1
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
2
|
Abstract
Bluetongue virus (BTV) is an insect-vectored emerging pathogen of wild ruminants and livestock in many parts of the world. The virion particle is a complex structure of consecutive layers of protein surrounding a genome of 10 double-stranded (ds) RNA segments. BTV has been studied extensively as a model system for large, nonenveloped dsRNA viruses. A combination of recombinant proteins and particles together with reverse genetics, high-resolution structural analysis by X-ray crystallography and cryo-electron microscopy techniques have been utilized to provide an order for the assembly of the capsid shell and the protein sequestration required for it. Further, a reconstituted in vitro assembly system and RNA-RNA interaction assay, have defined the individual steps required for the assembly and packaging of the 10-segmented RNA genome. In addition, various microscopic techniques have been utilized to illuminate the stages of virus maturation and its egress via multiple pathways. These findings have not only given an overall understanding of BTV assembly and morphogenesis but also indicated that similar assembly and egress pathways are likely to be used by related viruses and provided an informed starting point for intervention or prevention.
Collapse
Affiliation(s)
- Polly Roy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
3
|
Rutkowska DA, Mokoena NB, Tsekoa TL, Dibakwane VS, O’Kennedy MM. Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness. BMC Vet Res 2019; 15:432. [PMID: 31796116 PMCID: PMC6892175 DOI: 10.1186/s12917-019-2184-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.
Collapse
Affiliation(s)
| | - Nobalanda B. Mokoena
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | | - Vusi S. Dibakwane
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | |
Collapse
|
4
|
Solubilisation and purification of recombinant bluetongue virus VP7 expressed in a bacterial system. Protein Expr Purif 2018; 147:85-93. [PMID: 29551716 DOI: 10.1016/j.pep.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/17/2023]
Abstract
Bluetongue virus (BTV) is an Orbivirus that has a profound economic impact due to direct loss of livestock as well as movement bans in an attempt to prevent the spread of the disease to susceptible areas. BTV VP7, along with VP3, forms the inner capsid core of the virus where it acts as the barrier between the outer layer and the inner core housing the genetic material. Purification of BTV VP7 has proven to be problematic and expensive mainly due to its insolubility is several expression systems. To overcome this, in this paper we present a protocol for the solubilisation of BTV VP7 from inclusion bodies expressed in E.coli, and subsequent purification using nickel affinity chromatography. The purified protein was then characterised using native PAGE, far ultraviolet circular dichroism (far-UV CD) and intrinsic fluorescence and found to have both secondary and tertiary structure even in the presence of 5 M urea. Both tertiary and secondary structure was further shown to be to be maintained at least to 42 °C in 5 M urea.
Collapse
|
5
|
Bluetongue virus capsid assembly and maturation. Viruses 2014; 6:3250-70. [PMID: 25196482 PMCID: PMC4147694 DOI: 10.3390/v6083250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023] Open
Abstract
Maturation is an intrinsic phase of the viral life cycle and is often intertwined with egress. In this review we focus on orbivirus maturation by using Bluetongue virus (BTV) as a representative. BTV, a member of the genus Orbivirus within the family Reoviridae, has over the last three decades been subjected to intense molecular study and is thus one of the best understood viruses. BTV is a non-enveloped virus comprised of two concentric protein shells that encapsidate 10 double-stranded RNA genome segments. Upon cell entry, the outer capsid is shed, releasing the core which does not disassemble into the cytoplasm. The polymerase complex within the core then synthesizes transcripts from each genome segment and extrudes these into the cytoplasm where they act as templates for protein synthesis. Newly synthesized ssRNA then associates with the replicase complex prior to encapsidation by inner and outer protein layers of core within virus-triggered inclusion bodies. Maturation of core occurs outside these inclusion bodies (IBs) via the addition of the outer capsid proteins, which appears to be coupled to a non-lytic, exocytic pathway during early infection. Similar to the enveloped viruses, BTV hijacks the exocytosis and endosomal sorting complex required for trafficking (ESCRT) pathway via a non-structural glycoprotein. This exquisitely detailed understanding is assembled from a broad array of assays, spanning numerous and diverse in vitro and in vivo studies. Presented here are the detailed insights of BTV maturation and egress.
Collapse
|
6
|
Roy P, Noad R. Use of bacterial artificial chromosomes in baculovirus research and recombinant protein expression: current trends and future perspectives. ISRN MICROBIOLOGY 2012; 2012:628797. [PMID: 23762754 PMCID: PMC3671692 DOI: 10.5402/2012/628797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022]
Abstract
The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome.
Collapse
Affiliation(s)
- Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
7
|
Stewart M, Bhatia Y, Athmaran T, Noad R, Gastaldi C, Dubois E, Russo P, Thiéry R, Sailleau C, Bréard E, Zientara S, Roy P. Validation of a novel approach for the rapid production of immunogenic virus-like particles for bluetongue virus. Vaccine 2010; 28:3047-54. [DOI: 10.1016/j.vaccine.2009.10.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/05/2009] [Accepted: 10/14/2009] [Indexed: 11/27/2022]
|
8
|
Abstract
Once thought largely restricted to India and Africa, the insect-borne livestock pathogen Bluetongue virus is now present on every continent with the exception of Antarctica. Outbreaks of the disease caused by the virus in Europe over the last decade, and the resulting impact on trade and agriculture, have focussed attention on the production of safe and effective vaccines. The determinants of protection for bluetongue are well defined but the variability of the virus, which exists as 24 immunologically distinct serotypes, means that even regions where large numbers of animals have been vaccinated remain at risk from new outbreaks of the virus.
Collapse
Affiliation(s)
- R Noad
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, United Kingdom
| | | |
Collapse
|
9
|
Abstract
Bluetongue has been recognized as a viral disease of livestock for more than 100 years. Repeated incursions of Bluetongue into Europe since 1998 have been particularly devastating for highly sensitive European fine-wool sheep breeds, and have resulted in a resurgence of interest in vaccine manufacture. Fortunately, the virus and its serology are well understood and vaccination prevents the disease. However, current vaccines are not without their problems, and many new approaches are being tested to improve the safety and breadth of protection afforded. This review describes the leading technologies for improved bluetongue vaccines and looks ahead to how advances in other viral vaccines might be applied to this disease.
Collapse
Affiliation(s)
- Polly Roy
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E7HT, UK.
| | | | | |
Collapse
|
10
|
Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts. J Virol 2008; 82:8339-48. [PMID: 18562540 DOI: 10.1128/jvi.00808-08] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bluetongue virus (BTV), an insect-vectored emerging pathogen of both wild ruminants and livestock, has had a severe economic impact in agriculture in many parts of the world. The investigation of BTV replication and pathogenesis has been hampered by the lack of a reverse genetics system. Recovery of infectious BTV is possible by the transfection of permissive cells with the complete set of 10 purified viral mRNAs derived in vitro from transcribing cores (M. Boyce and P. Roy, J. Virol. 81:2179-2186, 2007). Here, we report that in vitro synthesized T7 transcripts, derived from cDNA clones, can be introduced into the genome of BTV using a mixture of T7 transcripts and core-derived mRNAs. The replacement of genome segment 10 and the simultaneous replacement of segments 2 and 5 encoding the two immunologically important outer capsid proteins, VP2 and VP5, are described. Further, we demonstrate the recovery of infectious BTV entirely from T7 transcripts, proving that synthetic transcripts synthesized in the presence of cap analogue can functionally substitute for viral transcripts at all stages of the BTV replication cycle. The generation of BTV with a fully defined genome permits the recovery of mutations in a defined genetic background. The ability to generate specific mutants provides a new tool to investigate the BTV replication cycle as well as permitting the generation of designer vaccine strains, which are greatly needed in many countries.
Collapse
|
11
|
Abstract
Like other members of the Reoviridae, bluetongue virus faces the same constraints on structure and assembly that are imposed by a large dsRNA genome. However, since it is arthropod-transmitted, BTV must have assembly pathways that are sufficiently flexible to allow it to replicate in evolutionarily distant hosts. With this background, it is hardly surprising that BTV interacts with highly conserved cellular pathways during morphogenesis and trafficking. Indeed, recent studies have revealed striking parallels between the pathways involved in the entry and egress of nonenveloped BTV and those used by enveloped viruses. In addition, recent studies with the protein that is the major component of the BTV viroplasm have revealed how the assembly and, as importantly, the disassembly of this structure may be achieved. This is a first step towards resolving the interactions that occur in these virus 'assembly factories'. Overall, this review demonstrates that the integration of structural, biochemical and molecular data is necessary to fully understand the assembly and replication of this complex RNA virus.
Collapse
Affiliation(s)
- P Roy
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
12
|
Abstract
The baculovirus-insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this system and immunization commonly led to protective immunity against pathogen challenge. The first vaccines produced in insect cells for animal use are now on the market. This chapter deals with the tailoring of the baculovirus-insect cell expression system for vaccine production in terms of expression levels, integrity and immunogenicity of recombinant proteins, and baculovirus genome stability. Various expression strategies are discussed including chimeric, virus-like particles, baculovirus display of foreign antigens on budded virions or in occlusion bodies, and specialized baculovirus vectors with mammalian promoters that express the antigen in the immunized individual. A historical overview shows the wide variety of viral (glyco)proteins that have successfully been expressed in this system for vaccine purposes. The potential of this expression system for antiparasite vaccines is illustrated. The combination of subunit vaccines and marker tests, both based on antigens expressed in insect cells, provides a powerful tool to combat disease and to monitor infectious agents.
Collapse
Affiliation(s)
- Monique M van Oers
- Laboratory of Virology, Wageningen University, Binnenhaven 11 6709 PD, Wageningen, The Netherlands
| |
Collapse
|
13
|
Miyazaki N, Hagiwara K, Naitow H, Higashi T, Cheng RH, Tsukihara T, Nakagawa A, Omura T. Transcapsidation and the conserved interactions of two major structural proteins of a pair of phytoreoviruses confirm the mechanism of assembly of the outer capsid layer. J Mol Biol 2005; 345:229-37. [PMID: 15571717 DOI: 10.1016/j.jmb.2004.10.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 10/08/2004] [Accepted: 10/15/2004] [Indexed: 11/22/2022]
Abstract
The strongly conserved amino acid sequences of the P8 outer capsid proteins of Rice dwarf virus (RDV) and Rice gall dwarf virus (RGDV) and the distribution of electrostatic potential on the proteins at the interfaces between structural proteins suggested the possibility that P8-trimers of RGDV might bind to the 3-fold symmetrical axes of RDV core particles, with vertical interaction between heterologous P3 and P8 proteins and lateral binding of homologous P8 proteins, thereby allowing formation of the double-layered capsids that are characteristic of viruses that belong to the family Reoviridae. We proved this hypothesis using chimeric virus-like particles composed of the P3 core capsid protein of RDV and the P8 outer capsid protein of RGDV, which were co-expressed in a baculovirus expression system. This is the first report on the molecular biological proof of the mechanism of the assembly of the double-layered capsids with disparate icosahedral lattices.
Collapse
Affiliation(s)
- Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Maranga L, Cruz PE, Aunins JG, Carrondo MJT. Production of core and virus-like particles with baculovirus infected insect cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 74:183-206. [PMID: 11991179 DOI: 10.1007/3-540-45736-4_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In this paper the fundamental aspects of process development for the production of core and virus-like particles with baculovirus infected insect cells are reviewed. The issues addressed include: particle formation and monomer composition, chemical and physical conditions for optimal cell growth, baculovirus replication and product expression, multiplicity of infection strategy, and scale-up of the process. Study of the differences in the metabolic requirements of infected and non-infected cells is necessary for high cell density processes. In the bioreactor, the specific oxygen uptake rate (OURsp) plays a central role in process scale-up, leading to the specification of the bioreactor operational parameters. Shear stress can also be an important variable for bioreactor operation due to its influence on cell growth and product expression. The determination of the critical variables in process development is discussed, showing the relevance of the mathematical models that have been developed for the insect cells/baculovirus system in process implementation and control.
Collapse
Affiliation(s)
- Luis Maranga
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Oeiras, Portugal
| | | | | | | |
Collapse
|
15
|
Roy P, Sutton G. New generation of African horse sickness virus vaccines based on structural and molecular studies of the virus particles. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1998; 14:177-202. [PMID: 9785506 DOI: 10.1007/978-3-7091-6823-3_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
African horse sickness virus (AHSV) is a member of the genus Orbivirus, which also includes bluetongue virus (BTV) and epizootic haemorrhagic disease (EHDV) virus. These orbiviruses have similar morphological and biochemical properties, with distinctive pathobiological properties and host ranges. Sequencing studies of the capsid proteins have revealed evolutionary relationships between these viruses. Biochemical studies of the viruses together with the expression of individual proteins and protein complexes have resulted in the development of new generation vaccines. Baculovirus expressed AHSV VP2 provides protection against death caused by AHSV challenge. Similarly, BTV VP2 alone elicits protective neutralising antibodies against BTV in sheep, which is enhanced in the presence of VP5. Recent developments in biotechnology (multiple gene expression baculovirus systems) have made it possible to synthesise orbivirus particles that biochemically and immunologically mimic authentic virions but lack the genetic material. Particle doses as low as 10 micrograms elicit responses that are sufficient to protect sheep 15 months post vaccination, against virulent virus challenge. Moreover, knowledge of the three dimensional structure of these particles enables us to engineer them to deliver multiple foreign peptide components representing other viral epitopes (e.g. foot and mouth disease virus and influenza virus) in order to elicit protective immunity.
Collapse
Affiliation(s)
- P Roy
- Department of Biochemistry, University of Oxford, U.K
| | | |
Collapse
|
16
|
Roy P, Mikhailov M, Bishop DH. Baculovirus multigene expression vectors and their use for understanding the assembly process of architecturally complex virus particles. Gene 1997; 190:119-29. [PMID: 9185857 DOI: 10.1016/s0378-1119(96)00619-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The baculovirus expression vector is a eukaryotic DNA viral vector for the cloning and expression of foreign genes in cultured lepidopteran insect cells and insects. It has become an important tool for the large-scale production of recombinant proteins for a variety of applications including the structure-function analysis of genes and their gene products. We have developed a number of baculovirus multigene expression vectors and utilized these to understand the assembly process of multicomponent capsid structures of large viruses such as bluetongue virus (BTV), a member of the Orbivirus genus within the family Reoviridae. BTV is some 810 A in diameter and comprised of two protein shells containing four major proteins, VP2, VP5, VP7 and VP3, surrounding a genome of ten double-stranded RNA segments and three minor proteins (VP2, VP4 and VP6). BTV is the etiological agent of a sheep disease that is sometimes fatal in certain parts of the world (e.g., Africa, Asia, and the Americas). Using baculovirus multigene vectors, we have co-expressed various combinations of BTV genes in insect cells and produced structures that mimic the various stages of BTV assembly. For example, co-expressed VP3 and VP7 form BTV core-like particles, while co-expressed VP2, VP5, VP7 and VP3 form BTV virus-like particles. Using deletion, point and domain switching analyses of each protein, we have been able to identify certain sequences in the VP7 and VP3 proteins that are essential for the assembly of core-like particles. These expression and biochemical studies have been complemented by collaboration studies using cryo-electron microscopy and image processing analyses to provide the three-dimensional structure of the expressed particles. In addition and with other associates, we have used X-ray crystallography of VP7 to deduce its atomic structure. Extensive studies on the immune responses elicited by these self-assembled particles, and chimeric derivatives involving various foreign antigens, have been carried out. Finally, using as little as 10 microg of the self-assembled virus-like particles, we have shown that they can confer long-lasting protection in sheep against BTV.
Collapse
Affiliation(s)
- P Roy
- Department of Biochemistry, University of Oxford, UK.
| | | | | |
Collapse
|
17
|
Griffiths CM. Overview: Biologicals and Immunologicals Baculovirus expression vectors: advances and applications. Expert Opin Ther Pat 1994. [DOI: 10.1517/13543776.4.9.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Martyn JC, Gould AR, Yu M. Expression of the outer capsid proteins VP2 and VP5 of bluetongue virus in Saccharomyces cerevisiae. Virus Res 1994; 33:11-25. [PMID: 7941697 DOI: 10.1016/0168-1702(94)90014-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
cDNAs transcribed from bluetongue virus serotype 1 (Australia) ds RNA 2 and ds RNA 6 coding for the major neutralising antigen VP2 and the outer capsid protein VP5, respectively, were amplified in polymerase chain reactions and ligated downstream of the copper-inducible metallothionein promoter in the yeast expression plasmid pYELC5. Saccharomyces cerevisiae transformed with the recombinant plasmid pYELC5-VP2 expressed full-length VP2 only following induction with 1 mM CuSO4 and reached the maximum level after 6 h. In contrast, S. cerevisiae transformants harboring the recombinant plasmid pYELC5-VP5 expressed VP5 constitutively, although induction increased the level to a maximum after 4 h. A sheep trial was done testing the recombinant proteins, however it was shown that none of these were effective immunogens for eliciting a protective response against a subsequent challenge with bluetongue virus. An analysis of the yeast expression products for the VP2 outer coat protein using a panel of monoclonal antibodies showed that the yeast expressed VP2 was in a conformation different from native VP2 and hence probably unable to elicite an appropriate protective immune response.
Collapse
Affiliation(s)
- J C Martyn
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria
| | | | | |
Collapse
|
19
|
Cadd TL, Patterson JL. Synthesis of viruslike particles by expression of the putative capsid protein of Leishmania RNA virus in a recombinant baculovirus expression system. J Virol 1994; 68:358-65. [PMID: 8254748 PMCID: PMC236296 DOI: 10.1128/jvi.68.1.358-365.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The putative capsid open reading frame (ORF2) of the Leishmania RNA virus LRV1-4 was expressed in a baculovirus expression system. The expressed protein was identified by Western immunoblot analysis with polyclonal antiserum raised to purified LRV1-4 virus. Electron microscopy and sedimentation analysis indicated that the expressed protein self-assembles into empty viruslike particles of similar size and shape to authentic virus particles, thus confirming that ORF2 encodes the viral capsid. The expressed particles are present exclusively in the cytoplasm of infected SF9 cells and are able to assemble in the absence of LRV1-4 RNA, viral polymerase, or any Leishmania host factors.
Collapse
Affiliation(s)
- T L Cadd
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
20
|
Reis U, Blum B, von Specht BU, Domdey H, Collins J. Antibody Production in Silkworm Cells and Silkworm Larvae Infected with a Dual Recombinant Bombyx Mori Nuclear Polyhedrosis Virus. Nat Biotechnol 1992; 10:910-2. [PMID: 1368987 DOI: 10.1038/nbt0892-910] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have examined the efficiency of coexpression of two heterologous genes from a recombinant Bombyx mori nuclear polyhedrosis virus for the production of antibodies in silkworm larvae. The cDNAs encoding the light and the heavy chains of a murine immunoglobulin, directed against lipoprotein I of Pseudomonas aeruginosa, were brought under the control of two separate copies of the viral polyhedrin promotor. Infection of silkworm cells with the recombinant baculovirus yielded a maximum of 6.4 micrograms/ml IgG2A in the culture supernatant 72 hours post infection, while 800 micrograms/ml IgG2A was found in the hemolymph of infected fifth instar silkworm larvae seven days after infection with the same construct. The recombinant antibody exhibited a similar antigen specificity and avidity to that of the monoclonal antibody derived from ascites fluid.
Collapse
Affiliation(s)
- U Reis
- Dept. of Genetics, GBF, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
21
|
Abstract
The structure of the bluetongue virus (BTV) particle, determined by cryoelectron microscopy and image analysis, reveals a well-ordered outer shell which differs markedly from other known Reoviridae. The inner shell is known to have an icosahedral structure with 260 triangular spikes of VP7 trimers arranged on a T = 13,l lattice. The outer shell is seen to consist of 120 globular regions (possibly VP5), which sit neatly on each of the six-membered rings of VP7 trimers. "Sail"-shaped spikes located above 180 of the VP7 trimers form 60 triskelion-type motifs which cover all but 20 of the VP7 trimers. These spikes are possibly the hemagglutinating protein VP2 which contains a virus neutralization epitope. Thus, VP2 and VP5 together form a continuous layer around the inner shell except for holes on the 5-fold axis.
Collapse
Affiliation(s)
- E A Hewat
- Laboratoire de Biologie Structurale, CEA and CNRS URA 1333, Grenoble, France
| | | | | |
Collapse
|