1
|
Brockhoff G. "Shedding" light on HER4 signaling in normal and malignant breast tissues. Cell Signal 2022; 97:110401. [PMID: 35820544 DOI: 10.1016/j.cellsig.2022.110401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022]
Abstract
Receptor Tyrosine Kinases of the Epidermal Growth Factor Receptor Family play a pivotal role as drivers of carcinogenesis and uncontrolled cell growth for a variety of malignancies, not least for breast cancer. Besides the estrogen receptor, the HER2 receptor was and still is a representative marker for advanced taxonomic sub-differentiation of breast cancer and emerged as one of the first therapeutic targets for antibody based therapies. Since the approval of trastuzumab for the therapy of HER2-positive breast cancer in 1998 anti-HER2 treatment strategies are being modified, refined, and successfully combined with complementary treatments, nevertheless there is still potential for improvement. The HER2 relatives, namely HER1 (i.e., EGFR), HER3 and HER4 share a high degree of molecular homology and together form a functional unit for signal transmission. Under regular conditions, receptor coexpression patterns and receptor interaction represent key parameters for signaling robustness, which ensures cellular growth control and enables tissue differentiation. In addition, treatment efficiency of e.g., an anti-HER2 targeting is substantially determined by the expression pattern of HER receptors on target cells. Within the receptor family, the HER4 plays a particular role and is engaged in exceptional signaling activities. A favorable prognostic impact has been attributed to HER4 expression in breast cancer under specific molecular conditions. HER4-specific cellular effects are initially determined by a ligand-dependent or -independent receptor activation. Essential processes as cell growth and proliferation, cell differentiation, and apoptotic cell death can be initiated by this receptor. This review gives an overview of the role of HER4 in normal and malignant breast epithelial cells and tissues. Specific mechanism of HER4 activation and subsequent intracellular signaling will be described by taking a focus on effects provoked by receptor shedding. HER4 activities and specific effects will be correlated to breast cancer subtypes and the impact of HER4 on course and outcome of disease will be considered. Moreover, current and potential therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2020; 67:109497. [PMID: 31830556 PMCID: PMC6957738 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
3
|
Abstract
The epidermal growth factor receptor (EGFR) pathway has a critical role in renal development, tissue repair and electrolyte handling. Numerous studies have reported an association between dysregulation of this pathway and the initiation and progression of various chronic kidney diseases such as diabetic nephropathy, chronic allograft nephropathy and polycystic kidney disease through the promotion of renal cell proliferation, fibrosis and inflammation. In the oncological setting, compounds that target the EGFR pathway are already in clinical use or have been evaluated in clinical trials; in the renal setting, therapeutic interventions targeting this pathway by decreasing ligand availability with disintegrin and metalloproteinase inhibitors or with ligand-neutralizing antibodies, or by inhibiting receptor activation with tyrosine kinase inhibitors or monoclonal antibodies are only just starting to be explored in animal models of chronic kidney disease and in patients with autosomal dominant polycystic kidney disease. In this Review we focus on the role of the EGFR signalling pathway in the kidney under physiological conditions and during the pathophysiology of chronic kidney diseases and explore the clinical potential of interventions in this pathway to treat chronic renal diseases.
Collapse
|
4
|
Brune K, Frank J, Schwingshackl A, Finigan J, Sidhaye VK. Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol Lung Cell Mol Physiol 2015; 308:L731-45. [PMID: 25637609 DOI: 10.1152/ajplung.00309.2014] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
The pulmonary epithelium serves as a barrier to prevent access of the inspired luminal contents to the subepithelium. In addition, the epithelium dictates the initial responses of the lung to both infectious and noninfectious stimuli. One mechanism by which the epithelium does this is by coordinating transport of diffusible molecules across the epithelial barrier, both through the cell and between cells. In this review, we will discuss a few emerging paradigms of permeability changes through altered ion transport and paracellular regulation by which the epithelium gates its response to potentially detrimental luminal stimuli. This review is a summary of talks presented during a symposium in Experimental Biology geared toward novel and less recognized methods of epithelial barrier regulation. First, we will discuss mechanisms of dynamic regulation of cell-cell contacts in the context of repetitive exposure to inhaled infectious and noninfectious insults. In the second section, we will briefly discuss mechanisms of transcellular ion homeostasis specifically focused on the role of claudins and paracellular ion-channel regulation in chronic barrier dysfunction. In the next section, we will address transcellular ion transport and highlight the role of Trek-1 in epithelial responses to lung injury. In the final section, we will outline the role of epithelial growth receptor in barrier regulation in baseline, acute lung injury, and airway disease. We will then end with a summary of mechanisms of epithelial control as well as discuss emerging paradigms of the epithelium role in shifting between a structural element that maintains tight cell-cell adhesion to a cell that initiates and participates in immune responses.
Collapse
Affiliation(s)
- Kieran Brune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - James Frank
- The Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco VA Medical Center, and NCIRE/Veterans Health Research Institute, San Francisco, California
| | - Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - James Finigan
- Division of Oncology, Cancer Center, National Jewish Health, Denver, Colorado
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland;
| |
Collapse
|
5
|
HER2/neu: an increasingly important therapeutic target. Part 1: basic biology & therapeutic armamentarium. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/cli.14.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Abstract
Retroviruses are the original source of oncogenes. The discovery and characterization of these genes was made possible by the introduction of quantitative cell biological and molecular techniques for the study of tumour viruses. Key features of all retroviral oncogenes were first identified in src, the oncogene of Rous sarcoma virus. These include non-involvement in viral replication, coding for a single protein and cellular origin. The MYC, RAS and ERBB oncogenes quickly followed SRC, and these together with PI3K are now recognized as crucial driving forces in human cancer.
Collapse
Affiliation(s)
- Peter K Vogt
- The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
7
|
Finigan JH, Downey GP, Kern JA. Human epidermal growth factor receptor signaling in acute lung injury. Am J Respir Cell Mol Biol 2012. [PMID: 22652197 DOI: 10.1165/rcmb.2012‐0100tr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute lung injury (ALI) is a syndrome marked by increased permeability across the pulmonary epithelium resulting in pulmonary edema. Recent evidence suggests that members of the human epidermal growth factor receptor (HER) family are activated in alveolar epithelial cells during ALI and regulate alveolar epithelial barrier function. These tyrosine kinase receptors, which also participate in the pathophysiology of pulmonary epithelial malignancies, regulate cell growth, differentiation, and migration as well as cell-cell adhesion, all processes that influence epithelial injury and repair. In this review we outline mechanisms of epithelial injury and repair in ALI, activation patterns of this receptor family in pulmonary epithelial cells as a consequence injury, how receptor activation alters alveolar permeability, and the possible intracellular signaling pathways involved. Finally, we propose a theoretical model for how HER-mediated modulation of alveolar permeability might affect lung injury and repair. Understanding how these receptors signal has direct therapeutic implications in lung injury and other diseases characterized by altered epithelial barrier function.
Collapse
Affiliation(s)
- James H Finigan
- Department of Medicine, National Jewish Health, 1400 Jackson Street, K736A, Denver, CO 80206, USA.
| | | | | |
Collapse
|
8
|
Finigan JH, Downey GP, Kern JA. Human epidermal growth factor receptor signaling in acute lung injury. Am J Respir Cell Mol Biol 2012; 47:395-404. [PMID: 22652197 DOI: 10.1165/rcmb.2012-0100tr] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a syndrome marked by increased permeability across the pulmonary epithelium resulting in pulmonary edema. Recent evidence suggests that members of the human epidermal growth factor receptor (HER) family are activated in alveolar epithelial cells during ALI and regulate alveolar epithelial barrier function. These tyrosine kinase receptors, which also participate in the pathophysiology of pulmonary epithelial malignancies, regulate cell growth, differentiation, and migration as well as cell-cell adhesion, all processes that influence epithelial injury and repair. In this review we outline mechanisms of epithelial injury and repair in ALI, activation patterns of this receptor family in pulmonary epithelial cells as a consequence injury, how receptor activation alters alveolar permeability, and the possible intracellular signaling pathways involved. Finally, we propose a theoretical model for how HER-mediated modulation of alveolar permeability might affect lung injury and repair. Understanding how these receptors signal has direct therapeutic implications in lung injury and other diseases characterized by altered epithelial barrier function.
Collapse
Affiliation(s)
- James H Finigan
- Department of Medicine, National Jewish Health, 1400 Jackson Street, K736A, Denver, CO 80206, USA.
| | | | | |
Collapse
|
9
|
Shelton JG, Steelman LS, Abrams SL, Bertrand FE, Franklin RA, McMahon M, McCubrey JA. The epidermal growth factor receptor gene family as a target for therapeutic intervention in numerous cancers: what's genetics got to do with it? Expert Opin Ther Targets 2007; 9:1009-30. [PMID: 16185155 DOI: 10.1517/14728222.9.5.1009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past 30 years, a relatively simple growth factor and its cognate receptor have provided seminal insights into the understanding of the genetic basis of cancer, as well as growth factor signalling. The epidermal growth factor (EGF), its cognate receptor (EGFR) and related family members have been shown to be important in normal, as well as the malignant growth of many cell types including: glioblastomata, astrocytomas, medulloblastomata, non-small cell lung carcinoma (NSCLC) and breast cancer. This review summarises the history of the EGFR gene and the v-ErbB oncogene, as well as diverse approaches developed to inhibit EGFR activity. The two most advanced therapies use either small-molecule cell membrane permeable kinase inhibitors or antibodies which prevent receptor activation. Recent clinical trials indicate that certain NSCLC patients have mutations in the EGFR gene which makes them more responsive to kinase inhibitors. These mutations appear to enhance the ability of the ligand to activate EGFR activity and also prolong the binding of the EGFR inhibitor to the kinase domain. Evidence to date suggests that these EGFR mutations in NSCLC occur more frequently in Japan than in the western hemisphere. Although these mutations are correlated with enhanced efficacy to the inhibitors in NSCLC, they can not explain or predict the sensitivity of many other cancer patients to the beneficial effects of the EGFR kinase inhibitors or antibody mediated therapy. As with as other small-molecule kinase inhibitors and susceptible diseases (e.g., imatinib and chronic myeloid leukaemia), resistance to EGFR inhibitors has been reported recently, documenting the requirement for development of multi-pronged therapeutic approaches. EGFR kinase inhibitors are also being evaluated as adjuvants in hormonal therapy of breast cancer - especially those which overexpress EGFR. Genetically engineered antibodies specific for the EGFR family member ErbB2 have been developed which show efficacy in the treatment of primary, and prevent the relapse of, breast cancer. Clearly, the EGF/EGFR signalling cascade has, and continues to play, an important role in the development of novel anticancer targeted therapies.
Collapse
Affiliation(s)
- John G Shelton
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27858, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Danielsen AJ, Christensen TA, Lovejoy CA, Adelsman MA, Connolly DC, Maihle NJ. Membrane localization of v-ErbB is required but not sufficient for ligand-independent transformation. Exp Cell Res 2004; 296:285-93. [PMID: 15149858 DOI: 10.1016/j.yexcr.2004.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 01/23/2004] [Indexed: 11/23/2022]
Abstract
The v-ErbB retroviral oncogene is a transduced, mutated copy of the avian EGF receptor gene, and its expression is sufficient to induce tumor formation in vivo. The structural alterations that release the oncogenic potential of the v-ErbB oncogene are similar to EGFR gene mutations described in human tumors. Thus, the study of v-ErbB tumor biology offers a useful model through which we can gain insight into the mechanism of EGFR-induced malignancies. Despite years of study, however, questions remain regarding the domains of v-ErbB required for oncogenicity. We sought to clarify the role of the transmembrane domain of v-ErbB during transformation using S3-v-ErbB, an acutely transforming retroviral oncogene isolated from avian sarcomas. Infection of primary fibroblasts with a retroviral vector containing S3-v-ErbB results in the formation of a transformation-associated phosphoprotein signaling complex, soft agar colony formation, and the rapid induction of highly vascularized sarcomas in vivo. To address contribution of the transmembrane domain of S3-v-ErbB during these processes, we constructed a mutant version of this oncogene with a precise deletion in this domain. Specifically, the S3-v-ErbB-TM- mutant was created through an in-frame deletion of the entire transmembrane domain. Primary fibroblasts expressing this S3-v-ErbB-TM- mutant fail to form a characteristic transformation-associated phosphoprotein complex and do not grow in an anchorage-independent manner. In addition, day-old chicks injected with a helper-independent retrovirus expressing the S3-v-ErbB-TM- mutant exhibit only limited tumor formation in vivo. These results demonstrate that the transmembrane domain and, consequently membrane localization, are essential for S3-v-ErbB-mediated transformation.
Collapse
Affiliation(s)
- Andrew J Danielsen
- Tumor Biology Program, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
11
|
Danielsen AJ, Maihle NJ. Ligand-independent oncogenic transformation by the EGF receptor requires kinase domain catalytic activity. Exp Cell Res 2002; 275:9-16. [PMID: 11925101 DOI: 10.1006/excr.2002.5494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The retroviral oncogene S3-v-erbB is a transduced, truncated form of the avian EGF (ErbB-1) receptor. Infection of avian fibroblasts with a retroviral vector expressing S3-v-ErbB results in ligand-independent cell transformation, which is accompanied by the assembly of a transformation-specific phosphoprotein signaling complex and anchorage-independent cell growth. It previously had been reported, using lysine-721 mutants (K721), that kinase domain function was required for ErbB-mediated cell transformation. However, since these initial reports, several studies using aspartate-813 mutants (D813) have demonstrated the ability of kinase-impaired ErbB receptors to induce mitogenic signal transduction pathways and cell transformation in a ligand-dependent manner. To determine the necessity of ErbB receptor kinase domain catalytic activity in ligand-independent cell transformation, we created S3-v-ErbB-K(-), a kinase-impaired oncoprotein constructed by replacing aspartate-813 with alanine (D813A). Subcellular routing as well as cell surface membrane and nuclear localization of the S3-v-ErbB-K(-) mutant receptor were unaffected by impairment of kinase activity. In contrast, avian fibroblasts expressing S3-v-ErbB-K(-) do not form the characteristic transformation-specific phosphoprotein complex, or induce soft agar colony growth in vitro. These results suggest that in contrast to ligand-dependent oncogenic signaling, ligand-independent cell transformation by a constitutively activated mutant form of the EGF receptor requires receptor kinase catalytic activity. In addition, these results demonstrate that phosphorylation and assembly of downstream signaling complexes require tyrosine phosphorylation events that are directly mediated by oncogenic forms of the EGF receptor.
Collapse
|
12
|
Affiliation(s)
- M L Privalsky
- Department of Microbiology, University of California, Davis 95616
| |
Collapse
|
13
|
Morishita K, Iwamoto M, Murakami K, Kubota M, Maeda S, Toyoshima K, Yamamoto T. Expression and characterization of kinase-active v-erbB protein using a baculovirus vector system. Jpn J Cancer Res 1992; 83:52-60. [PMID: 1347525 PMCID: PMC5918662 DOI: 10.1111/j.1349-7006.1992.tb02351.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The v-erbB gene is an oncogene of the avian erythroblastosis virus encoding a protein that is a truncated version of the epidermal growth factor receptor. The v-erbB protein was expressed alone or as polyhedrin-erbB fusion proteins using the Bombyx mori nuclear polyhedrosis virus vector. The expression level of the fusion protein whose polyhedrin portion consisted of only 8 amino-terminal amino acids was more than ten times higher than that of the non-fusion protein. Studies with tunicamycin showed that the recombinant v-erbB proteins were glycosylated. The recombinant protein autophosphorylated tyrosine residues, and phosphorylated a synthetic tyrosine-containing peptide and lipocortin I. These observations indicate that functional v-erbB protein can be expressed in silkworm-derived cells, and furthermore, that this system can be used for large-scale production.
Collapse
Affiliation(s)
- K Morishita
- Exploratory Research Laboratories 2, Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Shu HK, Pelley RJ, Kung HJ. Dissecting the activating mutations in v-erbB of avian erythroblastosis virus strain R. J Virol 1991; 65:6173-80. [PMID: 1681117 PMCID: PMC250306 DOI: 10.1128/jvi.65.11.6173-6180.1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The v-erbB oncogene isolated from the R (or ES4) strain of avian erythroblastosis virus is capable of inducing erythroleukemia and fibrosarcomas. This oncogene differs from the proto-oncogene c-erbB, the avian homolog of the epidermal growth factor receptor, by its lack of an intact ligand-binding domain as well as additional alterations in its cytoplasmic coding sequences. By contrast, the insertionally activated c-erbB, a variant oncogene, which encodes a product that also lacks the ligand-binding domain but is otherwise unaltered in its cytoplasmic coding sequences, is capable of inducing leukemia but cannot induce sarcomas. In this report, we show that the critical changes for activating the sarcomagenic potential displayed by v-erbB R are two point mutations within the tyrosine kinase domain and an internal deletion of 21 amino acids in the carboxyl-terminal regulatory domain. The removal of the carboxyl-terminal autophosphorylation sites is not obligatory. These activating mutations (Arg-263 to His, Ile-384 to Ser, and the deletion of residues 494 to 514), when introduced singly into the insertionally activated c-erbB, all dramatically increase fibroblast-transforming potential. Arg-263 resides near the highly conserved HRD motif of the kinase domain, and its mutation to His increases the autophosphorylation activity. The other two mutations do not alter the intrinsic kinase activity and presumably affect other aspects of the receptor involved in growth signaling. Therefore, the high transforming potential of v-erbB R is a consequence of synergism among multiple activating mutations.
Collapse
MESH Headings
- Alpharetrovirus/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Transformation, Viral
- Cells, Cultured
- Chick Embryo
- Humans
- Immunoblotting
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides
- Oncogene Proteins v-erbB
- Oncogene Proteins, Viral/genetics
- Oncogenes
- Plasmids
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Mas
- Recombinant Proteins/isolation & purification
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/isolation & purification
- Retroviridae Proteins, Oncogenic/metabolism
- Sarcoma, Experimental/genetics
- Sarcoma, Experimental/microbiology
- Sequence Homology, Nucleic Acid
- Transfection
Collapse
Affiliation(s)
- H K Shu
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
15
|
The amino-terminal 14 amino acids of v-src can functionally replace the extracellular and transmembrane domains of v-erbB. Mol Cell Biol 1991. [PMID: 1678856 DOI: 10.1128/mcb.11.9.4760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.
Collapse
|
16
|
McMahon M, Schatzman RC, Bishop JM. The amino-terminal 14 amino acids of v-src can functionally replace the extracellular and transmembrane domains of v-erbB. Mol Cell Biol 1991; 11:4760-70. [PMID: 1678856 PMCID: PMC361376 DOI: 10.1128/mcb.11.9.4760-4770.1991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.
Collapse
Affiliation(s)
- M McMahon
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | | | |
Collapse
|
17
|
Bonde BG, Sharif M, Privalsky ML. Ontogeny of the v-erbA oncoprotein from the thyroid hormone receptor: an alteration in the DNA binding domain plays a role crucial for v-erbA function. J Virol 1991; 65:2037-46. [PMID: 1672166 PMCID: PMC240051 DOI: 10.1128/jvi.65.4.2037-2046.1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The avian erythroblastosis virus v-erbA oncogene is imprecisely derived from a cellular gene (c-erbA) encoding a thyroid hormone receptor: the v-erbA protein has sustained both small terminal deletions and internal amino acid sequence changes relative to c-erbA. We report here that one of these missense differences between v- and c-erbA proteins, located in a zinc finger DNA binding domain, has dramatic effects on the biological activities of the encoded protein. Back mutation of the viral coding sequence to resemble c-erbA at this site severely impairs erythroid transformation and produces subtle changes in DNA binding by the encoded protein, suggesting that differences in DNA binding by the viral and cellular proteins may be involved in the activation of v-erbA as an oncogene.
Collapse
Affiliation(s)
- B G Bonde
- Department of Microbiology, University of California, Davis 95616
| | | | | |
Collapse
|
18
|
Privalsky ML. A subpopulation of the v-erb A oncogene protein, a derivative of a thyroid hormone receptor, associates with heat shock protein 90. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52316-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Bonde BG, Privalsky ML. Sequence-specific DNA binding by the v-erbA oncogene protein of avian erythroblastosis virus. J Virol 1990; 64:1314-20. [PMID: 1968105 PMCID: PMC249249 DOI: 10.1128/jvi.64.3.1314-1320.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The v-erbA oncogene, a transduced copy of a thyroid hormone receptor, plays an important role in establishment of the transformed cell phenotype induced by avian erythroblastosis virus. The ability of thyroid hormone receptors to bind to specific sites on chromatin and to thereby modify the expression of adjacent target genes is a crucial element in their mechanism of action in the normal cell. The v-erbA protein also bound at high affinity to a set of DNA fragments recognized by the rat thyroid hormone receptor, but the relative affinity of the v-erbA protein for the different binding sites was distinct from that previously reported for the thyroid hormone receptors.
Collapse
Affiliation(s)
- B G Bonde
- Department of Microbiology, University of California, Davis 95616
| | | |
Collapse
|
20
|
Privalsky ML. A subpopulation of the avian erythroblastosis virus v-erbA protein, a member of the nuclear hormone receptor family, is glycosylated. J Virol 1990; 64:463-6. [PMID: 1967151 PMCID: PMC249128 DOI: 10.1128/jvi.64.1.463-466.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The v-erbA oncogene of avian erythroblastosis virus is derived from a cellular gene for a thyroid hormone (T4/T3 thyronine) receptor and encodes a DNA-binding protein found principally in the nucleus of the infected cell. I report here that a subpopulation of the v-erbA protein is glycosylated. The v-erbA protein, therefore, is another member of the newly recognized family of eucaryotic transcription factors and related polypeptides which are glycoproteins.
Collapse
Affiliation(s)
- M L Privalsky
- Department of Microbiology, University of California, Davis 95616
| |
Collapse
|
21
|
Moscovici MG, Siegel ML, Moscovici C. Avian erythroblastosis virus transforms a novel mast cell-basophil precursor target in the Japanese quail. J Virol 1989; 63:2335-9. [PMID: 2539521 PMCID: PMC250652 DOI: 10.1128/jvi.63.5.2335-2339.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic cells of the Japanese quail were transformed by avian erythroblastosis virus in vivo and in vitro. In both circumstances, the infected hematopoietic tissues exhibited a dual oncogenic response of erythroid and mast cell-basophil elements. The erythroid transformants escaped the avian erythroblastosis virus block in differentiation and progressed to hemoglobinization. Resulting basophilic cells were morphologically, biochemically, and ultrastructurally identical to mast cell-basophils observed in other species. None of the virally transformed cells actively produced reverse transcriptase activity. Nonproducer cell lines synthesized viral RNA and both v-erbA and v-erbB proteins. These results indicate that the Japanese quail has a viral target cell different from that of the chicken. The implications of a single bipotential transformation target yielding both erythroid and mast cell-basophil colonies is discussed.
Collapse
Affiliation(s)
- M G Moscovici
- Department of Pathology, University of Florida, Gainesville 32610
| | | | | |
Collapse
|
22
|
Proviral insertional activation of c-erbB: differential processing of the protein products arising from two alternate transcripts. Mol Cell Biol 1989. [PMID: 3062371 DOI: 10.1128/mcb.8.11.4868] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proviral insertional activation of c-erbB results in the expression of two alternate transcripts (ENV+ and ENV-). We used cDNA clones representing the two alternate transcripts to generate stably transformed quail fibroblast cell lines which express the products of these transcripts independently. Analysis of the co- and posttranslational processing of the insertionally activated c-erbB products expressed in these cell lines revealed that the protein products of the ENV+ and ENV- transcripts were processed differently. The ENV+ transcript produced a primary translation product which was rapidly cotranslationally cleaved near the amino terminus to form a 79,000-Mr product. This protein product was efficiently converted to a higher-molecular-weight form, of between 82,000 and 88,000 (gp82-88), which was terminally glycosylated and expressed on the cell surface. A small portion of the ENV+ primary translation product underwent a second proteolytic cleavage to generate an unglycosylated 53,000-Mr species. In contrast, the primary translation product of the ENV- transcript, p80, was not proteolytically processed; this precursor form was rapidly converted to two discrete glycosylation intermediates, gp82 and go84. Only a small portion (less than 10%) of the total ENV- insertionally activated c-erbB product was slowly converted to the terminally glycosylated cell surface form, gp85-88. The processing differences that distinguished the ENV+ and ENV- products were similar to processing differences that we observed in parallel studies on the viral erbB products of the avian erythroblastosis viruses AEV-H and AEV-R, respectively. Since all four erbB protein products shared the same number, position, and sequence context of potential N-linked glycosylation sites, yet differed in the extent of their carbohydrate maturation, these data suggest that the mechanisms used by these truncated receptor molecules to associate with cellular membranes may be distinct.
Collapse
|
23
|
Abstract
In this review, we discuss the biological action and biochemical function of the v-erbA oncogene product, and the role of c-erbA proto-oncogene products as thyroid hormone receptors, as related to the molecular structure and function of the nuclear hormone receptors at large.
Collapse
Affiliation(s)
- Y Goldberg
- INSERM U186/CNRS UA1160, Institut Pasteur de Lille, France
| | | | | | | |
Collapse
|
24
|
Maihle NJ, Kung HJ. C-erbB and the epidermal growth-factor receptor: a molecule with dual identity. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 948:287-304. [PMID: 2645940 DOI: 10.1016/0304-419x(89)90003-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- N J Maihle
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | | |
Collapse
|
25
|
Palmieri S. Oncogene requirements for tumorigenicity: cooperative effects between retroviral oncogenes. Curr Top Microbiol Immunol 1989; 148:43-91. [PMID: 2684549 DOI: 10.1007/978-3-642-74700-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
|
27
|
Genetic dissection of functional domains within the avian erythroblastosis virus v-erbA oncogene. Mol Cell Biol 1988. [PMID: 2847034 DOI: 10.1128/mcb.8.10.4510] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The avian erythroblastosis virus v-erbA locus potentiates the oncogenic transformation of erythroid and fibroblast cells and is derived from a host cell gene encoding a thyroid hormone receptor. We report here the use of site-directed mutagenesis to identify and characterize functional domains within the v-erbA protein. Genetic lesions introduced into a putative hinge region or at the extreme C-terminus of the v-erbA coding domain had no significant effect on the biological activity of this polypeptide. In contrast, mutations introduced within the cysteine-lysine-arginine-rich center of the v-erbA coding region, a DNA-binding domain in the thyroid and steroid hormone receptors, abolished or severely compromised the ability of the viral protein to function. Our results suggest that the mechanism of action of the v-erbA protein in establishing the neoplastic phenotype is closely related to its ability to interact with DNA, presumably thereby altering expression of host target genes by either mimicking or interfering with the action of the normal c-erbA gene product.
Collapse
|
28
|
Maihle NJ, Raines MA, Flickinger TW, Kung HJ. Proviral insertional activation of c-erbB: differential processing of the protein products arising from two alternate transcripts. Mol Cell Biol 1988; 8:4868-76. [PMID: 3062371 PMCID: PMC365580 DOI: 10.1128/mcb.8.11.4868-4876.1988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proviral insertional activation of c-erbB results in the expression of two alternate transcripts (ENV+ and ENV-). We used cDNA clones representing the two alternate transcripts to generate stably transformed quail fibroblast cell lines which express the products of these transcripts independently. Analysis of the co- and posttranslational processing of the insertionally activated c-erbB products expressed in these cell lines revealed that the protein products of the ENV+ and ENV- transcripts were processed differently. The ENV+ transcript produced a primary translation product which was rapidly cotranslationally cleaved near the amino terminus to form a 79,000-Mr product. This protein product was efficiently converted to a higher-molecular-weight form, of between 82,000 and 88,000 (gp82-88), which was terminally glycosylated and expressed on the cell surface. A small portion of the ENV+ primary translation product underwent a second proteolytic cleavage to generate an unglycosylated 53,000-Mr species. In contrast, the primary translation product of the ENV- transcript, p80, was not proteolytically processed; this precursor form was rapidly converted to two discrete glycosylation intermediates, gp82 and go84. Only a small portion (less than 10%) of the total ENV- insertionally activated c-erbB product was slowly converted to the terminally glycosylated cell surface form, gp85-88. The processing differences that distinguished the ENV+ and ENV- products were similar to processing differences that we observed in parallel studies on the viral erbB products of the avian erythroblastosis viruses AEV-H and AEV-R, respectively. Since all four erbB protein products shared the same number, position, and sequence context of potential N-linked glycosylation sites, yet differed in the extent of their carbohydrate maturation, these data suggest that the mechanisms used by these truncated receptor molecules to associate with cellular membranes may be distinct.
Collapse
Affiliation(s)
- N J Maihle
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
29
|
Privalsky ML, Boucher P, Koning A, Judelson C. Genetic dissection of functional domains within the avian erythroblastosis virus v-erbA oncogene. Mol Cell Biol 1988; 8:4510-7. [PMID: 2847034 PMCID: PMC365526 DOI: 10.1128/mcb.8.10.4510-4517.1988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The avian erythroblastosis virus v-erbA locus potentiates the oncogenic transformation of erythroid and fibroblast cells and is derived from a host cell gene encoding a thyroid hormone receptor. We report here the use of site-directed mutagenesis to identify and characterize functional domains within the v-erbA protein. Genetic lesions introduced into a putative hinge region or at the extreme C-terminus of the v-erbA coding domain had no significant effect on the biological activity of this polypeptide. In contrast, mutations introduced within the cysteine-lysine-arginine-rich center of the v-erbA coding region, a DNA-binding domain in the thyroid and steroid hormone receptors, abolished or severely compromised the ability of the viral protein to function. Our results suggest that the mechanism of action of the v-erbA protein in establishing the neoplastic phenotype is closely related to its ability to interact with DNA, presumably thereby altering expression of host target genes by either mimicking or interfering with the action of the normal c-erbA gene product.
Collapse
Affiliation(s)
- M L Privalsky
- Department of Microbiology, University of California, Davis 95616
| | | | | | | |
Collapse
|
30
|
Wells A, Bishop JM. Genetic determinants of neoplastic transformation by the retroviral oncogene v-erbB. Proc Natl Acad Sci U S A 1988; 85:7597-601. [PMID: 2902633 PMCID: PMC282239 DOI: 10.1073/pnas.85.20.7597] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The retroviral oncogene v-erbB is a mutant version of the gene (c-erbB or ERBB1) that encodes the cell-surface epidermal growth factor receptor (EGFR). The mutations take three forms: (i) a large deletion that removes the entire ligand-binding domain of EGFR, (ii) smaller deletions that affect the carboxyl-terminal domain of EGFR, and (iii) point mutations that cause conservative substitutions of amino acids. Previous work has shown that, in the absence of the large deletion, ERBB1 cannot transform cells autonomously. Here we report that when the large deletion is present, no other mutation is required for ERBB1 to transform established rodent fibroblasts to a tumorigenic phenotype. In particular, there is no need for deletions affecting the carboxyl terminus of the gene product. It appears, therefore, that removal of the ligand-binding domain from the EGFR suffices to create a transforming protein. Deletions at the carboxyl terminus of the EGFR apparently play only a secondary role in transformation by affecting the host range and perhaps the potency of transformation; and there is as yet no evidence to implicate point mutations in the activation of ERBB1 to an oncogene. Our findings support the view that augmented activity of the EGFR can contribute to tumorigenesis.
Collapse
Affiliation(s)
- A Wells
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | |
Collapse
|
31
|
Affiliation(s)
- R C Schwartz
- Department of Microbiology and Public Health, Michigan State University, East Lansing 48824-1101
| | | |
Collapse
|
32
|
Boucher P, Koning A, Privalsky ML. The avian erythroblastosis virus erbA oncogene encodes a DNA-binding protein exhibiting distinct nuclear and cytoplasmic subcellular localizations. J Virol 1988; 62:534-44. [PMID: 2826814 PMCID: PMC250565 DOI: 10.1128/jvi.62.2.534-544.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protein product of the v-erbA oncogene of avian erythroblastosis virus was analyzed by use of site-specific antisera. The v-erbA protein was found to exist in distinct nuclear and cytoplasmic forms. Both nuclear and cytoplasmic species of the v-erbA protein were capable of binding to DNA, a property predicted based on the structural relatedness the v-erbA polypeptide shares with the thyroid and steroid hormone receptors. A mutation within the v-erbA coding region which inhibited DNA binding and nuclear localization also inhibited the ability of the v-erbA protein to potentiate erythroid transformation, consistent with a model of the v-erbA protein as a transcriptional regulator.
Collapse
Affiliation(s)
- P Boucher
- Department of Biochemistry/Biophysics, University of California, Davis 95616
| | | | | |
Collapse
|
33
|
Denhardt DT, Colasanti J. A survey of vectors for regulating expression of cloned DNA in E. coli. BIOTECHNOLOGY (READING, MASS.) 1988; 10:179-203. [PMID: 3061514 DOI: 10.1016/b978-0-409-90042-2.50015-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
McCarley DJ, Parsons SJ. Reduced tyrosine kinase specific activity is associated with hypophosphorylation of pp60c-src in cells infected with avian erythroblastosis virus. Proc Natl Acad Sci U S A 1987; 84:5793-7. [PMID: 3112775 PMCID: PMC298949 DOI: 10.1073/pnas.84.16.5793] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Avian erythroblastosis virus (AEV) is a replication-defective retrovirus that causes erythroblastosis and sarcomas in chickens and transforms immature erythroid cells and fibroblasts in culture. AEV encodes two oncogenes, v-erbA and v-erbB, whose products are closely related to the thyroxine receptor and the epidermal growth factor receptor, respectively. Since tyrosine protein kinases have been implicated in the process of normal growth signal transduction, we wished to study the possible consequences of the expression of these mutated, growth-regulating receptor genes on the activity of the cellular tyrosine kinase pp60c-src. A continuous cell line from AEV-infected quail embryo fibroblasts was derived that exhibited a typical transformed phenotype and expressed the viral oncogene products, p75gag-erbA and gp66-68erbB. Using an immune-complex kinase assay, we found that the specific activity of pp60c-src in AEV-transformed quail cells was decreased by a factor of 6-30 relative to that found in uninfected quail cells. A concomitant 50-80% reduction of 32Pi incorporation into the pp60c-src protein from radiolabeled, transformed cells was also observed, indicating a relationship between hypophosphorylation and diminished enzyme activity. Partial proteolytic phosphopeptide analysis revealed a decrease in phosphorylation of both serine- and tyrosine-containing peptides, suggesting an activation of specific phosphatases or inhibition of specific kinases in the AEV-transformed quail cells. Similar results were found in pp60c-src precipitated from AEV-transformed chicken and rat cells.
Collapse
|
35
|
Bassiri M, Privalsky ML. Transmembrane domain of the AEV erb B oncogene protein is not required for partial manifestation of the transformed phenotype. Virology 1987; 159:20-30. [PMID: 3604059 DOI: 10.1016/0042-6822(87)90343-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transmembrane domain was deleted from within the v-erb B protein coding region of avian erythroblastosis virus. The mutant oncogene encoded a shortened, apparently soluble form of the normally membrane bound v-erb B protein. Despite this alteration in subcellular distribution, the mutant polypeptide retained the ability to induce fibroblast transformation by several parameters, including the ability to display anchorage-independent growth. It appears that the transmembrane domain, although important for full manifestation of the transformed phenotype, is not essential for v-erb B-mediated oncogenic transformation.
Collapse
|
36
|
Privalsky ML. Creation of a chimeric oncogene: analysis of the biochemical and biological properties of v-erbB/src fusion polypeptide. J Virol 1987; 61:1938-48. [PMID: 2883328 PMCID: PMC254201 DOI: 10.1128/jvi.61.6.1938-1948.1987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A novel gene was created that linked complementary portions of two different tyrosine kinase oncogenes: v-erB and v-src. The v-erbB/src chimera encoded a glycoprotein exhibiting the subcellular distribution of the v-erbB protein but containing the kinase catalytic domain of the v-src parent. Fibroblasts expressing the v-erbB/src gene product became transformed to an oncogenic state and closely resembled cells expressing the v-erbB parent oncogene. Our results indicated that v-erbB sequences can be functionally replaced by sequences derived from a different oncogene, v-src, and that important determinants of the transformed phenotype appear to be encoded in oncogene sequences distinct from those defining the kinase catalytic domain itself.
Collapse
|
37
|
Determination of the orientation of an integral membrane protein and sites of glycosylation by oligonucleotide-directed mutagenesis: influenza B virus NB glycoprotein lacks a cleavable signal sequence and has an extracellular NH2-terminal region. Mol Cell Biol 1987. [PMID: 3025652 DOI: 10.1128/mcb.6.12.4317] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane orientation of the NB protein of influenza B virus, a small (Mr, approximately 18,000) glycoprotein with a single internal hydrophobic domain, was investigated by biochemical and genetic means. Cell fractionation and protein solubility studies indicate NB is an integral membrane protein, and NB has been shown to be a dimer under nonreducing conditions. Treatment of infected-cell surfaces with proteinase K and endoglycosidase F and immunoprecipitation with a site-specific antibody suggests that the 18-amino-acid NH2-terminal region of NB is exposed at the cell surface. Oligonucleotide-directed mutagenesis to eliminate each of the four potential sites of N-linked glycosylation and expression of the mutant NB proteins in eucaryotic cells suggest that the two sites adjacent to the NH2 terminus are glycosylated. This provides further evidence that NB, which lacks a cleavable NH2-terminal signal sequence, has an exposed NH2 terminus at the cell surface.
Collapse
|
38
|
Rettenmier CW, Jackowski S, Rock CO, Roussel MF, Sherr CJ. Transformation by the v-fms oncogene product: an analog of the CSF-1 receptor. J Cell Biochem 1987; 33:109-15. [PMID: 3032997 DOI: 10.1002/jcb.240330205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The product of the c-fms proto-oncogene is related to, and possibly identical with, the receptor for the macrophage colony-stimulating factor, M-CSF (CSF-1). Unlike the product of the v-erbB oncogene, which is a truncated version of the EGF receptor, the glycoprotein encoded by the v-fms oncogene retains an intact extracellular ligand-binding domain so that cells transformed by v-fms express CSF-1 receptors at their surface. Although fibroblasts susceptible to transformation by v-fms generally produce CSF-1, v-fms-mediated transformation does not depend on an exogenous source of the growth factor, and neutralizing antibodies to CSF-1 do not affect the transformed phenotype. An alteration of the v-fms gene product at its extreme carboxyl-terminus represents the major structural difference between it and the c-fms-coded glycoprotein and may affect the tyrosine kinase activity of the v-fms-coded receptor. Consistent with this interpretation, tyrosine phosphorylation of the v-fms products in membranes was observed in the absence of CSF-1 and was not enhanced by addition of the murine growth factor. Cells transformed by v-fms have a constitutively elevated specific activity of a guanine nucleotide-dependent, phosphatidylinositol-4,5-diphosphate-specific phospholipase C. We speculate that the tyrosine kinase activity of the v-fms/c-fms gene products may be coupled to this phospholipase C, possibly through a G regulatory protein, thereby increasing phosphatidylinositol turnover and generating the intracellular second messengers diacylglycerol and inositol triphosphate.
Collapse
|
39
|
A single amino acid substitution in v-erbB confers a thermolabile phenotype to ts167 avian erythroblastosis virus-transformed erythroid cells. Mol Cell Biol 1987. [PMID: 2878364 DOI: 10.1128/mcb.6.5.1751] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A library of recombinant bacteriophage was prepared from ts167 avian erythroblastosis virus-transformed erythroid precursor cells (HD6), and integrated proviruses from three distinct genomic loci were isolated. A subclone of one of these proviruses (pAEV1) was shown to confer temperature-sensitive release from transformation of erythroid precursor cells in vitro. The predicted amino acid sequence of the v-erbB polypeptide from the mutant had a single amino acid change when compared with the wild-type parental virus. When the wild-type amino acid was introduced into the temperature-sensitive avian erythroblastosis virus provirus in pAEV1, all erythroid clones produced in vitro were phenotypically wild type. The mutation is a change from a histidine to an aspartic acid in the temperature-sensitive v-erbB polypeptide. It is located in the center of the tyrosine-specific protein kinase domain and corresponds to amino acid position 826 of the human epidermal growth factor receptor sequence.
Collapse
|
40
|
Abstract
The retroviral oncogene v-erb-B encodes a truncated version of the receptor for epidermal growth factor. To define the disposition of the v-erb-B protein within cells and across the plasma membrane, we raised antibodies against defined epitopes in the protein and used these in immunofluorescence to analyze cells transformed by v-erb-B. A small fraction of the v-erb-B protein was found on the plasma membrane in a clustered configuration. The bulk of the protein was located in the endoplasmic reticulum and Golgi apparatus. Epitopes near the amino terminus of the v-erb-B protein were displayed on the surface of the cell, whereas epitopes in the protein kinase domain were located exclusively within cells. We conclude that the v-erb-B protein spans the plasma membrane in a manner similar or identical to that of the epidermal growth factor receptor, even though the viral transforming protein does not possess the signal peptide that is thought to direct insertion of the receptor into the membrane.
Collapse
|
41
|
Williams MA, Lamb RA. Determination of the orientation of an integral membrane protein and sites of glycosylation by oligonucleotide-directed mutagenesis: influenza B virus NB glycoprotein lacks a cleavable signal sequence and has an extracellular NH2-terminal region. Mol Cell Biol 1986; 6:4317-28. [PMID: 3025652 PMCID: PMC367213 DOI: 10.1128/mcb.6.12.4317-4328.1986] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The membrane orientation of the NB protein of influenza B virus, a small (Mr, approximately 18,000) glycoprotein with a single internal hydrophobic domain, was investigated by biochemical and genetic means. Cell fractionation and protein solubility studies indicate NB is an integral membrane protein, and NB has been shown to be a dimer under nonreducing conditions. Treatment of infected-cell surfaces with proteinase K and endoglycosidase F and immunoprecipitation with a site-specific antibody suggests that the 18-amino-acid NH2-terminal region of NB is exposed at the cell surface. Oligonucleotide-directed mutagenesis to eliminate each of the four potential sites of N-linked glycosylation and expression of the mutant NB proteins in eucaryotic cells suggest that the two sites adjacent to the NH2 terminus are glycosylated. This provides further evidence that NB, which lacks a cleavable NH2-terminal signal sequence, has an exposed NH2 terminus at the cell surface.
Collapse
|
42
|
Olofsson B, Pizon V, Zahraoui A, Tavitian A, Therwath A. Structure and expression of the chicken epidermal growth factor receptor gene locus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 160:261-6. [PMID: 3769926 DOI: 10.1111/j.1432-1033.1986.tb09965.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Similarity between the carboxyl-terminal portion of the human epidermal growth factor (EGF) receptor and the deduced protein sequence of the chicken-derived oncogene v-erbB, of avian erythroblastosis virus strain H, has suggested that the chicken cellular erbB locus, c-erbB, might be part of a longer EGF-receptor gene in the chicken, whose entire coding capacity remained to be defined. The c-erbB locus spans more than 20 X 10(3) base pairs (20 kbp) of DNA and contains at least 1.8 kbp homologous to the v-erbB oncogene. We show here that human EGF receptor cDNA and chicken genomic DNA share homology not only within the c-erbB locus but also within a 25.1-kbp DNA region situated 5' to this locus. The 3' region of the EGF receptor overlaps, in sequence homology, the c-erbB locus. The EGF receptor/c-erbB locus in chicken generates six related but distinctly different mRNAs of sizes 12, 9, 5, 3.6, 3.2 and 2.6 kb. The transcripts of 12, 9, and 3.6 kb contain sequences coding for both the extracellular EGF-binding domain of the receptor and the intracellular tyrosine kinase domain. The 12-kb and 9-kb transcripts, which have already been shown to contain the sequences coding for the v-erbB, were found to possess, in addition, sequences that encode the entire chicken EGF receptor. The 3.2-kb and 2.6-kb mRNAs are homologous only to the 5' portion of the EGF receptor gene. These results therefore indicate that the c-erbB locus, initially defined by homology to the viral transforming gene, corresponds to the 3' region of the EGF receptor gene in the chicken genome. The multiple, related, chicken EGF receptor RNA transcripts reported here are reminiscent of the various human EGF receptor RNA transcripts observed in normal and transformed cells.
Collapse
|
43
|
Abstract
The transforming sequences of the avian acute leukemia virus, E26, contain two distinct oncogenes, v-mybE and v-ets, fused together. By using a probe containing v-ets sequences, polyadenylated transcripts of the c-ets proto-oncogene were detected in avian tissues; they included a major 7.0-kilobase and a minor 2.0-kilobase species. These c-ets mRNAs were detected at high levels only in lymphoid organs and in avian T and B lymphoid cell lines. A similar pattern of c-ets transcription was observed in human hematopoietic cell lines, with transcripts detected in lymphoid B and T cells but not in erythroid or myeloid cells. The E26 oncogene was inserted into an inducible expression vector, and a 90-kilodalton protein (bp90) was produced in bacteria. Rabbit antisera raised to purified bp90 precipitated P135gag-mybE-ets, the v-mybE-ets polyprotein expressed in E26-transformed cells, and also reacted with p50v-mybA, the transforming protein of the avian myeloblastosis virus. Antiserum to bp90 was absorbed with a bacterially synthesized v-mybA protein to remove anti-myb activity. The absorbed anti-bp90 serum retained the ability to immunoprecipitate P135gag-mybE-ets from E26-transformed cells and specifically reacted with a 56-kilodalton polypeptide (p56) detected in chicken lymphoid organs and in T and B lymphocytes of both avian and human origin. The data suggest that p56 is a translational product of the c-ets proto-oncogene and imply that p56 may be involved in regulating the growth of lymphoid cells.
Collapse
|
44
|
Bassiri M, Privalsky ML. Mutagenesis of the avian erythroblastosis virus erbB coding region: an intact extracellular domain is not required for oncogenic transformation. J Virol 1986; 59:525-30. [PMID: 3016316 PMCID: PMC253109 DOI: 10.1128/jvi.59.2.525-530.1986] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Avian erythroblastosis virus (AEV) is an oncogenic retrovirus of birds. The AEV-encoded erbB polypeptide, a transmembrane glycoprotein bearing an N-terminal domain exposed on the surface of virally transformed cells, plays a crucial role in AEV-mediated oncogenesis. We report here a characterization of a mutated form of the AEV erbB protein which lacks over two-thirds of the extracellular region of this oncogenic protein. This mutant v-erbB protein, although lacking the three possible extracellular sites of N-linked protein glycosylation, appears unimpaired in the ability to transform cells to an oncogenic phenotype.
Collapse
|
45
|
Gentry LE, Lawton A. Characterization of site-specific antibodies to the erbB gene product and EGF receptor: inhibition of tyrosine kinase activity. Virology 1986; 152:421-31. [PMID: 3014725 DOI: 10.1016/0042-6822(86)90144-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Site-specific antibodies were generated against the erbB protein and epidermal growth factor (EGF) receptor by immunizing rabbits with a synthetic peptide corresponding to amino acid residues 285-296 of the predicted AEV-H erbB protein sequence. This peptide region lies within the tyrosine kinase domain of erbB and EGF receptor. Antibodies directed against this region readily identified native and denatured forms of the erbB gene product and EGF receptor as demonstrated by immuneprecipitation and immunoblot analysis. The anti-peptide antibody immuneprecipitated a functional EGF binding receptor molecule. Scatchard analysis demonstrated a KD for 125I-labeled EGF binding of 40 nM, a value consistent with that of detergent solubilized EGF receptor. Immuneprecipitates, though able to bind EGF, were unable to transfer phosphate from gamma-labeled ATP in a standard phosphorylation reaction. In detergent solubilized extracts of crude A431 microsomes, the anti-peptide antibody inhibited in a dose dependent manner the autophosphorylation of EGF receptor as well as receptor mediated phosphorylation of exogenously added substrates. In addition, this anti-peptide antibody reduced the overall level of tyrosine kinase activity present in microsomes prepared from AEV-transformed erythroblasts. This site-specific antisera should be useful for understanding the role of EGF receptor and erbB tyrosine kinase activity and their link with cell proliferation.
Collapse
|
46
|
Akiyama T, Sudo C, Ogawara H, Toyoshima K, Yamamoto T. The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science 1986; 232:1644-6. [PMID: 3012781 DOI: 10.1126/science.3012781] [Citation(s) in RCA: 575] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antibodies were raised against a synthetic peptide corresponding to 14 amino acid residues at the COOH-terminus of a protein deduced from the human c-erbB-2 nucleotide sequence. These antibodies immunoprecipitated a 185-kilodalton glycoprotein from MKN-7 adenocarcinoma cells. Incubation of the immunoprecipitates with (gamma-32P)ATP resulted in the phosphorylation of this protein on tyrosine residues. These results indicate that the human c-erbB-2 gene product is the 185-kilodalton glycoprotein that is associated with tyrosine kinase activity. Although the c-erbB-2 protein was predicted to encode a protein very similar to epidermal growth factor (EGF) receptor, EGF did not stimulate this kinase activity either in vivo or in vitro.
Collapse
|
47
|
Abstract
An interesting aspect of the developments forthcoming from the study of cell growth control by growth factors is the structural and functional homologies that have been found to exist between growth factors or their receptors and other molecules. The epidermal growth factor (EGF) system has been particularly fruitful in this regard. The information in this article is meant to summarize the relationships that have been recently described between EGF and other EGF-like molecules and between the EGF receptor and related macromolecules.
Collapse
|
48
|
Choi OR, Trainor C, Graf T, Beug H, Engel JD. A single amino acid substitution in v-erbB confers a thermolabile phenotype to ts167 avian erythroblastosis virus-transformed erythroid cells. Mol Cell Biol 1986; 6:1751-9. [PMID: 2878364 PMCID: PMC367703 DOI: 10.1128/mcb.6.5.1751-1759.1986] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A library of recombinant bacteriophage was prepared from ts167 avian erythroblastosis virus-transformed erythroid precursor cells (HD6), and integrated proviruses from three distinct genomic loci were isolated. A subclone of one of these proviruses (pAEV1) was shown to confer temperature-sensitive release from transformation of erythroid precursor cells in vitro. The predicted amino acid sequence of the v-erbB polypeptide from the mutant had a single amino acid change when compared with the wild-type parental virus. When the wild-type amino acid was introduced into the temperature-sensitive avian erythroblastosis virus provirus in pAEV1, all erythroid clones produced in vitro were phenotypically wild type. The mutation is a change from a histidine to an aspartic acid in the temperature-sensitive v-erbB polypeptide. It is located in the center of the tyrosine-specific protein kinase domain and corresponds to amino acid position 826 of the human epidermal growth factor receptor sequence.
Collapse
|
49
|
Ng M, Privalsky ML. Structural domains of the avian erythroblastosis virus erbB protein required for fibroblast transformation: dissection by in-frame insertional mutagenesis. J Virol 1986; 58:542-53. [PMID: 3009867 PMCID: PMC252943 DOI: 10.1128/jvi.58.2.542-553.1986] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Avian erythroblastosis virus (AEV) induces erythroblastosis and fibrosarcomas. The viral erbB protein is required for AEV-mediated oncogenesis. To explore the structural aspects of the v-erbB polypeptide necessary for its oncogenic function, we created a series of small in-frame insertions in different domains of the v-erbB oncogene. AEV genomes bearing lesions within the v-erbB kinase domain demonstrated a drastically decreased ability to transform avian fibroblasts, establishing a functional role for this structurally conserved oncogene domain. In contrast, mutations in the extracellular domain, between the transmembrane region and the kinase domain, or at the extreme C terminus of the v-erbB protein had no effect on AEV-mediated fibroblast transformation. One lesion within the v-erbB kinase domain, a 10-amino acid insertion, produced a temperature-sensitive mutant capable of fibroblast transformation at 36 degrees C but not at 41 degrees C, suggesting that small in-frame insertions have general utility for the in vitro creation of conditional mutants.
Collapse
|
50
|
Hayman MJ, Kitchener G, Knight J, McMahon J, Watson R, Beug H. Analysis of the autophosphorylation activity of transformation defective mutants of avian erythroblastosis virus. Virology 1986; 150:270-5. [PMID: 3006340 DOI: 10.1016/0042-6822(86)90287-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The v-erb B protein of avian erythroblastosis virus (AEV) possesses an associated protein kinase activity in vitro. Analysis of temperature-sensitive mutants, and nonconditional host range mutants of AEV demonstrated that there was no simple correlation between this autophosphorylation activity and the transformation ability of the various AEV mutants. These data suggest that although this kinase activity may be central to transformation by AEV it is in itself insufficient.
Collapse
|