1
|
Kakhki S, Abbaszade-Cheragheali A, Tafti SP, Shirinzadeh Feizabadi A, Ahmadi-Soleimani SM, Beheshti F. Oral administration of crocin reverses memory loss induced by ethanol and nicotine abstinence in adolescent male rats. Neurosci Lett 2025; 846:138077. [PMID: 39662771 DOI: 10.1016/j.neulet.2024.138077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE Regarding a wide variety of researches conducted with various therapeutic effect of crocin, the main constituent of saffron, the current study aims to assess the efficacy of crocin to improve learning and memory impairment caused by withdrawal following concurrent usage of ethanol (Eth) and nicotine (Nic) in adolescent male rats. METHODS In order to test memory fucntion, Morris water maze and passive avoidance methods were applied in male Wistar rats undergone adolescent Nic-Eth withdrawal and the effect of crocin treatment was assessed at both behavioral and biochemical levels. The biochemical parameters included the inflammatory cytokines, indicators of oxidative stress and cholinergic metabolism within the hippocampla tissues. Animals were divided into 7 experimental groups as follows: 1) control (saline + saline), 2) nicotine + ethanol, 3-5) nicotine + ethanol + crocin (three doses), 6) nicotine + ethanol + bupropion + naloxone and 7) saline + crocin. RESULTS Results indicated that crocin treatment effectively prevented the Nic-Eth withdrawal induced behavioral manifestations of memory impairment when assessed by Morris water maze and passive avoidance tests. In addition, the biochemical alterations (in inflammatory, oxidative and cholinergic parameters) induced by Nic-Eth withdrawal were also ameliorated in rats treated by crocin. Interestingly, the mentioned ameliorative effect of crocin was found to be dose-dependent in most experiments and almost equipotential to that of bupropion and naloxone co-administration, when administered at high doses. CONCLUSION We would like to suggest the crocin treatment as an alternative medication for the management of Nic - Eth withdrawal, however, further studies are required to assess the unknown side effects and high dose tolerability of the drug in human subjects.
Collapse
Affiliation(s)
- Samaneh Kakhki
- Department of Clinical Biochemistry, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Abbaszade-Cheragheali
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Pouria Tafti
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Shirinzadeh Feizabadi
- Department of Medical Anesthesiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
2
|
Ozdemir-Kumral ZN, Akgün T, Haşim C, Ulusoy E, Kalpakçıoğlu MK, Yüksel MF, Okumuş T, Us Z, Akakın D, Yüksel M, Gören Z, Yeğen BÇ. Intracerebroventricular administration of the exercise hormone irisin or acute strenuous exercise alleviates epileptic seizure-induced neuroinflammation and improves memory dysfunction in rats. BMC Neurosci 2024; 25:36. [PMID: 39103771 DOI: 10.1186/s12868-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Status epilepticus is a common and potentially life-threatening neurological emergency with a high risk for cognitive and neurobiological impairment. Our aim was to evaluate the neuroprotective effects of centrally administered irisin and acute exhausting exercise against oxidative brain injury and memory dysfunction due to a pentylenetetrazole (PTZ)-induced single seizure. Male Sprague Dawley rats with intracerebroventricular (icv) cannulas were randomly divided into intraperitoneally (ip) saline-injected control and PTZ-injected (45 mg/kg) seizure groups. Both the control and PTZ groups were then treated with irisin (7.5 µg/kg, 2 µl, icv), saline (2 µl, icv) or were forced to an acute bout of strenuous exercise before the ip injection of saline (control) or PTZ. Seizures were evaluated using the Racine score. To evaluate memory performance, a passive avoidance test was performed before and after PTZ injection. Following euthanasia at the 24th hour of seizure induction, brain tissues were removed for histopathological examination and for evaluating oxidative damage, antioxidant capacity, and neurotransmitter levels. RESULTS Glutamate/GABA imbalance observed in PTZ rats was corrected by irisin administration (p < 0.001/p < 0.01), while irisin prevented the generation of reactive oxygen species and lipid peroxidation (p < 0.05 - 0.001) and replenished the antioxidant catalase and glutathione levels (p < 0.01-0.01) in the cerebral tissue, and reduced the histologically evident neuronal injury due to a single seizure (p < 0.05 - 0.01). Irisin also delayed the onset of seizures (p < 0.05) and improved memory dysfunction (p < 0.05), but did not affect the severity of seizures. The acute exhaustive swimming exercise completed before PTZ-seizure depressed glutamate level (p < 0.001), maintained the oxidant/antioxidant balance, alleviated neuronal injury (p < 0.05 - 0.01) and upregulated cerebral BDNF expression (p < 0.05). CONCLUSION In conclusion, acute high-intensity exercise or exogenously administered irisin provides neuroprotection by maintaining the balance of excitatory/inhibitory neurotransmitters and oxidant/antioxidant systems.
Collapse
Affiliation(s)
- Zarife Nigâr Ozdemir-Kumral
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Tuğçe Akgün
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Ceren Haşim
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Ezgi Ulusoy
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | | | | | - Tunahan Okumuş
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Zeynep Us
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health Services, İstanbul, Türkiye
| | - Zafer Gören
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye.
| |
Collapse
|
3
|
Stępnik K, Kukula-Koch W, Boguszewska-Czubara A, Gawel K. Astragaloside IV as a Memory-Enhancing Agent: In Silico Studies with In Vivo Analysis and Post Mortem ADME-Tox Profiling in Mice. Int J Mol Sci 2024; 25:4021. [PMID: 38612831 PMCID: PMC11012721 DOI: 10.3390/ijms25074021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Many people around the world suffer from neurodegenerative diseases associated with cognitive impairment. As life expectancy increases, this number is steadily rising. Therefore, it is extremely important to search for new treatment strategies and to discover new substances with potential neuroprotective and/or cognition-enhancing effects. This study focuses on investigating the potential of astragaloside IV (AIV), a triterpenoid saponin with proven acetylcholinesterase (AChE)-inhibiting activity naturally occurring in the root of Astragalus mongholicus, to attenuate memory impairment. Scopolamine (SCOP), an antagonist of muscarinic cholinergic receptors, and lipopolysaccharide (LPS), a trigger of neuroinflammation, were used to impair memory processes in the passive avoidance (PA) test in mice. This memory impairment in SCOP-treated mice was attenuated by prior intraperitoneal (ip) administration of AIV at a dose of 25 mg/kg. The attenuation of memory impairment by LPS was not observed. It can therefore be assumed that AIV does not reverse memory impairment by anti-inflammatory mechanisms, although this needs to be further verified. All doses of AIV tested did not affect baseline locomotor activity in mice. In the post mortem analysis by mass spectrometry of the body tissue of the mice, the highest content of AIV was found in the kidneys, then in the spleen and liver, and the lowest in the brain.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Skłodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland;
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki St., 20-093 Lublin, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 8B Jaczewskiego St., 20-090 Lublin, Poland;
| |
Collapse
|
4
|
Lee SE, Park S, Jang GY, Lee J, Moon M, Ji YJ, Jung JW, Nam Y, Shin SJ, Lee Y, Choi J, Kim DH. Extract of Aster koraiensis Nakai Leaf Ameliorates Memory Dysfunction via Anti-inflammatory Action. Int J Mol Sci 2023; 24:ijms24065765. [PMID: 36982837 PMCID: PMC10052554 DOI: 10.3390/ijms24065765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Aster koraiensis Nakai (AK) leaf reportedly ameliorates health problems, such as diabetes. However, the effects of AK on cognitive dysfunction or memory impairment remain unclear. This study investigated whether AK leaf extract could attenuate cognitive impairment. We found that AK extract reduced the production of nitric oxide (NO), tumour necrosis factor (TNF)-α, phosphorylated-tau (p-tau), and the expression of inflammatory proteins in lipopolysaccharide- or amyloid-β-treated cells. AK extract exhibited inhibitory activity of control specific binding on N-methyl-D-aspartate (NMDA) receptors. Scopolamine-induced AD models were used chronically in rats and acutely in mice. Relative to negative controls (NC), hippocampal choline acetyltransferase (ChAT) and B-cell lymphoma 2 (Bcl2) activity was increased in rats chronically treated with scopolamine and fed an AK extract-containing diet. In the Y-maze test, spontaneous alterations were increased in the AK extract-fed groups compared to NC. Rats administered AK extract showed increased escape latency in the passive avoidance test. In the hippocampus of rats fed a high-AK extract diet (AKH), the expression of neuroactive ligand–receptor interaction-related genes, including Npy2r, Htr2c, and Rxfp1, was significantly altered. In the Morris water maze assay of mice acutely treated with scopolamine, the swimming times in the target quadrant of AK extract-treated groups increased significantly to the levels of the Donepezil and normal groups. We used Tg6799 Aβ-overexpressing 5XFAD transgenic mice to investigate Aβ accumulation in animals. In the AD model using 5XFAD, the administration of AK extract decreased amyloid-β (Aβ) accumulation and increased the number of NeuN antibody-reactive cells in the subiculum relative to the control group. In conclusion, AK extract ameliorated memory dysfunction by modulating ChAT activity and Bcl2-related anti-apoptotic pathways, affecting the expression of neuroactive ligand–receptor interaction-related genes and inhibiting Aβ accumulation. Therefore, AK extract could be a functional material improving cognition and memory.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
- Correspondence:
| | - Saetbyeol Park
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Gwi Yeong Jang
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Jeonghoon Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Gwanjeodong-ro 158, Soe-gu, Daejeon 35365, Republic of Korea; (M.M.); (Y.N.); (S.J.S.)
| | - Yun-Jeong Ji
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Ji Wook Jung
- Division of Biotechnology and Convergence, College of Cosmetics and Pharm, Daegu Haany University, Kyungsan 38610, Republic of Korea;
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Gwanjeodong-ro 158, Soe-gu, Daejeon 35365, Republic of Korea; (M.M.); (Y.N.); (S.J.S.)
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Gwanjeodong-ro 158, Soe-gu, Daejeon 35365, Republic of Korea; (M.M.); (Y.N.); (S.J.S.)
| | - Yunji Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Jehun Choi
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Dong Hwi Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| |
Collapse
|
5
|
Patwa J, Thakur A, Flora SJS. Alpha Lipoic Acid and Monoisoamyl-DMSA Combined Treatment Ameliorates Copper-Induced Neurobehavioral Deficits, Oxidative Stress, and Inflammation. TOXICS 2022; 10:718. [PMID: 36548551 PMCID: PMC9785765 DOI: 10.3390/toxics10120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Copper (Cu), being an essential trace metal, plays several roles in biological processes, though exposure to Cu can be potentially toxic to the brain and a few other soft organs. In the present study, we investigated the effects of the combined administration of monoisoamyl 2, 3-dimercaptosuccinic acid (MiADMSA), which is a new chelator, and alpha lipoic acid (ALA) and an antioxidant that is made naturally in the body and is also found in foods, against Cu-induced oxidative stress in rats. Rats were exposed to 20 mg/kg copper sulfate for 16 weeks once a day via the oral route. After 16 weeks of exposure, animals were divided into different sub-groups. Group I was divided into three subgroups: Group IA, control; Group IB, MiADMSA (75 mg/kg, oral); Group IC, ALA (75 mg/kg, oral), while Group II was divided into four subgroups: Group IIA, Cu pre-exposed; Group IIB, Cu+ MiADMSA; Group IIC, Cu+ ALA; Group IID, Cu+ ALA+ MiADMSA. Exposure to Cu led to significant neurobehavioral abnormalities; treatment with MiADMSA, and in particular MiADMSA + ALA, significantly ameliorated the neurobehavioral parameters and restored the memory deficits in rats. Oxidative stress variables (ROS, nitrite, TBARS, SOD, catalase) and inflammatory markers (TNF-α, and IL-1β), which were altered on Cu exposed rats, also responded favorably to ALA+ MiADMSA combined treatment. Thus, combined administration of MiADMSA and ALA might be a better treatment strategy than monotherapy with MiADMSA or ALA against Cu-induced neurotoxicity, particularly in reducing oxidative stress, neurobehavioral abnormalities, and inflammatory markers.
Collapse
Affiliation(s)
| | | | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow 226002, India
| |
Collapse
|
6
|
Arabacı Tamer S, Altınoluk T, Emran M, Korkmaz S, Yüksel RG, Baykal Z, Dur ZS, Levent HN, Ural MA, Yüksel M, Çevik Ö, Ercan F, Yıldırım A, Yeğen BÇ. Melatonin Alleviates Ovariectomy-Induced Cardiovascular Inflammation in Sedentary or Exercised Rats by Upregulating SIRT1. Inflammation 2022; 45:2202-2222. [PMID: 35665875 DOI: 10.1007/s10753-022-01685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
We aimed to evaluate the impact of hormone replacement, melatonin, or exercise alone or their combination on oxidative damage and functional status of heart, brain, and aorta of ovariectomized (OVX) rats and to determine whether the signaling pathway is dependent on sirtuin-1 (SIRT1). Ovariectomized Sprague Dawley rats were orally given either a hormone replacement therapy (1 mg/kg/day,17β estradiol; HRT) or melatonin (4 mg/kg/day) or HRT + melatonin treatments or tap water, while each group was further divided into sedentary and exercise (30 min/5 days/week) groups. After the heart rate measurements and memory tests were performed, trunk blood was collected at the end of the 10th week to determine metabolic parameters in serum samples. Tissue samples of abdominal aorta, heart, and brain were taken for biochemical measurements and histopathological evaluation. Heart rates and memory performances of the OVX rats were not changed significantly by none of the applications. Melatonin treatment or its co-administration with HRT upregulated the expressions of IL-10 and SIRT1, reduced the expressions of IL-6 and TNF-α, and reduced DNA damage in the hearts and thoracic aortae of non-exercised rats. Co-administration of melatonin and HRT to exercised OVX rats reduced inflammatory response and upregulated SIRT1 expression in the aortic and cardiac tissues. The present study suggests that melatonin treatment, either alone or in combination with exercise and/or HRT, upregulates SIRT1 expression and alleviates oxidative injury and inflammation in the hearts and aortas of OVX rats. Melatonin should be considered in alleviating cardiovascular disease risk in postmenopausal women.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey.,Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey.,Department of Physiology, Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Tülin Altınoluk
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey.,Department of Physiology, Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Miray Emran
- Marmara University School of Medicine, Istanbul, Turkey
| | - Seda Korkmaz
- Marmara University School of Medicine, Istanbul, Turkey
| | | | - Zeynep Baykal
- Marmara University School of Medicine, Istanbul, Turkey
| | | | - Hilal Nişva Levent
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Mürüvvet Abbak Ural
- Department of Biochemistry, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health Sciences, Istanbul, Turkey
| | - Özge Çevik
- Department of Biochemistry, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Alper Yıldırım
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey.
| |
Collapse
|
7
|
Thapak P, Khare P, Bishnoi M, Sharma SS. Neuroprotective Effect of 2-Aminoethoxydiphenyl Borate (2-APB) in Amyloid β-Induced Memory Dysfunction: A Mechanistic Study. Cell Mol Neurobiol 2022; 42:1211-1223. [PMID: 33219878 PMCID: PMC11441215 DOI: 10.1007/s10571-020-01012-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
β-Amyloid (Aβ) peptide is a characteristic feature of Alzheimer's disease (AD) and accumulation of Aβ is associated with loss of synaptic plasticity and neuronal cell death. Aggregation of Aβ initiates numerous molecular signalling pathways leading to oxidative stress, mitochondrial dysfunction as well as an imbalance of calcium ion influx homeostasis. Recently, it has been shown that transient receptor potential melastatin 2 (TRPM2), a non-selective calcium-permeable cation channel has been postulated to play a vital role in the neuronal death, indicating the potential of TRPM2 inhibition in CNS disease. In this study, neuroprotective potential of 2-aminoethoxydiphenyl borate (2-APB), a broad-spectrum calcium channels blocker was investigated in Aβ-induced memory deficits in rats. In addition, effect of 2-APB on TRPM2 channels gene and protein expressions and also on calcium and memory related proteins was investigated in the hippocampus. Intracerebroventricular (I.C.V.) administration of Aβ (Aβ25-35, 10 μg) markedly induced cognitive impairment and upregulation of mRNA and protein expression of TRPM2 in the hippocampus. In addition, AChE activity was also increased in the cortex of the Aβ administered animals. Three-week treatment with 2-APB led to the down-regulation of TRPM2 mRNA and protein expression in the hippocampus and also improved the cognitive functions which was evident from the behavioral parameters. Moreover, 2-APB treatment also increased the calcium and memory associated proteins namely p-CaMKII, p-GSK-3β, p-CREB and PSD-95 in the hippocampus and reduced the mRNA level of calcium buffering proteins and calcineurin A (PPP3CA) in the hippocampus. Furthermore, 2-APB treatment significantly reduced the AChE activity in the cortex. Thus, our findings suggest the neuroprotective effect of 2-APB in Aβ-induced cognitive impairment.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Pragyanshu Khare
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
8
|
Dey M, Singh RK. Chronic oral exposure of aluminum chloride in rat modulates molecular and functional neurotoxic markers relevant to Alzheimer's disease. Toxicol Mech Methods 2022; 32:616-627. [PMID: 35341471 DOI: 10.1080/15376516.2022.2058898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Aluminum is an environmentally abundant potential neurotoxic agent that may result in oxidative damage to a range of cellular biomarkers. The potential sources of aluminum accumulation in body include drinking water, food, medicines, vaccines, and aluminum cookware utensils etc. The accumulation of aluminum in brain is reported to be associated with cholinergic dysfunction, oxidative stress and neuronal damage, that may ultimately cause Alzheimer's disease. Since chronic exposure of aluminum leads to its accumulation in brain, so this study was done by a long-term (24 weeks) low dose (20 mg/kg) oral exposure of aluminum chloride in rats. In this chronic model, we have evaluated the major hallmarks of Alzheimer's disease including amyloid beta (Aβ1-42) and phosphorylated-tau (p231-tau) protein in brain tissue. Furthermore, we evaluated the level of acetyl cholinesterase activity, inflammatory cytokines such as TNF-α, IL-6 and IL-1β, and oxidative stress biomarkers in rat brain in this model. The neurobehavioral parameters were also assessed in animals by using spontaneous locomotor activity, passive avoidance, rotarod test and novel object recognition test to evaluate alteration in learning, memory and muscle co-ordination. We found that chronic oral exposure of aluminum chloride causes a significant increase in structural hallmarks such as Aβ1-42 and p231-tau levels along with proinflammatory cytokines (TNF-α and IL-6), oxidative stress, and a decrease in antioxidant markers such as GSH and catalase. in the brain tissue. These biomarkers significantly affected neurobehavioral parameters in animals. This study provides a mechanistic understanding of chronic aluminum-induced neuronal toxicity in brain with relevance to Alzheimer's disease.
Collapse
Affiliation(s)
- Mangaldeep Dey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli. Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow-226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli. Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow-226002, Uttar Pradesh, India
| |
Collapse
|
9
|
Tamer SA, Koyuncuoğlu T, Karagöz A, Akakın D, Yüksel M, Yeğen BÇ. Nesfatin-1 ameliorates oxidative brain damage and memory impairment in rats induced with a single acute epileptic seizure. Life Sci 2022; 294:120376. [DOI: 10.1016/j.lfs.2022.120376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
10
|
A 10-day mild treadmill exercise performed before an epileptic seizure alleviates oxidative injury in the skeletal muscle and brain tissues of the rats. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1056192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ko CY, Xu JH, Lo YM, Tu RS, Wu JSB, Huang WC, Shen SC. Alleviative Effect of Alpha-Lipoic Acid on Cognitive Impairment in High-Fat Diet and Streptozotocin-Induced Type 2 Diabetic Rats. Front Aging Neurosci 2021; 13:774477. [PMID: 34867302 PMCID: PMC8633445 DOI: 10.3389/fnagi.2021.774477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/21/2021] [Indexed: 02/01/2023] Open
Abstract
Background: The intricate relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) suggests that insulin is involved in modulating AD-related proteins. Alpha-lipoic acid (ALA) can improve insulin resistance (IR) in diabetic rats. However, the role of ALA in alleviating the cognitive decline of T2DM is not yet clear. This study examined the ameliorative effect of ALA on cognitive impairment, cerebral IR, and synaptic plasticity abnormalities in high-fat diet (HFD) plus streptozotocin (STZ) induced diabetic rats. Methods: The HFD/STZ-induced T2DM male Wistar rats were orally administered with ALA (50, 100, or 200 mg/kg BW) once a day for 13 weeks. Abilities of cognition were measured with a passive avoidance test and Morris water maze. Specimens of blood and brain were collected for biochemical analysis after the rats were sacrificed. Western blotting was used to determine protein expressions in the hippocampus and cortex in the insulin signaling pathways, long-term potentiation (LTP), and synaptic plasticity-related protein expressions. Results: Alpha-lipoic acid improved hyperinsulinemia and the higher levels of free fatty acids of the T2DM rats. Behavioral experiments showed that the administration of ALA improved cognitive impairment in HFD/STZ-induced T2DM rats. ALA ameliorated insulin-related pathway proteins [phosphoinositide 3-kinase (PI3K), phospho-protein kinase B (pAkt)/Akt, and insulin-degrading enzyme (IDE)] and the LTP pathway, as well as synaptic plasticity proteins (calmodulin-dependent protein kinase II, cyclic AMP response element-binding protein, and postsynaptic density protein-95) of the cerebral cortex or hippocampus in HFD/STZ-induced T2DM rats. Conclusion: Our findings suggested that ALA may ameliorate cognition impairment via alleviating cerebral IR improvement and cerebral synaptic plasticity in diabetic rats.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,School of Public Health, Fujian Medical University, Fuzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Jian-Hua Xu
- Department of Tumor Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | | - Rong-Syuan Tu
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei City, Taiwan
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei City, Taiwan
| |
Collapse
|
12
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2020; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
13
|
Patwa J, Thakur A, Sharma A, Flora SJS. Monoisoamyl DMSA reduced copper-induced neurotoxicity by lowering 8-OHdG level, amyloid beta and Tau protein expressions in Sprague-Dawley rats. Metallomics 2020; 12:1428-1448. [DOI: 10.1039/d0mt00083c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper dyshomeostasis has long been linked with several neurodegenerative disorders.
Collapse
Affiliation(s)
- Jayant Patwa
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Near CRPF Camp
- Lucknow
| | - Ashima Thakur
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Lucknow
- India
| | - Abha Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Lucknow
- India
| | - S. J. S. Flora
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER-R)
- Transit Campus
- Near CRPF Camp
- Lucknow
| |
Collapse
|
14
|
Koyuncuoğlu T, Arabacı Tamer S, Erzik C, Karagöz A, Akakın D, Yüksel M, Yeğen BÇ. Oestrogen receptor ERα and ERβ agonists ameliorate oxidative brain injury and improve memory dysfunction in rats with an epileptic seizure. Exp Physiol 2019; 104:1911-1928. [PMID: 31608530 DOI: 10.1113/ep087986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Could different hormonally active substances, including oestrogen receptor (ER) agonists, protect against oxidative brain damage and memory impairment induced by a single epileptic seizure in rats? If so, which signalling mechanisms are involved in their anti-inflammatory effects? What is the main finding and its importance? Chronic administration of oestrogen, progesterone, ER modulators/agonists or blockade of testosterone exhibited anti-inflammatory and antioxidant actions on single seizure-induced neuronal injury, while ER agonists additionally improved memory function and up-regulated CREB signalling and hippocampal GABA(A)α1 receptor density, suggesting that ERα or ERβ receptor activation may be beneficial in protecting against seizure-related oxidative brain injury and cognitive dysfunction. ABSTRACT The susceptibility to epileptic seizures is dependent on sex as well as fluctuations in oestrogen levels, while exogenous oestrogen was shown to have no effect or to facilitate or to inhibit seizure activity. Oestrogen receptors (ERs) mediate antioxidant and anti-inflammatory actions in several inflammatory models, but the involvement of ERs in seizure-induced neuronal injury has not been evaluated previously. In order to assess the effects of resveratrol, progesterone, oestradiol (E2), an anti-testosterone (cyproterone acetate; CPA), a selective ER modulator (tamoxifen; TMX) and ERα/ERβ agonists (propyl pyrazole triol (PPT), diarylpropionitrile (DPN)) on oxidative brain damage and memory impairment due to epileptic seizure, male Wistar rats (n = 120) received one of the treatment choices either in drinking water or intraperitoneally for 31 days, and epileptic seizure was induced on the 28th day by injection of a single-dose of pentylenetetrazole (45 mg kg-1 ). The results demonstrate that chronic pretreatment with resveratrol, progesterone, E2, CPA or TMX suppressed most of the inflammatory parameters indicative of oxidative neuronal injury, while treatment with the ER agonists DPN or PPT were found to be even more effective in limiting the oxidative damage. Treatment with DPN resulted in the up-regulation of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) expression, while PPT up-regulated expression of CREB without affecting BDNF levels. Moreover, both ER agonists provided protection against seizure-induced memory loss with a concomitant increase in hippocampal GABA(A)α1-positive cells. In conclusion, ER agonists, and more specifically ERβ agonist, appear to provide maximum protection against seizure-induced oxidative brain injury and associated memory dysfunction by up-regulating the expression of CREB, BDNF and GABA(A)α1 receptors.
Collapse
Affiliation(s)
- Türkan Koyuncuoğlu
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sevil Arabacı Tamer
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ayça Karagöz
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Professions, Marmara University, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
15
|
Schlesinger D, Davidovich Rikanati R, Volis S, Faigenboim A, Vendramin V, Cattonaro F, Hooper M, Oren E, Taylor M, Sitrit Y, Inbar M, Lewinsohn E. Alkaloid chemodiversity in Mandragora spp. is associated with loss-of-functionality of MoH6H, a hyoscyamine 6β-hydroxylase gene. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:301-310. [PMID: 31128700 DOI: 10.1016/j.plantsci.2019.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Mandrakes (Mandragora spp., Solanaceae) are known to contain tropane alkaloids and have been used since antiquity in traditional medicine. Tropane alkaloids such as scopolamine and hyoscyamine are used in modern medicine to treat pain, motion sickness, as eye pupil dilators and antidotes against organo-phosphate poisoning. Hyoscyamine is converted to 6β-hydroxyhyoscyamine (anisodamine) and scopolamine by hyoscyamine 6β-hydroxylase (H6H), a 2-oxoglutarate dependent dioxygenase. We describe here a marked chemo-diversity in the tropane alkaloid content in Mandragora spp. M. officinarum and M. turcomanica lack anisodamine and scopolamine but display up to 10 fold higher hyoscyamine levels as compared with M. autumnalis. Transcriptomic analyses revealed that H6H is highly conserved among scopolamine-producing Solanaceae. MoH6H present in M. officinarum differs in several amino acid residues including a homozygotic mutation in the substrate binding region of the protein and its prevalence among accessions was confirmed by Cleaved-Amplified-Polymorphic-Sequence analyses. Functional expression revealed that MaH6H, a gene isolated from M. autumnalis encodes an active H6H enzyme while the MoH6H sequence isolated from M. officinarum was functionally inactive. A single G to T mutation in nucleotide 663 of MoH6H is associated with the lack of anisodamine and scopolamine in M. officinalis.
Collapse
Affiliation(s)
- Daniel Schlesinger
- Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel; Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Rachel Davidovich Rikanati
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Sergei Volis
- Kunming Institute of Botany, 132, Lanhei Road, Kunming 650201, Yunnan, PR China
| | - Adi Faigenboim
- Institute of Plant Sciences, ARO, The Volcani Center, Bet Dagan, Israel
| | - Vera Vendramin
- IGA Technology Services, Via J. Linussio 51, 33100 Udine, Italy
| | | | - Matthew Hooper
- Cell & Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA Scotland, UK
| | - Elad Oren
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Mark Taylor
- Cell & Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA Scotland, UK
| | - Yaron Sitrit
- The Jacob Blaustein Institutes f Desert Research, Ben-Gurion University of The Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Moshe Inbar
- Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel.
| |
Collapse
|
16
|
Cuscuta chinensis and C. campestris Attenuate Scopolamine-Induced Memory Deficit and Oxidative Damage in Mice. Molecules 2018; 23:molecules23123060. [PMID: 30467292 PMCID: PMC6320855 DOI: 10.3390/molecules23123060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
The seeds of Cuscuta chinensis Lam. and C. campestris Yuncker have been commonly used as Chinese medical material for preventing aging. Our previous studies have found that C. chinensis and C. campestris possess anti-inflammatory activities in rodents. However, their other biological activities, such as memory-improving properties, have not yet been explored. In the present study, we examined the memory-improving effects of the extracts of C. chinensis and C. campestris on scopolamine (SCOP)-induced memory deficit and explored their underlying mechanism in mice. Both Cuscuta species improved SCOP-induced memory deficits in the passive avoidance test, elevated plus-maze, and spatial performance test of the Morris water maze in mice. In addition, compared with mice injected with SCOP, mice pretreated with both Cuscuta species stayed for a longer time on the platform for the probe test of the Morris water maze. Moreover, both Cuscuta species reduced brain acetylcholinesterase activity and malondialdehyde levels that were increased by SCOP, and the species restored the activities of antioxidant enzymes (superoxide dismutase and catalase) and the levels of glutathione that were decreased by SCOP in the brains of mice. Both Cuscuta species further decreased brain interleukin-1β and tumor necrosis factor-α levels that were elevated by SCOP. We demonstrated that both Cuscuta species exhibited a protective activity against SCOP-induced memory deficit, cholinergic dysfunction, oxidative damage, and neuroinflammation in mice, and C. campestris has better potential than C. chinensis. In addition, we provided evidence that the seeds of C. campestris can be used as Cuscutae Semen in Traditional Chinese Medicine.
Collapse
|
17
|
Hong SM, Soe KH, Lee TH, Kim IS, Lee YM, Lim BO. Cognitive Improving Effects by Highbush Blueberry (Vaccinium crymbosum L.) Vinegar on Scopolamine-Induced Amnesia Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:99-107. [PMID: 29260547 DOI: 10.1021/acs.jafc.7b03965] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present study aimed to evaluate the preventive effects of highbush blueberry (Vaccinium corymbosum L.) vinegar (BV) on cognitive functions in a scopolamine (Sco)-induced amnesia model in mice. In this study, Sco (1 mg/kg, intraperitoneal injection) was used to induce amnesia. ICR mice were orally administered donepezil (5 mg/kg), blueberry extract (120 mg/kg), and BV (120 mg/kg) for 7 days. After inducing cognitive impairment by Sco, a behavioral assessment using behavior tests (i.e., Y-maze and passive avoidance tests) was performed. The BV group showed significantly restored cognitive function in the behavioral tests. BV facilitated cholinergic activity by inhibiting acetylcholinesterase activity, and enhanced antioxidant enzyme activity. Furthermore, BV was found to be rehabilitated in the cornu ammonis 1 neurons of hippocampus. In our study, we demonstrated that the memory protection conferred by BV was linked to activation of brain-derived neurotrophic factor (BDNF)/cAMP response element binding protein (CREB)/serine-threonine kinase (AKT) signaling.
Collapse
Affiliation(s)
- Seong Min Hong
- BK21PLUS Glocal Education Program of Nutraceuticals Development, Konkuk University , Chungju-si, Chungcheongbuk-do 27478, Republic of Korea
| | - Kyong Hee Soe
- Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University , Chungju-si, Chungcheongbuk-do 27478, Republic of Korea
| | - Taek Hwan Lee
- Institute of Biomedical and Health Science, Kunkuk University , Chungju-si, Chungcheongbuk-do 27478, Republic of Korea
- Ahn-Gook Health., LTD. , Seoul 07445, Republic of Korea
| | - In Sook Kim
- Institute of Biomedical and Health Science, Kunkuk University , Chungju-si, Chungcheongbuk-do 27478, Republic of Korea
| | - Young Min Lee
- Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University , Chungju-si, Chungcheongbuk-do 27478, Republic of Korea
| | - Beong Ou Lim
- Research Institute of Inflammatory Diseases, Kunkuk University , Chungju-si, Chungcheongbuk-do 27478, Republic of Korea
- Department of Life Science, College of Biomedical and Health Science, Konkuk University , 268 Chungwondaero, Chungju-si, Chungcheongbuk-do 27478, Republic of Korea
| |
Collapse
|
18
|
Scopolamine-induced passive avoidance memory retrieval deficit is accompanied with hippocampal MMP2, MMP-9 and MAPKs alteration. Eur J Pharmacol 2017; 819:248-253. [PMID: 29225190 DOI: 10.1016/j.ejphar.2017.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of memory and cognitive deficit. The observed amnesia in the early stages of AD is suggested to be a retrieval problem, rather than encoding and consolidation deficit. According to the cholinergic hypothesis of AD, scopolamine is used to induce an animal model of amnesia. Howbeit the effect of scopolamine on memory retrieval is contradictory. This study aimed to assess the effect of scopolamine on passive avoidance memory retrieval. Additionally according to the reported changes of MMP-2, MMP-9 and MAPKs (ERK, P38 and JNK) in AD pathology the hippocampal contents of these proteins were determined. Male NMRI mice weighing 20-25g were trained in passive avoidance apparatus. The drug or its vehicle was injected 24h after training (30min before retention test). The hippocampal tissue was isolated and western blot analysis was done for MMP-2, MMP-9 and MAPKs (ERK, P38 and JNK). The results indicated that scopolamine (1mg/kg) disrupts passive avoidance memory retrieval. This scopolamine treatment resulted in hippocampal MMP-2 and MMP-9 decline while increased MAPKs in the hippocampus. These results suggest that cholinergic system has an important role in learnt memory retrieval. It might also suggest the positive role of MMP-2 and MMP-9 in this phase of memory while propose that MAPKs affect negatively the reactivation of memory which is compatible with MAPKs activation in AD.
Collapse
|
19
|
Giménez De Béjar V, Caballero Bleda M, Popović N, Popović M. Verapamil Blocks Scopolamine Enhancement Effect on Memory Consolidation in Passive Avoidance Task in Rats. Front Pharmacol 2017; 8:566. [PMID: 28878678 PMCID: PMC5572412 DOI: 10.3389/fphar.2017.00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
Our recent data have indicated that scopolamine, a non-selective muscarinic receptor antagonist, improves memory consolidation, in a passive avoidance task, tested in rats. It has been found that verapamil, a phenylalkylamine class of the L-type voltage-dependent calcium channel antagonist, inhibits [3H] N-methyl scopolamine binding to M1 muscarinic receptors. However, there are no data about the effect of verapamil on memory consolidation in the passive avoidance task, in rats. The purpose of the present study was to examine the effects of verapamil (0.5, 1.0, 2.5, 5.0, 10, or 20 mg/kg i.p.) as well as the interaction between scopolamine and verapamil on memory consolidation in the step-through passive avoidance task, in Wistar rats. Our results showed that verapamil (1.0 and 2.5 mg/kg) administered immediately after the acquisition task significantly increased the latency of the passive avoidance response, on the 48 h retested trial, improving memory consolidation. On the other hand, verapamil in a dose of 5 mg/kg, that per se does not affect memory consolidation, significantly reversed the memory consolidation improvement induced by scopolamine (1 mg/kg, i.p., administered immediately after verapamil treatment) but did not change the passive avoidance response in rats treated by an ineffective dose of scopolamine (30 mg/kg). In conclusion, the present data suggest that (1) the post-training administration of verapamil, dose-dependently, improves the passive avoidance response; (2) verapamil, in ineffective dose, abolished the improvement of memory consolidation effect of scopolamine; and (3) exists interaction between cholinergic muscarinic receptors and calcium homeostasis-related mechanisms in the consolidation of emotional memory.
Collapse
Affiliation(s)
- Verónica Giménez De Béjar
- Department of Neurology, Hospital Quirónsalud MurciaMurcia, Spain.,Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - María Caballero Bleda
- Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain.,Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of MurciaMurcia, Spain
| | - Natalija Popović
- Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain.,Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of MurciaMurcia, Spain
| | - Miroljub Popović
- Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain.,Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of MurciaMurcia, Spain
| |
Collapse
|
20
|
Mohammadzadeh N, Mehri S, Hosseinzadeh H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:538-551. [PMID: 28656089 PMCID: PMC5478782 DOI: 10.22038/ijbms.2017.8678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/13/2017] [Indexed: 12/17/2022]
Abstract
Berberis vulgaris L (B. vulgaris) and its main constituent berberine have been used in traditional medicine for a long time. This medicinal plant and berberine have many properties that have attracted the attention of researchers over the time. According to several studies, B. vulgaris and berberine exhibited anti-inflammatory, antioxidant, anticonvulsant, antidepressant, anti-Alzheimer, anti-cancer, anti-arrhythmic, antiviral, antibacterial and anti-diabetic effects in both in vitro and invivo experiments. In regard to many reports on protective effects of B. vulgaris and berberine on natural and chemical toxins, in the current review article, the inhibitory effects of these compounds against natural, industrial, environmental and chemical toxicities with focus on cellular mechanism have been categorized. It has been mentioned that berberine could ameliorate toxicity of chemical toxins in brain, heart, kidney, liver and lung in part through antioxidant, anti-inflammatory, anti-apoptotic, modulation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways.
Collapse
Affiliation(s)
| | - Soghra Mehri
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Koyuncuoğlu T, Vızdıklar C, Üren D, Yılmaz H, Yıldırım Ç, Atal SS, Akakın D, Kervancıoğlu Demirci E, Yüksel M, Yeğen BÇ. Obestatin improves oxidative brain damage and memory dysfunction in rats induced with an epileptic seizure. Peptides 2017; 90:37-47. [PMID: 28223092 DOI: 10.1016/j.peptides.2017.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
Abstract
Obestatin was shown to alleviate renal, gastrointestinal and haemorrhage-induced brain injury in rats. In order to investigate the neuroprotective effects of obestatin on seizure-induced oxidative brain injury, an epileptic seizure was induced with a single intraperitoneal (i.p.) dose of pentylenetetrazole (PTZ, 45mg/kg) in male Wistar rats. Thirty minutes before the PTZ injection, rats were treated with either saline or obestatin (1μg/kg, i.p.). Seizure was video-taped and then evaluated by using Racine's scoring (0-5). For the assessment of memory function, passive-avoidance test was performed before seizure induction, which was repeated on the 3rd day of seizure. The rats were decapitated at the 24th or 72nd hour of seizures and brain tissues were obtained for histopathological examination and for measuring levels of malondialdehyde (MDA), glutathione (GSH), reactive oxygen radicals and myeloperoxidase (MPO) activity. Obestatin treatment reduced the average seizure score, decreased the occurrence and duration of generalized tonic-clonic seizures, presenting with a shorter latency to their onset. Increased lipid peroxidation and enhanced generation of oxygen-derived radicals detected at the post-seizure 72nd h were suppressed by the consecutive treatments of obestatin, but no changes were observed by the single obestatin treatment in the 24-h seizure group. Neuronal damage and increased GFAP immunoreactivity, observed in the hippocampal areas and cortex of PTZ-induced rats were alleviated in 3-day obestatin-treated PTZ group. PTZ-induced memory dysfunction was significantly improved in obestatin-treated PTZ group as compared to saline-treated rats. The present data indicate that obestatin ameliorated the severity of PTZ-induced seizures, improved memory dysfunction and reduced neuronal damage by limiting oxidative damage.
Collapse
Affiliation(s)
| | - Caner Vızdıklar
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Doğan Üren
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Hakan Yılmaz
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Çağan Yıldırım
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Sefa Semih Atal
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Dilek Akakın
- Marmara University School of Medicine, Department of Histology and Embryology, Turkey
| | | | - Meral Yüksel
- Marmara University Vocational School of Health Related Professions, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Turkey.
| |
Collapse
|
22
|
Patricio RR, Soares JCK, Oliveira MGM. M1 muscarinic receptors are necessary for retrieval of remote context fear memory. Physiol Behav 2017; 169:202-207. [PMID: 27940145 DOI: 10.1016/j.physbeh.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/17/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022]
Abstract
Several studies have investigated the transition of consolidation of recent memory to remote memory in aversively motivated tasks, such as contextual fear conditioning (CFC) and inhibitory avoidance (IA). However, the mechanisms that serve the retrieval of remote memories, has not yet been fully understood. Some evidences suggest that the central cholinergic system appears be involved in the modulation of these processes. Therefore, the present study aimed to investigate the effects of a pre-test administration of dicyclomine, a high-affinity M1 muscarinic receptor antagonist, on the retrieval of remote memories in fear conditioning and IA tasks. Male Wistar rats were trained, and after 1 or 28days, the rats received dicyclomine (16 or 32mg/kg, intraperitoneally, i.p.) and were tested in CFC, tone fear conditioning (TFC) and IA tasks. At both time intervals, 32mg/kg dicyclomine induced impairment of CFC. In TFC task only the performance of the rats 28days after training was impaired. The IA task was not affected in any of the studied intervals. These findings suggest a differential contribution of muscarinic receptors on recent and remote memories retrieval revealing a more generalized role in remote memory.
Collapse
|
23
|
Pain sensitivity following loss of cholinergic basal forebrain (CBF) neurons in the rat. Neuroscience 2016; 319:23-34. [DOI: 10.1016/j.neuroscience.2016.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
|
24
|
Time course of scopolamine effect on memory consolidation and forgetting in rats. Neurobiol Learn Mem 2015; 118:49-54. [DOI: 10.1016/j.nlm.2014.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/03/2014] [Accepted: 11/12/2014] [Indexed: 01/06/2023]
|
25
|
Jebasingh D, Devavaram Jackson D, Venkataraman S, Adeghate E, Starling Emerald B. The protective effects of Cyperus rotundus on behavior and cognitive function in a rat model of hypoxia injury. PHARMACEUTICAL BIOLOGY 2014; 52:1558-1569. [PMID: 25026346 DOI: 10.3109/13880209.2014.908395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Hypoxia injury (HI) with its long-term neurological complications is one of the leading causes of morbidity and mortality in the world. Currently, the treatment regimens for hypoxia are aimed only at ameliorating the damage without complete cure. The need, therefore, for novel therapeutic drugs to treat HI continues. OBJECTIVE This study investigates the protective effects of the ethanol extract of Cyperus rotundus L. (Cyperaceae) (EECR), a medicinal plant used in Ayurvedic traditional medicine against sodium nitrite-induced hypoxia in rats. MATERIALS AND METHODS We have evaluated the protective effect of 200 and 400 mg/kg of EECR against sodium nitrite-induced hypoxia injury in rats by assessing the cognitive functions, motor, and behavioral effects of EECR treatment along with the histological changes in the brain. By comparing the protective effects of standard drugs galantamine, a reversible cholinesterase inhibitor and pyritinol, an antioxidant nootropic drug against sodium nitrite-induced hypoxia in rats, we have tested the protective ability of EECR. RESULTS EECR at doses of 200 and 400 mg/kg was able to protect against the cognitive impairments, and the locomotor activity and muscular coordination defects, which are affected by sodium nitrite-induced hypoxia injury in rats. CONCLUSION Based on our results, we suggest that the medicinal herb C. rotundus possesses a protective effect against sodium nitrite-induced hypoxia in rats. Further studies on these protective effects of EECR may help in designing better therapeutic regimes for hypoxia injury.
Collapse
Affiliation(s)
- Dhas Jebasingh
- Department of Pharmacology, CL Baid Metha Foundation for Pharmaceutical Education and Research , Thoraipakkam, Chennai, Tamil Nadu , India
| | | | | | | | | |
Collapse
|
26
|
Colettis NC, Snitcofsky M, Kornisiuk EE, Gonzalez EN, Quillfeldt JA, Jerusalinsky DA. Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure. ACTA ACUST UNITED AC 2014; 21:634-45. [PMID: 25322799 PMCID: PMC4201807 DOI: 10.1101/lm.036210.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two open-field (OF) sessions of 3 min each (habituated), behaved as control animals after a weak though over-threshold training in IA. However, after OF exposure, IA LTM was formed and expressed in spite of an extensive or restricted to the hippocampus MAChR blockade. It was reported that during and after OF exposure and reexposure there was an increase in both hippocampal and cortical ACh release that would contribute to “prime the substrate,” e.g., by lowering the synaptic threshold for plasticity, leading to LTM consolidation. In the frame of the “synaptic tagging and capture” hypothesis, plasticity-related proteins synthesized during/after the previous OF could facilitate synaptic plasticity for IA in the same structure. However, IA anterograde amnesia by hippocampal protein synthesis inhibition with anisomycin was also prevented by two OF exposures, strongly suggesting that there would be alternative interpretations for the role of protein synthesis in memory formation and that another structure could also be involved in this “OF effect.”
Collapse
Affiliation(s)
- Natalia C Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Edgar E Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Emilio N Gonzalez
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Jorge A Quillfeldt
- Laboratório de Psicobiologia e Neurocomputação, Depto. de Biofísica, UFRGS, Porto Alegre 91501-970, Brazil
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
27
|
Nilsson MKL, Carlsson ML. The monoaminergic stabilizer (-)-OSU6162 reverses delay-dependent natural forgetting and improves memory impairment induced by scopolamine in mice. Neuropharmacology 2013; 75:399-406. [PMID: 23994443 DOI: 10.1016/j.neuropharm.2013.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/05/2013] [Accepted: 08/18/2013] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to evaluate the effect of the monoaminergic stabilizer (-)-OSU6162 on spatial recognition memory. Male NMRI mice were tested in the object location model which is based on the animals' inherent interest to examine changes in their environment: The animals' propensity to explore relocated objects in relation to unaltered objects, presented in two different sessions (sample and trial), was studied. In a first series of experiments the effect of (-)-OSU6162 on natural forgetting was evaluated. With an inter-session interval (ISI) of 30 min or an hour, untreated mice spent longer time exploring the displaced object, but when the time between sessions was as long as 6 h, the mice did not identify the displaced object. However, using the 6 h ISI design we found that (-)-OSU6162 in doses up to 30 μmol/kg, given directly after the sample session, caused an increased interest for the displaced object. Twenty-four hours after administration, (-)-OSU6162 was still effective in facilitating identification of the displaced object. We also evaluated the effect of (-)-OSU6162 on scopolamine-induced memory deficits in this model - the two agents were given 30 min before the sample session and the ISI was one hour. Under these conditions scopolamine induced a deficit in object location memory and this effect was counteracted by (-)-OSU6162. The data from the present study suggest that (-)-OSU6162 prolongs object location memory in normal mice and reverses scopolamine-induced memory deficits. (-)-OSU6162 might be a valuable drug candidate for memory deficits and other cognitive impairments.
Collapse
Affiliation(s)
- Marie K L Nilsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46 Gothenburg, Sweden.
| | - Maria L Carlsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46 Gothenburg, Sweden
| |
Collapse
|
28
|
Kokhan VS, Afanasyeva MA, Van'kin GI. α-Synuclein knockout mice have cognitive impairments. Behav Brain Res 2012; 231:226-30. [PMID: 22469626 DOI: 10.1016/j.bbr.2012.03.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/14/2012] [Accepted: 03/18/2012] [Indexed: 11/25/2022]
Abstract
α-Synuclein is a member of the synuclein family of cytoplasmic, predominantly neuron-specific proteins. Considerable amount of α-synuclein is found in axons and presynaptic terminals of neurons located in brain areas responsible for emotions and memory. In the present study we have carried out behavioral evaluation of spatial and working long-term memory of α-synuclein knockout mice. Our data shows that α-synuclein knockout mice have reduced learning ability in tests requiring both working and spatial memory. For the first time we have demonstrated that α-synuclein is necessary for these types of learning.
Collapse
Affiliation(s)
- V S Kokhan
- Institute of Physiologically Active Compounds of RAS, Chernogolovka, Russia.
| | | | | |
Collapse
|
29
|
Validation of an air-puff passive-avoidance paradigm for assessment of aversive learning and memory in rat models of chronic pain. J Neurosci Methods 2012; 204:1-8. [DOI: 10.1016/j.jneumeth.2011.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 11/20/2022]
|
30
|
Veeraragavan S, Bui N, Perkins JR, Yuva-Paylor LA, Paylor R. The modulation of fragile X behaviors by the muscarinic M4 antagonist, tropicamide. Behav Neurosci 2011; 125:783-90. [PMID: 21942438 PMCID: PMC3183989 DOI: 10.1037/a0025202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscarinic acetylcholine receptors (mAChR) are G protein-coupled receptors (M1-M5), grouped together into two functional classes, based on their G protein interaction. Although ubiquitously expressed in the CNS, the M4 protein shows highest expression in the neostriatum, cortex, and hippocampus. Electrophysiological and biochemical studies have provided evidence for overactive mAChR signaling in the fragile X knock-out (Fmr1KO) mouse model, and this has been hypothesized to contribute to the phenotypes seen in Fmr1KO mice. To address this hypothesis we used an M4 antagonist, tropicamide, to reduce the activity through the M4 mAChR and investigated the behavioral response in the Fmr1KO animals. Data from the marble-burying assay have shown that tropicamide treatment resulted in a decreased number of marbles buried in the wild-type (WT) and in the knockout (KO) animals. Results from the open field assay indicated that tropicamide increases activity in both the WT and KO mice. In the passive avoidance assay, tropicamide treatment resulted in the improvement of performance in both the WT and the KO animals at the lower doses (2 and 5 mg/kg), and the drug was shown to be important for the acquisition and not the consolidation process. Lastly, we observed that tropicamide causes a significant decrease in the percentage of audiogenic seizures in the Fmr1KO animals. These results suggest that pharmacological antagonism of the M4 receptor modulates select behavioral responses in the Fmr1KO mice.
Collapse
Affiliation(s)
- Surabi Veeraragavan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Modulation of behavioral phenotypes by a muscarinic M1 antagonist in a mouse model of fragile X syndrome. Psychopharmacology (Berl) 2011; 217:143-51. [PMID: 21487657 DOI: 10.1007/s00213-011-2276-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/14/2011] [Indexed: 12/12/2022]
Abstract
RATIONALE Muscarinic acetylcholine receptors (mAChR) are G protein-coupled receptors, widely expressed in the CNS. Electrophysiological and molecular studies have provided evidence for overactive M1 receptor signaling in the fragile X knockout (Fmr1 KO) mouse model, suggesting the involvement of the M1 receptors in fragile X syndrome. Overactive signaling through the M1 receptor has been hypothesized to contribute to the phenotypes seen in fragile X mice. OBJECTIVE We investigated the modulation of behavioral responses in the Fmr1 KO animals by reducing the activity through the muscarinic M1 receptor using the pharmacological agent dicyclomine, an M1 antagonist. METHODS The behavioral assays used to investigate the pharmacological effects include marble burying (perseverative behavior), open-field exploration (activity), passive avoidance (learning and memory), prepulse inhibition (sensorimotor gating), and audiogenic seizures. RESULTS Data from the marble-burying assay suggests that treatment with dicyclomine results in a decrease in the number of marbles buried in the wild-type and in the KO animals. To examine the possibility of drug-induced sedation, overall activity was measured in an open-field chamber. Dicyclomine only increases activity at a dose of 20 mg/kg in the wild-type mice but did not affect exploration in the KO animals. Lastly, we observed that dicyclomine causes a significant decrease in the percentage of audiogenic seizures in the Fmr1 KO animals. CONCLUSION Our findings suggest that pharmacologically reducing the activity through the mAChR M1 alters select behavioral responses in the Fmr1 KO mice.
Collapse
|
32
|
Haley GE, Kroenke C, Schwartz D, Kohama SG, Urbanski HF, Raber J. Hippocampal M1 receptor function associated with spatial learning and memory in aged female rhesus macaques. AGE (DORDRECHT, NETHERLANDS) 2011; 33:309-320. [PMID: 20890730 PMCID: PMC3168603 DOI: 10.1007/s11357-010-9184-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/03/2010] [Indexed: 05/29/2023]
Abstract
Of the acetylcholine muscarinic receptors, the type 1 (M1) and type 2 (M2) receptors are expressed at the highest levels in the prefrontal cortex (PFC) and hippocampus, brain regions important for cognition. As equivocal findings of age-related changes of M1 and M2 in the nonhuman primate brain have been reported, we first assessed age-related changes in M1 and M2 in the PFC and hippocampus using saturation binding assays. Maximum M1 receptor binding, but not affinity of M1 receptor binding, decreased with age. In contrast, the affinity of M2 receptor binding, but not maximum M2 receptor binding, increased with age. To determine if in the elderly cognitive performance is associated with M1 or M2 function, we assessed muscarinic function in elderly female rhesus macaques in vivo using a scopolamine challenge pharmacological magnetic resonance imaging and in vitro using saturation binding assays. Based on their performance in a spatial maze, the animals were classified as good spatial performers (GSP) or poor spatial performers (PSP). In the hippocampus, but not PFC, the GSP group showed a greater change in T(2)*-weighted signal intensity after scopolamine challenge than the PSP group. The maximum M1 receptor binding and receptor binding affinity was greater in the GSP than the PSP group, but no group difference was found in M2 receptor binding. Parameters of circadian activity positively correlated with the difference in T(2)*-weighted signal intensity before and after the challenge, the maximum M1 receptor binding, and the M1 receptor binding affinity. Thus, while in rhesus macaques, there are age-related decreases in M1 and M2 receptor binding, in aged females, hippocampal M1, but not M2, receptor function is associated with spatial learning and memory and circadian activity.
Collapse
Affiliation(s)
- Gwendolen E. Haley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| | - Chris Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| | - Daniel Schwartz
- Portland Veterans Administration Medical Center, Division of Psychiatry, Oregon Health and Science University, Portland, OR 97239 USA
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| | - Jacob Raber
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| |
Collapse
|
33
|
Pol-Bodetto S, Jeltsch-David H, Lecourtier L, Rusnac N, Mam-Lam-Fook C, Cosquer B, Geiger K, Cassel JC. The double-H maze test, a novel, simple, water-escape memory task: acquisition, recall of recent and remote memory, and effects of systemic muscarinic or NMDA receptor blockade during training. Behav Brain Res 2010; 218:138-51. [PMID: 21115065 DOI: 10.1016/j.bbr.2010.11.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/15/2010] [Accepted: 11/20/2010] [Indexed: 11/25/2022]
Abstract
To explore spatial cognition in rodents, research uses maze tasks, which differ in complexity, number of goals and pathways, behavioural flexibility, memory duration, but also in the experimenter's control over the strategy developed to reach a goal (e.g., allocentric vs. egocentric). This study aimed at validating a novel spatial memory test: the double-H maze test. The transparent device made of an alley with two opposite arms at each extremity and two in its centre is flooded. An escape platform is submerged in one arm. For experiments 1-3, rats were released in unpredictable sequences from one of both central arms to favour an allocentric approach of the task. Experiment 1 (3 trials/day over 6 days) demonstrated classical learning curves and evidence for recent and nondegraded remote memory performance. Experiment 2 (2 days, 3 trials/day) showed a dose-dependent alteration of task acquisition/consolidation by muscarinic or NMDA receptor blockade; these drug effects vanished with sustained training (experiment 3; 4 days, 3 trials/day). Experiment 4 oriented rats towards a procedural (egocentric) approach of the task. Memory was tested in a misleading probe trial. Most rats immediately switched from response learning-based to place learning-based behaviour, but only when their initial view on environmental cues markedly differed between training and probe trials. Because this simple task enables the formation of a relatively stable memory trace, it could be particularly adapted to study consolidation processes at a system level or/and the interplay between procedural and declarative-like memory systems.
Collapse
Affiliation(s)
- Sarah Pol-Bodetto
- Laboratoire d'Imagerie et de Neurosciences Cognitives, FRE 3289, Université de Strasbourg - CNRS, IFR 37 de Neurosciences - GDR 2905 du CNRS, Faculté de Psychologie, 12 rue Goethe, F-67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Schäble S, Huston JP, Brandao ML, Dere E, de Souza Silva MA. Neurokinin-2 receptor antagonism in medial septum influences temporal-order memory for objects and forebrain cholinergic activity. Peptides 2010; 31:108-15. [PMID: 19854231 DOI: 10.1016/j.peptides.2009.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 01/29/2023]
Abstract
UNLABELLED In the mammalian brain the neurokinin NK(2) receptors are predominantly located in the hippocampus, thalamus, septum and frontal cortex. It has been shown that administration of the NK(2) receptor agonist, neurokinin A (NKA), into the medial septum of rats increases extracellular levels of acetylcholine (ACh) in the hippocampus and that NK(2) receptor antagonism blocks this increase. Therefore, given the prominent role of hippocampal ACh in information processing, we hypothesized that NK(2) receptor antagonism in the medial septum would negatively affect learning and memory via its influence on the cholinergic neurons of the basal forebrain. We investigated the action of local application of the peptidic NK(2) receptor antagonist, Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH (1, 10 and 100pmol), into the medial septum on object memory for temporal order and spatial location using an object novelty paradigm. By means of in vivo microdialysis and HPLC analyses, we also examined the influence of NK(2) receptor antagonism in the medial septum on ACh in major cholinergic projection areas of the basal forebrain, namely, hippocampus, frontal cortex and amygdala. RESULTS Injection of vehicle alone into the medial septum impaired memory for temporal order and spatial location of objects. Application of 1pmol of the NK(2) receptor antagonist partially reversed this deficit by reinstating memory for temporal order. Injection of 10pmol of the NK(2) receptor antagonist into the medial septum decreased levels of ACh in the hippocampus (at 30min post-injection), and frontal cortex (at 30 and 80min post-injection) in comparison to vehicle. However, this apparent decrease was the result of the blockade of a saline-induced increase in ACh levels.
Collapse
Affiliation(s)
- S Schäble
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
36
|
Abstract
In the present article, we describe a new protocol for the inhibitory avoidance test, with a dual purpose: (1) to provide a less variable and more reliable assessment of the efficacy of potential cognitive enhancers in antagonizing scopolamine-induced long-term-memory deficits, and (2) to secure a high throughput for pharmacological screening of cognitive enhancers. The new protocol consists of two acquisition trials that are followed 24 h later by a single retention trial. In the present study, this protocol clearly dissociated the frequency distributions of retention latencies between scopolamine- and vehicle-treated groups and allowed validation by means of two acetylcholinesterase inhibitors-tacrine and donepezil-that proved to be active in counteracting the scopolamine-induced memory deficit. This protocol also produced stability of the behavioral response to pharmacological agents over a 3-year period. A statistical power analysis indicated that, depending on the efficacy of the drug/dose, a sample size of 5-12 mice was required in order to show a reversal of the scopolamine-induced memory deficit. The double-trial acquisition protocol is suitable for testing cognitive enhancers, while also providing a clearly enhanced throughput.
Collapse
|
37
|
H3 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing retrieval. Psychopharmacology (Berl) 2009; 202:141-52. [PMID: 18493749 DOI: 10.1007/s00213-008-1171-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 04/04/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE Accumulated evidence suggests a role for histamine in cognition and the use of H3 receptor antagonists in the treatment of learning and memory disorders. OBJECTIVES The aim of the current study was to investigate the cognition enhancing properties of ciproxifan, an H3 receptor antagonist, after natural forgetting in normal adult rats. MATERIALS AND METHODS The novel object discrimination task, a recognition memory test based on spontaneous exploratory behaviour, was used. Briefly, rats exposed to two identical objects during an acquisition trial can discriminate between a novel object and a familiar one during a subsequent choice trial after a short delay but not after a 24-h inter-trial interval. RESULTS The scopolamine (0.5 mg/kg, i.p.)-induced impairment after a short delay was abolished by ciproxifan (p < 0.001). Natural forgetting was prevented by a single administration of ciproxifan (3 mg/kg) prior to the retention test (p < 0.001) but not when administered before or immediately after the acquisition trial (schedule effect p < 0.05), demonstrating a specific activity on memory retrieval. Pretreatment with either pyrilamine (10 mg/kg), an H1 antagonist, or zolantidine (10 mg/kg), an H2 antagonist, prevented the retrieval enhancement effect of ciproxifan (p < 0.05 and p < 0.001, respectively). CONCLUSIONS Histamine H3 receptor antagonists restore the performance of rats impaired by scopolamine and enhance recognition memory after acute administration before the retrieval phase via a mechanism dependent on H1 and H2 receptor activation.
Collapse
|
38
|
Ho SC, Ho YF, Lai TH, Liu TH, Su SY, Wu RY. Effect of Tianma Gouteng Decoction with subtractive ingredients and its active constituents on memory acquisition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2008; 36:593-602. [PMID: 18543391 DOI: 10.1142/s0192415x08006004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Accumulating evidence indicates that the high blood pressure (BP) is a potent risk factor for dementia in the elderly. In line with this theory, we had found the mixture of Chinese herbs (TGD) which were traditionally used to treat hypertension, could enhance the cognitive function. The aim of this study was to decrease the number of herbs used from 11 (TGD) to 4 herbs (TGDS) and further to search the active constituents. After administering a dose of 10 g/kg of TGDS0 to ICR mice, no cholinergic symptoms of lacrimation, salivation, emesis, eyeclosure, increased respiration and fibrillation were observed. All the mice survived without any deaths after 24 hours and 7 days. No changes were observed in control and experimental groups on locomotor activity (no stimulant or sedative effects). It was also revealed that TGDS could prolong the step-through latency at the dose of 1.0 and 2.5 g/kg on passive avoidance tasks in mice. This result was the same as the previous study. The active constituents which enhanced the memory acquisition were discovered in the butanol layer and ethyl acetate layer after the extraction.
Collapse
Affiliation(s)
- Shih-Ching Ho
- Chinese Herbal Medicine Division, Development Center for Biotechnology, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
39
|
Figueredo LZP, Moreira KM, Ferreira TL, Fornari RV, Oliveira MGM. Interaction between glutamatergic-NMDA and cholinergic-muscarinic systems in classical fear conditioning. Brain Res Bull 2008; 77:71-6. [PMID: 18582541 DOI: 10.1016/j.brainresbull.2008.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 05/18/2008] [Accepted: 05/28/2008] [Indexed: 12/29/2022]
Abstract
A number of studies have suggested that the glutamatergic and cholinergic systems are both involved in learning and memory processes and that they interact in order to facilitate these processes. However, the role of M1-muscarinic receptors in mediating this interaction has not been elucidated. The aim of this study was to determine whether the concomitant administration of MK-801 (non-competitive NMDA antagonist) and dicyclomine (M1-muscarinic antagonist--DIC) in sub-effective doses impairs contextual fear conditioning (hippocampal-dependent task) and tone fear conditioning tasks (hippocampal-independent task). The results showed that concomitant pre-training administration of DIC (8.0 mg/kg) and MK-801 (0.07 mg/kg)--two sub-effectives doses for the contextual fear conditioning task--does impair the performance of animals on this task (as measured by freezing behavior time). Tone fear conditioning tasks were not affected by the drugs either administered separately or concurrently. The pre-training administration of sub-effective doses of MK-801 and DIC in combination impairs performance on contextual fear conditioning task (hippocampal-dependent), but not on tone fear conditioning task (hippocampal-independent). These data support the hypothesis that the interaction between glutamatergic and cholinergic systems in hippocampus-dependent learning and memory processes probably occurs through M1 receptor.
Collapse
|
40
|
Liu EHC, Lee TL, Nishiuchi Y, Kimura T, Tachibana S. Nocistatin and its derivatives antagonize the impairment of short-term acquisition induced by nociceptin. Neurosci Lett 2007; 416:155-9. [PMID: 17306455 DOI: 10.1016/j.neulet.2007.01.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
We studied the effects of human nocistatin, a mature form of human nocistatin of 17 amino acid length (nocistatin 17), and the amide derivative of nocistain 17 (nocistatin amide), and nociceptin/orphanin FQ on short-term acquisition in mice using a multi trial passive avoidance protocol. Nociceptin 1 nmol administered by i.c.v. injection 15 min beforehand increased the number of trials required to achieve the learning objective and decreased the step through latency times in the first, second and third test trials. Nocistatin and nocistatin 17 on their own did not affect acquisition, but were able at doses of 4 nmol to antagonize the impairment caused by nociceptin 1 nmol. Nocistatin amide on its own also did not impair acquisition and at a lower dose of 1 nmol was able to completely antagonize nociceptin. [N-Phe(1)]-nociceptin (1-13) amide, a selective opioid receptor-like 1 (ORL1) receptor antagonist, could also antagonize the effect of nociceptin, confirming that nociceptin's effect is induced via the ORL1 receptor. The results support suggestions that both nocistatin and nociceptin have roles in learning and memory, with nocistatin working as a functional antagonist of nociceptin. The shorter mature human nocistatin peptide had similar activity to the larger peptide, and its amide derivative may be more potent.
Collapse
Affiliation(s)
- Eugene Hern C Liu
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore.
| | | | | | | | | |
Collapse
|
41
|
Tsai FS, Peng WH, Wang WH, Wu CR, Hsieh CC, Lin YT, Feng IC, Hsieh MT. Effects of luteolin on learning acquisition in rats: Involvement of the central cholinergic system. Life Sci 2007; 80:1692-8. [PMID: 17337279 DOI: 10.1016/j.lfs.2007.01.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/26/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
The study was conducted to investigate the ameliorating effects of luteolin on memory acquisition in rats. The effects of luteolin on scopolamine-induced impairment of passive avoidance response were evaluated primarily, as well as the role of the central nervous system through the use of central neurotoxins and central nervous antagonists. Luteolin was not reversed by scopolamine N-methylbromide (M-SCOP) but blocked the impairment of learning acquisition induced by cholinergic neurotoxin (ethylcholine aziridinium, AF64A) and muscarinic (scopolamine hydrobromide, SCOP) and nicotinic (mecamylamine, MECA) receptor antagonists. However, it did not block dopaminergic neurotoxin (6-hydroxydopamine, 6-OHDA)-induced and serotonergic neurotoxin (5,7-dihydroxytryptamine, 5,7-DHT)-induced impairments. From these results, we suggest that the attenuating effect of luteolin (10 mg/kg, i.p.) on the deficits of passive avoidance performance induced by SCOP may be related to the increases in the activities of central muscarinic and nicotinic receptors.
Collapse
Affiliation(s)
- Fan-Shiu Tsai
- Institute of Chinese Pharmaceutical Sciences, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kojima J, Onodera K, Ozeki M, Nakayama K. Ipidacrine (NIK-247): A Review of Multiple Mechanisms as an Antidementia Agent. CNS DRUG REVIEWS 2006. [DOI: 10.1111/j.1527-3458.1998.tb00067.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Ho SC, Ho YF, Lai TH, Liu TH, Wu RY. Traditional Chinese herbs against hypertension enhance memory acquisition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2006; 33:787-95. [PMID: 16265991 DOI: 10.1142/s0192415x05003326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent findings of a link between high blood pressure (BP) and dementia have given new prospects. The aim of this study is to analyze a mixture of Chinese herbs, Tianma Gouteng Decoction (TGD), which was traditionally used to treat hypertension, and investigate its relation to ameliorating cognitive impairment. We discovered that TGD also had properties involving enhancement of memory acquisition (learning) skills in mice, but not memory consolidation. It was observed that TGD could prolong the step-through latency at doses of 1.0 and 2.5 g/kg on passive avoidance task in mice. TGD could be developed further to treat mice with amnesia, which was induced by scopolamine at the same dose under long-term (8 days) administration.
Collapse
Affiliation(s)
- Shih-Ching Ho
- Chinese Herbal Medicine Division, Development Center for Biotechnology Xizhi City, Taipei County 221, Taiwan.
| | | | | | | | | |
Collapse
|
44
|
Monteiro Moreira K, Lima Ferreira T, Vecchio Fornari R, Perez Figueredo LZ, Menezes Oliveira MG. Interaction between M1-muscarinic and glutamatergic NMDA receptors on an inhibitory avoidance task. Brain Res Bull 2005; 67:504-8. [PMID: 16216700 DOI: 10.1016/j.brainresbull.2005.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 06/28/2005] [Accepted: 07/28/2005] [Indexed: 11/21/2022]
Abstract
It has been demonstrated that MK-801 potentiates the effects of the non-selective muscarinic antagonist scopolamine on memory in rats. In this study, we investigated the role of the M1-muscarinic receptor in this interaction, by administering different doses of dicyclomine (DIC) and MK-801 in combination to male Wistar rats before training on the inhibitory avoidance task. MK-801 and DIC in sub-effective doses were administered in combination. It was observed that MK-801 at a dose of 0.1125 mg/kg with a sub-effective dose of 8 mg/kg of DIC significantly impaired the retention test when compared with saline-treated animals, i.e. MK-801 potentiated the effects of dicyclomine on memory impairment. Our results suggest an important role for the M1-muscarinic receptor in the synergistic interaction between cholinergic muscarinic and glutamatergic NMDA receptors, which is in line with the findings that the interactive modulation between these two neurotransmitters systems constitutes an important mechanism in cognitive functions.
Collapse
Affiliation(s)
- Karin Monteiro Moreira
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Napoleão de Barros 925, CEP 04024-002, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
45
|
Hsieh MT, Cheng SJ, Lin LW, Wang WH, Wu CR. The ameliorating effects of acute and chronic administration of LiuWei Dihuang Wang on learning performance in rodents. Biol Pharm Bull 2003; 26:156-61. [PMID: 12576673 DOI: 10.1248/bpb.26.156] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ameliorating effects of LiuWei Dihuang Wang (LDW) after single, one-week or two-week treatment of scopolamine (SCOP)-induced and p-chloroamphetamine (PCA)-induced amnesia by using the passive avoidance task and the facilitatory effects on two-way active avoidance performance in rats were studied. LDW (2 g/kg) after single treatment significantly prolonged the shortened step-through latency induced by SCOP and PCA. Then, SCOP- and PCA-induced amnesia was reversed by 1 and 0.1-1 g/kg LDW with one-week consecutive treatment respectively. For two-week consecutive treatment with LDW, the reversal from SCOP- and PCA-induced amnesia required only 0.01 g/kg. However, the rats treated with LDW only at 0.5, but not 0.01-0.1 g/kg, before or after each training session showed an increasing number of avoidances and a decreasing number of escapes on days 2-5 of learning. LDW at any dose alone did not influence the step-through latency in the training trial produced by non-shock rats, the motor activity and pentobarbital-induced hypnosis in rodents. These results suggest that LDW possesses the anti-amnestic and cognitive-enhancing activities related to the memory processes, and these activities were parallel to treatment duration and dependent on the learning models.
Collapse
Affiliation(s)
- Ming-Tsuen Hsieh
- Institute of Chinese Pharmaceutical Sciences, China Medical College, Taichung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
46
|
Hsieh MT, Lin YT, Lin YH, Wu CR. Radix Angelica Sinensis extracts ameliorate scopolamine- and cycloheximide-induced amnesia, but not p-chloroamphetamine-induced amnesia in rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2001; 28:263-72. [PMID: 10999445 DOI: 10.1142/s0192415x00000313] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of the methanolic extract of Radix Angelica Sinensis (Umbellifera) (abbreviated as RAS extract) and n-hexane fraction of RAS extract (RAS(H) fraction) on the various drugs-induced amnesia in rats were studied by using passive avoidance task. RAS extract (1 g/kg) significantly prolonged the shortened step-through latency induced by SCOP and CXM, but not PCA. Furthermore, RAS(H) fraction (1 g/kg) also significantly prolonged the shortened step-through latency induced by SCOP and CXM but not PCA. RAS extract at any dose alone did not influence the step-through latency in the training trial produced by non-shocked rats, but it plus PCA prolonged the latency compared with PCA alone. However, RAS(H) fraction (1 g/kg) prolonged the latency in the training trial produced by non-shocked rats, but it plus any induced drugs did not differ from any induced drugs alone. These results suggest that the attenuating effects of RAS extract on the various drugs-induced amnesia were related to the memory processes. n-Hexane fraction of RAS extract might be one of the active fractions of RAS extract in the treatment of amnesia.
Collapse
Affiliation(s)
- M T Hsieh
- Institute of Chinese Pharmaceutical Sciences, China Medical College, Taichung, Taiwan
| | | | | | | |
Collapse
|
47
|
Fornari RV, Moreira KM, Oliveira MG. Effects of the selective M1 muscarinic receptor antagonist dicyclomine on emotional memory. Learn Mem 2000; 7:287-92. [PMID: 11040260 PMCID: PMC311344 DOI: 10.1101/lm.34900] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nonselective muscarinic antagonist scopolamine is known to impair the acquisition of some learning tasks such as inhibitory avoidance. There has been recent research into the effects of this drug in contextual fear conditioning and tone fear conditioning paradigms. The purpose of the present study was to assess the role of the selective M1 muscarinic antagonist dicyclomine in these paradigms and in the inhibitory avoidance test. Rats were administered different doses of dicyclomine or saline 30 min before acquisition training. The animals were tested 24 hr later, and it was observed that 16 mg/kg of dicyclomine impaired both contextual fear conditioning and inhibitory avoidance. However, dicyclomine (up to 64 mg/kg) did not affect tone fear conditioning. These results suggest that the selective M1 muscarinic antagonist dicyclomine differentially affects aversively motivated tasks known to be dependent on hippocampal integrity (such as contextual fear conditioning and inhibitory avoidance) but does not affect similar hippocampus-independent tasks.
Collapse
Affiliation(s)
- R V Fornari
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros 925 CEP 04024-002, São Paulo SP, Brazil
| | | | | |
Collapse
|
48
|
Ito K, Ohmori T, Abekawa T, Koyama T. The role of benzodiazepine receptors in the acquisition and expression of behavioral sensitization to methamphetamine. Pharmacol Biochem Behav 2000; 65:705-10. [PMID: 10764926 DOI: 10.1016/s0091-3057(99)00263-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The GABA-benzodiazepine neurotransmission has been reported to be implicated in various forms of plasticity such as kindling and learning. In a previous study, we have shown that clonazepam (CZP), a GABA-benzodiazepine agonist, prevents the acquisition of behavioral sensitization to methamphetamine (MA). The present study was conducted to extend this finding by examining the effect of flumazenil (Flu), a GABA-benzodiazepine antagonist on the prevention by CZP. Rats (male Wistar-King rats) treated with MA (1 mg/kg, SC) for 10 days showed significantly enhanced motor activity compared to those treated with saline when tested with MA (1 mg/kg) after a 7-8-day withdrawal, indicating the acquisition of behavioral sensitization. Representing the previous finding, pretreatment with CZP (0.5 mg/kg) prior to MA administration prevented the acquisition of the phenomenon. Pretreatment with Flu (10 mg/kg) prior to MA administration has no influence on the acquisition of sensitization. However, pretreatment with Flu prior to CZP administration reversed the inhibitory effect of CZP. CZP showed no effect on the expression of sensitization in the sensitized rats when given prior to the MA readministration. These results strengthen the suggestion that stimulation of GABA-benzodiazepine receptors plays a role in the acquisition but not in the expression of behavioral sensitization to MA.
Collapse
Affiliation(s)
- K Ito
- Department of Psychiatry, Hokkaido University School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| | | | | | | |
Collapse
|
49
|
Anglade F, Chapouthier G, Dodd RH, Baudoin C. Olfactory memory in rats, cholinergic agents and benzodiazepine receptor ligands. JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:225-32. [PMID: 10399678 DOI: 10.1016/s0928-4257(99)80155-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs and their effects on olfactory learning processes in rats were tested using a modified version of the runway apparatus developed by Ades. Rats were first exposed to a conspecific urine sample and 24 h later were exposed to the same stimulus in the runway. Observations recorded the time spent investigating the urine and the number of sniffs at the site, these being considered to be indices of memory. Diazepam-treated rats (4 or 6 mg/kg) and scopolamine-treated rats (0.5 or 1 mg/kg) showed increases for both parameters. When both drugs were administered simultaneously, the impairing effect was potentiated. However, no changes in learning responses were observed in rats treated with physostigmine (0.125, 0.25, 0.5 mg/kg) or methyl beta-carboline-3-carboxylate (0.3, 0.5, 1 mg/kg), although the administration of physostigmine or methyl beta-carboline-3-carboxylate was shown to antagonize the impairing effect of diazepam or scopolamine respectively. These observations support the hypothesis of interactions existing between cholinergic agents and benzodiazepine receptor ligands and of such interactions affecting olfactory acquisition processes. The runway apparatus appears to be a valid candidate model to be used for the assessment of pharmacological influences on olfactory learning in rats.
Collapse
Affiliation(s)
- F Anglade
- Laboratoire de Pharmacologie du Comportement, Centre d'Etudes du Bouchet, Vert-Le-Petit, France
| | | | | | | |
Collapse
|
50
|
Lu MC. Effects of Jen-San-Yaung-Jung-Tang on scopolamine-induced amnesia in rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 1998; 26:117-25. [PMID: 9799963 DOI: 10.1142/s0192415x98000166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of Jen-San-Yaung-Jung-Tang (YJT) on scopolamine (SCOP)-induced amnesia was investigated in a step-through passive avoidance task in rats. It was observed that YJT (0.5 and 1.0 g/kg) significantly improved SCOP-induced amnesia and did not change the horizontal activity and pain threshold. YJT at 0.5 and 1.0 g/kg also did not change SCOP-treated horizontal activity and pain threshold. Furthermore, the antiamnesic effect of YJT at 1.0 g/kg on the SCOP-induced amnesia was augmented by physostigmine, but was not altered by neostigmine or scopolamine N-methylbromide. These results suggest that the antiamnesic effect of YJT could only be related to the memory-related process, and to an increase in central cholinergic neuronal activity.
Collapse
Affiliation(s)
- M C Lu
- Graduate Institute of Traditional Chinese Medicine, China Medical College, Taichung, Taiwan
| |
Collapse
|