1
|
Badaeva ED, Davoyan RO, Tereshchenko NA, Lyalina EV, Zoshchuk SA, Goncharov NP. Cytogenetic features of intergeneric amphydiploids and genome-substituted forms of wheat. Vavilovskii Zhurnal Genet Selektsii 2024; 28:716-730. [PMID: 39722674 PMCID: PMC11668819 DOI: 10.18699/vjgb-24-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 12/28/2024] Open
Abstract
Synthetic intergeneric amphydiploids and genome-substituted wheat forms are an important source for transferring agronomically valuable genes from wild species into the common wheat (Triticum aestivum L.) genome. They can be used both in academic research and for breeding purposes as an original material for developing wheat-alien addition and substitution lines followed by translocation induction with the aid of irradiation or nonhomologous chromosome pairing. The chromosome sets and genome constitutions of allopolyploids are usually verified in early hybrid generations, whereas the subsequent fate of these hybrids remains unknown in most cases. Here we analyze karyotypes of five hexa- (2n = 6x = 42) and octoploid (2n = 8x = 56) amphydiploids of wheat with several species of the Aegilops, Haynaldia, and Hordeum genera, and six genome-substituted wheat-Aegilops forms, which were developed over 40 years ago and have been maintained in different gene banks. The analyses involve C-banding and fluorescence in situ hybridization (FISH) with pAs1 and pSc119.2 probes. We have found that most accessions are cytologically stable except for Avrodes (genome BBAASS, a hexaploid genome-substituted hybrid of wheat and Aegilops speltoides), which segregated with respect to chromosome composition after numerous reproductions. Chromosome analysis has not confirmed the presence of the N genome from Ae. uniaristata Vis. in the genome-substituted hybrid Avrotata. Instead, Avrotata carries the D genome. Our study shows that octoploid hybrids, namely AD 7, AD 7147 undergo more complex genome reorganizations as compared to hexaploids: the chromosome number of two presumably octoploid wheat-Aegilops hybrids were reduced to the hexaploid level. Genomes of both forms lost seven chromosome pairs, which represented seven homoeologous groups and derived from different parental subgenomes. Thus, each of the resulting hexaploids carries a synthetic/hybrid genome consisting of a unique combination of chromosomes belonging to different parental subgenomes.
Collapse
Affiliation(s)
- E D Badaeva
- N.I. Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - R O Davoyan
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - N A Tereshchenko
- N.I. Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - E V Lyalina
- N.I. Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - S A Zoshchuk
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Gálvez-Galván A, Barea L, Garrido-Ramos MA, Prieto P. Highly divergent satellitomes of two barley species of agronomic importance, Hordeum chilense and H. vulgare. PLANT MOLECULAR BIOLOGY 2024; 114:108. [PMID: 39356367 PMCID: PMC11447152 DOI: 10.1007/s11103-024-01501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024]
Abstract
In this paper, we have performed an in-depth study of the complete set of the satellite DNA (satDNA) families (i.e. the satellitomes) in the genome of two barley species of agronomic value in a breeding framework, H. chilense (H1 and H7 accessions) and H. vulgare (H106 accession), which can be useful tools for studying chromosome associations during meiosis. The study has led to the analysis of a total of 18 satDNA families in H. vulgare, 25 satDNA families in H. chilense (accession H1) and 27 satDNA families in H. chilense (accession H7) that constitute 46 different satDNA families forming 36 homology groups. Our study highlights different important contributions of evolutionary and applied interests. Thus, both barley species show very divergent satDNA profiles, which could be partly explained by the differential effects of domestication versus wildlife. Divergence derives from the differential amplification of different common ancestral satellites and the emergence of new satellites in H. chilense, usually from pre-existing ones but also random sequences. There are also differences between the two H. chilense accessions, which support genetically distinct groups. The fluorescence in situ hybridization (FISH) patterns of some satDNAs yield distinctive genetic markers for the identification of specific H. chilense or H. vulgare chromosomes. Some of the satellites have peculiar structures or are related to transposable elements which provide information about their origin and expansion. Among these, we discuss the existence of different (peri)centromeric satellites that supply this region with some plasticity important for centromere evolution. These peri(centromeric) satDNAs and the set of subtelomeric satDNAs (a total of 38 different families) are analyzed in the framework of breeding as the high diversity found in the subtelomeric regions might support their putative implication in chromosome recognition and pairing during meiosis, a key point in the production of addition/substitution lines and hybrids.
Collapse
Affiliation(s)
- Ana Gálvez-Galván
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004, Córdoba, Spain
| | - Lorena Barea
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004, Córdoba, Spain
- Area of Plant Breeding and Biotechnology, IFAPA Alameda del Obispo, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004, Córdoba, Spain.
| |
Collapse
|
3
|
Szőke-Pázsi K, Kruppa K, Tulpová Z, Kalapos B, Türkösi E, Gaál E, Darkó É, Said M, Farkas A, Kovács P, Ivanizs L, Doležel J, Rabanus-Wallace MT, Molnár I, Szakács É. DArTseq genotyping facilitates the transfer of "exotic" chromatin from a Secale cereale × S. strictum hybrid into wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1407840. [PMID: 39309182 PMCID: PMC11412823 DOI: 10.3389/fpls.2024.1407840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024]
Abstract
Cultivated and wild species of the genus rye (Secale) are important but underexploited gene sources for increasing the genetic diversity of bread wheat. Gene transfer is possible via bridge genetic materials derived from intergeneric hybrids. During this process, it is essential to precisely identify the rye chromatin in the wheat genetic background. In the present study, backcross generation BC2F8 from a cross between Triticum aestivum (Mv9kr1) and S. cereanum ('Kriszta,' a cultivar from the artificial hybrid of S. cereale and S. strictum) was screened using in-situ hybridization (GISH and FISH) and analyzed by DArTseq genotyping in order to select potentially agronomically useful genotypes for prebreeding purposes. Of the 329,267 high-quality short sequence reads generated, 27,822 SilicoDArT and 8,842 SNP markers specific to S. cereanum 1R-7R chromosomes were identified. Heatmaps of the marker densities along the 'Lo7' rye reference pseudomolecules revealed subtle differences between the FISH- and DArTseq-based results. This study demonstrates that the "exotic" rye chromatin of S. cereanum introgressed into wheat can be reliably identified by high-throughput DArTseq genotyping. The Mv9kr1-'Kriszta' addition and translocation lines presented here may serve as valuable prebreeding genetic materials for the development of stress-tolerant or disease-resistant wheat varieties.
Collapse
Affiliation(s)
- Kitti Szőke-Pázsi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Zuzana Tulpová
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Balázs Kalapos
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Éva Darkó
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Mahmoud Said
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Cairo, Egypt
| | - András Farkas
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Péter Kovács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - László Ivanizs
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - M. Timothy Rabanus-Wallace
- School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - István Molnár
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Éva Szakács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
4
|
Davoyan RO, Bebykina IV, Davoyan ER, Zinchenko AN, Zubanova YS, Boldakov DM, Basov VI, Badaeva ED, Adonina IG, Salina EA. A study of the influence of the T2DL.2DS-2SS translocation and the 5S(5D) substitution from Aegilops speltoides on breeding-valuable traits of common wheat. Vavilovskii Zhurnal Genet Selektsii 2024; 28:506-514. [PMID: 39280849 PMCID: PMC11393656 DOI: 10.18699/vjgb-24-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 09/18/2024] Open
Abstract
The use of the gene pool of wild relatives for expanding the genetic diversity of common wheat is an important task of breeding programs. However, the practical application of common wheat lines with alien genetic material is constrained by the lack of information on chromosomal rearrangements and the negative impact of the transferred material on agronomically important traits. This research is aimed at studying 14 introgression lines with the T2DL.2DS-2SS translocation and the 5S(5D) substitution from Aegilops speltoides obtained from crossing common wheat varieties (Aurora, Krasnodarskaya 99, Nika Kubani) with the genome-substituted form Avrodes (BBAASS). Hybrid lines with different combinations of T2DL.2DS-2SS and T1BL.1RS translocations and 5S(5D) substitution were characterized by resistance to leaf and yellow rusts, productivity components and technological qualities of grain. The assessment of the varieties' resistance to rust diseases showed that Krasnodarskaya 99, Nika Kubani and the Aurora variety, which is a carrier of the T1BL.1RS translocation, are highly susceptible to diseases, while the presence of the T2DL.2DS-2SS translocation and the 5S(5D) substitution, both together and separately, provides resistance to fungal pathogens. The analysis of the lines using markers designed for known resistance genes of Ae. speltoides did not reveal the presence of the Lr28, Lr35 and Lr51 genes in the lines. The results suggest that the genetic material of Ae. speltoides transferred to chromosomes 2D and 5D contains new resistance genes. To determine the effect of the T2DL.2DS-2SS translocation and the 5S(5D) substitution on the productivity and technological qualities of grain, the lines were assessed by weight of 1000 grains, grain weight and number of ears per 1 m2, by protein and gluten content, gluten quality and general baking evaluation. A positive effect was determined upon the weight of 1000 grains, protein and gluten content. There were no significant differences in other characteristics. The T2DL.2DS-2SS translocation and the 5S(5D) substitution did not have a negative effect on the productivity and technological quality of grain, and are of interest for breeding practice.
Collapse
Affiliation(s)
- R O Davoyan
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - I V Bebykina
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - E R Davoyan
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - A N Zinchenko
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - Y S Zubanova
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - D M Boldakov
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - V I Basov
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - E D Badaeva
- N.I. Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - I G Adonina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Salina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Baranova OA, Adonina IG, Sibikeev SN. Molecular cytogenetic characteristics of new spring bread wheat introgressive lines resistant to stem rust. Vavilovskii Zhurnal Genet Selektsii 2024; 28:377-386. [PMID: 39027121 PMCID: PMC11253016 DOI: 10.18699/vjgb-24-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 07/20/2024] Open
Abstract
Anticipatory wheat breeding for pathogen resistance is key to preventing economically significant crop losses caused by diseases. Recently, the harmfulness of a dangerous wheat disease, stem rust, caused by Puccinia graminis f. sp. tritici, was increased in the main grain-producing regions of the Russian Federation. At the same time, importation of the Ug99 race (TTKSK) is still a possibility. In this regard, the transfer of effective resistance genes from related species to the bread wheat breeding material followed by the chromosomal localization of the introgressions and a marker analysis to identify known resistance genes is of great importance. In this work, a comprehensive analysis of ten spring bread wheat introgressive lines of the Federal Center of Agricultural Research of the South-East Region (L657, L664, L758, L935, L960, L968, L971, L995/1, L997 and L1110) was carried out. These lines were obtained with the participation of Triticum dicoccum, T. timopheevii, T. kiharae, Aegilops speltoides, Agropyron elongatum and Secale cereale. In this study, the lines were evaluated for resistance to the Ug99 race (TTKSK) in the Njoro, Kenya. Evaluation of introgression lines in the field for resistance to the Ug99 race (TTKSK) showed that four lines were immune, two were resistant, three were moderately resistant, and one had an intermediate type of response to infection. By cytogenetic analysis of these lines using fluorescent (FISH) and genomic (GISH) in situ hybridization, introgressions from Ae. speltoides (line L664), T. timopheevii (lines L758, L971, L995/1, L997 and L1110), Thinopyrum ponticum = Ag. elongatum (2n = 70) (L664, L758, L960, L971, L997 and L1110), as well as introgressions from T. dicoccum (L657 and L664), T. kiharae (L960) and S. cereale (L935 and L968) were detected. Molecular markers recommended for marker-oriented breeding were used to identify known resistance genes (Sr2, Sr25, Sr32, Sr1A.1R, Sr36, Sr38, Sr39 and Sr47). The Sr36 and Sr25 genes were observed in lines L997 and L1110, while line L664 had the Sr39+Sr47+Sr25 gene combination. In lines L935 and L968 with 3R(3D) substitution from S. cereale, gene resistance was presumably identified as SrSatu. Thus, highly resistant to both local populations of P. graminis and the Ug99 race, bread wheat lines are promising donors for the production of new varieties resistant to stem rust.
Collapse
Affiliation(s)
- O A Baranova
- All-Russian Institute of Plant Protection, St. Petersburg-Pushkin, Russia
| | - I G Adonina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S N Sibikeev
- Federal Center of Agricultural Research of the South-East Region, Saratov, Russia
| |
Collapse
|
6
|
Abugammie B, Wang R, Hu Y, Pang J, Luan Y, Liu B, Jiang L, Lv R. Spontaneous chromosome instability and tissue culture-induced karyotypic alteration in wheat-Thinopyrum intermedium alien addition lines. PLANTA 2024; 260:17. [PMID: 38834908 DOI: 10.1007/s00425-024-04450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
MAIN CONCLUSION Wheat lines harboring wild-relative chromosomes can be karyotypically unstable during long-term maintenance. Tissue culture exacerbates chromosomal instability but appears inefficient to induce somatic homoeologous exchange between alien and wheat chromosomes. We assessed if long-term refrigerator storage with regular renewal via self-fertilization, a widely used practice for crop germplasm maintenance, would ensure genetic fidelity of alien addition lines, and explored the possibility of inducing somatic homoeologues exchange by tissue culture. We cytogenetically characterized sampled stock seeds of originally confirmed 12 distinct wheat-Thinopyrum intermedium alien addition lines (dubbed TAI lines), and subjected immature embryos of the TAI lines to tissue culture. We find eight of the 12 TAI lines were karyotypically departed from their original identity as bona fide disomic alien addition lines due to extensive loss of whole-chromosomes of both Th. intermedium and wheat origins during the ca. 3-decade storage. Rampant numerical chromosome variations (NCVs) involving both alien and wheat chromosomes were detected in regenerated plants of all 12 studied TAI lines, but at variable rates among the wheat sub-genomes and chromosomes. Compared with NCVs, structural chromosome variations (SCVs) occurred at substantially lower rates, and no SCV involving the added alien chromosomes was observed. The NCVs manifested only moderate effects on phenotypes of the regenerated plants under field conditions.
Collapse
Affiliation(s)
- Bahaa Abugammie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yue Hu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lily Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
7
|
Targońska-Karasek M, Kwiatek M, Groszyk J, Walczewski J, Kowalczyk M, Pawelec S, Boczkowska M, Rucińska A. Characteristic of the gene candidate SecARS encoding alkylresorcinol synthase in Secale. Mol Biol Rep 2023; 50:8373-8383. [PMID: 37615923 PMCID: PMC10520190 DOI: 10.1007/s11033-023-08684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Alkylresorcinols (ARs) are compounds belonging to the class of phenolic lipids. A rich source of ARs are cereal grains such as rye, wheat, triticale or barley. ARs found in plants are characterized by a variety of biological properties such as antimicrobial, antifungal and cytotoxic activity. Moreover, they are proven to have a positive influence on human health. Here, we aimed to find and characterize the gene with ARs synthase activity in the species Secale cereale. METHODS AND RESULTS Using BAC library screening, two BAC clones containing the gene candidate were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of the gene, including promoter, intron, 3'UTR and 5'UTR. Mapping using the FISH procedure located the gene on the 4R chromosome. Comparative analysis showed that the gene is highly similar to sequences coding for type III polyketide synthase. The level of gene expression in various parts of the plant was investigated, and the biochemical function of the gene was confirmed by heterologous expression in yeast. CONCLUSIONS The conducted analyses contributed to a better understanding of the processes related to ARs synthesis. Although the research concerned the rye model, the knowledge gained may help in understanding the genetic basis of ARs biosynthesis in other species of the Poaceae family as well.
Collapse
Affiliation(s)
- Małgorzata Targońska-Karasek
- Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, Warszawa, Poland.
| | - Michał Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Groszyk
- Plant Breeding and Acclimatization Institute (IHAR), National Research Institute, Radzików, Poland
| | - Jakub Walczewski
- Plant Breeding and Acclimatization Institute (IHAR), National Research Institute, Radzików, Poland
| | - Mariusz Kowalczyk
- Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Sylwia Pawelec
- Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute (IHAR), National Research Institute, Radzików, Poland
| | - Anna Rucińska
- Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, Warszawa, Poland
| |
Collapse
|
8
|
Sibikeev SN, Adonina IG, Druzhin AE, Baranova OA. Prebreeding studies of leaf rust resistant Triticum aestivum/T. timopheevii line L624. Vavilovskii Zhurnal Genet Selektsii 2023; 27:623-632. [PMID: 38023810 PMCID: PMC10645040 DOI: 10.18699/vjgb-23-73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
Triticum timopheevii Zhuk. attracts the attention of bread wheat breeders with its high immunity to the leaf rust pathogen. However, introgressions from this species in Triticum aestivum L. are little used in practical breeding. In the presented study, the agronomic value of T. aestivum/T. timopheevii line L624 was studied in comparison with the parent cultivars Saratovskaya 68, Dobrynya and the standard cultivar Favorit during 2017-2022. Introgressions from T. timopheevii in L624 were detected by the FISH method with probes pSc119.2, pAs1 and Spelt1, as well as microsatellite markers Xgwm312, Xgpw4480 and Xksum73. Translocations of 2AS.2AL-2AtL and on 2DL were detected as well. Line L624 is highly resistant to Puccinia triticina both under the background of natural epiphytotics and under laboratory conditions. PCR analysis with the DNA marker of the LrTt1 gene (Xgwm312) revealed that it is not identical to the Lr gene(s) in L624. According to a five-year study, the grain yield of L624 was, on average, higher than that of Favorit and Dobrynya, but lower than that of Saratovskaya 68. Line L624 had a lower weight of 1000 grains than the recipients, and was at the same level with the standard cultivar Favorit. Introgressions from T. timopheevii in L624 increased the grain protein content by comparison with Saratovskaya 68 and Favorit, but it was at the same level as in Dobrynya. As for parameters of flour and bread, L624 was not inferior to the recipient cultivars, but by volume and porosity of bread, it surpassed Saratovskaya 68. Moreover, L624 surpassed Favorit by the elasticity of the dough, the ratio of the elasticity of the dough to the extensibility and the strength of the flour. Thus, the results obtained suggest that introgressions in chromosomes 2A and 2D in L624 do not impair baking properties.
Collapse
Affiliation(s)
- S N Sibikeev
- Federal Center of Agriculture Research of the South-East Region, Saratov, Russia
| | - I G Adonina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - A E Druzhin
- Federal Center of Agriculture Research of the South-East Region, Saratov, Russia
| | - O A Baranova
- All-Russian Research Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| |
Collapse
|
9
|
Kroupin PY, Ulyanov DS, Karlov GI, Divashuk MG. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma 2023:10.1007/s00412-023-00789-4. [PMID: 36905415 DOI: 10.1007/s00412-023-00789-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for "classical" wheat probes (pSc119.2 and Afa family) and "universal" repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.
Collapse
Affiliation(s)
- Pavel Yu Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia.
| | - Daniil S Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| |
Collapse
|
10
|
Fluorescence In Situ Hybridization (FISH) for the Genotyping of Triticeae Tribe Species and Hybrids. Methods Mol Biol 2023; 2638:437-449. [PMID: 36781661 DOI: 10.1007/978-1-0716-3024-2_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
This chapter is dedicated to using fluorescence in situ hybridization (FISH) for the genotyping of Triticeae tribe species and hybrids. The basic method of FISH on metaphase chromosomes is presented with a discussion on its modifications, and deoxyribonucleic acid (DNA) probes that can be useful for genotyping are proposed.
Collapse
|
11
|
Vershinin AV, Elisafenko EA, Evtushenko EV. Genetic Redundancy in Rye Shows in a Variety of Ways. PLANTS (BASEL, SWITZERLAND) 2023; 12:282. [PMID: 36678994 PMCID: PMC9862056 DOI: 10.3390/plants12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Fifty years ago Susumu Ohno formulated the famous C-value paradox, which states that there is no correlation between the physical sizes of the genome, i.e., the amount of DNA, and the complexity of the organism, and highlighted the problem of genome redundancy. DNA that does not have a positive effect on the fitness of organisms has been characterized as "junk or selfish DNA". The controversial concept of junk DNA remains viable. Rye is a convenient subject for yet another test of the correctness and scientific significance of this concept. The genome of cultivated rye, Secale cereale L., is considered one of the largest among species of the tribe Triticeae and thus it tops the average angiosperm genome and the genomes of its closest evolutionary neighbors, such as species of barley, Hordeum (by approximately 30-35%), and diploid wheat species, Triticum (approximately 25%). The review provides an analysis of the structural organization of various regions of rye chromosomes with a description of the molecular mechanisms contributing to their size increase during evolution and the classes of DNA sequences involved in these processes. The history of the development of the concept of eukaryotic genome redundancy is traced and the current state of this problem is discussed.
Collapse
Affiliation(s)
- Alexander V. Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia
| | - Evgeny A. Elisafenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia
| | - Elena V. Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Liu B, Tao XY, Dou QW. Molecular cytogenetic study on the plants of Elymus nutans with varying fertility on the Qinghai-Tibet Plateau. PLANT DIVERSITY 2022; 44:617-624. [PMID: 36540708 PMCID: PMC9751082 DOI: 10.1016/j.pld.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 06/15/2023]
Abstract
A molecular cytogenetic investigation was conducted on plants of the allohexaploid species Elymus nutans with varying fertility on the Qinghai-Tibet Plateau. Molecular karyotyping revealed that chromosome variants were distributed unevenly among genomes and among different homologue chromosomes in each genome. The plants with varying fertility exhibited significantly higher numbers of chromosome variants than did the normal fertility samples, although both kinds of plants showed the same pattern of high-to-low polymorphism from the Y to St and H genomes. Heterozygosis and karyotype heterozygosity in the plants with varying fertility were 3- and 13-fold higher than those in normal samples, respectively. Significant negative correlations were found not only between seed setting rates and total genome heterozygosity but also between seed setting rates and heterozygosity of each genome in the plants of varying fertility. Chromosome pairing analysis was performed using genomic in situ hybridization in selected plants of different fertility levels. The pairing of chromosomes at meiotic metaphase I was mostly bivalent, although univalent, trivalent, quadrivalent, and other polyvalents also occurred; in addition, chromosome configuration forms and frequencies varied among the studied samples. ANOVA results showed that the average number of ring bivalents in the Y genome was significantly higher than those in the St and H genomes. Significant positive correlations between pollen grain fertility and ring bivalent number were found in the St and H genomes but not in the Y genome. Furthermore, chromosome configuration parameters (total bivalents, numbers of ring and rod bivalents) were found to be significantly correlated with heterozygosity and seed setting rates in the St and H genomes, respectively, but not in the Y genome. It was inferred that the seed setting rate and pollen grain fertility in E. nutans are strongly influenced by the heterozygosity of each genome, but the Y genome differs from the St and H genomes due to chromosome pair alterations. The St and H genomes may contain more chromosome structural variations than the Y genome in E. nutans.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yan Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quan-Wen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
| |
Collapse
|
13
|
Kroupin PY, Badaeva ED, Sokolova VM, Chikida NN, Belousova MK, Surzhikov SA, Nikitina EA, Kocheshkova AA, Ulyanov DS, Ermolaev AS, Khuat TML, Razumova OV, Yurkina AI, Karlov GI, Divashuk MG. Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae. FRONTIERS IN PLANT SCIENCE 2022; 13:980764. [PMID: 36325551 PMCID: PMC9621091 DOI: 10.3389/fpls.2022.980764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Aegilops crassa Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilops tauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria M. Sokolova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Nadezhda N. Chikida
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Maria Kh. Belousova
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Nikitina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Alina A. Kocheshkova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Thi Mai Luong Khuat
- Agricultural Genetics Institute, Department of Molecular Biology, Hanoi, Vietnam
| | - Olga V. Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| |
Collapse
|
14
|
Said M, Cápal P, Farkas A, Gaál E, Ivanizs L, Friebe B, Doležel J, Molnár I. Flow karyotyping of wheat- Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1017958. [PMID: 36262648 PMCID: PMC9575658 DOI: 10.3389/fpls.2022.1017958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 06/13/2023]
Abstract
Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - Eszter Gaál
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - László Ivanizs
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| |
Collapse
|
15
|
Zhang W, Tang Z, Luo J, Li G, Yang Z, Yang M, Yang E, Fu S. Location of Tandem Repeats on Wheat Chromosome 5B and the Breakpoint on the 5BS Arm in Wheat Translocation T7BS.7BL-5BS Using Single-Copy FISH Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182394. [PMID: 36145797 PMCID: PMC9502598 DOI: 10.3390/plants11182394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is rich in tandem repeats, and this is helpful in studying its karyotypic evolution. Some tandem repeats have not been assembled into the wheat genome sequence. Alignment using the blastn tool in the B2DSC web server indicated that the genomic sequence of 5B chromosome (IWGSC RefSeq v2.1) does not contain the tandem repeat pTa-275, and the tandem repeat (GA)26 distributed throughout the whole 5B chromosome. The nondenaturing fluorescence in situ hybridization (ND-FISH) using the oligonucleotide (oligo) probes derived from pTa-275 and (GA)26 indicated that one signal band of pTa-275 and two signal bands of (GA)26 appeared on the 5B chromosome of Chinese Spring wheat, indicating the aggregative distribution patterns of the two kinds of tandem repeats. Single-copy FISH indicated that the clustering region of pTa-275 and the two clustering regions of (GA)26 were located in ~160-201 Mb, ~153-157 Mb, and ~201-234 Mb intervals, respectively. Using ND-FISH and single-copy FISH technologies, the translocation breakpoint on the 5BS portion of the translocation T7BS.7BL-5BS, which exists widely in north-western European wheat cultivars, was located in the region from 157,749,421 bp to 158,555,080 bp (~0.8 Mb), and this region mainly contains retrotransposons, and no gene was found. The clustering regions of two kinds of tandem repeats on wheat chromosome 5B were determined and this will be helpful to improve the future sequence assembly of this chromosome. The sequence characteristics of the translocation breakpoint on the translocation T7BS.7BL-5BS obtained in this study are helpful to understand the mechanism of wheat chromosome translocation.
Collapse
Affiliation(s)
- Wei Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Lv R, Wang C, Wang R, Wang X, Zhao J, Wang B, Aslam T, Han F, Liu B. Chromosomal instability and phenotypic variation in a specific lineage derived from a synthetic allotetraploid wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:981234. [PMID: 36072314 PMCID: PMC9441941 DOI: 10.3389/fpls.2022.981234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Newly formed plant allopolyploids usually have meiosis defect, resulting in chromosomal instability manifested as variation in chromosome number and/or structure. However, not all nascent allopolyploids are equally unstable. The wheat group (Aegilops/Triticum) contains 13 diploid species with distinct genome types. Many of these species can be artificially hybridized to produce viable but sterile inter-specific/intergeneric F1 hybrids, which can generate fertile synthetic allotetraploid wheats after whole genome doubling. Compared with synthetic allotetraploid wheats that contain genome combinations of AADD and S*S*DD (S* refers to related S genomes of a different species), those containing an S*S*AA genome are significantly more stable. However, robustness of the relative stability of S*S*AA genomes is unknown, nor are the phenotypic and fitness consequences during occurrences of secondary chromosomal instability. Here, we report a specific lineage originated from a single individual plant of a relatively stable synthetic allotetraploid wheat with genomes S l S l AA (S l and A subgenomes were from Ae. longissima and T. urartu, respectively) that showed a high degree of transgenerational chromosomal instability. Both numerical chromosome variation (NCV) and structural chromosome variation (SCV) occurred widely. While substantial differences in frequencies of both NCV and SCV were detected across the different chromosomes, only NCV frequencies were significantly different between the two subgenomes. We found that NCVs and SCVs occurred primarily due to perturbed meiosis, allowing formation of multivalents and univalents as well as homoeologous exchanges. Thus, the combination of NCVs and SCVs affected multiple phenotypic traits, particularly those related to reproductive fitness.
Collapse
Affiliation(s)
- Ruili Lv
- School of Life Sciences, Linyi University, Linyi, China
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Changyi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tariq Aslam
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Fangpu Han
- School of Life Sciences, Linyi University, Linyi, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
17
|
Liu B, Tao X, Dou Q. Meiotic Chromosomal Abnormality Detected in a Heterozygote of Elymus nutans. FRONTIERS IN PLANT SCIENCE 2022; 13:895437. [PMID: 35592580 PMCID: PMC9112040 DOI: 10.3389/fpls.2022.895437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Elymus nutans is an allopolyploid with a genome constitution of StStYYHH (2n = 6x = 42). Highly frequent intergenomic translocations and chromosomal variations with repeat amplification and deletions in E. nutans have been identified in the previous studies. However, more complicated structural variations such as chromosomal inversions or intra-genomic translocations are still unknown in this species, so does the reason for the origin of the chromosomal variations. Heterozygotes with rearranged chromosomes always present irregular meiosis behaviors, which subsequently cause the secondary chromosome rearrangements. Investigation on the meiosis of heterozygotes, especially on the individual chromosome level, may provide the important clues to identify the more complicated chromosome structural variations in the populations, and clarify the origin of the chromosome variations. In this study, meiotic analysis was conducted on a heterozygote plant of Elymus nutans, which showed high intra- and inter-genome chromosomal variations, by sequential fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), with each chromosome clearly recognized. The results showed chromosomal abnormalities at every meiotic stage and abnormalities in frequency variations between different sub-genomes and different individual chromosomes. The abnormalities were revealed as univalent, fragment, rod, or Y shape bivalent in diakinesis; univalent and rod bivalent in metaphase I; lagged and segregated chromatid, bridge, fragment of the sister chromatid, fragment, bridge accompanied with fragment, and unequal segregated chromosome in anaphase I; bridge and lagged chromatid in ana-telophase II; and micronucleus at uninucleate stage. Generally, the St and H genomes harbor more abnormalities than the Y genome. Moreover, a paracentric inversion in 2St was exclusively determined, and another paracentric inversion in 6Y was tentatively identified. In addition, novel deletions were clearly detected in 3H, 4H, 1Y, and 3Y homologous chromosomes; in particular, de novo pericentric inversion in 3H was repeatedly identified in metaphase I. The study revealed the chromosomal inversions pre-existed in parents or populations, as well as de novo inversions and deletions originated in the meiosis of the heterozygote in E. nutans. Moreover, it indicated wide range of meiosis abnormalities on different stages and different chromosomes, and suggests that secondary rearrangements contribute much to the chromosome variations in E. nutans.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quanwen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
18
|
Badaeva ED, Konovalov FA, Knüpffer H, Fricano A, Ruban AS, Kehel Z, Zoshchuk SA, Surzhikov SA, Neumann K, Graner A, Hammer K, Filatenko A, Bogaard A, Jones G, Özkan H, Kilian B. Genetic diversity, distribution and domestication history of the neglected GGA tA t genepool of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:755-776. [PMID: 34283259 PMCID: PMC8942905 DOI: 10.1007/s00122-021-03912-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 05/03/2023]
Abstract
We present a comprehensive survey of cytogenetic and genomic diversity of the GGAtAt genepool of wheat, thereby unlocking these plant genetic resources for wheat improvement. Wheat yields are stagnating around the world and new sources of genes for resistance or tolerances to abiotic traits are required. In this context, the tetraploid wheat wild relatives are among the key candidates for wheat improvement. Despite its potential huge value for wheat breeding, the tetraploid GGAtAt genepool is largely neglected. Understanding the population structure, native distribution range, intraspecific variation of the entire tetraploid GGAtAt genepool and its domestication history would further its use for wheat improvement. The paper provides the first comprehensive survey of genomic and cytogenetic diversity sampling the full breadth and depth of the tetraploid GGAtAt genepool. According to the results obtained, the extant GGAtAt genepool consists of three distinct lineages. We provide detailed insights into the cytogenetic composition of GGAtAt wheats, revealed group- and population-specific markers and show that chromosomal rearrangements play an important role in intraspecific diversity of T. araraticum. The origin and domestication history of the GGAtAt lineages is discussed in the context of state-of-the-art archaeobotanical finds. We shed new light on the complex evolutionary history of the GGAtAt wheat genepool and provide the basis for an increased use of the GGAtAt wheat genepool for wheat improvement. The findings have implications for our understanding of the origins of agriculture in southwest Asia.
Collapse
Affiliation(s)
- Ekaterina D Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Fedor A Konovalov
- Independent Clinical Bioinformatics Laboratory, Moscow, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Agostino Fricano
- Council for Agricultural Research and Economics - Research Centre for Genomics & Bioinformatics, Fiorenzuola d'Arda (PC), Italy
| | - Alevtina S Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Zakaria Kehel
- International Center for the Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Svyatoslav A Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Karl Hammer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Anna Filatenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Independent Researcher, St. Petersburg, Russia
| | | | - Glynis Jones
- Department of Archaeology, University of Sheffield, Sheffield, UK
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Global Crop Diversity Trust, Bonn, Germany
| |
Collapse
|
19
|
Genetic diversity of ribosomal loci (5S and 45S rDNA) and pSc119.2 repetitive DNA sequence among four species of Aegilops (Poaceae) from Algeria. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.06.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In continuation of our previous research we carried out the karyological investigation of 53 populations of four Aegilops species (A. geniculata, A. triuncialis, A. ventricosa, and A. neglecta) sampled in different eco-geographical habitats in Algeria. The genetic variability of the chromosomal DNA loci of the same collection of Aegilops is highlighted by the Fluorescence In Situ Hybridization technique (FISH) using three probes: 5S rDNA, 45S rDNA, and repetitive DNA (pSc119.2). We found that the two rDNA loci (5S and 45S) hybridized with some chromosomes and showed a large genetic polymorphism within and between the four Aegilops species, while the repetitive DNA sequences (pSc119.2) hybridized with all chromosomes and differentiated the populations of the mountains with a humid bioclimate from the populations of the steppe regions with an arid bioclimate. However, the transposition of the physical maps of the studied loci (5S rDNA, 45S rDNA, and pSc119.2) with those of other collections revealed the existence of new loci in Aegilops from Algeria.
Collapse
|
20
|
Adonina IG, Shcherban AB, Zorina MV, Mehdiyeva SP, Timonova EM, Salina EA. Genetic Features of Triticale–Wheat Hybrids with Vaviloid-Type Spike Branching. PLANTS 2021; 11:plants11010058. [PMID: 35009062 PMCID: PMC8747757 DOI: 10.3390/plants11010058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Vaviloid spike branching, also called sham ramification, is a typical trait of Triticum vavilovii Jakubz. and is characterized by a lengthening of the spikelet axis. In this article, we present the results of a study of three triticale–wheat hybrid lines with differences in terms of the manifestation of the vaviloid spike branching. Lines were obtained by crossing triticale with hexaploid wheat, T. aestivum var. velutinum. The parental triticale is a hybrid of synthetic wheat (T. durum × Ae. tauschii var. meyrei) with rye, S. cereale ssp. segetale. Line 857 has a karyotype corresponding to hexaploid wheat and has a spike morphology closest to normal, whereas Lines 808/1 and 844/4 are characterized by the greatest manifestation of vaviloid spike branching. In Lines 808/1 and 844/4, we found the substitution 2RL(2DL). The karyotypes of the latter lines differ in that a pair of telocentric chromosomes 2DS is detected in Line 808/1, and these telocentrics are fused into one unpaired chromosome in Line 844/4. Using molecular genetic analysis, we found a deletion of the wheat domestication gene Q located on 5AL in the three studied hybrid lines. The deletion is local since an analysis of the adjacent gene B1 showed the presence of this gene. We assume that the manifestation of vaviloid spike branching in two lines (808/1 and 844/4) is associated with a disturbance in the joint action of genes Q and AP2L2-2D, which is another important gene that determines spike morphology and is located on 2DL.
Collapse
Affiliation(s)
- Irina G. Adonina
- Institute of Cytology and Genetics SB RAS, Lavrentiev Av., 10, 630090 Novosibirsk, Russia; (A.B.S.); (M.V.Z.); (E.M.T.); (E.A.S.)
- Kurchatov Genomic Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av., 10, 630090 Novosibirsk, Russia
- Correspondence:
| | - Andrey B. Shcherban
- Institute of Cytology and Genetics SB RAS, Lavrentiev Av., 10, 630090 Novosibirsk, Russia; (A.B.S.); (M.V.Z.); (E.M.T.); (E.A.S.)
- Kurchatov Genomic Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av., 10, 630090 Novosibirsk, Russia
| | - Maremyana V. Zorina
- Institute of Cytology and Genetics SB RAS, Lavrentiev Av., 10, 630090 Novosibirsk, Russia; (A.B.S.); (M.V.Z.); (E.M.T.); (E.A.S.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str., 1, 630090 Novosibirsk, Russia
| | - Sabina P. Mehdiyeva
- Genetic Resources Institute of ANAS, Azadlig Ave., 155, Baku AZ1106, Azerbaijan;
| | - Ekaterina M. Timonova
- Institute of Cytology and Genetics SB RAS, Lavrentiev Av., 10, 630090 Novosibirsk, Russia; (A.B.S.); (M.V.Z.); (E.M.T.); (E.A.S.)
- Kurchatov Genomic Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av., 10, 630090 Novosibirsk, Russia
| | - Elena A. Salina
- Institute of Cytology and Genetics SB RAS, Lavrentiev Av., 10, 630090 Novosibirsk, Russia; (A.B.S.); (M.V.Z.); (E.M.T.); (E.A.S.)
- Kurchatov Genomic Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av., 10, 630090 Novosibirsk, Russia
| |
Collapse
|
21
|
González ML, Chiapella JO, Urdampilleta JD. Chromosomal Differentiation of Deschampsia (Poaceae) Based on Four Satellite DNA Families. Front Genet 2021; 12:728664. [PMID: 34621294 PMCID: PMC8490763 DOI: 10.3389/fgene.2021.728664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Diverse families of satellite DNA (satDNA) were detected in heterochromatin regions of Deschampsia. This kind of repetitive DNA consists of tandem repeat sequences forming big arrays in genomes, and can contribute to lineages differentiation. The differentiation between types of satDNA is related to their sequence identity, the size and number of monomers forming the array, and their chromosomal location. In this work, four families of satDNA (D2, D3, D12, D13), previously isolated by genomic analysis, were studied on chromosomal preparations of 12 species of Deschampsia (D. airiformis, D. antarctica, D. cespitosa, D. cordillerarum, D. elongata, D. kingii, D. laxa, D. mendocina, D. parvula, D. patula, D. venustula, and Deschampsia sp) and one of Deyeuxia (D. eminens). Despite the number of satDNA loci showing interspecific variation, the general distribution pattern of each satDNA family is maintained. The four satDNA families are AT-rich and associated with DAPI + heterochromatin regions. D2, D3, and D12 have mainly subterminal distribution, while D13 is distributed in intercalary regions. Such conservation of satDNA patterns suggests a not random distribution in genomes, where the variation between species is mainly associated with the array size and the loci number. The presence of satDNA in all species studied suggests a low genetic differentiation of sequences. On the other hand, the variation of the distribution pattern of satDNA has no clear association with phylogeny. This may be related to high differential amplification and contraction of sequences between lineages, as explained by the library model.
Collapse
Affiliation(s)
- María Laura González
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Jorge Oscar Chiapella
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional Del Comahue), Bariloche, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Córdoba), Córdoba, Argentina
| |
Collapse
|
22
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
23
|
Lenykó-Thegze A, Fábián A, Mihók E, Makai D, Cseh A, Sepsi A. Pericentromeric chromatin reorganisation follows the initiation of recombination and coincides with early events of synapsis in cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1585-1602. [PMID: 34171148 DOI: 10.1111/tpj.15391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The reciprocal exchange of genetic information between homologous chromosomes during meiotic recombination is essential to secure balanced chromosome segregation and to promote genetic diversity. The chromosomal position and frequency of reciprocal genetic exchange shapes the efficiency of breeding programmes and influences crop improvement under a changing climate. In large genome cereals, such as wheat and barley, crossovers are consistently restricted to subtelomeric chromosomal regions, thus preventing favourable allele combinations being formed within a considerable proportion of the genome, including interstitial and pericentromeric chromatin. Understanding the key elements driving crossover designation is therefore essential to broaden the regions available for crossovers. Here, we followed early meiotic chromatin dynamism in cereals through the visualisation of a homologous barley chromosome arm pair stably transferred into the wheat genetic background. By capturing the dynamics of a single chromosome arm at the same time as detecting the undergoing events of meiotic recombination and synapsis, we showed that subtelomeric chromatin of homologues synchronously transitions to an open chromatin structure during recombination initiation. By contrast, pericentromeric and interstitial regions preserved their closed chromatin organisation and become unpackaged only later, concomitant with initiation of recombinatorial repair and the initial assembly of the synaptonemal complex. Our results raise the possibility that the closed pericentromeric chromatin structure in cereals may influence the fate decision during recombination initiation, as well as the spatial development of synapsis, and may also explain the suppression of crossover events in the proximity of the centromeres.
Collapse
Affiliation(s)
- Andrea Lenykó-Thegze
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Attila Fábián
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Edit Mihók
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Diána Makai
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - András Cseh
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Adél Sepsi
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
- Department of Applied Biotechnology and Food Science (ABÉT), BME, Budapest University of Technology and Economics, Műegyetem rkp. 3-9, Budapest, 1111, Hungary
| |
Collapse
|
24
|
Ebrahimzadegan R, Orooji F, Ma P, Mirzaghaderi G. Differentially Amplified Repetitive Sequences Among Aegilops tauschii Subspecies and Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:716750. [PMID: 34490015 PMCID: PMC8417419 DOI: 10.3389/fpls.2021.716750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Genomic repetitive sequences commonly show species-specific sequence type, abundance, and distribution patterns, however, their intraspecific characteristics have been poorly described. We quantified the genomic repetitive sequences and performed single nucleotide polymorphism (SNP) analysis between 29 Ae. tauschii genotypes and subspecies using publicly available raw genomic Illumina sequence reads and used fluorescence in situ hybridization (FISH) to experimentally analyze some repeats. The majority of the identified repetitive sequences had similar contents and proportions between anathera, meyeri, and strangulata subspecies. However, two Ty3/gypsy retrotransposons (CL62 and CL87) showed significantly higher abundances, and CL1, CL119, CL213, CL217 tandem repeats, and CL142 retrotransposon (Ty1/copia type) showed significantly lower abundances in subspecies strangulata compared with the subspecies anathera and meyeri. One tandem repeat and 45S ribosomal DNA (45S rDNA) abundances showed a high variation between genotypes but their abundances were not subspecies specific. Phylogenetic analysis using the repeat abundances of the aforementioned clusters placed the strangulata subsp. in a distinct clade but could not discriminate anathera and meyeri. A near complete differentiation of anathera and strangulata subspecies was observed using SNP analysis; however, var. meyeri showed higher genetic diversity. FISH using major tandem repeats couldn't detect differences between subspecies, although (GAA)10 signal patterns generated two different karyotype groups. Taken together, the different classes of repetitive DNA sequences have differentially accumulated between strangulata and the other two subspecies of Ae. tauschii that is generally in agreement with spike morphology, implying that factors affecting repeatome evolution are variable even among highly closely related lineages.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Orooji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, China
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
25
|
Said M, Holušová K, Farkas A, Ivanizs L, Gaál E, Cápal P, Abrouk M, Martis-Thiele MM, Kalapos B, Bartoš J, Friebe B, Doležel J, Molnár I. Development of DNA Markers From Physically Mapped Loci in Aegilops comosa and Aegilops umbellulata Using Single-Gene FISH and Chromosome Sequences. FRONTIERS IN PLANT SCIENCE 2021; 12:689031. [PMID: 34211490 PMCID: PMC8240756 DOI: 10.3389/fpls.2021.689031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 05/31/2023]
Abstract
Breeding of agricultural crops adapted to climate change and resistant to diseases and pests is hindered by a limited gene pool because of domestication and thousands of years of human selection. One way to increase genetic variation is chromosome-mediated gene transfer from wild relatives by cross hybridization. In the case of wheat (Triticum aestivum), the species of genus Aegilops are a particularly attractive source of new genes and alleles. However, during the evolution of the Aegilops and Triticum genera, diversification of the D-genome lineage resulted in the formation of diploid C, M, and U genomes of Aegilops. The extent of structural genome alterations, which accompanied their evolution and speciation, and the shortage of molecular tools to detect Aegilops chromatin hamper gene transfer into wheat. To investigate the chromosome structure and help develop molecular markers with a known physical position that could improve the efficiency of the selection of desired introgressions, we developed single-gene fluorescence in situ hybridization (FISH) maps for M- and U-genome progenitors, Aegilops comosa and Aegilops umbellulata, respectively. Forty-three ortholog genes were located on 47 loci in Ae. comosa and on 52 loci in Ae. umbellulata using wheat cDNA probes. The results obtained showed that M-genome chromosomes preserved collinearity with those of wheat, excluding 2 and 6M containing an intrachromosomal rearrangement and paracentric inversion of 6ML, respectively. While Ae. umbellulata chromosomes 1, 3, and 5U maintained collinearity with wheat, structural reorganizations in 2, 4, 6, and 7U suggested a similarity with the C genome of Aegilops markgrafii. To develop molecular markers with exact physical positions on chromosomes of Aegilops, the single-gene FISH data were validated in silico using DNA sequence assemblies from flow-sorted M- and U-genome chromosomes. The sequence similarity search of cDNA sequences confirmed 44 out of the 47 single-gene loci in Ae. comosa and 40 of the 52 map positions in Ae. umbellulata. Polymorphic regions, thus, identified enabled the development of molecular markers, which were PCR validated using wheat-Aegilops disomic chromosome addition lines. The single-gene FISH-based approach allowed the development of PCR markers specific for cytogenetically mapped positions on Aegilops chromosomes, substituting as yet unavailable segregating map. The new knowledge and resources will support the efforts for the introgression of Aegilops genes into wheat and their cloning.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Agricultural Research Centre, Field Crops Research Institute, Cairo, Egypt
| | - Katerina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - András Farkas
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - László Ivanizs
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - Eszter Gaál
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Michael Abrouk
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mihaela M. Martis-Thiele
- NBIS (National Bioinformatics Infrastructure Sweden, Science for Life Laboratory), Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Balázs Kalapos
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| |
Collapse
|
26
|
Badaeva ED, Chikida NN, Fisenko AN, Surzhikov SA, Belousova MK, Özkan H, Dragovich AY, Kochieva EZ. Chromosome and Molecular Analyses Reveal Significant Karyotype Diversity and Provide New Evidence on the Origin of Aegilops columnaris. PLANTS (BASEL, SWITZERLAND) 2021; 10:956. [PMID: 34064905 PMCID: PMC8151338 DOI: 10.3390/plants10050956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Aegilops columnaris Zhuk. is tetraploid grass species (2n = 4x = 28, UcUcXcXc) closely related to Ae. neglecta and growing in Western Asia and a western part of the Fertile Crescent. Genetic diversity of Ae. columnaris was assessed using C-banding, FISH, nuclear and chloroplast (cp) DNA analyses, and gliadin electrophoresis. Cytogenetically Ae. columnaris was subdivided into two groups, C-I and C-II, showing different karyotype structure, C-banding, and FISH patterns. C-I group was more similar to Ae. neglecta. All types of markers revealed significant heterogeneity in C-II group, although group C-I was also polymorphic. Two chromosomal groups were consistent with plastogroups identified in a current study based on sequencing of three chloroplast intergenic spacer regions. The similarity of group C-I of Ae. columnaris with Ae. neglecta and their distinctness from C-II indicate that divergence of the C-I group was associated with minor genome modifications. Group C-II could emerge from C-I relatively recently, probably due to introgression from another Aegilops species followed by a reorganization of the parental genomes. Most C-II accessions were collected from a very narrow geographic region, and they might originate from a common ancestor. We suggest that the C-II group is at the initial stage of species divergence and undergoing an extensive speciation process.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, GSP–1, 119991 Moscow, Russia; (A.N.F.); (A.Y.D.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street 34, GSP–1, 119991 Moscow, Russia;
| | - Nadezhda N. Chikida
- Federal Research Center, N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street 44, 190121 St. Petersburg, Russia; (N.N.C.); (M.K.B.)
| | - Andrey N. Fisenko
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, GSP–1, 119991 Moscow, Russia; (A.N.F.); (A.Y.D.)
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street 34, GSP–1, 119991 Moscow, Russia;
| | - Maria K. Belousova
- Federal Research Center, N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street 44, 190121 St. Petersburg, Russia; (N.N.C.); (M.K.B.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, 01330 Adana, Turkey;
| | - Alexandra Y. Dragovich
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, GSP–1, 119991 Moscow, Russia; (A.N.F.); (A.Y.D.)
| | - Elena Z. Kochieva
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 60 let Oktjabrya Prospect 7, Build. 1, 117312 Moscow, Russia;
| |
Collapse
|
27
|
Flavell RB. Perspective: 50 years of plant chromosome biology. PLANT PHYSIOLOGY 2021; 185:731-753. [PMID: 33604616 PMCID: PMC8133586 DOI: 10.1093/plphys/kiaa108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The past 50 years has been the greatest era of plant science discovery, and most of the discoveries have emerged from or been facilitated by our knowledge of plant chromosomes. At last we have descriptive and mechanistic outlines of the information in chromosomes that programs plant life. We had almost no such information 50 years ago when few had isolated DNA from any plant species. The important features of genes have been revealed through whole genome comparative genomics and testing of variants using transgenesis. Progress has been enabled by the development of technologies that had to be invented and then become widely available. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have played extraordinary roles as model species. Unexpected evolutionary dramas were uncovered when learning that chromosomes have to manage constantly the vast numbers of potentially mutagenic families of transposons and other repeated sequences. The chromatin-based transcriptional and epigenetic mechanisms that co-evolved to manage the evolutionary drama as well as gene expression and 3-D nuclear architecture have been elucidated these past 20 years. This perspective traces some of the major developments with which I have become particularly familiar while seeking ways to improve crop plants. I draw some conclusions from this look-back over 50 years during which the scientific community has (i) exposed how chromosomes guard, readout, control, recombine, and transmit information that programs plant species, large and small, weed and crop, and (ii) modified the information in chromosomes for the purposes of genetic, physiological, and developmental analyses and plant improvement.
Collapse
Affiliation(s)
- Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| |
Collapse
|
28
|
Zebell SG. A broad view: Dick Flavell. PLANT PHYSIOLOGY 2021; 185:727-730. [PMID: 33822223 PMCID: PMC8133605 DOI: 10.1093/plphys/kiaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
29
|
Tomita M, Kanzaki T, Tanaka E. Clustered and dispersed chromosomal distribution of the two classes of Revolver transposon family in rye (Secale cereale). J Appl Genet 2021; 62:365-372. [PMID: 33694103 DOI: 10.1007/s13353-021-00617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
The chromosomal locations of a new class of Revolver transposon-like elements were analyzed by using FISH method on the metaphase chromosome in somatic cell division of the rye cultivar Petkus. First, the Revolver standard element probe λ2 was weakly hybridized throughout the rye chromosome, and comparatively large interstitial signals spotted with a dot shape were detected together with several telomeric regions. The dot shape interstitial signal was stably detected at one site on Chromosome (Chr) 1R (middle part of the interstitial region of the short arm), three sites on Chr 2R (distal part of the interstitial region and adjacent to the centromere on the short arm, middle part of the interstitial region of the long arm), and two sites on Chr 5R (middle part of the interstitial region and adjacent to the centromere on the long arm). The Revolver λ2 probe was effective for identification of 1R, 2R, and 5R chromosomes. On the other hand, Revolver nonautonomous element-specific L626-BARE-100 probe was strongly distributed throughout the rye chromosomes, and considerable numbers and diverse lengths of transcripts were detected by RT-PCR. Although the standard elements were found in localized clusters, the nonautonomous elements tended to be dispersed throughout the genome. Clustered nature of Revolver is a significantly rare case in genomics.
Collapse
Affiliation(s)
- Motonori Tomita
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Takaaki Kanzaki
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori, 680-8550, Japan
| | - Eri Tanaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori, 680-8550, Japan
| |
Collapse
|
30
|
Shams I, Raskina O. Supernumerary B Chromosomes and Plant Genome Changes: A Snapshot of Wild Populations of Aegilops speltoides Tausch ( Poaceae, Triticeae). Int J Mol Sci 2020; 21:ijms21113768. [PMID: 32466617 PMCID: PMC7312783 DOI: 10.3390/ijms21113768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/12/2023] Open
Abstract
In various eukaryotes, supernumerary B chromosomes (Bs) are an optional genomic component that affect their integrity and functioning. In the present study, the impact of Bs on the current changes in the genome of goatgrass, Aegilops speltoides, was addressed. Individual plants from contrasting populations with and without Bs were explored using fluorescence in situ hybridization. In parallel, abundances of the Ty1-copia, Ty3-gypsy, and LINE retrotransposons (TEs), and the species-specific Spelt1 tandem repeat (TR) in vegetative and generative spike tissues were estimated by real-time quantitative PCR. The results revealed: (i) ectopic associations between Bs and the regular A chromosomes, and (ii) cell-specific rearrangements of Bs in both mitosis and microgametogenesis. Further, the copy numbers of TEs and TR varied significantly between (iii) genotypes and (iv) different spike tissues in the same plant(s). Finally, (v) in plants with and without Bs from different populations, genomic abundances and/or copy number dynamics of TEs and TR were similar. These findings indicate that fluctuations in TE and TR copy numbers are associated with DNA damage and repair processes during cell proliferation and differentiation, and ectopic recombination is one of the mechanisms by which Bs play a role in genome changes.
Collapse
|
31
|
Xi W, Tang S, Du H, Luo J, Tang Z, Fu S. ND-FISH-positive oligonucleotide probes for detecting specific segments of rye (Secale cereale L.) chromosomes and new tandem repeats in rye. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Aliyeva AJ, Farkas A, Aminov NK, Kruppa K, Molnár-Láng M, Türkösi E. Molecular Cytogenetic Analysis and Meiotic Pairing Behavior of Progenies Originating from a Hexaploid Triticale (×Triticosecale, Wittmack) and Bread Wheat (Triticum aestivum, L.) Cross. Cytogenet Genome Res 2020; 160:47-56. [PMID: 32172236 DOI: 10.1159/000506385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 11/19/2022] Open
Abstract
The chromosomal constitution of 9 dwarf (D) and 8 semidwarf (SD) lines derived by crossing hexaploid Triticale line NA-75 (AABBRR, 2n = 6x = 42) with Triticumaestivum (AABBDD, 2n = 6x = 42) cv. Chinese Spring was investigated using molecular cytogenetic techniques: fluorescence in situ hybridization and genomic in situ hybridization. A wheat-rye translocation (T4DS.7RL), 8 substitution lines, and a ditelosomic addition line (7RSdt) were identified. In the substitution lines, 1, 2, or 4 pairs of wheat chromosomes, belonging to the A, B, or D genome, were replaced by rye chromosomes. Substitutions between chromosomes belonging to different wheat genomes [5B(5A), 1D(1B)] also occurred. The lines were genetically stable, each carrying 42 chromosomes, except the wheat-rye ditelosomic addition line, which carried 21 pairs of wheat chromosomes and 1 pair of rye telocentric chromosomes (7RS). The chromosome pairing behavior of the lines was studied during metaphase I of meiosis. The chromosome pairing level and the number of ring bivalents were different for each line. Besides rod bivalents, univalent and multivalent associations (tri- and quadrivalents) were also detected. The main goal of the experiment was to develop genetically stable wheat/Triticale recombinant lines carrying chromosomes/chromatin fragments originating from the R genome of Triticale line NA-75. Introgression of rye genes into hexaploid wheat can broaden its genetic diversity, and the newly developed lines can be used in wheat breeding programs.
Collapse
|
33
|
1RS arm of Secale cereanum 'Kriszta' confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat. Sci Rep 2020; 10:1792. [PMID: 32019962 PMCID: PMC7000720 DOI: 10.1038/s41598-020-58419-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022] Open
Abstract
Wheat-rye T1BL.1RS translocation is widespread worldwide as the genes on 1RS arm have positive effect on stress resistance, grain yield and adaptation ability of wheat. Nowadays, the T1BL.1RS wheat cultivars have become susceptible to rust diseases because of the monophyletic ('Petkus') origin of 1RS. Here we report and discuss the production and detailed investigation of a new T1BL.1RS translocation line carrying 1RS with widened genetic base originating from Secale cereanum. Line '179' exhibited improved spike morphology traits, resistance against stripe rust and leaf rust, as well as higher tillering capacity, fertility and dietary fiber (arabynoxylan) content than the parental wheat genotype. Comparative analyses based on molecular cytogenetic methods and molecular (SSR and DArTseq) makers indicate that the 1RS arm of line '179' is a recombinant of S. cereale and S. strictum homologues, and approximately 16% of its loci were different from that of 'Petkus' origin. 162 (69.5%) 1RS-specific markers were associated with genes, including 10 markers with putative disease resistance functions and LRR domains found on the subtelomeric or pericentromeric regions of 1RS. Line '179' will facilitate the map-based cloning of the resistance genes, and it can contribute to healthy eating and a more cost-efficient wheat production.
Collapse
|
34
|
Xie J, Zhao Y, Yu L, Liu R, Dou Q. Molecular karyotyping of Siberian wild rye (Elymus sibiricus L.) with oligonucleotide fluorescence in situ hybridization (FISH) probes. PLoS One 2020; 15:e0227208. [PMID: 31951623 PMCID: PMC6968859 DOI: 10.1371/journal.pone.0227208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/14/2019] [Indexed: 12/01/2022] Open
Abstract
Siberian wild rye (Elymus sibiricus L.), an allotetraploid species, is a potentially high-quality perennial forage crop native to temperate regions. We used fluorescently conjugated oligonucleotides, representing ten repetitive sequences, including 6 microsatellite repeats, two satellite repeats, and two ribosomal DNAs, to characterize E. sibiricus chromosomes, using sequential fluorescence in situ hybridization and genomic in situ hybridization assays. Our results showed that microsatellite repeats (AAG)10 or (AGG)10, satellite repeats pAs1 and pSc119.2, and ribosomal 5S rDNA and 45S rDNA are specific markers for unique chromosomes. A referable karyotype ideogram was suggested, by further polymorphism screening, across different E. sibiricus cultivars with a probe mixture of (AAG)10, Oligo-pAs1, and Oligo-pSc119.2. Chromosomal polymorphisms vary between different genomes and between different individual chromosomes. In particular, two distinct forms of chromosome E in H genome were identified in intra- and inter-populations. Here, the significance of these results, for E. sibiricus genome research and breeding, and novel approaches to improve fluorescence in situ hybridization-based karyotyping are discussed.
Collapse
Affiliation(s)
- Jihong Xie
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yan Zhao
- College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Linqing Yu
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ruijuan Liu
- Key Laboratory of Crop Molecular Breeding, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, China
| | - Quanwen Dou
- Key Laboratory of Crop Molecular Breeding, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, China
- * E-mail:
| |
Collapse
|
35
|
Badaeva ED, Surzhikov SA, Agafonov AV. Molecular-cytogenetic analysis of diploid wheatgrass Thinopyrum bessarabicum (Savul. and Rayss) A. Löve. COMPARATIVE CYTOGENETICS 2019; 13:389-402. [PMID: 31844506 PMCID: PMC6904353 DOI: 10.3897/compcytogen.v13i4.36879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Thinopyrum bessarabicum (T. Săvulescu & T. Rayss, 1923) A. Löve, 1980 is diploid (2n=2x=14, JJ or EbEb), perennial self-fertilizing rhizomatous maritime beach grass, which is phylogenetically close to another diploid wheatgrass species, Agropyron elongatum (N. Host, 1797) P. de Beauvois, 1812. The detailed karyotype of Th. bessarabicum was constructed based on FISH with six DNA probes representing 5S and 45S rRNA gene families and four tandem repeats. We found that the combination of pAesp_SAT86 (= pTa-713) probe with pSc119.2 or pAs1/ pTa-535 allows the precise identification of all J-genome chromosomes. Comparison of our data with the results of other authors showed that karyotypically Th. bessarabicum is distinct from A. elongatum. On the other hand, differences between the J-genome chromosomes of Th. bessarabicum and the chromosomes of hexaploid Th. intermedium (N. Host, 1797) M. Barkworth & D.R. Dewey, 1985 and decaploid Th. ponticum (J. Podpěra, 1902) Z.-W. Liu & R.-C. Wang, 1993 in the distribution of rDNA loci and hybridization patterns of pSc119.2 and pAs1 probes could be an indicative of (1) this diploid species was probably not involved in the origin of these polyploids or (2) it could has contributed the J-genome to Th. intermedium and Th. ponticum, but it was substantially modified over the course of speciation.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences. Gubkina str. 3, Moscow 117333, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences. Vavilova str. 34, Moscow 117334, RussiaN.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences. Vavilova str. 34, Moscow 117334, RussiaN.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexander V. Agafonov
- Central Siberian Botanical Garden, Russian Academy of Sciences, Siberian Branch, Zolotodolinskaya st., 101, Novosibirsk 630090, RussiaCentral Siberian Botanical Garden, Russian Academy of SciencesNovosibirskRussia
| |
Collapse
|
36
|
Davoyan RO, Bebyakina IV, Davoyan ER, Mikov DS, Zubanova YS, Boldakov DM, Badaeva ED, Adonina IG, Salina EA, Zinchenko AN. The development and study of common wheat introgression lines derived from the synthetic form RS7. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Synthetic recombination form RS7 (BBAAUS), in which the first two genomes, A and B, originate from common wheat, and the third recombinant genome consists of Aegilops speltoides (S) and Ae. umbellulata (U) chromosomes, was obtained from crossing synthetic forms Avrodes (BBAASS) and Avrolata (BBAAUU). Resistant to leaf rust, yellow rust and powdery mildew, introgression lines have been obtained from backcrosses with the susceptible varieties of common wheat Krasnodarskaya 99, Fisht and Rostislav. PCR analysis showed the presence of amplification fragments with marker SCS421 specific for the Lr28 gene in the line 4991n17. The cytological study (С-banding and FISH) of 14 lines has revealed chromosomal modifications in 12 of them. In most cases, the lines carry translocations from Ae. speltoides, which were identified in chromosomes 1D, 2D, 3D, 2B, 4B, 5B and 7B. Also, lines with the substituted chromosomes 1S (1B), 4D (4S), 5D (5S) and 7D (7S) were identified. Lines that have genetic material from Ae. speltoides and Ae umbellulata at once were revealed. In the line 3379n14, translocations in the short arm of chromosome 7D from Ae. umbellulata and chromosomes 5BL, 1DL, 2DL from Ae. speltoides were revealed. The line 4626p16 presumably has a translocation on the long arm of chromosome 2D from Ae. umbellulata and the T7SS.7SL-7DL translocation from Ae. speltoides. The T1DS.1DL-1SL and T3DS.3DL-3SL translocations from Ae. speltoides, and T2DS.2DL-2UL and T7DL.7DS-7US from Ae. umbellulata have been obtained for the first time. These lines may carry previously unidentified disease resistance genes and, in particular, leaf rust resistance genes from Ae. speltoides and Ae. umbellulata.
Collapse
Affiliation(s)
- R. O. Davoyan
- National Center of Grain named after P.P. Lukyanenko
| | | | - E. R. Davoyan
- National Center of Grain named after P.P. Lukyanenko
| | - D. S. Mikov
- National Center of Grain named after P.P. Lukyanenko
| | | | | | | | | | | | | |
Collapse
|
37
|
Badaeva ED, Fisenko AV, Surzhikov SA, Yankovskaya AA, Chikida NN, Zoshchuk SA, Belousova MK, Dragovich AY. Genetic Heterogeneity of a Diploid Grass Aegilops tauschii Revealed by Chromosome Banding Methods and Electrophoretic Analysis of the Seed Storage Proteins (Gliadins). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Kurkiev KU, Adonina IG, Gadjimagomedova MK, Shchukina LV, Pshenichnikova TA. Biological and economic characteristics of the allotetraploid with genomic formula DDAuAu from the cereal family. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- K. U. Kurkiev
- Dagestan Experimental Station – Department of Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | | | - M. Kh. Gadjimagomedova
- Dagestan Experimental Station – Department of Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | | | | |
Collapse
|
39
|
Wang H, Yu Z, Li G, Yang Z. Diversified Chromosome Rearrangements Detected in a Wheat‒ Dasypyrum breviaristatum Substitution Line Induced by Gamma-Ray Irradiation. PLANTS 2019; 8:plants8060175. [PMID: 31207944 PMCID: PMC6630480 DOI: 10.3390/plants8060175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 01/18/2023]
Abstract
To determine the composition of chromosome aberrations in a wheat‒Dasypyrum breviaristatum substitution line with seeds treated by a dose of gamma-rays (200 Gy), sequential non-denaturing fluorescence in situ hybridization (ND-FISH) with multiple oligonucleotide probes was used to screen individual plants of the mutagenized progenies. We identified 122 types of chromosome rearrangements, including centromeric, telomeric, and intercalary chromosome translocations from a total of 772 M1 and 872 M2 plants. The frequency of reciprocal translocations between B- and D-chromosomes was higher than that between A- and D-chromosomes. Eight translocations between D. breviaristatum and wheat chromosomes were also detected. The 13 stable plants with multiple chromosome translocations displayed novel agronomic traits. The newly developed materials will enhance wheat breeding programs through wheat‒Dasypyrum introgression and also facilitate future studies on the genetic and epigenetic effects of translocations in wheat genomics.
Collapse
Affiliation(s)
- Hongjin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zhihui Yu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
40
|
Paštová L, Belyayev A, Mahelka V. Molecular cytogenetic characterisation of Elytrigia ×mucronata, a natural hybrid of E. intermedia and E. repens (Triticeae, Poaceae). BMC PLANT BIOLOGY 2019; 19:230. [PMID: 31151385 PMCID: PMC6544950 DOI: 10.1186/s12870-019-1806-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/26/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Interspecific hybridisation resulting in polyploidy is one of the major driving forces in plant evolution. Here, we present data from the molecular cytogenetic analysis of three cytotypes of Elytrigia ×mucronata using sequential fluorescence (5S rDNA, 18S rDNA and pSc119.2 probes) and genomic in situ hybridisation (four genomic probes of diploid taxa, i.e., Aegilops, Dasypyrum, Hordeum and Pseudoroegneria). RESULTS The concurrent presence of Hordeum (descended from E. repens) and Dasypyrum + Aegilops (descended from E. intermedia) chromosome sets in all cytotypes of E. ×mucronata confirmed the assumed hybrid origin of the analysed plants. The following different genomic constitutions were observed for E. ×mucronata. Hexaploid plants exhibited three chromosome sets from Pseudoroegneria and one chromosome set each from Aegilops, Hordeum and Dasypyrum. Heptaploid plants harboured the six chromosome sets of the hexaploid plants and an additional Pseudoroegneria chromosome set. Nonaploid cytotypes differed in their genomic constitutions, reflecting different origins through the fusion of reduced and unreduced gametes. The hybridisation patterns of repetitive sequences (5S rDNA, 18S rDNA, and pSc119.2) in E. ×mucronata varied between and within cytotypes. Chromosome alterations that were not identified in the parental species were found in both heptaploid and some nonaploid plants. CONCLUSIONS The results confirmed that both homoploid hybridisation and heteroploid hybridisation that lead to the coexistence of four different haplomes within single hybrid genomes occur in Elytrigia allopolyploids. The chromosomal alterations observed in both heptaploid and some nonaploid plants indicated that genome restructuring occurs during and/or after the hybrids arose. Moreover, a specific chromosomal translocation detected in one of the nonaploids indicated that it was not a primary hybrid. Therefore, at least some of the hybrids are fertile. Hybridisation in Triticeae allopolyploids clearly and significantly contributes to genomic diversity. Different combinations of parental haplomes coupled with chromosomal alterations may result in the establishment of unique lineages, thus providing raw material for selection.
Collapse
Affiliation(s)
- Ladislava Paštová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Charles University, Benátská 2, 128 01 Prague, Czech Republic
| | - Alexander Belyayev
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| | - Václav Mahelka
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| |
Collapse
|
41
|
Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes. PLoS One 2018; 13:e0208840. [PMID: 30540828 PMCID: PMC6291125 DOI: 10.1371/journal.pone.0208840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/25/2018] [Indexed: 11/19/2022] Open
Abstract
Thinopyrum elongatum (Host) D.R. Dewey has served as an important gene source for wheat breeding improvement for many years. The exact characterization of its chromosomes is important for the detailed analysis of prebreeding materials produced with this species. The major aim of this study was to identify and characterize new molecular markers to be used for the rapid analysis of E genome chromatin in wheat background. Sixty of the 169 conserved orthologous set (COS) markers tested on diverse wheat-Th. elongatum disomic/ditelosomic addition lines were assigned to various Th. elongatum chromosomes and will be used for marker-assisted selection. The macrosyntenic relationship between the wheat and Th. elongatum genomes was investigated using EST sequences. Several rearrangements were revealed in homoeologous chromosome groups 2, 5, 6 and 7, while chromosomes 1 and 4 were conserved. Molecular cytogenetic and marker analysis showed the presence of rearranged chromosome involved in 6ES and 2EL arms in the 6E disomic addition line. The selected chromosome arm-specific COS markers will make it possible to identify gene introgressions in breeding programmes and will also be useful in the development of new chromosome-specific markers, evolutionary analysis and gene mapping.
Collapse
|
42
|
Pollak Y, Zelinger E, Raskina O. Repetitive DNA in the Architecture, Repatterning, and Diversification of the Genome of Aegilops speltoides Tausch (Poaceae, Triticeae). FRONTIERS IN PLANT SCIENCE 2018; 9:1779. [PMID: 30564259 PMCID: PMC6288716 DOI: 10.3389/fpls.2018.01779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
The genome's adaptability to environmental changes, especially during rapid climatic fluctuations, underlies the existence and evolution of species. In the wild, genetic and epigenetic genomic changes are accompanied by significant alterations in the complex nuclear repetitive DNA fraction. Current intraspecific polymorphism of repetitive DNA is closely related to ongoing chromosomal rearrangements, which typically result from erroneous DNA repair and recombination. In this study, we addressed tandem repeat patterns and interaction/reshuffling both in pollen mother cell (PMC) development and somatogenesis in the wild diploid cereal Aegilops speltoides, with a focus on genome repatterning and stabilization. Individual contrasting genotypes were investigated using the fluorescent in situ hybridization (FISH) approach by applying correlative fluorescence and electron microscopy. Species-specific Spelt1 and tribe-specific Spelt52 tandem repeats were used as the markers for monitoring somatic and meiotic chromosomal interactions and dynamics in somatic interphase nuclei. We found that, the number of tandem repeat clusters in nuclei is usually lower than the number on chromosomes due to the associations of clusters of the same type in common blocks. In addition, tightly associated Spelt1-Spelt52 clusters were revealed in different genotypes. The frequencies of nonhomologous/ectopic associations between tandem repeat clusters were revealed in a genotype-/population-specific manner. An increase in the number of tandem repeat clusters in the genome causes an increase in the frequencies of their associations. The distal/terminal regions of homologous chromosomes are separated in nuclear space, and nonhomologous chromosomes are often involved in somatic recombination as seen by frequently formed interchromosomal chromatin bridges. In both microgametogenesis and somatogenesis, inter- and intrachromosomal associations are likely to lead to DNA breaks during chromosome disjunction in the anaphase stage. Uncondensed/improperly packed DNA fibers, mainly in heterochromatic regions, were revealed in both the meiotic and somatic prophases that might be a result of broken associations. Altogether, the data obtained showed that intraorganismal dynamics of repetitive DNA under the conditions of natural out-crossing and artificial intraspecific hybridization mirrors the structural plasticity of the Ae. speltoides genome, which is interlinked with genetic diversity through the species distribution area in contrasting ecogeographical environments in and around the Fertile Crescent.
Collapse
Affiliation(s)
- Yulia Pollak
- The CSI Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
- The Electron Microscopy Unit, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Einat Zelinger
- The CSI Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Olga Raskina
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
43
|
Türkösi E, Darko E, Rakszegi M, Molnár I, Molnár-Láng M, Cseh A. Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS One 2018; 13:e0206248. [PMID: 30395616 PMCID: PMC6218033 DOI: 10.1371/journal.pone.0206248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Interspecific hybridization between bread wheat (Triticum aestivum, 2n = 42) and related species allows the transfer of agronomic and quality traits, whereby subsequent generations comprise an improved genetic background and can be directly applied in wheat breeding programmes. While wild relatives are frequently used as sources of agronomically favourable traits, cultivated species can also improve wheat quality and stress resistance. A salt-tolerant 'Asakaze'/'Manas' 7H disomic addition line (2n = 44) with elevated β-glucan content, but with low fertility and an unstable genetic background was developed in an earlier wheat-barley prebreeding programme. The aim of the present study was to take this hybridization programme further and transfer the favourable barley traits into a more stable genetic background. Taking advantage of the breakage-fusion mechanism of univalent chromosomes, the 'Rannaya' winter wheat 7B monosomic line was used as female partner to the 7H addition line male, leading to the development of a compensating wheat/barley Robertsonian translocation line (7BS.7HL centric fusion, 2n = 42) exhibiting higher salt tolerance and elevated grain β-glucan content. Throughout the crossing programme, comprising the F1-F4 generations, genomic in situ hybridization, fluorescence in situ hybridization and chromosome-specific molecular markers were used to trace and identify the wheat and barley chromatin. Investigations on salt tolerance during germination and on the (1,3;1,4)-β-D-glucan (mixed-linkage glucan [MLG]) content of the seeds confirmed the salt tolerance and elevated grain MLG content of the translocation line, which can be directly applied in current wheat breeding programmes.
Collapse
Affiliation(s)
- Edina Türkösi
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Eva Darko
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Marianna Rakszegi
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - István Molnár
- Maize Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Márta Molnár-Láng
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - András Cseh
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
44
|
Profile of Jonathan D. G. Jones. Proc Natl Acad Sci U S A 2018; 115:10191-10194. [DOI: 10.1073/pnas.1815072115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, Doležel J, Gill BS, Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2213-2227. [PMID: 30069594 PMCID: PMC6154037 DOI: 10.1007/s00122-018-3148-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/23/2018] [Indexed: 05/04/2023]
Abstract
Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Eva Hřibová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Tatiana V Danilova
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bikram S Gill
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic.
| |
Collapse
|
46
|
Naranjo T. Variable Patterning of Chromatin Remodeling, Telomere Positioning, Synapsis, and Chiasma Formation of Individual Rye Chromosomes in Meiosis of Wheat-Rye Additions. FRONTIERS IN PLANT SCIENCE 2018; 9:880. [PMID: 30013585 PMCID: PMC6036140 DOI: 10.3389/fpls.2018.00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Meiosis, the type of cell division that halves the chromosome number, shows a considerable degree of diversity among species. Unraveling molecular mechanisms of the meiotic machinery has been mainly based on meiotic mutants, where the effects of a change were assessed on chromosomes of the particular species. An alternative approach is to study the meiotic behavior of the chromosomes introgressed into different genetic backgrounds. As an allohexaploid, common wheat tolerates introgression of chromosomes from related species, such as rye. The behavior of individual pairs of rye homologues added to wheat has been monitored in meiotic prophase I and metaphase I. Chromosome 4R increased its length in early prophase I much more than other chromosomes studied, implying chromosome specific patterns of chromatin organization. Chromosome conformation affected clustering of telomeres but not their dispersion. Telomeres of the short arm of submetacentric chromosomes 4R, 5R, and 6R failed more often to be included in the telomere cluster either than the telomeres of the long arms or telomeres of metacentrics such as 2R, 3R, and 7R. The disturbed migration of the telomeres of 5RS and 6RS was associated with failure of synapsis and chiasma formation. However, despite the failed convergence of its telomere, the 4RS arm developed normal synapsis, perhaps because the strong increase of its length in early prophase I facilitated homologous encounters in intercalary regions. Surprisingly, chiasma frequencies in both arms of 4R were reduced. Similarly, the short arm of metacentric chromosome 2R often failed to form chiasmata despite normal synapsis. Chromosomes 1R, 3R, and 7R showed a regular meiotic behavior. These observations are discussed in the context of the behavior that these chromosomes show in rye itself.
Collapse
|
47
|
Rey MD, Moore G, Martín AC. Identification and comparison of individual chromosomes of three accessions of Hordeum chilense, Hordeum vulgare, and Triticum aestivum by FISH. Genome 2018; 61:387-396. [DOI: 10.1139/gen-2018-0016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Karyotypes of three accessions of Hordeum chilense (H1, H16, and H7), Hordeum vulgare, and Triticum aestivum were characterized by physical mapping of several repetitive sequences. A total of 14 repetitive sequences were used as probes for fluorescence in situ hybridization (FISH) with the aim of identifying inter- and intraspecies polymorphisms. The (AG)12 and 4P6 probes only produced hybridization signals in wheat, the BAC7 probe only hybridized to the centromeric region of H. vulgare, and the pSc119.2 probe hybridized to both wheat and H. chilense, but not to H. vulgare. The remaining repetitive sequences used in this study produced a hybridization signal in all the genotypes. Probes pAs1, pTa-535, pTa71, CCS1, and CRW were much conserved, showing no significant polymorphism among the genotypes studied. Probes GAA, (AAC)5, (CTA)5, HvT01, and pTa794 produced the most different hybridization pattern. We identified large polymorphisms in the three accessions of H. chilense studied, supporting the proposal of the existence of different groups inside species of H. chilense. The set of probes described in this work allowed the identification of every single chromosome in all three species, providing a complete cytogenetic karyotype of H. chilense, H. vulgare, and T. aestivum chromosomes, which could be useful in wheat and tritordeum breeding programs.
Collapse
Affiliation(s)
- María-Dolores Rey
- John Innes Centre, Crop Genetics Department, Norwich NR4 7UH, United Kingdom
- John Innes Centre, Crop Genetics Department, Norwich NR4 7UH, United Kingdom
| | - Graham Moore
- John Innes Centre, Crop Genetics Department, Norwich NR4 7UH, United Kingdom
- John Innes Centre, Crop Genetics Department, Norwich NR4 7UH, United Kingdom
| | - Azahara C. Martín
- John Innes Centre, Crop Genetics Department, Norwich NR4 7UH, United Kingdom
- John Innes Centre, Crop Genetics Department, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
48
|
Finnegan EJ, Ford B, Wallace X, Pettolino F, Griffin PT, Schmitz RJ, Zhang P, Barrero JM, Hayden MJ, Boden SA, Cavanagh CA, Swain SM, Trevaskis B. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. PLANT, CELL & ENVIRONMENT 2018; 41:1346-1360. [PMID: 29430678 DOI: 10.1111/pce.13164] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 05/09/2023]
Abstract
The number of rachis nodes (spikelets) on a wheat spike is a component of grain yield that correlates with flowering time. The genetic basis regulating flowering in cereals is well understood, but there are reports that flowering time can be modified at a high frequency by selective breeding, suggesting that it may be regulated by both epigenetic and genetic mechanisms. We investigated the role of DNA methylation in regulating spikelet number and flowering time by treating a semi-spring wheat with the demethylating agent, Zebularine. Three lines with a heritable increase in spikelet number were identified. The molecular basis for increased spikelet number was not determined in 2 lines, but the phenotype showed non-Mendelian inheritance, suggesting that it could have an epigenetic basis. In the remaining line, the increased spikelet phenotype behaved as a Mendelian recessive trait and late flowering was associated with a deletion encompassing the floral promoter, FT-B1. Deletion of FT-B1 delayed the transition to reproductive growth, extended the duration of spike development, and increased spikelet number under different temperature regimes and photoperiod. Transiently disrupting DNA methylation can generate novel flowering behaviour in wheat, but these changes may not be sufficiently stable for use in breeding programs.
Collapse
Affiliation(s)
| | - Brett Ford
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | | | - Patrick T Griffin
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, 2570, Australia
| | - Jose M Barrero
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Matthew J Hayden
- Agriculture Victoria Research, Agribio Center, Bundoora, Victoria, 3083, Australia
| | - Scott A Boden
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | - Steve M Swain
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Ben Trevaskis
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| |
Collapse
|
49
|
Ruban AS, Badaeva ED. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1756. [PMID: 30564254 PMCID: PMC6288319 DOI: 10.3389/fpls.2018.01756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
Five diploid Aegilops species of the Sitopsis section: Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis, two tetraploid species Ae. peregrina (= Ae. variabilis) and Ae. kotschyi (Aegilops section) and hexaploid Ae. vavilovii (Vertebrata section) carry the S-genomes. The B- and G-genomes of polyploid wheat are also the derivatives of the S-genome. Evolution of the S-genome species was studied using Giemsa C-banding and fluorescence in situ hybridization (FISH) with DNA probes representing 5S (pTa794) and 18S-5.8S-26S (pTa71) rDNAs as well as nine tandem repeats: pSc119.2, pAesp_SAT86, Spelt-1, Spelt-52, pAs1, pTa-535, and pTa-s53. To correlate the C-banding and FISH patterns we used the microsatellites (CTT)10 and (GTT)9, which are major components of the C-banding positive heterochromatin in wheat. According to the results obtained, diploid species split into two groups corresponding to Emarginata and Truncata sub-sections, which differ in the C-banding patterns, distribution of rDNA and other repeats. The B- and G-genomes of polyploid wheat are most closely related to the S-genome of Ae. speltoides. The genomes of allopolyploid wheat have been evolved as a result of different species-specific chromosome translocations, sequence amplification, elimination and re-patterning of repetitive DNA sequences. These events occurred independently in different wheat species and in Ae. speltoides . The 5S rDNA locus of chromosome 1S was probably lost in ancient Ae. speltoides prior to formation of Timopheevii wheat, but after the emergence of ancient emmer. Evolution of Emarginata species was associated with an increase of C-banding and (CTT)10-positive heterochromatin, amplification of Spelt-52, re-pattering of the pAesp_SAT86, and a gradual decrease in the amount of the D-genome-specific repeats pAs1, pTa-535, and pTa-s53. The emergence of Ae. peregrina and Ae. kotschyi did not lead to significant changes of the S*-genomes. However, partial elimination of 45S rDNA repeats from 5S* and 6S* chromosomes and alterations of C-banding and FISH-patterns have been detected. Similarity of the Sv-genome of Ae. vavilovii with the Ss genome of diploid Ae. searsii confirmed the origin of this hexaploid. A model of the S-genome evolution is suggested.
Collapse
Affiliation(s)
- Alevtina S. Ruban
- Laboratory of Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ekaterina D. Badaeva
- Laboratory of Genetic Basis of Plant Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ekaterina D. Badaeva
| |
Collapse
|
50
|
Badaeva ED, Ruban AS, Shishkina AA, Sibikeev SN, Druzhin AE, Surzhikov SA, Dragovich AY. Genetic classification of Aegilops columnaris Zhuk. (2n=4x=28, U cU cX cX c) chromosomes based on FISH analysis and substitution patterns in common wheat × Ae. columnaris introgressive lines. Genome 2017; 61:131-143. [PMID: 29216443 DOI: 10.1139/gen-2017-0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aegilops columnaris is a tetraploid species originated from Ae. umbellulata (2n=2x=14, UU) and a yet unknown diploid grass species. Although Ae. columnaris possesses some agronomically valuable traits, such as heat and drought tolerance and resistance to pests, it has never been used in wheat breeding because of difficulties in producing hybrids and a lack of information on the relationships between Ae. columnaris and common wheat chromosomes. In this paper, we report the development of 57 wheat - Ae. columnaris introgressive lines covering 8 of the14 chromosomes of Aegilops. Based on substitution spectra of hybrids and the results of FISH analysis of the parental Ae. columnaris line with seven DNA probes, we have developed the genetic nomenclature of the Uc and Xc chromosomes. Genetic groups and genome affinities were established for 11 of 14 chromosomes; the classification of the remaining three chromosomes remains unsolved. Each Ae. columnaris chromosome was characterized on the basis of C-banding pattern and the distribution of seven DNA sequences. Introgression processes were shown to depend on the parental wheat genotype and the level of divergence of homoeologous chromosomes. We found that lines carrying chromosome 5Xc are resistant to leaf rust; therefore, this chromosome could possess novel resistance genes that have never been utilized in wheat breeding.
Collapse
Affiliation(s)
- E D Badaeva
- a Vavilov Institute of General Generics, Russian Academy of Sciences, Gubkina Str. 3, GSP-1, Moscow 119991, Russia.,b Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119991, Russia
| | - A S Ruban
- c Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Chromosome Structure and Function Laboratory, Corrensstraße 3, 06466 Gatersleben, Germany
| | - A A Shishkina
- a Vavilov Institute of General Generics, Russian Academy of Sciences, Gubkina Str. 3, GSP-1, Moscow 119991, Russia
| | - S N Sibikeev
- d Agricultural Research Institute of South-East Regions, Russian Academy of Agricultural Sciences, Tulaikova Str. 7, Saratov 140010, Russia
| | - A E Druzhin
- d Agricultural Research Institute of South-East Regions, Russian Academy of Agricultural Sciences, Tulaikova Str. 7, Saratov 140010, Russia
| | - S A Surzhikov
- b Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119991, Russia
| | - A Yu Dragovich
- a Vavilov Institute of General Generics, Russian Academy of Sciences, Gubkina Str. 3, GSP-1, Moscow 119991, Russia
| |
Collapse
|