1
|
Xu H, Brown JL, Bhaskaran S, Van Remmen H. Reactive oxygen species in the pathogenesis of sarcopenia. Free Radic Biol Med 2025; 227:446-458. [PMID: 39613046 PMCID: PMC11816180 DOI: 10.1016/j.freeradbiomed.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
One of the most critical factors impacting healthspan in the elderly is the loss of muscle mass and function, clinically referred to as sarcopenia. Muscle atrophy and weakness lead to loss of mobility, increased risk of injury, metabolic changes and loss of independence. Thus, defining the underlying mechanisms of sarcopenia is imperative to enable the development of effective interventions to preserve muscle function and quality in the elderly and improve healthspan. Over the past few decades, understanding the roles of mitochondrial dysfunction and oxidative stress has been a major focus of studies seeking to reveal critical molecular pathways impacted during aging. In this review, we will highlight how oxidative stress might contribute to sarcopenia by discussing the impact of oxidative stress on the loss of innervation and alteration in the neuromuscular junction (NMJ), on muscle mitochondrial function and atrophy pathways, and finally on muscle contractile function.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
2
|
Lai Y, Zhang Y, Zhou S, Xu J, Du Z, Feng Z, Yu L, Zhao Z, Wang W, Tang Y, Yang X, Guddat LW, Liu F, Gao Y, Rao Z, Gong H. Structure of the human ATP synthase. Mol Cell 2023:S1097-2765(23)00324-6. [PMID: 37244256 DOI: 10.1016/j.molcel.2023.04.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
Biological energy currency ATP is produced by F1Fo-ATP synthase. However, the molecular mechanism for human ATP synthase action remains unknown. Here, we present snapshot images for three main rotational states and one substate of human ATP synthase using cryoelectron microscopy. These structures reveal that the release of ADP occurs when the β subunit of F1Fo-ATP synthase is in the open conformation, showing how ADP binding is coordinated during synthesis. The accommodation of the symmetry mismatch between F1 and Fo motors is resolved by the torsional flexing of the entire complex, especially the γ subunit, and the rotational substep of the c subunit. Water molecules are identified in the inlet and outlet half-channels, suggesting that the proton transfer in these two half-channels proceed via a Grotthus mechanism. Clinically relevant mutations are mapped to the structure, showing that they are mainly located at the subunit-subunit interfaces, thus causing instability of the complex.
Collapse
Affiliation(s)
- Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuying Zhang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jinxu Xu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhanqiang Du
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziyan Feng
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Long Yu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziqing Zhao
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanting Tang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China.
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Mitochondrial Management of Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10111824. [PMID: 34829696 PMCID: PMC8614740 DOI: 10.3390/antiox10111824] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondria in aerobic eukaryotic cells are both the site of energy production and the formation of harmful species, such as radicals and other reactive oxygen species, known as ROS. They contain an efficient antioxidant system, including low-molecular-mass molecules and enzymes that specialize in removing various types of ROS or repairing the oxidative damage of biological molecules. Under normal conditions, ROS production is low, and mitochondria, which are their primary target, are slightly damaged in a similar way to other cellular compartments, since the ROS released by the mitochondria into the cytosol are negligible. As the mitochondrial generation of ROS increases, they can deactivate components of the respiratory chain and enzymes of the Krebs cycle, and mitochondria release a high amount of ROS that damage cellular structures. More recently, the feature of the mitochondrial antioxidant system, which does not specifically deal with intramitochondrial ROS, was discovered. Indeed, the mitochondrial antioxidant system detoxifies exogenous ROS species at the expense of reducing the equivalents generated in mitochondria. Thus, mitochondria are also a sink of ROS. These observations highlight the importance of the mitochondrial antioxidant system, which should be considered in our understanding of ROS-regulated processes. These processes include cell signaling and the progression of metabolic and neurodegenerative disease.
Collapse
|
4
|
Ghosh A, Shcherbik N. Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E2661. [PMID: 32290431 PMCID: PMC7215667 DOI: 10.3390/ijms21082661] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of disorders that affect the heart and blood vessels. Due to their multifactorial nature and wide variation, CVDs are the leading cause of death worldwide. Understanding the molecular alterations leading to the development of heart and vessel pathologies is crucial for successfully treating and preventing CVDs. One of the causative factors of CVD etiology and progression is acute oxidative stress, a toxic condition characterized by elevated intracellular levels of reactive oxygen species (ROS). Left unabated, ROS can damage virtually any cellular component and affect essential biological processes, including protein synthesis. Defective or insufficient protein translation results in production of faulty protein products and disturbances of protein homeostasis, thus promoting pathologies. The relationships between translational dysregulation, ROS, and cardiovascular disorders will be examined in this review.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
5
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 854] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
6
|
Melo AMP, Teixeira M. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:190-7. [PMID: 26546715 DOI: 10.1016/j.bbabio.2015.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Aerobic respiratory chains from all life kingdoms are composed by several complexes that have been deeply characterized in their isolated form. These membranous complexes link the oxidation of reducing substrates to the reduction of molecular oxygen, in a process that conserves energy by ion translocation between both sides of the mitochondrial or prokaryotic cytoplasmatic membranes. In recent years there has been increasing evidence that those complexes are organized as supramolecular structures, the so-called supercomplexes and respirasomes, being available for eukaryotes strong data namely obtained by electron microscopy and single particle analysis. A parallel study has been developed for prokaryotes, based on blue native gels and mass spectrometry analysis, showing that in these more simple unicellular organisms such supercomplexes also exist, involving not only typical aerobic-respiration associated complexes, but also anaerobic-linked enzymes. After a short overview of the data on eukaryotic supercomplexes, we will analyse comprehensively the different types of prokaryotic aerobic respiratory supercomplexes that have been thus far suggested, in both bacteria and archaea. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
7
|
Torraco A, Peralta S, Iommarini L, Diaz F. Mitochondrial Diseases Part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion 2015; 21:76-91. [PMID: 25660179 DOI: 10.1016/j.mito.2015.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/22/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Mitochondrial disorders are the most common inborn errors of metabolism affecting the oxidative phosphorylation system (OXPHOS). Because of the poor knowledge of the pathogenic mechanisms, a cure for these disorders is still unavailable and all the treatments currently in use are supportive more than curative. Therefore, in the past decade a great variety of mouse models have been developed to assess the in vivo function of several mitochondrial proteins involved in human diseases. Due to the genetic and physiological similarity to humans, mice represent reliable models to study the pathogenic mechanisms of mitochondrial disorders and are precious to test new therapeutic approaches. Here we summarize the features of several mouse models of mitochondrial diseases directly related to defects in subunits of the OXPHOS complexes or in assembly factors. We discuss how these models recapitulate many human conditions and how they have contributed to the understanding of mitochondrial function in health and disease.
Collapse
Affiliation(s)
- Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15-00146 Rome, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
8
|
Venditti P, Di Stefano L, Di Meo S. Mitochondrial metabolism of reactive oxygen species. Mitochondrion 2013; 13:71-82. [DOI: 10.1016/j.mito.2013.01.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 11/16/2022]
|
9
|
Torraco A, Verrigni D, Rizza T, Meschini MC, Vazquez-Memije ME, Martinelli D, Bianchi M, Piemonte F, Dionisi-Vici C, Santorelli FM, Bertini E, Carrozzo R. TMEM70: a mutational hot spot in nuclear ATP synthase deficiency with a pivotal role in complex V biogenesis. Neurogenetics 2012; 13:375-86. [DOI: 10.1007/s10048-012-0343-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/03/2012] [Indexed: 02/01/2023]
|
10
|
Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform. J Bioenerg Biomembr 2012; 44:421-37. [DOI: 10.1007/s10863-012-9446-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/23/2012] [Indexed: 11/28/2022]
|
11
|
Gene expression profiling implicates OXPHOS complexes in lifespan extension of flies over-expressing a small mitochondrial chaperone, Hsp22. Exp Gerontol 2009; 45:611-20. [PMID: 20036725 DOI: 10.1016/j.exger.2009.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/23/2022]
Abstract
Aging is a complex process accompanied by a decreased capacity to tolerate and respond to various stresses. Heat shock proteins as part of cell defense mechanisms are up-regulated following stress. In Drosophila, the mitochondrial Hsp22 is preferentially up-regulated in aged flies. Its over-expression results in an extension of lifespan and an increased resistance to stress. Hsp22 has chaperone-like activity in vitro, but the mechanism(s) by which it increases lifespan in flies are unknown. Genome-wide analysis was performed on long-lived Hsp22+ and control flies to unveil transcriptional changes brought by Hsp22. Transcriptomes obtained at 45days, 90% and 50% survival were then compared between them to focus more on genes up- or down-regulated in presence of higher levels of hsp22 mRNA. Hsp22+ flies display an up-regulation of genes mainly related to mitochondrial energy production and protein biosynthesis, two functions normally down-regulated during aging. Interestingly, among the 26 genes up-regulated in Hsp22+ flies, 7 genes encode for mitochondrial proteins, 5 of which being involved in OXPHOS complexes. Other genes that could influence aging such as CG5002, dGCC185 and GstS1 also displayed a regulation linked to Hsp22 expression. The up-regulation of genes of the OXPHOS system in Hsp22+ flies suggest that mitochondrial homeostasis is at the center of Hsp22 beneficial effects on lifespan.
Collapse
|
12
|
Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:200-11. [PMID: 18620006 DOI: 10.1016/j.bbamcr.2008.05.028] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/12/2008] [Accepted: 05/17/2008] [Indexed: 02/07/2023]
Abstract
Assembly of the oxidative phosphorylation (OXPHOS) system in the mitochondrial inner membrane is an intricate process in which many factors must interact. The OXPHOS system is composed of four respiratory chain complexes, which are responsible for electron transport and generation of the proton gradient in the mitochondrial intermembrane space, and of the ATP synthase that uses this proton gradient to produce ATP. Mitochondrial human disorders are caused by dysfunction of the OXPHOS system, and many of them are associated with altered assembly of one or more components of the OXPHOS system. The study of assembly defects in patients has been useful in unraveling and/or gaining a complete understanding of the processes by which these large multimeric complexes are formed. We review here current knowledge of the biogenesis of OXPHOS complexes based on investigation of the corresponding disorders.
Collapse
|
13
|
Nadanaciva S, Bernal A, Aggeler R, Capaldi R, Will Y. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays. Toxicol In Vitro 2007; 21:902-11. [PMID: 17346924 DOI: 10.1016/j.tiv.2007.01.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 01/13/2007] [Accepted: 01/15/2007] [Indexed: 11/23/2022]
Abstract
Mitochondrial dysfunction has been shown to be a pharmacotoxicological response to a variety of currently-marketed drugs. In order to reduce attrition due to mitochondrial toxicity, high throughput-applicable screens are needed for early stage drug discovery. We describe, here, a set of immunocapture based assays to identify compounds that directly inhibit four of the oxidative phosphorylation (OXPHOS) complexes: I, II, IV, and V. Intra- and inter-assay variation were determined and specificity tested by using classical mitochondrial inhibitors. Twenty drugs, some with known mitochondrial toxicity and others with no known mitochondrial liability, were studied. Direct inhibition of one or more of the OXPHOS complexes was identified for many of the drugs. Novel information was obtained for several drugs including ones with previously unknown effects on oxidative phosphorylation. A major advantage of the immunocapture approach is that it can be used throughout drug screening from early compound evaluation to clinical trials.
Collapse
|
14
|
Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 2006; 292:C670-86. [PMID: 17020935 DOI: 10.1152/ajpcell.00213.2006] [Citation(s) in RCA: 491] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aged mammalian tissues show a decreased capacity to produce ATP by oxidative phosphorylation due to dysfunctional mitochondria. The mitochondrial content of rat brain and liver is not reduced in aging and the impairment of mitochondrial function is due to decreased rates of electron transfer by the selectively diminished activities of complexes I and IV. Inner membrane H(+) impermeability and F(1)-ATP synthase activity are only slightly affected by aging. Dysfunctional mitochondria in aged rodents are characterized, besides decreased electron transfer and O(2) uptake, by an increased content of oxidation products of phospholipids, proteins and DNA, a decreased membrane potential, and increased size and fragility. Free radical-mediated oxidations are determining factors of mitochondrial dysfunction and turnover, cell apoptosis, tissue function, and lifespan. Inner membrane enzyme activities, such as those of complexes I and IV and mitochondrial nitric oxide synthase, decrease upon aging and afford aging markers. The activities of these three enzymes in mice brain are linearly correlated with neurological performance, as determined by the tightrope and the T-maze tests. The same enzymatic activities correlated positively with mice survival and negatively with the mitochondrial content of lipid and protein oxidation products. Conditions that increase survival, as vitamin E dietary supplementation, caloric restriction, high spontaneous neurological activity, and moderate physical exercise, ameliorate mitochondrial dysfunction in aged brain and liver. The pleiotropic signaling of mitochondrial H(2)O(2) and nitric oxide diffusion to the cytosol seems modified in aged animals and to contribute to the decreased mitochondrial biogenesis in old animals.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Plaza Fragela 9, 11003 Cádiz, Spain.
| | | |
Collapse
|
15
|
Hynes J, Marroquin LD, Ogurtsov VI, Christiansen KN, Stevens GJ, Papkovsky DB, Will Y. Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes. Toxicol Sci 2006; 92:186-200. [PMID: 16638925 DOI: 10.1093/toxsci/kfj208] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial dysfunction is a common mechanism of drug-induced toxicity. Early identification of new chemical entities (NCEs) that perturb mitochondrial function is of significant importance to avoid attrition in later stages of drug development. One of the most informative ways of assessing mitochondrial dysfunction is by measuring mitochondrial oxygen consumption. However, the conventional polarographic method of measuring oxygen consumption is not amenable to high sample throughput or automation. We present an alternative, low-bulk, high-throughput approach to the analysis of isolated-mitochondrial oxygen consumption using luminescent oxygen-sensitive probes. These probes are dispensable and are analyzed in standard microtitre plates on a fluorescence plate reader. Respiratory substrate and adenosine diphosphate (ADP) dependencies of mitochondrial oxygen consumption were assessed using the fluorescence-based method, and results compared favourably to conventional polarographic analysis. To assess assay performance, the method was then applied to the analysis of a panel of classical modulators of oxidative phosphorylation. The effect of uncoupler concentration was analyzed in detail to identify factors which would be important in applying this method to large scale NCE screening and mechanistic investigations. Results demonstrate that the 96-well format can accommodate up to approximately 200 compounds/day at a single concentration or alternatively IC(50) values can be generated for approximately 25 compounds. Throughput may be increased by moving to a 384-well plate format.
Collapse
Affiliation(s)
- James Hynes
- Luxcel Biosciences Ltd., G.17, Lee Maltings, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
16
|
Johnson KM, Chen X, Boitano A, Swenson L, Opipari AW, Glick GD. Identification and validation of the mitochondrial F1F0-ATPase as the molecular target of the immunomodulatory benzodiazepine Bz-423. ACTA ACUST UNITED AC 2005; 12:485-96. [PMID: 15850986 DOI: 10.1016/j.chembiol.2005.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 02/03/2005] [Accepted: 02/28/2005] [Indexed: 11/16/2022]
Abstract
Bz-423 is a 1,4-benzodiazepine that suppresses disease in lupus-prone mice by selectively killing pathogenic lymphocytes, and it is less toxic compared to current lupus drugs. Cells exposed to Bz-423 rapidly generate O(2)(-) within mitochondria, and this reactive oxygen species is the signal initiating apoptosis. Phage display screening revealed that Bz-423 binds to the oligomycin sensitivity conferring protein (OSCP) component of the mitochondrial F(1)F(0)-ATPase. Bz-423 inhibited the F(1)F(0)-ATPase in vitro, and reconstitution experiments demonstrated that inhibition was mediated by the OSCP. This target was further validated by generating cells with reduced OSCP expression using RNA interference and studying the sensitivity of these cells to Bz-423. Our findings help explain the efficacy and selectivity of Bz-423 for autoimmune lymphocytes and highlight the OSCP as a target to guide the development of novel lupus therapeutics.
Collapse
Affiliation(s)
- Kathryn M Johnson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
17
|
Aggeler R, Coons J, Taylor SW, Ghosh SS, Garcia JJ, Capaldi RA, Marusich MF. A functionally active human F1F0 ATPase can be purified by immunocapture from heart tissue and fibroblast cell lines. Subunit structure and activity studies. J Biol Chem 2002; 277:33906-12. [PMID: 12110673 DOI: 10.1074/jbc.m204538200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mitochondrial F(1)F(0) ATP synthase was isolated with a one-step immunological approach, using a monoclonal antibody against F(1) in a 96-well microplate activity assay system, to establish a method for fast high throughput screening of inhibitors, toxins, and drugs with very small amounts of enzyme. For preparative purification, mitochondria from human heart tissue as well as cultured fibroblasts were solubilized with dodecyl-beta-d-maltoside, and the F(1)F(0) was isolated with anti-F(1) monoclonal antibody coupled to protein G-agarose beads. The immunoprecipitated F(1)F(0) contained a full complement of subunits that were identified with specific antibodies against five of the subunits (alpha, beta, OSCP, d, and IF(1)) and by MALDI-TOF and/or LC/MS/MS for all subunits except subunit c, which could not be resolved by these methods because of the limits of detection. Microscale immunocapture of F(1)F(0) from detergent-solubilized mitochondria or whole cell fibroblast extracts was performed using anti-F(1) monoclonal antibody immobilized on 96-well microplates. The captured complex V displayed ATP hydrolysis activity that was fully oligomycin and inhibitor protein IF(1)-sensitive. Moreover, IF(1) could be co-isolated with F(1)F(0) when the immunocapture procedure was carried out at pH 6.5 but was absent when the ATP synthase was isolated at pH 8.0. Immunocaptured F(1)F(0) lacking IF(1) could be inhibited by more than 90% by addition of recombinant inhibitor protein, and conversely, F(1)F(0) containing IF(1) could be activated more than 10-fold by brief exposure to pH 8.0, inducing the release of inhibitor protein. With this microplate system an ATP hydrolysis assay of complex V could be carried out with as little as 10 ng of heart mitochondria/well and as few as 3 x 10(4) cells/well from fibroblast cultures. The system is therefore suitable to screen patient-derived samples for alterations in amount or functionality of both the F(1)F(0) ATPase and IF(1).
Collapse
Affiliation(s)
- Robert Aggeler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yadava N, Potluri P, Smith EN, Bisevac A, Scheffler IE. Species-specific and mutant MWFE proteins. Their effect on the assembly of a functional mammalian mitochondrial complex I. J Biol Chem 2002; 277:21221-30. [PMID: 11937507 DOI: 10.1074/jbc.m202016200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MWFE protein (70 amino acids) is highly conserved in evolution, but the human protein (80% identical to hamster) does not complement a null mutation in Chinese hamster cells. We have identified a small protein segment where significant differences exist between rodents and primates, illustrating very specifically the need for compatibility of the nuclear and mitochondrial genomes in the assembly of complex I. The segment between amino acids 39 and 46 appears to be critical for species-specific compatibility. Amino acid substitutions in this region were tested that caused a reduction of activity of the hamster protein or converted the inactive human protein into a partially active one. Such mutations could be useful in making mice with partial complex I activity as models for mitochondrial diseases. Their potential as dominant negative mutants was explored. More deleterious mutations in the NDUFA1 gene were also characterized. A conservative substitution, R50K, or a short C-terminal deletion makes the protein completely inactive. In the absence of MWFE, no high molecular weight complex was detectable by Blue Native-gel electrophoresis. The MWFE protein itself is unstable in the absence of assembled mitochondrially encoded integral membrane proteins of complex I.
Collapse
Affiliation(s)
- Nagendra Yadava
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | | | | | |
Collapse
|
19
|
Blom D, Burg Jv, Breek CK, Speijer D, Muijsers AO, Benne R. Cloning and characterization of two guide RNA-binding proteins from mitochondria of Crithidia fasciculata: gBP27, a novel protein, and gBP29, the orthologue of Trypanosoma brucei gBP21. Nucleic Acids Res 2001; 29:2950-62. [PMID: 11452020 PMCID: PMC55805 DOI: 10.1093/nar/29.14.2950] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2001] [Accepted: 05/29/2001] [Indexed: 11/14/2022] Open
Abstract
In kinetoplastid protozoa, mitochondrial (mt) mRNAs are post-transcriptionally edited by insertion and deletion of uridylate residues, the information being provided by guide (g)RNAs. Currently popular mechanisms for the editing process envisage a series of consecutive 'cut-and-paste' reactions, carried out by a complex RNP machinery. Here we report on the purification, cloning and functional analysis of two gRNA-binding proteins of 28.8 (gBP29) and 26.8 kDa (gBP27) from mitochondria of the insect trypanosome Crithidia fasciculata. gBP29 and gBP27 proved to be similar, Arg + Ala-rich proteins, with pI values of approximately 10.0. gBP27 has no homology to known proteins, but gBP29 is the C.fasciculata orthologue of gBP21 from Trypanosoma brucei, a gRNA-binding protein that associates with active RNA editing complexes. As measured in UV cross-linking assays, His-tagged recombinant gBP29 and gBP27 bind to radiolabelled poly(U) and synthetic gRNAs, while competition experiments suggest a role for the gRNA 3'-(U)-tail in binding to these proteins. Immunoprecipitates of mt extracts generated with antibodies against gBP29 also contained gBP27 and vice versa. The immunoprecipitates further harbored a large proportion of the cellular content of four different gRNAs and of edited and pre-edited NADH dehydrogenase subunit 7 mRNAs, but only small amounts of mt rRNAs. In addition, the bulk of gBP29 and gBP27 co-eluted with gRNAs from gel filtration columns in the high molecular weight range. Together, these results suggest that the proteins are part of a large macromolecular complex(es). We infer that gBP29 and gBP27 are components of the C.fasciculata editing machinery that may interact with gRNAs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cloning, Molecular
- Crithidia fasciculata/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Molecular Sequence Data
- Precipitin Tests
- Protein Binding
- Protozoan Proteins
- RNA/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/isolation & purification
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- D Blom
- Department of Biochemistry, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Tanaka M, Gong J, Zhang J, Yamada Y, Borgeld HJ, Yagi K. Mitochondrial genotype associated with longevity and its inhibitory effect on mutagenesis. Mech Ageing Dev 2000; 116:65-76. [PMID: 10996007 DOI: 10.1016/s0047-6374(00)00149-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondria are not only the major site of ATP production in cells but also an important source of reactive oxygen species (ROS) under certain pathological conditions. Because mitochondrial DNA (mtDNA) in the mitochondrial matrix is exposed to ROS that leak from the respiratory chain, this extranuclear genome is prone to mutations. Therefore, the mitochondrial genome is a rich source of single nucleotide polymorphisms (SNPs) and the functional significance of SNPs in the mitochondrial genome is comparable to that of SNPs in the entire nuclear genome. To demonstrate the contribution of mitochondrial SNPs to the susceptibility to adult-onset diseases, we analyzed the mtDNA from Japanese centenarians and identified a longevity-associated mitochondrial genotype, Mt5178A. Because this genotype was demonstrated to suppress the occurrence of mtDNA mutations in the oocytes, it also would seem to decelerate the accumulation of mtDNA mutations in the somatic cells with increasing age. This genotype is likely to confer resistance to adult-onset diseases by suppressing obesity and atherosclerosis.
Collapse
Affiliation(s)
- M Tanaka
- Department of Gene Therapy, Gifu International Institute of Biotechnology, Yagi Memorial Park, Gifu, 505-0116, Mitake, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Hausrath AC, Grüber G, Matthews BW, Capaldi RA. Structural features of the gamma subunit of the Escherichia coli F(1) ATPase revealed by a 4.4-A resolution map obtained by x-ray crystallography. Proc Natl Acad Sci U S A 1999; 96:13697-702. [PMID: 10570135 PMCID: PMC24127 DOI: 10.1073/pnas.96.24.13697] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The F(1) part of the F(1)F(O) ATP synthase from Escherichia coli has been crystallized and its structure determined to 4.4-A resolution by using molecular replacement based on the structure of the beef-heart mitochondrial enzyme. The bacterial F(1) consists of five subunits with stoichiometry alpha(3), beta(3), gamma, delta, and epsilon. delta was removed before crystallization. In agreement with the structure of the beef-heart mitochondrial enzyme, although not that from rat liver, the present study suggests that the alpha and beta subunits are arranged in a hexagonal barrel but depart from exact 3-fold symmetry. In the structures of both beef heart and rat-liver mitochondrial F(1), less than half of the structure of the gamma subunit was seen because of presumed disorder in the crystals. The present electron-density map includes a number of rod-shaped features which appear to correspond to additional alpha-helical regions within the gamma subunit. These suggest that the gamma subunit traverses the full length of the stalk that links the F(1) and F(O) parts and makes significant contacts with the c subunit ring of F(O).
Collapse
Affiliation(s)
- A C Hausrath
- Institute of Molecular Biology, Howard Hughes Medical Institute, Department of Physics, 1229 University of Oregon, Eugene, OR 97403-1229, USA
| | | | | | | |
Collapse
|
22
|
Qu B, Li QT, Wong KP, Ong CN, Halliwell B. Mitochondrial damage by the "pro-oxidant" peroxisomal proliferator clofibrate. Free Radic Biol Med 1999; 27:1095-102. [PMID: 10569642 DOI: 10.1016/s0891-5849(99)00143-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clofibrate is a peroxisome proliferator that can cause hepatic cancer in rodents. It has been suggested that oxidative damage is involved in this hepatocarcinogenesis, although the data are conflicting. We confirmed that clofibrate causes oxidative damage in nuclei from the livers of mice treated with this substance, measured both as protein carbonyls and levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA. In addition, clofibrate also affects mitochondria, causing elevated levels of carbonyls and 8-OHdG, increased state 4 respiration and decreased adenosine triphosphatase (ATPase) activity. No evidence for clofibrate-induced lipid peroxidation in mitochondria was obtained. We propose that mitochondria may be a major target of injury and a source of oxidative stress in clofibrate-treated animals.
Collapse
Affiliation(s)
- B Qu
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
23
|
Bauer MF, Gempel K, Hofmann S, Jaksch M, Philbrook C, Gerbitz KD. Mitochondrial disorders. A diagnostic challenge in clinical chemistry. Clin Chem Lab Med 1999; 37:855-76. [PMID: 10596952 DOI: 10.1515/cclm.1999.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondria play a pivotal role in cellular metabolism and in energy production in particular. Defects in structure or function of mitochondria, mainly involving the oxidative phosphorylation (OXPHOS), mitochondrial biogenesis and other metabolic pathways, have been shown to be associated with a wide spectrum of clinical phenotypes. The ubiquitous nature of mitochondria and their unique genetic features contribute to the clinical, biochemical and genetic heterogeneity of mitochondrial diseases. We will focus on the recent advances in the field of mitochondrial disorders and their consequences for an advanced clinical and genetic diagnostics. In addition, an overview on recently identified genetic defects and their pathogenic molecular mechanisms will be given.
Collapse
Affiliation(s)
- M F Bauer
- Institute of Clinical Chemistry, Molecular Diagnostics and Mitochondrial Genetics, Diabetes Research Group, Academic Hospital Munich-Schwabing, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Bakhtiari N, Lai-Zhang J, Yao B, Mueller DM. Structure/function of the beta-barrel domain of F1-ATPase in the yeast Saccharomyces cerevisiae. J Biol Chem 1999; 274:16363-9. [PMID: 10347195 DOI: 10.1074/jbc.274.23.16363] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first 90 amino acids of the alpha- and beta-subunits of mitochondrial F1-ATPase are folded into beta-barrel domains and were postulated to be important for stabilizing the enzyme (Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628). The role of the domains was studied by making chimeric enzymes, replacing the domains from the yeast Saccharomyces cerevisiae enzyme with the corresponding domains from the enzyme of the thermophilic bacterium Bacillus PS3. The enzymes containing the chimeric alpha-, beta-, or alpha- and beta-subunits were not functional. However, gain-of-function mutations were obtained from the strain containing the enzyme with the chimeric PS3/yeast beta-subunit. The gain-of-function mutations were all in codons encoding the beta-barrel domain of the beta-subunit, and the residues appear to map out a region of subunit-subunit interactions. Gain-of-function mutations were also obtained that provided functional expression of the chimeric PS3/yeast alpha- and beta-subunits together. Biochemical analysis of this active chimeric enzyme indicated that it was not significantly more thermostable or labile than the wild type. The results of this study indicate that the beta-barrel domains form critical contacts (distinct from those between the alpha- and beta-subunits) that are important for the assembly of the ATP synthase.
Collapse
Affiliation(s)
- N Bakhtiari
- Department of Biochemistry and Molecular Biology, Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | |
Collapse
|
25
|
Appleby RD, Porteous WK, Hughes G, James AM, Shannon D, Wei YH, Murphy MP. Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:108-16. [PMID: 10231371 DOI: 10.1046/j.1432-1327.1999.00350.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian mitochondrial DNA (mtDNA) encodes 13 polypeptide components of oxidative phosphorylation complexes. Consequently, cells that lack mtDNA (termed rho degrees cells) cannot maintain a membrane potential by proton pumping. However, most mitochondrial proteins are encoded by nuclear DNA and are still imported into mitochondria in rho degrees cells by a mechanism that requires a membrane potential. This membrane potential is thought to arise from the electrogenic exchange of ATP4- for ADP3- by the adenine nucleotide carrier. An intramitochondrial ATPase, probably an incomplete FoF1-ATP synthase lacking the two subunits encoded by mtDNA, is also essential to ensure sufficient charge flux to maintain the potential. However, there are considerable uncertainties about the magnitude of this membrane potential, the nature of the intramitochondrial ATPase and the ATP flux required to maintain the potential. Here we have investigated these factors in intact and digitonin-permeabilized mammalian rho degrees cells. The adenine nucleotide carrier and ATP were essential, but not sufficient to generate a membrane potential in rho degrees cells and an incomplete FoF1-ATP synthase was also required. The maximum value of this potential was approximately 110 mV in permeabilized cells and approximately 67 mV in intact cells. The membrane potential was eliminated by inhibitors of the adenine nucleotide carrier and by azide, an inhibitor of the incomplete FoF1-ATP synthase, but not by oligomycin. This potential is sufficient to import nuclear-encoded proteins but approximately 65 mV lower than that in 143B cells containing fully functional mitochondria. Subfractionation of rho degrees mitochondria showed that the azide-sensitive ATPase activity was membrane associated. Further analysis by blue native polyacrylamide gel electrophoresis (BN/PAGE) followed by activity staining or immunoblotting, showed that this ATPase activity was an incomplete FoF1-ATPase loosely associated with the membrane. Maintenance of this membrane potential consumed about 13% of the ATP produced by glycolysis. This work has clarified the role of the adenine nucleotide carrier and an incomplete FoF1-ATP synthase in maintaining the mitochondrial membrane potential in rho degrees cells.
Collapse
Affiliation(s)
- R D Appleby
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
26
|
Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H. ATP synthase of yeast mitochondria. Isolation of subunit j and disruption of the ATP18 gene. J Biol Chem 1999; 274:36-40. [PMID: 9867807 DOI: 10.1074/jbc.274.1.36] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subunit composition of the mitochondrial ATP synthase from Saccharomyces cerevisiae was analyzed using blue native gel electrophoresis and high resolution SDS-polyacrylamide gel electrophoresis. We report here the identification of a novel subunit of molecular mass of 6,687 Da, termed subunit j (Su j). An open reading frame of 127 base pairs (ATP18), which encodes for Su j, was identified on chromosome XIII. Su j does not display sequence similarity to ATP synthase subunits from other organisms. Data base searches, however, identified a potential homolog from Schizosaccharomyces pombe with 51% identity to Su j of S. cerevisiae. Su j, a small protein of 59 amino acid residues, has the characteristics of an integral inner membrane protein with a single transmembrane segment. Deletion of the ATP18 gene encoding Su j led to a strain (Deltasu j) completely deficient in oligomycin-sensitive ATPase activity and unable to grow on nonfermentable carbon sources. The presence of Su j is required for the stable expression of subunits 6 and f of the F0 membrane sector. In the absence of Su j, spontaneously arising rho- cells were observed that lacked also ubiquinol-cytochrome c reductase and cytochrome c oxidase activities. We conclude that Su j is a novel and essential subunit of yeast ATP synthase.
Collapse
Affiliation(s)
- I Arnold
- Institut für Physiologische Chemie der Universität München, 80336 München, Germany
| | | | | | | | | |
Collapse
|
27
|
Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H. Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 1998; 17:7170-8. [PMID: 9857174 PMCID: PMC1171063 DOI: 10.1093/emboj/17.24.7170] [Citation(s) in RCA: 347] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using the technique of blue native gel electrophoresis, the oligomeric state of the yeast mitochondrial F1F0-ATP synthase was analysed. Solubilization of mitochondrial membranes with low detergent to protein ratios led to the identification of the dimeric state of the ATP synthase. Analysis of the subunit composition of the dimer, in comparison with the monomer, revealed the presence of three additional small proteins. These dimer-specific subunits of the ATP synthase were identified as the recently described subunit e/Tim11 (Su e/Tim11), the putative subunit g homolog (Su g) and a new component termed subunit k (Su k). Although, as shown here, these three proteins are not required for the formation of enzymatically active ATP synthase, Su e/Tim11 and Su g are essential for the formation of the dimeric state. Su e/Tim11 appears to play a central role in this dimerization process. The dimer-specific subunits are associated with the membrane bound F0-sector. The F0-sector may thereby be involved in the dimerization of two monomeric F1F0-ATP synthase complexes. We speculate that the F1F0-ATP synthase of yeast, like the other complexes of oxidative phosphorylation, form supracomplexes to optimize transduction of energy and to enhance the stability of the complex in the membrane.
Collapse
Affiliation(s)
- I Arnold
- Institut für Physiologische Chemie der Universität München, D-80336 München, Germany
| | | | | | | | | |
Collapse
|
28
|
Arnold I, Bauer MF, Brunner M, Neupert W, Stuart RA. Yeast mitochondrial F1F0-ATPase: the novel subunit e is identical to Tim11. FEBS Lett 1997; 411:195-200. [PMID: 9271204 DOI: 10.1016/s0014-5793(97)00691-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report here the identification of the novel subunit of the mitochondrial F1F0-ATPase from Saccharomyces cerevisiae, ATPase subunit e. Yeast ATPase subunit e displays significant similarities in both amino acid sequence, properties (hydropathy and predicted coiled-coil structure) and orientation in the inner membrane, with previously identified mammalian ATPase subunit e proteins. Estimation of its native molecular mass and ability to be co-immunoprecipitated with a subunit of the F1-ATPase, demonstrate that subunit e is a subunit of the F1F0-ATPase. Stable expression of subunit e requires the presence of the mitochondrially encoded subunits of the F0-ATPase. Subunit e had been previously identified as Tim11 and was proposed to be involved in the process of sorting of proteins to the mitochondrial inner membrane.
Collapse
Affiliation(s)
- I Arnold
- Institut für Physiologische Chemie der Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|