprotein precursor which is further processed mainly by two viral proteases designated 2A and 3C. The 2A protease (2Apro) makes the first cleavage between the structural and non-structural proteins, while 3C protease (3Cpro) catalyzes most of the remaining internal cleavages. It has been shown that both 2Apro and 3Cpro are cysteine proteases but their overall protein folding is more like trypsin-type serine proteases. Due to their unique protein structure and essential roles in viral replication, 2Apro and 3Cpro have been viewed as excellent targets for antiviral intervention. In recent years, considerable efforts have been made in the development of antiviral compounds targeting these proteases. This article summarizes the recent approaches in the design of novel 2A and 3C protease inhibitors as potential antiviral agents for the treatment of picornaviral infections.
Collapse
Affiliation(s)
- Q M Wang
- Infectious Diseases Research, Lilly Research Labortories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
36
|
Santti J, Harvala H, Kinnunen L, Hyypiä T. Molecular epidemiology and evolution of coxsackievirus A9. J Gen Virol 2000; 81:1361-72. [PMID: 10769080 DOI: 10.1099/0022-1317-81-5-1361] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic relationships between 35 clinical isolates of coxsackievirus A9 (CAV9), collected during the last five decades from different geographical regions, were investigated by partial sequencing. Analysis of a 150 nucleotide sequence at the VP1/2A junction region identified 12 CAV9 genotypes. While most of the strains within each genotype showed geographical clustering, the analysis also provided evidence for long-range importation of virus strains. Phylogenetic analysis of a longer region around the VP1/2A junction (approximately 390 nucleotides) revealed that the designated genotypes actually represented phylogenetic lineages. The phylogenetic grouping pattern of the isolates in the analysis of the VP4/VP2 region was similar to that obtained in the VP1/2A region whereas analysis of the 3D region indicated a strikingly different grouping, which suggests that recombination events may occur in the region encoding the nonstructural proteins. Analysis of the deduced amino acid sequences of the VP1 polypeptide demonstrated that the RGD (arginine-glycine-aspartic acid) motif, implicated in the interaction of the virus with integrin, was fully conserved among the isolates.
Collapse
Affiliation(s)
- J Santti
- MediCity Research Laboratory and Department of Virology, University of Turku, Finland.
| | | | | | | |
Collapse
|
37
|
Maltese E, Bucci M, Macchia S, Latorre P, Pagnotti P, Pierangeli A, Bercoff RP. Inhibition of cap-dependent gene expression induced by protein 2A of hepatitis A virus. J Gen Virol 2000; 81:1373-81. [PMID: 10769081 DOI: 10.1099/0022-1317-81-5-1373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The viral protein 2A of hepatitis A virus (HAV) lacks the conserved 18 aa sequence found in other picornavirus proteases; hence, it is unclear whether the induction of CPE by culture-adapted HAV strains is due to 2A-mediated activity. Moreover, the cleavage sites and actual borders of HAV 2A are not known. Accordingly, a nested series of cDNA sequences encoding the segment of the HAV polyprotein (aa 760-1087) were linked to the 5'-UTR of poliovirus type 2 (Lansing strain) and inserted downstream of the gene encoding human growth hormone (GH). Following transfection of COS-1 cells, levels of GH (translation of which was entirely cap dependent) were determined in culture supernatants. Expression of HAV peptides extending from aa 764, 776 or 791 to 981 strongly inhibited cap-dependent translation of GH, whereas cap-independent expression of a reporter gene (CAT) directed by the poliovirus RNA 5'-UTR was unaffected. The inhibitory effect was absent in constructs expressing either the short peptide encompassing aa 760-836 or proteins initiated downstream of the putative cleavage site 836-837, suggesting that the boundaries of a functional HAV 2A may extend from the Gln/Ser junction 791-792 to residue 981, while peptides initiated at the Gln/Ala pair 836-837 may result from alternative cleavage. Point mutations that substituted members of the triad Ser(916), His(927) and Asp(931) abolished the inhibitory effect on cap-dependent translation, suggesting that the HAV-induced CPE may be mediated by 2A protein.
Collapse
Affiliation(s)
- E Maltese
- Department of Cellular & Developmental Biology, University of Rome 'La Sapienza', Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Kanno T, Mackay D, Inoue T, Wilsden G, Yamakawa M, Yamazoe R, Yamaguchi S, Shirai J, Kitching P, Murakami Y. Mapping the genetic determinants of pathogenicity and plaque phenotype in swine vesicular disease virus. J Virol 1999; 73:2710-6. [PMID: 10074117 PMCID: PMC104027 DOI: 10.1128/jvi.73.4.2710-2716.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of recombinant viruses were constructed using infectious cDNA clones of the virulent J1'73 (large plaque phenotype) and the avirulent H/3'76 (small plaque phenotype) strains of swine vesicular disease virus to identify the genetic determinants of pathogenicity and plaque phenotype. Both traits could be mapped to the region between nucleotides (nt) 2233 and 3368 corresponding to the C terminus of VP3, the whole of VP1, and the N terminus of 2A. In this region, there are eight nucleotide differences leading to amino acid changes between the J1'73 and the H/3'76 strains. Site-directed mutagenesis of individual nucleotides from the virulent to the avirulent genotype and vice versa indicated that A at nt 2832, encoding glycine at VP1-132, and G at nt 3355, encoding arginine at 2APRO-20, correlated with a large-plaque phenotype and virulence in pigs, irrespective of the origin of the remainder of the genome. Of these two sites, 2APRO-20 appeared to be the dominant determinant for the large-plaque phenotype but further studies are required to elucidate their relative importance for virulence in pigs.
Collapse
Affiliation(s)
- T Kanno
- Department of Exotic Disease, National Institute of Animal Health, 6-20-1, Josuihoncho, Kodaira, Tokyo 187-0022, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The yeast two-hybrid system has been used to identify mammalian clones that interact with poliovirus 2A proteinase (2Apro). Eight clones which encode previously unidentified human proteins were selected from a HeLa cell cDNA expression library. In addition, five clones encoding short peptides that interact with poliovirus 2Apro were also identified. The lengths of these peptides range from 6 to 30 amino acids, but all of them contain the Leu-X-Thr-Z motif (X represents any amino acid; Z represents a hydrophobic residue). This sequence is invariably located just at the carboxy terminus of each peptide. This approach raises the possibility of designing substrate analogue inhibitors of 2Apro. Thus, two nonhydrolyzable peptides containing the Leu-X-Thr-Z motif prevented cleavage of eukaryotic initiation factor 4G by poliovirus 2Apro in vitro. A more general method for identifying peptides with antiproteinase activity is discussed.
Collapse
Affiliation(s)
- I Ventoso
- Centro de Biología Molecular "Severo Ochoa", Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
| | | | | |
Collapse
|
40
|
Wang QM. Protease inhibitors as potential antiviral agents for the treatment of picornaviral infections. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1999; 52:197-219. [PMID: 10396129 DOI: 10.1007/978-3-0348-8730-4_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The picornavirus family contains several human pathogens including human rhinovirus (HRV) and hepatitis A virus (HAV). In the case of HRVs, these small single-stranded positive-sense RNA viruses translate their genetic information into a polyprotein precursor which is further processed mainly by two viral proteases designated 2A and 3C. The 2A protease (2Apro) makes the first cleavage between the structural and non-structural proteins, while 3C protease (3Cpro) catalyzes most of the remaining internal cleavages. It has been shown that both 2Apro and 3Cpro are cysteine proteases but their overall protein folding is more like trypsin-type serine proteases. Due to their unique protein structure and essential roles in viral replication, 2Apro and 3Cpro have been viewed as excellent targets for antiviral intervention. In recent years, considerable efforts have been made in the development of antiviral compounds targeting these proteases. This article summarizes the recent approaches in the design of novel 2A and 3C protease inhibitors as potential antiviral agents for the treatment of picornaviral infections.
Collapse
Affiliation(s)
- Q M Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
41
|
Ventoso I, Barco A, Carrasco L. Mutational analysis of poliovirus 2Apro. Distinct inhibitory functions of 2apro on translation and transcription. J Biol Chem 1998; 273:27960-7. [PMID: 9774410 DOI: 10.1074/jbc.273.43.27960] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient expression of poliovirus 2Apro in mammalian cells by means of the recombinant vaccinia virus vT7 expression system leads to drastic inhibition of both cellular and vaccinia virus gene expression (Aldabe, R., Feduchi, E., Novoa, I., and Carrasco, L. (1995) FEBS Lett. 377, 1-5; Aldabe, R., Feduchi, E., Novoa, I., and Carrasco, L. (1995) Biochem. Biophys. Res. Commun. 215, 928-936). To obtain further insights into the molecular basis of this inhibition, a number of 2Apro variants were generated and expressed in COS-1 cells. The effect of these variants on cellular translation, on vaccinia virus-specific translation, and on transcription of the reporter gene luciferase was analyzed. The ability of the different 2Apro variants to block cellular translation depends on their capacities to cleave eIF-4G. The blockade exerted by 2Apro on transcription of the luciferase gene reinforces the notion that this protease is a potent inhibitor of RNA polymerase II-mediated transcription. Some of the 2Apro variants tested failed to block luciferase transcription, despite the fact that eIF-4G cleavage and inhibition of translation were observed. Two reconstituted polioviruses mutated in 2Apro were defective in inhibiting luciferase transcription, yet were still able to cleave eIF-4G and block translation. These findings indicate that 2Apro interferes with cellular gene expression at both the transcriptional and translational levels. Moreover, these two effects probably reflect the inactivation of different host proteins by poliovirus 2Apro.
Collapse
Affiliation(s)
- I Ventoso
- Centro de Biología Molecular (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
42
|
Sommergruber W, Seipelt J, Fessl F, Skern T, Liebig HD, Casari G. Mutational analyses support a model for the HRV2 2A proteinase. Virology 1997; 234:203-14. [PMID: 9268151 DOI: 10.1006/viro.1997.8595] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The proteinase 2A of human rhinovirus 2 is a cysteine proteinase which contains a tightly bound Zn ion thought to be required for structural integrity. A three-dimensional model for human rhinovirus type 2 proteinase 2A (HRV2 2A) was established using sequence alignments with small trypsin-like Ser-proteinases and, for certain regions, elastase. The model was tested by expressing selected proteinase 2A mutants in bacteria and examining the effect on both intramolecular ("cis") and intermolecular ("trans") activities. The HRV2 proteinase 2A is proposed to have a two domain structure, with the catalytic site and substrate binding region on one face of the molecule and a Zn-binding motif on the opposite face. Residues Gly 123, Gly 124, Thr 121, and Cys 101 are proposed to be involved in the architecture of the substrate binding pocket and to provide the correct environment for the catalytic triad of His 18, Asp 35, and Cys 106. Residues Tyr 85 and Tyr 86 are thought to participate in substrate recognition. The presence of an extensive C-terminal helix, in which Asp 132, Arg 134, Phe 130, and Phe 136 play important roles, explains why mutations in this region are generally detrimental to proteinase activity. The proposed Zn-binding motif comprises Cys 52, Cys 54, Cys 112, and His 114. Exchange of these residues inactivates the enzyme. Furthermore, as measured by atom emission spectroscopy, Zn was absent from purified preparations of proteinase 2A in which His 114 had been replaced by Asn. The absence of disulphide bridges was confirmed by subjecting highly purified HRV2 proteinase 2A to one- and two-step alkylation procedures.
Collapse
Affiliation(s)
- W Sommergruber
- Department Cell Biology, Boehringer-Ingelheim Research Vienna, Bender and Co., Austria
| | | | | | | | | | | |
Collapse
|
43
|
Barco A, Ventoso I, Carrasco L. The yeast Saccharomyces cerevisiae as a genetic system for obtaining variants of poliovirus protease 2A. J Biol Chem 1997; 272:12683-91. [PMID: 9139725 DOI: 10.1074/jbc.272.19.12683] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The inducible expression of poliovirus protease 2A (2Apro) blocks the growth of Saccharomyces cerevisiae. A number of yeast colonies that grow after 2Apro induction have been isolated. The majority of these clones express 2Apro to control levels, suggesting that their ability to divide is not due to the loss of 2Apro gene inducibility. The sequences of the 2Apro genes isolated from 22 clones were determined. Most of the 2Apro sequences from these colonies contain point mutations in the poliovirus protease. The different variant protease sequences were transferred to an infectious poliovirus cDNA clone. Translation of genomic RNA obtained from these poliovirus mutants in cell-free systems revealed that some of them had defects in their ability to cleave P1-2A in cis. In addition, several of these variants cleaved the translation initiation factor eIF-4G inefficiently. Transfection of the RNA generated from the full-length poliovirus genomes mutated in 2Apro yielded five viable polioviruses with a small plaque phenotype. These five polioviruses efficiently cleaved p220 but showed defects in viral protein synthesis, transactivation of a leader-luciferase mRNA, and 3CD cleavage to 3C' and 3D'. All 2Apro mutant sequences, including those that did not yield viable viruses, were cloned in pTM1 vector under a T7 promoter. Only the 2Apro variants that have activity to cleave 3CD produced viable poliovirus. Our findings indicate that S. cerevisiae represents a useful system for obtaining poliovirus 2Apro variants that may provide further insight into the role of this protease during the poliovirus replication cycle.
Collapse
Affiliation(s)
- A Barco
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas-UAM, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
44
|
Rijnbrand R, van der Straaten T, van Rijn PA, Spaan WJ, Bredenbeek PJ. Internal entry of ribosomes is directed by the 5' noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol 1997; 71:451-7. [PMID: 8985370 PMCID: PMC191071 DOI: 10.1128/jvi.71.1.451-457.1997] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bicistronic RNAs containing the 373-nucleotide-long 5' nontranslated region (NTR) of the classical swine fever virus (CSFV) genome as intercistronic spacer were used to show the presence of an internal ribosome entry site (IRES) in the 5' end of the CSFV genome. By coexpression of the poliovirus 2A protease it was demonstrated that the CSFV 5' NTR-driven translation is independent of the presence of functional eukaryotic initiation factor eIF-4F. Deletion analysis indicated that the 5' border of the IRES is located between nucleotides 28 and 66. The role of a proposed pseudoknot structure at the 3' end of the CSFV 5' NTR in IRES-mediated translation was investigated by site-directed mutagenesis. Mutant RNAs that had lost the ability to base pair in stem II of the pseudoknot were translationally inactive. Translation to wild-type levels could be restored through the introduction of compensatory complementary base changes that repaired base pairing in stem II. In addition, we showed that the AUG codon, which is located 7 nucleotides upstream of the polyprotein initiation site and is conserved in pestiviruses, could not be used to initiate translation. Also, an AUG codon introduced downstream of the polyprotein initiation site was not recognized as an initiation site by ribosomes. These data suggest that after internal entry on the CSFV 5' NTR, ribosomal scanning for the initiation codon is limited to a small region.
Collapse
Affiliation(s)
- R Rijnbrand
- Department of Virology, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Gorbalenya AE, Snijder EJ. Viral cysteine proteinases. PERSPECTIVES IN DRUG DISCOVERY AND DESIGN : PD3 1996; 6:64-86. [PMID: 32288276 PMCID: PMC7104566 DOI: 10.1007/bf02174046] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/1996] [Accepted: 06/13/1996] [Indexed: 11/26/2022]
Abstract
Dozens of novel cysteine proteinases have been identified in positive single-stranded RNA viruses and, for the first time, in large double-stranded DNA viruses. The majority of these proteins are distantly related to papain or chymotrypsin and may be direct descendants of primordial proteolytic enzymes. Virus genome synthesis and expression, virion formation, virion entry into the host cell, as well as cellular architecture and functioning can be under the control of viral cysteine proteinases during infection. RNA virus proteinases mediate their liberation from giant multidomain precursors in which they tend to occupy conserved positions. These proteinases possess a narrow substrate specificity, can cleave in cis and in trans, and may also have additional, nonproteolytic functions. The mechanisms of catalysis, substrate recognition and RNA binding were highlighted by the recent analysis of the three-dimensional structure of the chymotrypsin-like cysteine proteinases of two RNA viruses.
Collapse
Affiliation(s)
- Alexander E Gorbalenya
- 1M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142782 Moscow Region
- 2A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russia
| | - Eric J Snijder
- 3Department of Virology, Institute of Medical Microbiology, Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
46
|
Ansardi DC, Porter DC, Anderson MJ, Morrow CD. Poliovirus Assembly and Encapsidation of Genomic RNA. Adv Virus Res 1996. [DOI: 10.1016/s0065-3527(08)60069-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Ventoso I, Carrasco L. A poliovirus 2A(pro) mutant unable to cleave 3CD shows inefficient viral protein synthesis and transactivation defects. J Virol 1995; 69:6280-8. [PMID: 7666528 PMCID: PMC189526 DOI: 10.1128/jvi.69.10.6280-6288.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Four poliovirus mutants with modifications of tyrosine 88 in 2A(pro) were generated and introduced into the cloned poliovirus genome. Mutants Y88P and Y88L were nonviable, mutant Y88F showed a wild-type (WT) phenotype, and mutant Y88S showed a delayed cytopathic effect and formed small plaques in HeLa cells. Growth of Y88S in HeLa cells was restricted, giving rise to about 20% of the PFU production of the WT poliovirus. The 2A (Y88S) mutant synthesized significantly lower levels of viral proteins in HeLa cells than did the WT poliovirus, while the kinetics of p220 cleavage were identical for both viruses. Strikingly, the 2A (Y88S) mutant was unable to cleave 3CD, as shown by analysis of poliovirus proteins labeled with [35S]methionine or immunoblotted with a specific anti-3C serum. The ability of the Y88S mutant to form infectious virus and cleave 3CD can be complemented by the WT poliovirus. Synthesis of viral RNA was diminished in the Y88S mutant but less than the inhibition of translation of viral RNA. Experiments in which guanidine was used to inhibit poliovirus RNA synthesis suggest that the primary defect of the Y88S mutant virus is at the level of poliovirus RNA translation, while viral genome replication is much less affected. Transfection of HeLa cells infected with the WT poliovirus with a luciferase mRNA containing the poliovirus 5' untranslated sequence gives rise to a severalfold increase in luciferase activity. This enhanced translation of leader-luc mRNA was not observed when the transfected cells were infected with the 2A (Y88S) mutant. Moreover, cotransfection with mRNA encoding WT poliovirus 2A(pro) enhanced translation of leader-luc mRNA. This enhancement was much lower upon transfection with mRNA encoding 2A(Y88S), 2A(Y88L), or 2A(Y88P). These findings support the view that 2A(pro) itself, rather than the 3C' and/or 3D' products, is necessary for efficient translation of poliovirus RNA in HeLa cells.
Collapse
Affiliation(s)
- I Ventoso
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | |
Collapse
|
48
|
Rijnbrand R, Bredenbeek P, van der Straaten T, Whetter L, Inchauspé G, Lemon S, Spaan W. Almost the entire 5' non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett 1995; 365:115-9. [PMID: 7781762 DOI: 10.1016/0014-5793(95)00458-l] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To investigate which hairpin structures within the 5' untranslated region of hepatitis C virus (HCV) are necessary for cap-independent translation, mutants were constructed that lack one or more hairpin structures. Here we demonstrate, by constructing precisely defined hairpin deletion mutants, that with the exception of the most 5' located hairpin structure, which on deletion shows an increase on translation, each of the predicted hairpins is found to be essential for cap-independent translation. In addition, we demonstrate that HCV 5'UTR driven translation is stimulated by poliovirus 2Apro co-expression.
Collapse
Affiliation(s)
- R Rijnbrand
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Ansardi DC, Pal-Ghosh R, Porter D, Morrow CD. Encapsidation and serial passage of a poliovirus replicon which expresses an inactive 2A proteinase. J Virol 1995; 69:1359-66. [PMID: 7815522 PMCID: PMC188721 DOI: 10.1128/jvi.69.2.1359-1366.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The multiple roles of the viral proteinase 2A in poliovirus replication have been difficult to assess because, to date, it has not been possible to isolate and characterize a viral genome with an inactive 2Apro. We have previously reported that a poliovirus replicon containing an inactive 2Apro by virtue of a change at amino acid 109 from a cysteine to a serine (C109S) was replication competent when transfected into cells previously infected with vaccinia virus (R. Pal-Ghosh and C. D. Morrow, J. Virol. 67:4621-4629, 1993). To further develop this system, we have used a poliovirus replicon which contains the human immunodeficiency virus type 1 (HIV-1) gag gene positioned between nucleotides 1174 and 2470 of the poliovirus genome and have engineered a second mutation within this replicon to change the codon for amino acid 109 of the 2Apro from cysteine to serine (2AC109S). Transfection of this replicon into cells previously infected with vaccinia virus results in the replication and expression of a protein with a molecular mass consistent with that of a P1-HIV-1 Gag-2A fusion protein. Using a recently described complementation system which relies on the capacity of a recombinant vaccinia virus (VV-P1) to provide the capsid precursor (P1) in trans (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993; and D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993), we have encapsidated this replicon containing the 2AC109S mutation. By using reverse transcription PCR, we demonstrated that after 15 serial passages the encapsidated replicon still contained the 2AC109S mutation. Infection of cells with a stock of encapsidated replicon, either in the presence or in the absence of vaccinia virus, resulted in the expression of the P1-HIV-1 Gag-2A fusion protein. Expression of the P1-HIV-1 Gag fusion protein in cells infected with the encapsidated replicon containing the 2AC109S mutation was reduced compared with the expression of P1-HIV-1 Gag in those cells infected with a replicon containing a wild type 2A gene. The protein expression and replication of the replicon RNA in cells containing the 2AC109S mutation was maintained for a longer period of time than for the replicons containing the wild-type 2A gene, possibly because of a reduced cytopathic effect.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D C Ansardi
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | | | |
Collapse
|
50
|
Yu SF, Benton P, Bovee M, Sessions J, Lloyd RE. Defective RNA replication by poliovirus mutants deficient in 2A protease cleavage activity. J Virol 1995; 69:247-52. [PMID: 7983716 PMCID: PMC188570 DOI: 10.1128/jvi.69.1.247-252.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
2A protease (2Apro) catalyzes the initial cleavage of the poliovirus polyprotein which separates the P1 structural protein precursor from the P2-P3 nonstructural protein precursor. In addition, 2Apro indirectly induces cleavage of the p220 component of eukaryotic initiation factor 4F, which is thought to contribute to the specific inhibition of host cell protein synthesis observed in virus-infected HeLa cells. However, it is unclear whether the trans function of 2Apro which induces host cell shutoff is essential or merely facilitates efficient poliovirus replication. In this study, three point mutations in 2Apro (D38E, Y88L, and Y89L [S. F. Yu and R. E. Lloyd, Virology 182:615-625, 1991]) which cause specific loss of trans but not cis cleavage function were independently introduced into the full-length poliovirus cDNA. In addition, mutations which caused only partial loss of both cis and trans cleavage activities (Y88S) or resulted in a wild-type phenotype (Y88F) were individually introduced. When each of these mutant poliovirus cDNAs was transcribed and translated in vitro, normal proteolytic processing of the viral polyprotein was observed, and p220 was not cleaved in those reactions containing proteases defective in trans function, as expected. Surprisingly, Northern (RNA) blot analysis and reverse transcriptase-PCRs performed after transfection of COS-7 or HeLa cells with these viral RNAs revealed that Y88S and Y88L RNAs replicated at only very low levels. RNA replication could not be detected at all in cells transfected with D38E and Y89L RNAs. Taken together, the results suggest a correlation between the function of 2Apro and productive poliovirus RNA replication in vivo that may be independent of the ability to cause p220 cleavage.
Collapse
Affiliation(s)
- S F Yu
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | |
Collapse
|