1
|
Pulido IR, Jahn R, Gerke V. VAMP3 is associated with endothelial weibel-palade bodies and participates in their Ca(2+)-dependent exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1038-44. [PMID: 21094665 DOI: 10.1016/j.bbamcr.2010.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/25/2010] [Accepted: 11/06/2010] [Indexed: 11/27/2022]
Abstract
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca(2+)-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca(2+)-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Inés Rojo Pulido
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
2
|
Cerovský V, Budesínský M, Hovorka O, Cvacka J, Voburka Z, Slaninová J, Borovicková L, Fucík V, Bednárová L, Votruba I, Straka J. Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Chembiochem 2009; 10:2089-99. [PMID: 19591185 DOI: 10.1002/cbic.200900133] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three novel structurally related pentadecapeptides, named lasioglossins, were isolated from the venom of the eusocial bee Lasioglossum laticeps. Their primary sequences were established as H-Val-Asn-Trp-Lys-Lys-Val-Leu-Gly-Lys-Ile-Ile-Lys-Val-Ala-Lys-NH(2) (LL-I), H-Val-Asn-Trp-Lys-Lys-Ile-Leu-Gly-Lys-Ile-Ile-Lys-Val-Ala-Lys-NH(2) (LL-II) and H-Val-Asn-Trp-Lys-Lys-Ile-Leu-Gly-Lys-Ile-Ile-Lys-Val-Val-Lys-NH(2) (LL-III). These lasioglossins exhibited potent antimicrobial activity against both Gram-positive and Gram-negative bacteria, low haemolytic and mast cell degranulation activity, and a potency to kill various cancer cells in vitro. The lasioglossin CD spectra were measured in the presence of trifluoroethanol and sodium dodecyl sulfate solution and indicated a high degree of alpha-helical conformation. NMR spectroscopy, which was carried out in trifluoroethanol/water confirmed a curved alpha-helical conformation with a concave hydrophobic and convex hydrophilic side. To understand the role of this bend on biological activity, we studied lasioglossin analogues in which the Gly in the centre of the molecule was replaced by other amino acid residues (Ala, Lys, Pro). The importance of the N-terminal part of the molecule to the antimicrobial activity was revealed through truncation of five residues from both the N and C termini of the LL-III peptide. C-terminal deamidation of LL-III resulted in a drop in antimicrobial activity, but esterification of the C terminus had no effect. Molecular modelling of LL-III and the observed NOE contacts indicated the possible formation of a bifurcated H-bond between hydrogen from the Lys15 CONH peptide bond and one H of the C-terminal CONH(2) to the Ile11 oxygen atom. Such interactions cannot form with C-terminal esterification.
Collapse
Affiliation(s)
- Václav Cerovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6 (Czech Republic).
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Cerovský V, Hovorka O, Cvacka J, Voburka Z, Bednárová L, Borovicková L, Slaninová J, Fucík V. Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. Chembiochem 2009; 9:2815-21. [PMID: 18942691 DOI: 10.1002/cbic.200800476] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel antimicrobial peptide designated melectin was isolated from the venom of the cleptoparasitic bee Melecta albifrons. Its primary sequence was established as H-Gly-Phe-Leu-Ser-Ile-Leu-Lys-Lys-Val-Leu-Pro-Lys-Val-Met-Ala-His-Met-Lys-NH(2) by Edman degradation and ESI-QTOF mass spectrometry. Synthetic melectin exhibited antimicrobial activity against both gram-positive and -negative bacteria and it degranulated rat peritoneal mast cells, but its hemolytic activity was low. The CD spectra of melectin measured in the presence of trifluoroethanol and sodium dodecyl sulfate showed a high content alpha-helices, which indicates that melectin can adopt an amphipathic alpha-helical secondary structure in an anisotropic environment such as the bacterial cell membrane. To envisage the role of the proline residue located in the middle of the peptide chain on biological activity and secondary structure, we prepared several melectin analogues in which the Pro11 residue was either replaced by other amino acid residues or was omitted. The results of biological testing suggest that a Pro kink in the alpha-helical structure of melectin plays an important role in selectivity for bacterial cells. In addition, a series of N- and C-terminal-shortened analogues was synthesized to examine which region of the peptide is related to antimicrobial activity.
Collapse
Affiliation(s)
- Václav Cerovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cerovský V, Slaninová J, Fucík V, Hulacová H, Borovicková L, Jezek R, Bednárová L. New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 2008; 29:992-1003. [PMID: 18375018 DOI: 10.1016/j.peptides.2008.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Four new peptides of the mastoparan family, characterized recently in the venom of three neotropical social wasps collected in the Dominican Republic, Polistes major major, Polistes dorsalis dorsalis and Mischocyttarus phthisicus were synthesized and tested for antimicrobial potency against Bacillus subtilis, Staphylococcus aureus, Escherichia coli (E.c.) and Pseudomonas aeruginosa, and for hemolytic and mast cells degranulation activities. As these peptides possess strong antimicrobial activity (minimal inhibitory concentration (MIC) values against Bacillus subtillis and E.c. in the range of 5-40 microM), we prepared 40 of their analogs to correlate biological activities, especially antimicrobial, with the net positive charge, hydrophobicity, amphipathicity, peptide length, amino acid substitutions at different positions of the peptide chain, N-terminal acylation and C-terminal deamidation. Circular dichroism spectra of the peptides measured in the presence of trifluoroethanol or SDS showed that the peptides might adopt alpha-helical conformation in such anisotropic environments.
Collapse
Affiliation(s)
- Václav Cerovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
5
|
Lippert U, Ferrari DM, Jahn R. Endobrevin/VAMP8 mediates exocytotic release of hexosaminidase from rat basophilic leukaemia cells. FEBS Lett 2007; 581:3479-84. [PMID: 17618625 DOI: 10.1016/j.febslet.2007.06.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 06/17/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Mast cells are important players in innate immunity and mediate allergic responses. Upon stimulation, they release biologically active mediators including histamine, cytokines and lysosomal hydrolases. We used permeabilized rat basophilic leukaemia cells as model to identify R-SNAREs (soluble NSF (N-ethylmaleimide-sensitive fusion protein)) mediating exocytosis of hexosaminidase from mast cells. Of a complete set of recombinant mammalian R-SNAREs, only vesicle associated membrane protein (VAMP8)/endobrevin consistently blocked hexosaminidase release, which was also insensitive to treatment with clostridial neurotoxins. Thus, VAMP8, which also mediates fusion of late endosomes and lysosomes, plays a major role in hexosaminidase release, strengthening the view that mast cell granules share properties of both secretory granules and lysosomes.
Collapse
Affiliation(s)
- Undine Lippert
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | |
Collapse
|
6
|
Hammond GRV, Dove SK, Nicol A, Pinxteren JA, Zicha D, Schiavo G. Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. J Cell Sci 2006; 119:2084-94. [PMID: 16687737 DOI: 10.1242/jcs.02912] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inositol lipid phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] is involved in a myriad of cellular processes, including the regulation of exocytosis and endocytosis. In this paper, we address the role of PtdIns(4,5)P2 in compound exocytosis from rat peritoneal mast cells. This process involves granule-plasma membrane fusion as well as homotypic granule membrane fusion and occurs without any immediate compensatory endocytosis. Using a novel quantitative immunofluorescence technique, we report that plasma membrane PtdIns(4,5)P2 becomes transiently depleted upon activation of exocytosis, and is not detected on the membranes of fusing granules. Depletion is caused by phospholipase C activity, and is mandatory for exocytosis. Although phospholipase C is required for Ca2+ release from internal stores, the majority of the requirement for PtdIns(4,5)P2 hydrolysis occurs downstream of Ca2+ signalling - as shown in permeabilised cells, where the inositol (1,4,5)-trisphosphate-Ca2+ pathway is bypassed. Neither generation of the PtdIns(4,5)P2 metabolite, diacylglycerol (DAG) or simple removal and/or sequestration of PtdIns(4,5)P2 are sufficient for exocytosis to occur. However, treatment of permeabilised cells with DAG induces a small potentiation of exocytosis, indicating that it may be required. We propose that a cycle of PtdIns(4,5)P2 synthesis and breakdown is crucial for exocytosis to occur in mast cells, and may have a more general role in all professional secretory cells.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Molecular Neuropathobiology, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Lacy P. The role of Rho GTPases and SNAREs in mediator release from granulocytes. Pharmacol Ther 2005; 107:358-76. [PMID: 15951020 DOI: 10.1016/j.pharmthera.2005.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2005] [Indexed: 11/27/2022]
Abstract
Granulocytes are defined as the population of granulated white blood cells (eosinophils, neutrophils, and basophils). These cells are involved in inflammation and contribute to the pathogenesis of allergic and inflammatory diseases. Inflammation is induced by the release of mediators from granulocytes recruited to or resident within tissues, resulting in edema, leukocyte recruitment, and tissue injury. Eosinophils and neutrophils express Rac1 and Rac2 guanosine triphosphatases (GTPases), 2 members of the Rho GTPase subfamily of ras-related GTPases. Rho GTPases are activated by receptors in the cell membrane and are proposed to function as intracellular molecular switches to regulate mediator release, including exocytosis, from granulocytes. Exocytosis involves granule fusion, which requires the binding of intracellular membrane receptors known as SNAP receptor (SNAREs; soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein [SNAP] receptors). Eosinophils and neutrophils express similar SNARE isoforms that are important in granule fusion events. Together, these molecules link together to form a common signaling pathway for mediator release from granulocytes. Identifying these molecules and their function may provide novel targets for the prevention of inflammatory reactions.
Collapse
Affiliation(s)
- Paige Lacy
- Pulmonary Research Group, 550A HMRC, Department of Medicine, University of Alberta, Edmonton, Canada, AB T6G 2S2.
| |
Collapse
|
8
|
Robison AJ, Bartlett RK, Bass MA, Colbran RJ. Differential modulation of Ca2+/calmodulin-dependent protein kinase II activity by regulated interactions with N-methyl-D-aspartate receptor NR2B subunits and alpha-actinin. J Biol Chem 2005; 280:39316-23. [PMID: 16172120 DOI: 10.1074/jbc.m508189200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) interacts with several prominent dendritic spine proteins, which have been termed CaMKII-associated proteins. The NR2B subunit of N-methyl-d-aspartate (NMDA)-type glutamate receptor, densin-180, and alpha-actinin bind comparable, approximately stoichiometric amounts of Thr(286)-autophosphorylated CaMKIIalpha, forming a ternary complex (Robison, A. J., Bass, M. A., Jiao, Y., Macmillan, L. B., Carmody, L. C., Bartlett, R. K., and Colbran, R. J. (2005) J. Biol. Chem. 280, 35329-35336), but their impacts on CaMKII function are poorly understood. Here we show that these interactions are differentially regulated and exert distinct effects on CaMKII activity. Nonphosphorylated and Thr(286)-autophosphorylated CaMKII bind to alpha-actinin with similar efficacy, but autophosphorylation at Thr(305/306) or Ca(2+)/calmodulin binding significantly reduce this binding. Moreover, alpha-actinin antagonizes CaMKII activation by Ca(2+)/calmodulin, as assessed by autophosphorylation and phosphorylation of a peptide substrate. CaMKII binding to densin (1247-1542) is partially independent of Thr(286) autophosphorylation and is unaffected by Ca(2+)-independent autophosphorylation or Ca(2+)/calmodulin. In addition, the CaMKII binding domain of densin-180 has little effect on CaMKII activity. In contrast, the interaction of CaMKIIalpha with NR2B requires either Thr(286) autophosphorylation or the binding of both Ca(2+)/calmodulin and adenine nucleotides. NR2B inhibits both the Ca(2+)/calmodulin-dependent and autonomous activities of CaMKII by a mechanism that is competitive with autocamtide-2 substrate, non-competitive with syntide-2 substrate, and uncompetitive with respect to ATP. In combination, these data suggest that dynamically regulated interactions with CaMKII-associated proteins could play pleiotropic roles in finetuning CaMKII signaling in defined subcellular compartments.
Collapse
Affiliation(s)
- A J Robison
- Department of Molecular Physiology and Biophysics, Center for Molecular Neurosciences and The Vanderbilt-Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | |
Collapse
|
9
|
Fan M, Jamal Mustafa S. Role of adenosine in airway inflammation in an allergic mouse model of asthma. Int Immunopharmacol 2005; 6:36-45. [PMID: 16332511 DOI: 10.1016/j.intimp.2005.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/05/2005] [Accepted: 07/19/2005] [Indexed: 11/30/2022]
Abstract
In the present study, we examined dynamic changes in cellular profile of bronchoalveolar lavage (BAL) fluid after adenosine challenge in ragweed sensitized and challenged mice. Mice systemically sensitized and airway challenged with ragweed showed marked airway inflammation manifesting increased eosinophils, lymphocytes, neutrophils and activated macrophages in BAL. Adenosine challenge further enhanced influx of inflammatory cells into BAL, notably neutrophils from 1 to 72 h and eosinophils from 1 to 48 h time-points (p<0.05), which sharply rose at 6-h time-point following adenosine challenge. Greater infiltration of lymphocytes into BAL was observed at 1 and 72 h and macrophages from 6 to 72 h (p<0.05) after adenosine challenge. Accordingly, markers of eosinophils, neutrophils and mast cells were analyzed at 6-h time-point after adenosine challenge. Adenosine challenge significantly increased the levels of eosinophil peroxidase, neutrophil myeloperoxidase and beta-hexosaminidase in BAL. There were more significant effects of adenosine challenge on the degranulation of mast cells in the lung than that in blood. The chemoattractant, eotaxin, was detected in BAL, which increased after adenosine challenge. Theophylline, a non-specific adenosine receptor antagonist, prevented adenosine-enhanced infiltration of inflammatory cells and their respective markers. Our findings suggest that adenosine plays an important role in airway inflammation in an allergic mouse model.
Collapse
Affiliation(s)
- Ming Fan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|
10
|
Narenjkar J, Marsh SJ, Assem ESK. Inhibition of the antigen-induced activation of RBL-2H3 cells by charybdotoxin and cetiedil. Eur J Pharmacol 2004; 483:95-106. [PMID: 14729096 DOI: 10.1016/j.ejphar.2003.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Quinidine and Ba(2+), non-selective K(+)-channel blockers, have previously been shown to inhibit antigen-induced mediator (beta-hexosaminidase) release from RBL-2H3 cells, a mucosal-type mast cell line. We therefore used selective blockers of Ca(2+)-activated and other K(+) channels to determine if there was a role for these channels in antigen-induced mediator release. Charybdotoxin and cetiedil dose-dependently inhibited beta-hexosaminidase release with IC(50) values of 133 nM and 84 microM, respectively. Charybdotoxin also inhibited the repolarization phase of the antigen-induced biphasic change in the membrane potential (IC(50) 84 nM), antigen-stimulated 86Rb(+)-efflux and increase in free intracellular calcium, [Ca(2+)](i). Iberiotoxin, margatoxin, apamin and tetraethylammonium had no effect on beta-hexosaminidase release. These results suggest that K(+) conductances play a significant role in mediator release from RBL-2H3, that these conductances are of the intermediate conductance Ca(2+)-activated K(+) channel (IK(Ca)) type, and that they are somewhat similar to those which have been described in red blood cells, though they are much less sensitive to clotrimazole.
Collapse
Affiliation(s)
- Jamshid Narenjkar
- Department of Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | | | | |
Collapse
|
11
|
Rossi AH, Sears PR, Davis CW. Ca2+ dependency of 'Ca2+-independent' exocytosis in SPOC1 airway goblet cells. J Physiol 2004; 559:555-65. [PMID: 15218074 PMCID: PMC1665132 DOI: 10.1113/jphysiol.2004.070433] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SPOC1 airway goblet cells secrete mucin in response to P2Y2 receptor agonists and to secretagogues, phorbol 12-myristate 13-acetate (PMA) and ionomycin, which mobilize elements of the phospholipase C pathway, PKC and Ca2+, respectively. Previous studies demonstrated that mucin secretion from SLO-permeabilized, EGTA-buffered SPOC1 cells was stimulated by PMA at low Ca2+ levels (< 0.1 microm), consistent with the notion that regulated exocytosis may occur by Ca2+-independent pathways. We tested the alternative hypothesis that PMA-induced mucin secretion is, in fact, a Ca2+-dependent process under the conditions of low bulk Ca2+, one that is permitted in the typical SLO-permeabilized cell model by the slow binding kinetics of EGTA. Both IP3 and elevated bulk Ca2+ activated mucin secretion in SPOC1 cells buffered by EGTA, suggesting that IP3 generates a local Ca2+ gradient in the vicinity of the secretory granules to the degree necessary to trigger exocytosis. BAPTA, which binds Ca2+ approximately 100-fold faster than EGTA, diminished IP3-induced mucin release over a range of concentrations by > or = 69%, yet maintained an essentially normal mucin secretory response to elevated bulk Ca2+ in permeabilized SPOC1 cells. BAPTA also diminished the mucin secretory response of permeabilized cells to PMA, relative to the EGTA-buffered control: at PMA below 30 nm, BAPTA abolished the secretory response, and at higher concentrations it was reduced significantly relative to the EGTA-buffered controls. PMA-induced secretion in EGTA was insensitive to heparin. These results suggest that Ca2+ is released locally during PMA-induced exocytosis, by an IP3-independent mechanism.
Collapse
Affiliation(s)
- Andrea H Rossi
- 6009 Thurston-Bowles, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | | | | |
Collapse
|
12
|
Narenjkar J, Assem ESK, Ganellin CR. Inhibition of the antigen-induced activation of RBL-2H3 cells by cetiedil and some of its analogues. Eur J Pharmacol 2004; 483:107-16. [PMID: 14729097 DOI: 10.1016/j.ejphar.2003.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Our previous studies on rat basophilic leukaemia (RBL-2H3) cells suggested that IK(Ca) channels similar to those in red blood cells (RBC) may be involved in the antigen-induced beta-hexosaminidase release. Since cetiedil blocks these channels in both cell types, we studied the inhibition by a selection of the synthetic analogues of cetiedil (UCL compounds) of antigen-induced beta-hexosaminidase release and 86Rb(+)-efflux from RBL-2H3 cells. We tested the (+)- and (-)-enantiomers of cetiedil (UCL 1348 and UCL 1349), the more lipophilic triphenylacetic acid derivatives (UCL 1495 and UCL 1617) and (9-benzyl-fluoren)-9-yl derivatives (UCL 1608 and UCL 1710). They all inhibited antigen-induced beta-hexosaminidase release and 86Rb(+)-efflux. Their relative potency in inhibiting antigen-induced beta-hexosaminidase release was UCL 1608>1710>1617>1348>1349>1495, with IC(50) values of 9.6+/-0.6, 14.4+/-2.2, 23.4+/-1.4, 29.8+/-1.1, 77.5+/-11.8 and 104.6+/-14.7 (microM), respectively. These IC(50)s suggest some dissimilarity between IK(Ca) in RBL-2H3 cells and RBC. Lipophilicity and potency were well correlated in RBC, but not in RBL-2H3 cells.
Collapse
Affiliation(s)
- Jamshid Narenjkar
- Department of Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | | | | |
Collapse
|
13
|
Way G, Morrice N, Smythe C, O'Sullivan AJ. Purification and identification of secernin, a novel cytosolic protein that regulates exocytosis in mast cells. Mol Biol Cell 2002; 13:3344-54. [PMID: 12221138 PMCID: PMC124164 DOI: 10.1091/mbc.e01-10-0094] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
After permeabilization with the pore-forming toxin streptolysin-O mast cells can be triggered to secrete by addition of both calcium and a GTP analogue. If stimulation is delayed after permeabilization, there is a progressive decrease in the extent of secretion upon stimulation, eventually leading to a complete loss of the secretory response. This loss of secretory response can be retarded by the addition of cytosol from other secretory tissues, demonstrating that the response is dependent on a number of cytosolic proteins. We have used this as the basis of a bioassay to purify Secernin 1, a novel 50-kDa cytosolic protein that appears to be involved in the regulation of exocytosis from peritoneal mast cells. Secernin 1 increases both the extent of secretion and increases the sensitivity of mast cells to stimulation with calcium.
Collapse
Affiliation(s)
- Gemma Way
- Department of Biological and Biomedical Sciences, University of Durham, United Kingdom
| | | | | | | |
Collapse
|
14
|
Gross B, Borggrefe T, Wabl M, Sivalenka RR, Bennett M, Rossi AB, Jessberger R. SWAP-70-deficient mast cells are impaired in development and IgE-mediated degranulation. Eur J Immunol 2002; 32:1121-8. [PMID: 11920580 DOI: 10.1002/1521-4141(200204)32:4<1121::aid-immu1121>3.0.co;2-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cross-linking of the high-affinity IgE receptor (FcepsilonRI) on mast cell activates signaling pathways that trigger degranulation and the release of multiple pro-inflammatory mediators. Mature,immature and precursor mast cells are degranulation competent. We show here that the signaling protein SWAP-70 has a function in mast cell biology. While not found in many cell types, we find that apart from B cells, mast cells also express SWAP-70. In activated B cells, SWAP-70 shuttles between cytoplasm and nucleus, but in mast cells it is confined to the cytoplasm. SWAP-70(ko/ko) (double knockout) mice have reduced numbers of mature mast cells, and these are degranulation competent. However, although immature mast cells from SWAP-70(ko/ko) mice respond normally to SCF and IL-3 and have functional granules, their FcepsilonRI-mediated degranulation is inhibited. Thus, in mast cells SWAP-70 plays a role both in establishing the initial competence to degranulate and to develop into mature mast cells.
Collapse
|
15
|
Montemurro P, Nishioka H, Dundon WG, de Bernard M, Del Giudice G, Rappuoli R, Montecucco C. The neutrophil-activating protein (HP-NAP) ofHelicobacter pyloriis a potent stimulant of mast cells. Eur J Immunol 2002. [DOI: 10.1002/1521-4141(200203)32:3<671::aid-immu671>3.0.co;2-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Ferry X, Eichwald V, Daeffler L, Landry Y. Activation of betagamma subunits of G(i2) and G(i3) proteins by basic secretagogues induces exocytosis through phospholipase Cbeta and arachidonate release through phospholipase Cgamma in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4805-13. [PMID: 11673483 DOI: 10.4049/jimmunol.167.9.4805] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells are activated by Ag-induced clustering of IgE bound to FcepsilonRI receptors or by basic secretagogues that stimulate pertussis toxin-sensitive heterotrimeric G proteins. The cell response includes the secretion of stored molecules, such as histamine, through exocytosis and of de novo synthesized mediators, such as arachidonate metabolites. The respective roles of G proteins alpha and betagamma subunits as well as various types of phospholipase C (PLC) in the signaling pathways elicited by basic secretagogues remain unknown. We show that a specific Ab produced against the C-terminus of Galpha(i3) and an anti-recombinant Galpha(i2) Ab inhibited, with additive effects, both exocytosis and arachidonate release from permeabilized rat peritoneal mast cells elicited by the basic secretagogues mastoparan and spermine. A specific Ab directed against Gbetagamma dimers prevented both secretions. Anti-PLCbeta Abs selectively prevented exocytosis. The selective phosphatidylinositol 3-kinase inhibitor LY 294002 prevented arachidonate release without modifying exocytosis. Gbetagamma coimmunoprecipitated with PLCbeta and phosphatidylinositol 3-kinase. The anti-PLCgamma1 and anti-phospholipase A(2) Abs selectively blocked arachidonate release. Protein tyrosine phosphorylation was inhibited by anti-Gbetagamma Abs, LY294002, and anti PLCgamma1 Abs. These data show that the early step of basic secretagogue transduction is common to both signaling pathways, involving betagamma subunits of G(i2) and G(i3) proteins. Activated Gbetagamma interacts, on one hand, with PLCbeta to elicit exocytosis and, on the other hand, with phosphatidylinositol 3-kinase to initiate the sequential activation of PLCgamma1, tyrosine kinases, and phospholipase A(2), leading to arachidonate release.
Collapse
Affiliation(s)
- X Ferry
- Laboratoire de Neuroimmunopharmacologie, Institut National de la Santé et de la Recherche Médicale, Unité 425, Université Louis Pasteur-Strasbourg I, Faculté de Pharmacie, Illkirch, France
| | | | | | | |
Collapse
|
17
|
Lacy P, Logan MR, Bablitz B, Moqbel R. Fusion protein vesicle-associated membrane protein 2 is implicated in IFN-gamma-induced piecemeal degranulation in human eosinophils from atopic individuals. J Allergy Clin Immunol 2001; 107:671-8. [PMID: 11295657 DOI: 10.1067/mai.2001.113562] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exocytosis is an integral event during IFN-gamma-induced piecemeal degranulation in eosinophils. In many tissues soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), including vesicle-associated membrane protein (VAMP), act as specific intracellular receptors to allow granule fusion with the membrane during degranulation. However, the mechanisms underlying eosinophil piecemeal degranulation induced by IFN-gamma are not well understood. OBJECTIVE We sought to assess whether eosinophils express the vesicular SNARE protein VAMP-2 and to determine the involvement of VAMP-2 in IFN-gamma-induced piecemeal degranulation. METHODS Human peripheral blood eosinophils (> or =97%) from atopic subjects were subjected to RT-PCR and sequence analysis with specific primers for VAMP-2 mRNA. Western blotting and flow cytometric analysis were carried out to confirm the identity of VAMP-2 and its susceptibility to cleavage by tetanus toxin. Confocal laser scanning microscopy imaging was conducted on double-labeled cytospin preparations of eosinophils at 0, 5, 10, 30, and 60 minutes and 16 hours of IFN-gamma (500 U/mL) stimulation. RESULTS Eosinophils expressed VAMP-2 mRNA (n = 4 donors), which exhibited 100% homology with human VAMP-2 cDNA on sequencing. Eosinophils were also found to express tetanus toxin-sensitive VAMP-2 protein. RANTES and VAMP-2 immunofluorescence were observed to colocalize to similar intracellular structures by means of confocal imaging. IFN-gamma induced a rapid translocation of VAMP-2(+) organelles toward the cell membrane in correlation with RANTES. CONCLUSIONS These findings suggest that exocytosis in human eosinophils is regulated by SNAREs, with a specific role indicated for VAMP-2 in piecemeal degranulation.
Collapse
Affiliation(s)
- P Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- M R Holt
- Physiology Department, University College London, England, United Kingdom
| | | |
Collapse
|
19
|
Tramontina F, Karl J, Gottfried C, Mendez A, Gonçalves D, Portela LV, Gonçalves CA. Digitonin-permeabilization of astrocytes in culture monitored by trypan blue exclusion and loss of S100B by ELISA. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2000; 6:86-90. [PMID: 11086267 DOI: 10.1016/s1385-299x(00)00041-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present protocol details a procedure to permeabilize astrocytes in cultures with digitonin as well as to discuss some data about factors that interfere in permeabilization, particularly divalent cations and nucleotides. Two methods to assess astrocyte permeabilization are described: trypan blue exclusion and ELISA for S100B, a specific protein expressed by these cells. Digitonin-permeabilization of astrocytes has been used to investigate intracellular pools of Ca(2+), internal stores of metabolites, phosphoinositide hydrolysis, and recently we standardized a procedure to study protein phosphorylation (Brain Res. 853 (2000) 32-40). A short incubation time (10 min) with 30 microM digitonin permeabilized at least 75% of cells. A range of media with different ionic nature can be used in cell permeabilization without affecting significantly the extent of permeabilization, but calcium and ATP of the order of 10(-5) M induced a partial resealing which deserves to be considered in assays of permeabilized preparations of astrocytes.
Collapse
Affiliation(s)
- F Tramontina
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, 90.035-003, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Gonçalves CA, Gottfried C, Dunkley PR. The use of permeabilized cells to assay protein phosphorylation and catecholamine release. Neurochem Res 2000; 25:885-94. [PMID: 10944008 DOI: 10.1023/a:1007533927813] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A number of approaches can be used to determine the protein kinases and protein phosphatases acting on particular phosphoproteins in vivo. Cell permeabilization represents one such approach. In this overview we discuss the different permeabilization procedures used in bovine adrenal chromaffin cells and in particular the use of digitonin. The effect of various factors on the extent of digitonin-permeabilization, protein phosphorylation and catecholamine release are also discussed. The factors include the permeabilization medium, the ions such as calcium, and the second messengers, such as cAMP, IP3, cADPR and calmodulin. The effect of specific peptide inhibitors of protein kinases on tyrosine hydroxylase phosphorylation is illustrated. Advantages and disadvantages of cell permeabilization procedures are discussed throughout the text.
Collapse
Affiliation(s)
- C A Gonçalves
- Dept de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
21
|
Walaas SI, Sefland I. Modulation of calcium-evoked [3H]noradrenaline release from permeabilized cerebrocortical synaptosomes by the MARCKS protein, calmodulin and the actin cytoskeleton. Neurochem Int 2000; 36:581-93. [PMID: 10771116 DOI: 10.1016/s0197-0186(99)00159-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In order to examine intracellular modulation of CNS catecholamine release, cerebrocortical synaptosomes were prelabeled with [3H]noradrenaline and permeabilized with streptolysin-O in the absence or presence of Ca(2+). Plasma membrane permeabilization allowed efflux of cytosol and left a compartmentalized pool of [3H]noradrenaline intact, approximately 10% of which was released by addition of 10(-5) M Ca(2+). Addition of activators or inhibitors of protein kinase C, as well as inhibitors of Ca(2+)-calmodulin kinase II or calcineurin, failed to change Ca(2+)-induced noradrenaline release. Evoked release from permeabilized synaptosomes deficient in the vesicle-associated phosphoprotein synapsin I was also unchanged. In contrast, addition of a synthetic 'active domain' peptide from the myristoylated, alanine-rich C-kinase substrate (MARCKS) protein increased, while addition of calmodulin decreased Ca(2+)-induced release from the permeabilized synaptosomes, the latter effect being reversed by a peptide inhibitor of calcineurin. Moreover, addition of the actin-destabilizing agent DNase I, as well as antibodies to MARCKS, appeared to increase spontaneous, Ca(2+)-independent release from noradrenergic vesicles. These results indicate that the MARCKS protein may modulate release from permeabilized noradrenergic synaptosomes, possibly by modulating calmodulin levels and/or the actin cytoskeleton.
Collapse
Affiliation(s)
- S I Walaas
- Neurochemical Laboratory, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1115-Blindern, N-0317, Oslo, Norway.
| | | |
Collapse
|
22
|
Karl J, Gottfried C, Tramontina F, Dunkley P, Rodnight R, Gonçalves CA. GFAP phosphorylation studied in digitonin-permeabilized astrocytes: standardization of conditions. Brain Res 2000; 853:32-40. [PMID: 10627305 DOI: 10.1016/s0006-8993(99)02224-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cycles of assembly/disassembly of the intermediate filaments of astrocytes are modulated by the phosphorylation of glial fibrillary acidic protein (GFAP). The sites on GFAP are localized at the N-terminal where they are phosphorylated by cAMP-dependent and Ca(2+)-dependent protein kinases. Phosphorylation of GFAP has been investigated in brain slices, astrocyte cultures, cytoskeletal fractions and purified systems. Here we describe a different approach to study GFAP phosphorylation. We show that permeabilization of astrocytes in culture with digitonin allows direct access to the systems phosphorylating GFAP. Conditions for the permeabilization were established with an assay based on the exclusion of Trypan blue. Incubation of permeabilized cells with cAMP and Ca(2+) increased the phosphorylation state of GFAP. Immunocytochemistry with anti-GFAP showed that permeabilized astrocytes retained their typical flat, fibroblast morphology and exhibited well preserved glial filaments. On incubation with cAMP the filaments apparently condensed to form long processes. The results suggest the approach of studying structural changes in glial filaments in parallel to protein phosphorylation, in the presence of specific modulators of protein kinases and phosphatases has considerable potential.
Collapse
Affiliation(s)
- J Karl
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Narenjkar J, Marsh SJ, Assem ES. The characterization and quantification of antigen-induced Ca2+ oscillations in a rat basophilic leukaemia cell line (RBL-2H3). Cell Calcium 1999; 26:261-9. [PMID: 10668564 DOI: 10.1054/ceca.1999.0065] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using the ratiometric Ca2+ indicator, indo-1, the antigen-induced increase in intracellular Ca2+ concentration ([Ca2+]i) was measured in individual RBL-2H3 cells which had been passively sensitized with monoclonal antibody to the dintrophenyl (DNP) haptenic group. Antigenic stimulation using DNP-human serum albumin conjugate (DNP-HSA) induced concentration-dependent asynchronous Ca2+ oscillations, or irregular spikes. To achieve a quantitative comparison of the effects of different concentrations of antigen on changes in Ca2+[i, the area under the curve (AUC) of Ca2+ oscillations in each cell was calculated. The dose-response curve of the calculated AUC is consistent with the bell-shaped dose-response curve for antigen-induced mediator release, depolarization and 86Rb(+)-efflux. Ca2+ oscillations induced by antigenic stimulation were abolished by removal of external Ca2+ and the subsequent reintroduction of external Ca2+ caused their resumption. To investigate the role of Ca2+ oscillations in the secretory response, changes in [Ca2+]i induced by concanavalin A (Con-A), A23187, thapsigargin and NECA were also monitored. Con-A mimicked the response induced by antigen, whilst A23187 and thapsigargin induced a large transient non-oscillatory response. NECA, an adenosine receptor agonist, induced only a small transient rise in Ca2+[i without oscillatory behaviour. Since all these stimuli accept NECA-induced degranulation in these cells, it is suggested that, although Ca2+ oscillations are not essential for the initiation of secretion, they probably underlie the in-vivo physiological response of mast cells and basophils to an antigenic challenge. They also seem to enhance the efficacy of the Ca2+ signal.
Collapse
Affiliation(s)
- J Narenjkar
- Department of Pharmacology, University College London, UK
| | | | | |
Collapse
|
24
|
Leino L, Forbes L, Segal A, Cockcroft S. Reconstitution of GTPgammaS-induced NADPH oxidase activity in streptolysin-O-permeabilized neutrophils by specific cytosol fractions. Biochem Biophys Res Commun 1999; 265:29-37. [PMID: 10548486 DOI: 10.1006/bbrc.1999.1631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GTPgammaS activates the NADPH oxidase and this activity declines rapidly with time after preexposure to streptolysin O. This was not due to loss of p47(phox), p67(phox), or Rac. To identify the component(s) leaking out of the permeabilized cell responsible for loss of activity, a GTPgammaS-dependent reconstitution assay was established. Neutrophil cytosol was subjected to chromatographic fractionation steps for purification of the minimum fraction required to restore activity. The reconstitution of the GTPgammaS-stimulated activity was dependent on ATP. The inhibitors staurosporine and calphostin C greatly reduced the activity in the reconstitution assay, implicating the involvement of a protein kinase C (PKC) pathway. PKC isoforms beta and delta were eliminated as the active factors in the most pure reconstitution fraction. With this novel cell-based reconstitution assay, we have identified the requirement for a protein kinase, or its substrate, for the restoration of GTPgammaS activation of the NADPH oxidase.
Collapse
Affiliation(s)
- L Leino
- Department of Physiology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
25
|
Avery J, Jahn R, Edwardson JM. Reconstitution of regulated exocytosis in cell-free systems: a critical appraisal. Annu Rev Physiol 1999; 61:777-807. [PMID: 10099710 DOI: 10.1146/annurev.physiol.61.1.777] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulated exocytosis involves the tightly controlled fusion of a transport vesicle with the plasma membrane. It includes processes as diverse as the release of neurotransmitters from presynaptic nerve endings and the sperm-triggered deposition of a barrier preventing polyspermy in oocytes. Cell-free model systems have been developed for studying the biochemical events underlying exocytosis. They range from semi-intact permeabilized cells to the reconstitution of membrane fusion from isolated secretory vesicles and their target plasma membranes. Interest in such cell-free systems has recently been reinvigorated by new evidence suggesting that membrane fusion is mediated by a basic mechanism common to all intracellular fusion events. In this chapter, we review some of the literature in the light of these new developments and attempt to provide a critical discussion of the strengths and limitations of the various cell-free systems.
Collapse
Affiliation(s)
- J Avery
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | |
Collapse
|
26
|
Siegel EG, Meyer-Alber A, Seebeck J, Fölsch UR, Schmidt WE. Interaction of the tyrosine phosphatase inhibitor ortho-vanadate on stimulus--secretion coupling in pancreatic acinar cells. Scand J Gastroenterol 1999; 34:208-14. [PMID: 10192203 DOI: 10.1080/00365529950173113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The effect of the tyrosine phosphatase inhibitor ortho-vanadate on stimulus-secretion coupling was investigated in isolated rat pancreatic acini. METHODS AND RESULTS Ortho-vanadate (10(3)M) reduced cholecystokinin (CCK)-8 (10(10) M)-stimulated amylase release by 40% (IC50 = 5 x 10(4) M). In contrast, preincubation with 10(3) M ortho-vanadate increased secretin (5 x 10(9) M) and vasoactive intestinal peptide (VIP) (10(7) M)-induced amylase release by 65% and 80% (IC50= 3 x 10(-4) M), respectively. 8-Bromo-cyclic adenosine-5-monophosphate (cAMP) (10(-4) M) and phorbol ester (10(-5) M)-induced secretion was increased by 60% and 50%, respectively, whereas thapsigargin-induced amylase release was not affected. Ortho-vanadate did not affect CCK-8 binding or VIP-induced cAMP synthesis in isolated acini. In contrast, preincubation with 10(-4) M ortho-vanadate resulted in a significant reduction of CCK-8-induced intracellular calcium release. In streptolysin-O-permeabilized acini, ortho-vanadate reduced calcium-induced amlyase secretion by 50%. CONCLUSIONS The present data provide indirect evidence of a differential involvement of protein tyrosine dephosphorylation in both cAMP- and IP3/Ca(2+)-mediated pancreatic secretion. The differential effects of ortho-vanadate on cAMP- versus calcium-mediated secretion correspond to the results obtained with receptor-independent intracellularly acting secretagogues. Further experiments must define the tyrosine phosphatases involved in both signal-transduction pathways.
Collapse
Affiliation(s)
- E G Siegel
- Laboratory of Molecular Gastroenterology, 1st Dept. of Medicine, Christian-Albrechts University of Kiel, Germany
| | | | | | | | | |
Collapse
|
27
|
Pinxteren JA, O'Sullivan AJ, Tatham PE, Gomperts BD. Regulation of exocytosis from rat peritoneal mast cells by G protein beta gamma-subunits. EMBO J 1998; 17:6210-8. [PMID: 9799230 PMCID: PMC1170947 DOI: 10.1093/emboj/17.21.6210] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We applied G protein-derived beta gamma-subunits to permeabilized mast cells to test their ability to regulate exocytotic secretion. Mast cells permeabilized with streptolysin-O leak soluble (cytosol) proteins over a period of 5 min and become refractory to stimulation by Ca2+ and GTPgammaS over approximately 20-30 min. beta gamma-Subunits applied to the permeabilized cells retard this loss of sensitivity to stimulation (run-down) and it can be inferred that they interact with the regulatory mechanism for secretion. While alpha-subunits are without effect, beta gamma-subunits at concentrations >10(-8 )M enhance the secretion due to Ca2+ and GTPgammaS. Unlike the small GTPases Rac and Cdc42, beta gamma-subunits cannot induce secretion in the absence of an activating guanine nucleotide, and thus further GTP-binding proteins (likely to be Rho-related GTPases) must be involved. The enhancement due to beta gamma-subunits is mediated largely through interaction with pleckstrin homology (PH) domains. It remains manifest in the face of maximum activation by PMA and inhibition of PKC with the pseudosubstrate inhibitory peptide. Soluble peptides mimicking PH domains inhibit the secretion due to GTPgammaS and block the enhancement due to beta gamma-subunits. Our data suggest that beta gamma-subunits are components of the pathway of activation of secretion due to receptor-mimetic ligands such as mastoparan and compound 48/80.
Collapse
Affiliation(s)
- J A Pinxteren
- Secretory Mechanisms Group, Department of Physiology, University College London, University Street, London WC1E 6JJ, UK
| | | | | | | |
Collapse
|
28
|
Guo Z, Turner C, Castle D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 1998; 94:537-48. [PMID: 9727496 DOI: 10.1016/s0092-8674(00)81594-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
For regulated secretion, mast cells and several other cell types utilize compound exocytosis, a combination of granule-plasma membrane and granule-granule fusions. The molecular machinery that controls this massive export process has not been identified. We report that SNAP-23, a t-SNARE related to SNAP-25, relocates in response to stimulation from plasma membrane lamellipodia-like projections to granule membranes in permeabilized mast cells. While relocation is a prerequisite for secretion, it can occur without membrane fusion and will expedite a subsequent secretory response. After relocation, SNAP-23 is required for exocytosis, implying a crucial role in promoting membrane fusion. Thus, relocation of this SNARE regulates compound exocytosis and links granule-plasma membrane and granule-granule fusions.
Collapse
Affiliation(s)
- Z Guo
- Department of Cell Biology, University of Virgina Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
29
|
Shalita-Chesner M, Koren R, Mekori YA, Baram D, Rotem C, Liberman UA, Ravid A. 1,25-Dihydroxyvitamin D3 enhances degranulation of mast cells. Mol Cell Endocrinol 1998; 142:49-55. [PMID: 9783902 DOI: 10.1016/s0303-7207(98)00119-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The mast cell lines rat basophilic leukemia (RBL) and mouse C57 cells respond to IgE/antigen complexes by degranulation. Treatment of these cells with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), (10-100 nM) for 24-48 h enhanced IgE/antigen-induced exocytosis as monitored by release of hexosaminidase. A short term incubation with the hormone did not affect exocytosis, ruling out a rapid non genomic mechanism. The presence of vitamin D receptors, demonstrated by immunoblotting and the lack of effect of 24,25(OH)2D3 suggest a role for these receptors in the enhancing effect. 1,25(OH)2D3 also enhanced exocytosis induced by the calcium ionophore A23187 in the presence or absence of phorbol ester indicating modulation of events distal to signal transduction. 1,25(OH)2D3 enhanced exocytosis in the presence of cytochalasin D, indicating that the action of the hormone is not due to effects on microfilament structure. The results of this study suggest that 1,25(OH)2D3 may affect the allergic or pro-inflammatory potential of mast cells.
Collapse
Affiliation(s)
- M Shalita-Chesner
- Basil and Gerald Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
30
|
Scott CE, Abdullah LH, Davis CW. Ca2+ and protein kinase C activation of mucin granule exocytosis in permeabilized SPOC1 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C285-92. [PMID: 9688860 DOI: 10.1152/ajpcell.1998.275.1.c285] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucin secretion by airway goblet cells is under the control of apical P2Y2, phospholipase C-coupled purinergic receptors. In SPOC1 cells, the mobilization of intracellular Ca2+ by ionomycin or the activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) stimulates mucin secretion in a fully additive fashion [L. H. Abdullah, J. D. Conway, J. A. Cohn, and C. W. Davis. Am. J. Physiol. 273 (Lung Cell. Mol. Physiol. 17): L201-L210, 1997]. This apparent independence between PKC and Ca2+ in the stimulation of mucin secretion was tested in streptolysin O-permeabilized SPOC1 cells. These cells were fully competent to secrete mucin when Ca2+ was elevated from 100 nM to 3.1 microM for 2 min following permeabilization; the Ca2+ EC50 was 2.29 +/- 0.07 microM. Permeabilized SPOC1 cells were exposed to PMA or 4alpha-phorbol at Ca2+ activities ranging from 10 nM to 10 microM. PMA, but not 4alpha-phorbol, increased mucin release at all Ca2+ activities tested: at 10 nM Ca2+ mucin release was 2.1-fold greater than control and at 4.7 microM Ca2+ mucin release was maximal (3.6-fold increase). PMA stimulated 27% more mucin release at 4.7 microM than at 10 nM Ca2+. Hence, SPOC1 cells possess Ca2+-insensitive, PKC-dependent, and Ca2+-dependent PKC-potentiated pathways for mucin granule exocytosis.
Collapse
Affiliation(s)
- C E Scott
- Cystic Fibrosis/Pulmonary Research and Treatment Center and the Department of Physiology, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA
| | | | | |
Collapse
|
31
|
Brown AM, O'Sullivan AJ, Gomperts BD. Induction of exocytosis from permeabilized mast cells by the guanosine triphosphatases Rac and Cdc42. Mol Biol Cell 1998; 9:1053-63. [PMID: 9571239 PMCID: PMC25329 DOI: 10.1091/mbc.9.5.1053] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
We applied recombinant forms of the Rho-related small guanosine triphosphatases (GTPases) Rac2 and Cdc42/G25K to permeabilized mast cells to test their ability to regulate exocytotic secretion. Mast cells permeabilized with streptolysin-O leak soluble (cytosol) proteins over a period of 5 min and become refractory to stimulation by Ca2+ and guanosine triphosphate (GTP)gammaS over about 20-30 min. This loss of sensitivity is likely to be due to loss of key regulatory proteins that are normally tethered at intracellular locations. Exogenous proteins that retard this loss of sensitivity to stimulation may be similar, if not identical, to those secretory regulators that are lost. Recombinant Rac and Cdc42/G25K, preactivated by binding GTPgammaS, retard the loss of sensitivity (run-down) and, more importantly, enable secretion to be stimulated by Ca2+ alone. Investigation of the concentration dependence of each of these two GTPases applied individually to the permeabilized cells, and of Cdc42/G25K applied in the presence of an optimal concentration of Rac2, has provided evidence for a shared effector pathway and also a second effector pathway activated by Cdc42/G25K alone. Dominant negative mutant (N17) forms of Rac2 and Cdc42/G25K inhibit secretion induced by Ca2+ and GTPgammaS. Our data suggest that Rac2 and Cdc42 should be considered as candidates for GE, GTPases that mediate exocytosis in cells of hematopoeitic origin.
Collapse
Affiliation(s)
- A M Brown
- Department of Physiology, University College, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
32
|
Némoz-Gaillard E, Bosshard A, Regazzi R, Bernard C, Cuber JC, Takahashi M, Catsicas S, Chayvialle JA, Abello J. Expression of SNARE proteins in enteroendocrine cell lines and functional role of tetanus toxin-sensitive proteins in cholecystokinin release. FEBS Lett 1998; 425:66-70. [PMID: 9541008 DOI: 10.1016/s0014-5793(98)00209-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In neurons, synaptic vesicle exocytosis involves the formation of a core complex particle including syntaxin-1, synaptosomal-associated protein of 25 kDa (SNAP-25) and vesicle-associated membrane protein (VAMP)-2/synaptobrevin. The expression of these proteins was investigated in a panel of cell lines, including lines of endocrine and intestinal origin, by Western blotting and/or immunocytochemistry. The three core complex proteins were detected in the enteroendocrine, cholecystokinin (CCK)-secreting, cell lines STC-1 and GLUTag, and in the endocrine non-intestinal cell lines CA-77 and HIT-T15. In contrast, SNAP-25 and syntaxin-1 were undetected in the intestinal non-endocrine cell lines IEC-6, HT-29 and Caco-2, whereas a slight expression of VAMP-2 was documented in IEC-6 and HT-29 cells. Co-immunoprecipitation experiments indicated that syntaxin-1, SNAP-25 and VAMP-2 were present in a complex similar to that identified in brain. In the STC-1 cell line, treatment of streptolysin-O-permeabilized cells with tetanus toxin (Tetx) selectively cleaved VAMP-2 and VAMP-3/cellubrevin, and simultaneously abolished Ca2+-induced CCK secretion (IC50 approximately 12 nM). These results show that endocrine cell lines of intestinal origin express syntaxin-1, SNAP-25 and VAMP-2, and suggest a key role for a Tetx-sensitive protein (for example VAMP-2 and/or VAMP-3) in the CCK secretion by STC-1 cells.
Collapse
|
33
|
Login GR, Aoki M, Yamakawa M, Lunardi LO, Digenis EC, Tanda N, Schwartz LB, Dvorak AM. Immunocytochemical localization of chymase to cytoplasmic vesicles after rat peritoneal mast cell stimulation by compound 48/80. J Histochem Cytochem 1997; 45:1379-91. [PMID: 9313799 DOI: 10.1177/002215549704501006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The subcellular events responsible for release of mediators by mast cells may help to clarify roles for mast cells in health and disease. In this study we show that the granule-associated protease chymase is also within cytoplasmic vesicles in appropriately stimulated rat peritoneal mast cells. Rat peritoneal mast cells were recovered before or 1-10 sec after exposure to the secretogogue compound 48/80 (10 micrograms/ml) and then were examined by radioimmunoassay to quantify histamine release or were processed, using routine methods for postembedding immunoelectron microscopy, to identify the subcellular localization of chymase. In comparison to unstimulated cells, compound 48/80 stimulated cells in two independent experiments showed an increase (15%, 28%) in the surface area of the cell and a decrease (12%, 6%) in the surface area of the total granule compartment before degranulation channel formation. These global cellular changes occurred in a background of transient but significant (p < 0.01) increases in the area and number of chymase-immunoreactive vesicles per microns2 cytoplasm. These changes were detectable at 5 or 7 sec after stimulation with compound 48/80 but returned to near prestimulation levels by 9 or 10 sec after addition of compound 48/80 (total cumulative histamine release was 28% by 8 sec and 47% by 14 sec). These observations suggest that vesicles participate in the early stages of regulated secretion of chymase from rat peritoneal mast cells.
Collapse
Affiliation(s)
- G R Login
- Department of Pathology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Larbi KY, Gomperts BD. Complex pattern of inhibition by Mg2+ of exocytosis from permeabilised eosinophils. Cell Calcium 1997; 21:213-9. [PMID: 9105730 DOI: 10.1016/s0143-4160(97)90045-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inhibition by Mg2+ ions of exocytotic secretion from permeabilised eosinophils, stimulated by Ca2+ and GTP gamma S, and in the presence and absence of ATP, has been examined. While Mg2+ inhibits release of aryl sulphatase, hexosaminidase and peroxidase, we found no evidence that this occurs by competition at a Ca(2+)-binding site. On the other hand, the IC50 for Mg2+ approximates a simple inverse relationship to EC50 for GTP gamma S over a wide range of concentrations, indicative of a possible competition with events directly controlled by a GTP-binding protein. However, for secretion stimulated by GTP gamma S in the absence of Ca2+ (which necessitates provision of ATP), the effect of Mg2+ becomes biphasic. Initially, secretion is dependent on the presence of Mg2+ as a component of the complex ligand Mg.ATP. At high concentrations, Mg2+ inhibits secretion and the IC50 was found to be fixed at a concentration of about 8 mM regardless of the strength of the stimulus. The presence of ATP appears to divert the site of inhibition due to Mg2+.
Collapse
Affiliation(s)
- K Y Larbi
- Department of Physiology, University College London, UK
| | | |
Collapse
|
35
|
O'Sullivan AJ, Brown AM, Freeman HN, Gomperts BD. Purification and identification of FOAD-II, a cytosolic protein that regulates secretion in streptolysin-O permeabilized mast cells, as a rac/rhoGDI complex. Mol Biol Cell 1996; 7:397-408. [PMID: 8868468 PMCID: PMC275892 DOI: 10.1091/mbc.7.3.397] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mast cells permeabilized by treatment with streptolysin-O in the presence of Ca2+ and GTP-gamma-S can secrete almost 100% of their contained N-acetyl-beta-D-glucosaminidase. If these stimuli are provided to the permeabilized cells after a delay, the response is diminished and the ability of the cells to undergo secretion runs down progressively over a period of about 30 min. This is thought to be due to the loss of key proteins involved in the exocytotic mechanism. Using this effect as the basis of a biological assay, we have isolated a protein from bovine brain cytosol that retards the loss of responsiveness to stimulation by Ca2+ and GTP-gamma-S. Purification of this protein and peptide sequencing have enabled us to identify it as the small GTP-binding protein rac complexed to the guanine nucleotide exchange inhibitor rhoGDI. Both proteins are required to retard the loss of the secretory response, while purified rhoGDI applied alone accelerates the rundown.
Collapse
Affiliation(s)
- A J O'Sullivan
- Department of Physiology, University College, London, United Kingdom
| | | | | | | |
Collapse
|
36
|
Martin MW, O'Sullivan AJ, Gomperts BD. Inhibition by cromoglycate and some flavonoids of nucleoside diphosphate kinase and of exocytosis from permeabilized mast cells. Br J Pharmacol 1995; 115:1080-6. [PMID: 7582506 PMCID: PMC1909018 DOI: 10.1111/j.1476-5381.1995.tb15921.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The anti-allergic compound, cromoglycate, is reported to possess affinity for, and to suppress the autophosphorylation of a 72kDa protein having the sequence of nucleoside diphosphate kinase (NDPK). 2. We have tested the ability of cromoglycate, and a panel of ten structurally related flavonoids of plant origin, to inhibit the NDPK reaction and the exocytotic process of permeabilized mast cells. The conditions of permeabilization (use of an isotonic medium based on sodium glutamate) were selected to ensure that NDPK activity would be an essential component in the induction of Ca(2+)-induced exocytosis in which ATP is required for generation of GTP. For comparison, we also measured the inhibition of exocytosis induced by GTP-gamma-S; this proceeds in the absence of ATP and bypasses the need for NDPK activity. 3. We found that cromoglycate does not discriminate between Ca2+ and GTP-gamma-S-induced exocytosis and is a poor inhibitor of NDPK activity. Concentrations in the millimolar range are required for inhibition of all these functions. By comparison, many of the flavonoids are effective at concentrations in the micromolar range. 4. While we were unable to discern any systematic relationships between their ability to inhibit the three functions, two compounds, quercetin and genistein, inhibit Ca(2+)-induced, but not GTP-gamma-S-induced exocytosis. Inhibition of the late stages of the stimulus-response pathway in mast cells by these compounds is therefore likely to be due to inhibition of NDPK and the consequent failure to generate GTP.
Collapse
Affiliation(s)
- M W Martin
- Department of Physiology, University College London
| | | | | |
Collapse
|
37
|
Sadoul K, Lang J, Montecucco C, Weller U, Regazzi R, Catsicas S, Wollheim CB, Halban PA. SNAP-25 is expressed in islets of Langerhans and is involved in insulin release. J Cell Biol 1995; 128:1019-28. [PMID: 7896868 PMCID: PMC2120411 DOI: 10.1083/jcb.128.6.1019] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
SNAP-25 is known as a neuron specific molecule involved in the fusion of small synaptic vesicles with the presynaptic plasma membrane. By immunolocalization and Western blot analysis, it is now shown that SNAP-25 is also expressed in pancreatic endocrine cells. Botulinum neurotoxins (BoNT) A and E were used to study the role of SNAP-25 in insulin secretion. These neurotoxins inhibit transmitter release by cleaving SNAP-25 in neurons. Cells from a pancreatic B cell line (HIT) and primary rat islet cells were permeabilized with streptolysin-O to allow toxin entry. SNAP-25 was cleaved by BoNT/A and BoNT/E, resulting in a molecular mass shift of approximately 1 and 3 kD, respectively. Cleavage was accompanied by an inhibition of Ca(++)-stimulated insulin release in both cell types. In HIT cells, a concentration of 30-40 nM BoNT/E gave maximal inhibition of stimulated insulin secretion of approximately 60%, coinciding with essentially complete cleavage of SNAP-25. Half maximal effects in terms of cleavage and inhibition of insulin release were obtained at a concentration of 5-10 nM. The A type toxin showed maximal and half-maximal effects at concentrations of 4 and 2 nM, respectively. In conclusion, the results suggest a role for SNAP-25 in fusion of dense core secretory granules with the plasma membrane in an endocrine cell type- the pancreatic B cell.
Collapse
Affiliation(s)
- K Sadoul
- Laboratoires de Recherche Louis Jeantet, Centre Médical Universitaire, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zot HG. Phospholipid membrane-associated brush border myosin-I activity. CELL MOTILITY AND THE CYTOSKELETON 1995; 30:26-37. [PMID: 7728866 DOI: 10.1002/cm.970300105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Brush border myosin-I (BBMI) is associated with the membrane of intestinal epithelial cells where it probably plays a structural role. BBMI also has been identified on Golgi-derived vesicles in intestinal epithelial cells where it may translocate vesicles into the brush border. However, the mechanochemical activity of BBMI bound to a phospholipid membrane has not been described. This study reports that phospholipid membrane-associated BBMI displays ATPase activity when bound to phospholipids, but does not move actin filaments when associated with a phospholipid bilayer. BBMI does not bind significantly to brush border membrane lipids, which contain about 16% phosphatidylserine (PS), in either a pelleting or planar membrane assay. Similarly, planar membranes containing 20% PS do not bind a significant amount of BBMI. Increasing the concentration of PS to 40% does result in the binding of BBMI to both vesicles and planar membranes. This binding is enhanced with increased Ca2+ concentrations. BBMI retains its ATPase activity when bound to phospholipid vesicles containing 40% PS. However, BBMI attached to a phospholipid bilayer surface does not move actin filaments, even though the amount of BBMI bound to the lipid surface, as reflected by the number of actin filaments associated with bilayer-bound BBMI, is sufficient to observe motility in control experiments. When membrane fluidity is reduced by adding cholesterol to the membrane lipids containing 40% PS, BBMI still binds to the membrane, but again no actin filament motility is observed. The lack of binding by BBMI to brush border membrane lipids and the absence of membrane-associated BBMI mechanical activity suggest that factors in addition to membrane lipids are necessary for membrane-associated myosin-I motility.
Collapse
Affiliation(s)
- H G Zot
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas 75235-9040, USA
| |
Collapse
|
39
|
Surkova I. Can exocytosis induced by alpha-latrotoxin be explained solely by its channel-forming activity? Ann N Y Acad Sci 1994; 710:48-64. [PMID: 7512316 DOI: 10.1111/j.1749-6632.1994.tb26613.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- I Surkova
- Department of Physiology, University College London, United Kingdom
| |
Collapse
|
40
|
Hide I, Bennett JP, Pizzey A, Boonen G, Bar-Sagi D, Gomperts BD, Tatham PE. Degranulation of individual mast cells in response to Ca2+ and guanine nucleotides: an all-or-none event. J Cell Biol 1993; 123:585-93. [PMID: 8227127 PMCID: PMC2200119 DOI: 10.1083/jcb.123.3.585] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Widespread experience indicates that application of suboptimal concentrations of stimulating ligands (secretagogues) to secretory cells elicits submaximal extents of secretion. Similarly, for permeabilized secretory cells, the extent of secretion is related to the concentration of applied intracellular effectors. We investigated the relationship between the extent of secretion from mast cells (assessed as the release of hexosaminidase) and the degranulation (exocytosis) responses of individual cells. For permeabilized mast cells stimulated by the effector combination Ca2+ plus GTP-gamma-S and for intact cells stimulated by the Ca2+ ionophore ionomycin, we found that exocytosis has the characteristics of an all-or-none process at the level of the individual cells. With a suboptimal stimulus, the population comprised only totally degranulated cells and fully replete cells. In contrast, a suboptimal concentration of compound 48/80 applied to intact cells induced a partial degree of degranulation. This was determined by observing the morphological changes accompanying degranulation by light and electron microscopy and also as a reduction in the intensity of light scattered at 90 degrees, indicative of a change in the cell-refractive index. These results may be explained by the existence of a threshold sensitivity to the combined effectors that is set at the level of individual cells and not at the granule level. We used flow cytometry to establish the relationship between the extent of degranulation in individual rat peritoneal mast cells and the extent of secretion in the population (measured as the percentage release of total hexosaminidase). For comparison, secretion was also elicited by applying the Ca2+ ionophore ionomycin or compound 48/80 to intact cells. For permeabilized cells and also for intact cells stimulated with the ionophore, levels of stimulation that generate partial secretion gave rise to bimodal frequency distributions of 90 degrees light scatter. In contrast, a partial stimulus to secretion by compound 48/80 resulted in a single population of partially degranulated cells, the degree of degranulation varying across the cell population. The difference between the all-or-none responses of the permeabilized or ionophore-treated cells and the graded responses of cells activated by compound 48/80 is likely to stem from differences in the effective calcium stimulus. Whereas cell stimulated with receptor-directed agonists can undergo transient and localized Ca2+ changes, a homogeneous and persistent stimulus is sensed at every potential exocytotic site in the permeabilized cells.
Collapse
Affiliation(s)
- I Hide
- Department of Physiology, University College London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
Lillie TH, Gomperts BD. Kinetic characterization of guanine-nucleotide-induced exocytosis from permeabilized rat mast cells. Biochem J 1993; 290 ( Pt 2):389-94. [PMID: 8452525 PMCID: PMC1132285 DOI: 10.1042/bj2900389] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have measured the time course of secretion of hexosaminidase from rat mast cells permeabilized (in simple buffered NaCl solutions) in response to guanine nucleotides [GTP or guanosine 5'-[gamma-thio]triphosphate (GTP[S])] and Ca2+. In these experiments, ATP was excluded from the system (and the cells were pretreated with metabolic inhibitors). For cells permeabilized in the absence of Mg2+ but in the presence of Ca2+, secretion commences promptly in response to addition of GTP; when Mg2+ (2 mM) is provided, secretion commences after an extended delay, much higher concentrations of GTP are required, and the final extent of secretion is decreased. Ongoing secretion due to GTP and Ca2+ is abruptly terminated by addition of Mg2+ to cells initially stimulated in its absence. In contrast, although Mg2+ has no effect on the sensitivity to the non-hydrolysable analogue GTP[S], its absence does nevertheless cause delays in the onset of secretion triggered by the addition of GTP[S] to cells initially permeabilized in the presence of Ca2+ (micromolar range, again in the absence of ATP). However, exocytosis from cells triggered with Ca2+ after permeabilization in the presence of high concentrations of GTP[S] is instantaneous. The delays due to triggering by GTP[S] have GTP[S]-concentration-dependent and -independent components. The guanine-nucleotide-concentration-dependent component is expressed as an extended duration of delay as the concentration of GTP[S] is decreased, and may reflect the binding of GTP[S] to GE. The concentration-independent component is manifested as a limiting delay which cannot be further diminished by increasing the guanine nucleotide concentration. The duration of the limiting delay is sensitive to the identity of the stimulating nucleotide (GTP < GTP[S] < p[NH]ppG) and may reflect the time taken for an activating conformational change to occur after binding. Since both components of the delays are abolished by the presence of Mg2+, both the binding of guanine nucleotide and the activation of GE appear to be Mg(2+)-dependent. We therefore conclude that nucleotide binding, activation and the GTPase activity of GE are strongly dependent on Mg2+, in common with the same three processes in Gs and Gi.
Collapse
Affiliation(s)
- T H Lillie
- Department of Physiology, University College London, U.K
| | | |
Collapse
|
42
|
Lillie TH, Gomperts BD. Guanine nucleotide is essential and Ca2+ is a modulator in the exocytotic reaction of permeabilized rat mast cells. Biochem J 1992; 288 ( Pt 1):181-7. [PMID: 1445262 PMCID: PMC1132097 DOI: 10.1042/bj2880181] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exocytosis from metabolically depleted permeabilized rat mast cells was measured in response to provision of Ca2+ and guanine nucleotide [GTP or guanosine 5'-[gamma-thio]triphosphate (GTP[S])]. For cells permeabilized in simple salt solutions (NaCl), both of these effectors were required to induce secretion. Exclusion of Mg2+ caused an increase in both the sensitivity of the system to GTP and the extent of secretion elicited, while having no such effects on secretion induced by GTP[S]. The effect of Mg2+ depletion on the ability of GTP to stimulate secretion is probably due to the dependence on Mg2+ of the GTPase activity of GE (a postulated GTP-binding protein which mediates exocytosis). This argues that a persistent stimulus to the G-protein is required to support secretion. Affinity for both GTP[S] and GTP is enhanced when the cells are permeabilized in zwitterionic electrolytes (glutamate, gamma-aminobutyric acid, glycine) instead of NaCl. Under these conditions, secretion occurs in response to provision of either GTP[S] [in the effective absence of Ca2+ (pCa 9)] or Ca2+ (in the absence of guanine nucleotide). Secretion induced by GTP[S] is strongly promoted by the presence of Mg2+ at concentrations in the millimolar range; this promotion by Mg2+ declines as the concentration of Ca2+ is elevated towards pCa 7. At pCa 6, Mg2+ is without effect. Ca(2+)-induced secretion requires the provision of MgATP. Since this is further enhanced by low concentrations (< 100 microM) and then inhibited by high concentrations of GDP, the essential role of ATP is likely to be in the maintenance of GTP via transphosphorylation by a nucleoside diphosphate kinase reaction. Thus, under conditions of high affinity (glutamate environment), GTP[S] alone is capable of inducing exocytosis. Ca2+ acts in concert with guanine nucleotides: it enhances the rate and extent of secretion and increases the affinity for Mg2+ and guanine nucleotides in the activation of the GTP-binding protein (GE) which regulates exocytosis.
Collapse
Affiliation(s)
- T H Lillie
- Department of Physiology, University College London, U.K
| | | |
Collapse
|