1
|
D’Halluin A, Gilet L, Lablaine A, Pellegrini O, Serrano M, Tolcan A, Ventroux M, Durand S, Hamon M, Henriques A, Carballido-López R, Condon C. Embedding a ribonuclease in the spore crust couples gene expression to spore development in Bacillus subtilis. Nucleic Acids Res 2025; 53:gkae1301. [PMID: 39817517 PMCID: PMC11736430 DOI: 10.1093/nar/gkae1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025] Open
Abstract
Faced with nutritional stress, some bacteria form endospores capable of enduring extreme conditions for long periods of time; yet the function of many proteins expressed during sporulation remains a mystery. We identify one such protein, KapD, as a 3'-exoribonuclease expressed under control of the mother cell-specific transcription factors SigE and SigK in Bacillus subtilis. KapD dynamically assembles over the spore surface through a direct interaction with the major crust protein CotY. KapD catalytic activity is essential for normal adhesiveness of spore surface layers. We identify the sigK mRNA as a key KapD substrate and and show that the stability of this transcript is regulated by CotY-mediated sequestration of KapD. SigK is tightly controlled through excision of a prophage-like element, transcriptional regulation and the removal of an inhibitory pro-sequence. Our findings uncover a fourth, post-transcriptional layer of control of sigK expression that couples late-stage gene expression in the mother cell to spore morphogenesis.
Collapse
Affiliation(s)
- Alexandre D’Halluin
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laetitia Gilet
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Armand Lablaine
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Olivier Pellegrini
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157Oeiras, Portugal
| | - Anastasia Tolcan
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Magali Ventroux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Sylvain Durand
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Proteomics platform, FR550 Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157Oeiras, Portugal
| | - Rut Carballido-López
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Ciarán Condon
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
2
|
Structural Studies of Bypass of Forespore Protein C from Bacillus Subtilis to Reveal Its Inhibitory Molecular Mechanism for SpoIVB. Catalysts 2022. [DOI: 10.3390/catal12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Activation of pro-σK processing requires a signaling protease SpoIVB that is secreted from the forespore into the space between the two cells during sporulation in Bacillus subtilis. Bypass of forespore protein C (BofC) is an inhibitor preventing the autoproteolysis of SpoIVB, ensuring the factor σK operates regularly at the correct time during the sporulation. However, the regulatory mechanisms of BofC on pro-σK processing are still unclear, especially in the aspect of the interaction between BofC and SpoIVB. Herein, the recombinant BofC (rBofC) was expressed in the periplasm by the E. coli expression system, and crystal growth conditions were obtained and optimized. Further, the crystal structure of rBofC was determined by X-ray crystallography, which is nearly identical to the structures determined by NMR and predicted by AlphaFold. In addition, the modeled structure of the BofC–SpoIVB complex provides insights into the molecular mechanism by which domain 1 of BofC occupies the active site of the SpoIVB serine protease domain, leading to the inhibition of the catalytical activity of SpoIVB and prevention of the substrate of SpoIVB (SpoIVFA) from binding to the active site.
Collapse
|
3
|
Lehmann D, Sladek M, Khemmani M, Boone TJ, Rees E, Driks A. Role of novel polysaccharide layers in assembly of the exosporium, the outermost protein layer of the Bacillus anthracis spore. Mol Microbiol 2022; 118:258-277. [PMID: 35900297 PMCID: PMC9549345 DOI: 10.1111/mmi.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
A fundamental question in cell biology is how cells assemble their outer layers. The bacterial endospore is a well-established model for cell layer assembly. However, the assembly of the exosporium, a complex protein shell comprising the outermost layer in the pathogen Bacillus anthracis, remains poorly understood. Exosporium assembly begins with the deposition of proteins at one side of the spore surface, followed by the progressive encirclement of the spore. We seek to resolve a major open question: the mechanism directing exosporium assembly to the spore, and then into a closed shell. We hypothesized that material directly underneath the exosporium (the interspace) directs exosporium assembly to the spore and drives encirclement. In support of this, we show that the interspace possesses at least two distinct layers of polysaccharide. Secondly, we show that putative polysaccharide biosynthetic genes are required for exosporium encirclement, suggesting a direct role for the interspace. These results not only significantly clarify the mechanism of assembly of the exosporium, an especially widespread bacterial outer layer, but also suggest a novel mechanism in which polysaccharide layers drive the assembly of a protein shell.
Collapse
Affiliation(s)
- Dörte Lehmann
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Margaret Sladek
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tyler J Boone
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
4
|
Olenic S, Heo L, Feig M, Kroos L. Inhibitory proteins block substrate access by occupying the active site cleft of Bacillus subtilis intramembrane protease SpoIVFB. eLife 2022; 11:e74275. [PMID: 35471152 PMCID: PMC9042235 DOI: 10.7554/elife.74275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Intramembrane proteases (IPs) function in numerous signaling pathways that impact health, but elucidating the regulation of membrane-embedded proteases is challenging. We examined inhibition of intramembrane metalloprotease SpoIVFB by proteins BofA and SpoIVFA. We found that SpoIVFB inhibition requires BofA residues in and near a predicted transmembrane segment (TMS). This segment of BofA occupies the SpoIVFB active site cleft based on cross-linking experiments. SpoIVFB inhibition also requires SpoIVFA. The inhibitory proteins block access of the substrate N-terminal region to the membrane-embedded SpoIVFB active site, based on additional cross-linking experiments; however, the inhibitory proteins did not prevent interaction between the substrate C-terminal region and the SpoIVFB soluble domain. We built a structural model of SpoIVFB in complex with BofA and parts of SpoIVFA and substrate, using partial homology and constraints from cross-linking and co-evolutionary analyses. The model predicts that conserved BofA residues interact to stabilize a TMS and a membrane-embedded C-terminal region. The model also predicts that SpoIVFA bridges the BofA C-terminal region and SpoIVFB, forming a membrane-embedded inhibition complex. Our results reveal a novel mechanism of IP inhibition with clear implications for relief from inhibition in vivo and design of inhibitors as potential therapeutics.
Collapse
Affiliation(s)
| | - Lim Heo
- Michigan State UniversityEast LansingUnited States
| | - Michael Feig
- Michigan State UniversityEast LansingUnited States
| | - Lee Kroos
- Michigan State UniversityEast LansingUnited States
| |
Collapse
|
5
|
Olenic S, Buchanan F, VanPortfliet J, Parrell D, Kroos L. Conserved Proline Residues of Bacillus subtilis Intramembrane Metalloprotease SpoIVFB Are Important for Substrate Interaction and Cleavage. J Bacteriol 2022; 204:e0038621. [PMID: 35007155 PMCID: PMC8923169 DOI: 10.1128/jb.00386-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Intramembrane metalloproteases (IMMPs) regulate diverse biological processes by cleaving membrane-associated substrates within the membrane or near its surface. SpoIVFB is an intramembrane metalloprotease of Bacillus subtilis that cleaves Pro-σK during endosporulation. Intramembrane metalloproteases have a broadly conserved NPDG motif, which in the structure of an archaeal enzyme is located in a short loop that interrupts a transmembrane segment facing the active site. The aspartate residue of the NPDG motif acts as a ligand of the zinc ion involved in catalysis. The functions of other residues in the short loop are less well understood. We found that the predicted short loop of SpoIVFB contains two highly conserved proline residues, P132 of the NPDG motif and P135. Mutational analysis revealed that both proline residues are important for Pro-σK cleavage in Escherichia coli engineered to synthesize the proteins. Substitutions for either residue also impaired the Pro-σK interaction with SpoIVFB in copurification assays. Disulfide cross-linking experiments showed that the predicted short loop of SpoIVFB is in proximity to the N-terminal pro-sequence region (Proregion) of Pro-σK. Alanine substitutions for N129 and P132 of the SpoIVFB NPDG motif reduced cross-linking between its predicted short loop and the Proregion more than a P135A substitution. Conversely, the SpoIVFB P135A substitution reduced Pro-σK cleavage more than the N129A and P132A substitutions during sporulation of B. subtilis. We conclude that all three conserved residues of SpoIVFB are important for substrate interaction and cleavage, and we propose that P135 is necessary to position D137 to act as a zinc ligand. IMPORTANCE Intramembrane metalloproteases (IMMPs) function in numerous signaling pathways. Bacterial IMMPs govern stress responses, including the sporulation of some species, thus enhancing the virulence and persistence of pathogens. Knowledge of IMMP-substrate interactions could aid therapeutic design, but structures of IMMP·substrate complexes are unknown. We examined the interaction of the IMMP SpoIVFB with its substrate Pro-σK, whose cleavage is required for Bacillus subtilis endosporulation. We found that conserved proline residues in a short loop predicted to interrupt a SpoIVFB transmembrane segment are important for Pro-σK binding and cleavage. The corresponding residues of the Escherichia coli IMMP RseP have also been shown to be important for substrate interaction and cleavage, suggesting that this is a broadly conserved feature of IMMPs, potentially suitable as a therapeutic target.
Collapse
Affiliation(s)
- Sandra Olenic
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Fiona Buchanan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jordyn VanPortfliet
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Parrell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Sun G, Yang M, Jiang L, Huang M. Regulation of pro-σ K activation: a key checkpoint in Bacillus subtilis sporulation. Environ Microbiol 2021; 23:2366-2373. [PMID: 33538382 DOI: 10.1111/1462-2920.15415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis initiates the sporulation process under conditions of nutrient limitation. Here, we review related work in this field, focusing on the protein processing of the pro-σK activation. The purpose of this review is to illustrate the mechanism of pro-σK activation and provide structural insights into the regulation of spore production. Sporulation is not only important in basic science but also provides mechanistic insight for bacterial control in applications in, e.g., food industry.
Collapse
Affiliation(s)
- Gaohui Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| |
Collapse
|
7
|
Parrell D, Kroos L. Channels modestly impact compartment-specific ATP levels during Bacillus subtilis sporulation and a rise in the mother cell ATP level is not necessary for Pro-σ K cleavage. Mol Microbiol 2020; 114:563-581. [PMID: 32515031 DOI: 10.1111/mmi.14560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/13/2023]
Abstract
Starvation of Bacillus subtilis initiates endosporulation involving formation of mother cell (MC) and forespore (FS) compartments. During engulfment, the MC membrane migrates around the FS and protein channels connect the two compartments. The channels are necessary for postengulfment FS gene expression, which relieves inhibition of SpoIVFB, an intramembrane protease that cleaves Pro-σK , releasing σK into the MC. SpoIVFB has an ATP-binding domain exposed to the MC cytoplasm, but the role of ATP in regulating Pro-σK cleavage has been unclear, as has the impact of the channels on MC and FS ATP levels. Using luciferase produced separately in each compartment to measure relative ATP concentrations during sporulation, we found that the MC ATP concentration rises about twofold coincident with increasing cleavage of Pro-σK , and the FS ATP concentration does not decline. Mutants lacking a channel protein or defective in channel protein turnover exhibited modest and varied effects on ATP levels, which suggested that low ATP concentration does not explain the lack of postengulfment FS gene expression in channel mutants. Furthermore, a rise in the MC ATP level was not necessary for Pro-σK cleavage by SpoIVFB, based on analysis of mutants that bypass the need for relief of SpoIVFB inhibition.
Collapse
Affiliation(s)
- Daniel Parrell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Ramos-Silva P, Serrano M, Henriques AO. From Root to Tips: Sporulation Evolution and Specialization in Bacillus subtilis and the Intestinal Pathogen Clostridioides difficile. Mol Biol Evol 2020; 36:2714-2736. [PMID: 31350897 PMCID: PMC6878958 DOI: 10.1093/molbev/msz175] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of highly resistant, dormant endospores. Endospores allow environmental persistence, dissemination and for pathogens, are also infection vehicles. In both the model Bacillus subtilis, an aerobic organism, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes. Their expression is coordinated between the forespore and the mother cell, the two cells that participate in the process, and is kept in close register with the course of morphogenesis. The evolutionary mechanisms by which sporulation emerged and evolved in these two species, and more broadly across Firmicutes, remain largely unknown. Here, we trace the origin and evolution of sporulation using the genes known to be involved in the process in B. subtilis and C. difficile, and estimating their gain-loss dynamics in a comprehensive bacterial macroevolutionary framework. We show that sporulation evolution was driven by two major gene gain events, the first at the base of the Firmicutes and the second at the base of the B. subtilis group and within the Peptostreptococcaceae family, which includes C. difficile. We also show that early and late sporulation regulons have been coevolving and that sporulation genes entail greater innovation in B. subtilis with many Bacilli lineage-restricted genes. In contrast, C. difficile more often recruits new sporulation genes by horizontal gene transfer, which reflects both its highly mobile genome, the complexity of the gut microbiota, and an adjustment of sporulation to the gut ecosystem.
Collapse
Affiliation(s)
- Paula Ramos-Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
9
|
Ramírez-Guadiana FH, Rodrigues CDA, Marquis KA, Campo N, Barajas-Ornelas RDC, Brock K, Marks DS, Kruse AC, Rudner DZ. Evidence that regulation of intramembrane proteolysis is mediated by substrate gating during sporulation in Bacillus subtilis. PLoS Genet 2018; 14:e1007753. [PMID: 30403663 PMCID: PMC6242693 DOI: 10.1371/journal.pgen.1007753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/19/2018] [Accepted: 10/10/2018] [Indexed: 01/11/2023] Open
Abstract
During the morphological process of sporulation in Bacillus subtilis two adjacent daughter cells (called the mother cell and forespore) follow different programs of gene expression that are linked to each other by signal transduction pathways. At a late stage in development, a signaling pathway emanating from the forespore triggers the proteolytic activation of the mother cell transcription factor σK. Cleavage of pro-σK to its mature and active form is catalyzed by the intramembrane cleaving metalloprotease SpoIVFB (B), a Site-2 Protease (S2P) family member. B is held inactive by two mother-cell membrane proteins SpoIVFA (A) and BofA. Activation of pro-σK processing requires a site-1 signaling protease SpoIVB (IVB) that is secreted from the forespore into the space between the two cells. IVB cleaves the extracellular domain of A but how this cleavage activates intramembrane proteolysis has remained unclear. Structural studies of the Methanocaldococcus jannaschii S2P homolog identified closed (substrate-occluded) and open (substrate-accessible) conformations of the protease, but the biological relevance of these conformations has not been established. Here, using co-immunoprecipitation and fluorescence microscopy, we show that stable association between the membrane-embedded protease and its substrate requires IVB signaling. We further show that the cytoplasmic cystathionine-β-synthase (CBS) domain of the B protease is not critical for this interaction or for pro-σK processing, suggesting the IVB-dependent interaction site is in the membrane protease domain. Finally, we provide evidence that the B protease domain adopts both open and closed conformations in vivo. Collectively, our data support a substrate-gating model in which IVB-dependent cleavage of A on one side of the membrane triggers a conformational change in the membrane-embedded protease from a closed to an open state allowing pro-σK access to the caged interior of the protease. Regulated Intramembrane Proteolysis is a broadly conserved mechanism for transducing information across lipid bilayers. In these signaling pathways a protease on one side of the membrane triggers the activation of a membrane-embedded protease that cleaves its substrate within or adjacent to the cytoplasmic face of the membrane. Site-2 metalloproteases (S2P) are the most commonly used intramembrane cleaving proteases in these pathways but the mechanism by which cleavage on one side of the membrane triggers intramembrane proteolysis remains poorly understood. Here, we provide evidence for a substrate-gating model in which an extracellular signaling protease triggers a conformational change in a S2P family member from a closed to an open conformation allowing its substrate access to the catalytic center of the enzyme.
Collapse
Affiliation(s)
| | | | - Kathleen A. Marquis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA United States of America
| | - Nathalie Campo
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA United States of America
| | | | - Kelly Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA United States of America
- * E-mail:
| |
Collapse
|
10
|
Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and In Vitro. J Bacteriol 2017; 199:JB.00381-17. [PMID: 28674070 DOI: 10.1128/jb.00381-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/29/2017] [Indexed: 01/19/2023] Open
Abstract
RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli, we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli, including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His6-MBP-RsiW(73-118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His6-MBP-FtsL(23-117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL.IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are typically inferred from genetic studies in the native bacterium. Evidence for direct effects has come sometimes from coexpression of the enzyme and potential substrate in a heterologous host and rarely from biochemical reconstitution of cleavage in vitro We applied these two approaches to the B. subtilis enzyme RasP and its proposed substrates RsiW and FtsL. We discovered potential pitfalls and solutions in heterologous coexpression experiments in E. coli, providing evidence that both substrates are cleaved by RasP in vivo but, surprisingly, that only RsiW was cleaved in vitro, suggesting that FtsL has an additional requirement.
Collapse
|
11
|
Serrano M, Kint N, Pereira FC, Saujet L, Boudry P, Dupuy B, Henriques AO, Martin-Verstraete I. A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile. PLoS Genet 2016; 12:e1006312. [PMID: 27631621 PMCID: PMC5025042 DOI: 10.1371/journal.pgen.1006312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/21/2016] [Indexed: 01/05/2023] Open
Abstract
The strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and proteolytical removal of an inhibitory pro-sequence. Importantly, the rearrangement is restricted to the mother cell because the skinBs recombinase is produced specifically in this cell. In C. difficile, σK lacks a pro-sequence but a skinCd element is present. The product of the skinCd gene CD1231 shares similarity with large serine recombinases. We show that CD1231 is necessary for sporulation and skinCd excision. However, contrary to B. subtilis, expression of CD1231 is observed in vegetative cells and in both sporangial compartments. Nevertheless, we show that skinCd excision is under the control of mother cell regulatory proteins σE and SpoIIID. We then demonstrate that σE and SpoIIID control the expression of the skinCd gene CD1234, and that this gene is required for sporulation and skinCd excision. CD1231 and CD1234 appear to interact and both proteins are required for skinCd excision while only CD1231 is necessary for skinCd integration. Thus, CD1234 is a recombination directionality factor that delays and restricts skinCd excision to the terminal mother cell. Finally, while the skinCd element is not essential for sporulation, deletion of skinCd results in premature activity of σK and in spores with altered surface layers. Thus, skinCd excision is a key element controlling the onset of σK activity and the fidelity of spore development.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nicolas Kint
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fátima C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Laure Saujet
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pierre Boudry
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail: (AOH); (IMV)
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (AOH); (IMV)
| |
Collapse
|
12
|
The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 2015; 79:19-37. [PMID: 25631287 DOI: 10.1128/mmbr.00025-14] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SUMMARY Bacillus and Clostridium organisms initiate the sporulation process when unfavorable conditions are detected. The sporulation process is a carefully orchestrated cascade of events at both the transcriptional and posttranslational levels involving a multitude of sigma factors, transcription factors, proteases, and phosphatases. Like Bacillus genomes, sequenced Clostridium genomes contain genes for all major sporulation-specific transcription and sigma factors (spo0A, sigH, sigF, sigE, sigG, and sigK) that orchestrate the sporulation program. However, recent studies have shown that there are substantial differences in the sporulation programs between the two genera as well as among different Clostridium species. First, in the absence of a Bacillus-like phosphorelay system, activation of Spo0A in Clostridium organisms is carried out by a number of orphan histidine kinases. Second, downstream of Spo0A, the transcriptional and posttranslational regulation of the canonical set of four sporulation-specific sigma factors (σ(F), σ(E), σ(G), and σ(K)) display different patterns, not only compared to Bacillus but also among Clostridium organisms. Finally, recent studies demonstrated that σ(K), the last sigma factor to be activated according to the Bacillus subtilis model, is involved in the very early stages of sporulation in Clostridium acetobutylicum, C. perfringens, and C. botulinum as well as in the very late stages of spore maturation in C. acetobutylicum. Despite profound differences in initiation, propagation, and orchestration of expression of spore morphogenetic components, these findings demonstrate not only the robustness of the endospore sporulation program but also the plasticity of the program to generate different complex phenotypes, some apparently regulated at the epigenetic level.
Collapse
|
13
|
Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis. PLoS Genet 2015; 11:e1005104. [PMID: 25835496 PMCID: PMC4383634 DOI: 10.1371/journal.pgen.1005104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue. Precise temporal and cell-type specific regulation of gene expression is required for development of differentiated cells even in simple organisms. Endospore development by the bacterium Bacillus subtilis involves only two types of differentiated cells, a forespore that develops into the endospore, and a mother cell that nurtures the developing endospore. During development temporal and cell-type specific regulation of gene expression is controlled by transcription factors called sigma factors (σ). An anti-sigma factor known as CsfB binds to σG to prevent its premature activity in the forespore. We found that CsfB is also expressed in the mother cell where it blocks ectopic activity of σG, and blocks the activity σE to allow σK to take over control of gene expression during the final stages of development. Our finding that CsfB directly blocks σE activity also explains how CsfB plays a role in preventing ectopic activity of σE in the forespore. Remarkably, each of the major roles of CsfB, (i.e., control of ectopic σG and σE activities, and the temporal limitation of σE activity) is also accomplished by redundant regulatory processes. This redundancy reinforces control of key regulatory steps to insure reliability and stability of the developmental process.
Collapse
|
14
|
Abstract
Since the first application of high hydrostatic pressure (HHP) for food preservation more than 100 years ago, a wealth of knowledge has been gained on molecular mechanisms underlying the HHP-mediated destruction of microorganisms. However, one observation made back then is still valid, i.e. that HHP alone is not sufficient for the complete inactivation of bacterial endospores. To achieve "commercial sterility" of low-acid foods, i.e. inactivation of spores capable of growing in a specific product under typical storage conditions, a combination of HHP with other hurdles is required (most effectively with heat (HPT)). Although HPT processes are not yet industrially applied, continuous technical progress and increasing consumer demand for minimally processed, additive-free food with long shelf life, makes HPT sterilization a promising alternative to thermal processing.In recent years, considerable progress has been made in understanding the response of spores of the model organism B. subtilis to HPT treatments and detailed insights into some basic mechanisms in Clostridium species shed new light on differences in the HPT-mediated inactivation of Bacillus and Clostridium spores. In this chapter, current knowledge on sporulation and germination processes, which presents the basis for understanding development and loss of the extreme resistance properties of spores, is summarized highlighting commonalities and differences between Bacillus and Clostridium species. In this context, the effect of HPT treatments on spores, inactivation mechanism and kinetics, the role of population heterogeneity, and influence factors on the results of inactivation studies are discussed.
Collapse
Affiliation(s)
- Christian A Lenz
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
15
|
Abstract
My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery.
Collapse
Affiliation(s)
- Richard Losick
- From the Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| |
Collapse
|
16
|
Pishdadian K, Fimlaid KA, Shen A. SpoIIID-mediated regulation of σK function during Clostridium difficile sporulation. Mol Microbiol 2014; 95:189-208. [PMID: 25393584 DOI: 10.1111/mmi.12856] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
Abstract
The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health-care-associated diarrhea worldwide. Although C. difficile spore formation is essential for disease transmission, the regulatory pathways that control this developmental process have only been partially characterized. In the well-studied spore-former Bacillus subtilis, the highly conserved σ(E) , SpoIIID and σ(K) regulatory proteins control gene expression in the mother cell to ensure proper spore formation. To define the precise requirement for SpoIIID and σ(K) during C. difficile sporulation, we analyzed spoIIID and sigK mutants using heterologous expression systems and RNA-Seq transcriptional profiling. These analyses revealed that expression of sigK from a SpoIIID-independent promoter largely bypasses the need for SpoIIID to produce heat-resistant spores. We also observed that σ(K) is active upon translation, suggesting that SpoIIID primarily functions to activate sigK. SpoIIID nevertheless plays auxiliary roles during sporulation, as it enhances levels of the exosporium morphogenetic protein CdeC in a σ(K) -dependent manner. Analyses of purified spores further revealed that SpoIIID and σ(K) control the adherence of the CotB coat protein to C. difficile spores, indicating that these proteins regulate multiple stages of spore formation. Collectively, these results highlight that diverse mechanisms control spore formation in the Firmicutes.
Collapse
Affiliation(s)
- Keyan Pishdadian
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, 05405, USA
| | | | | |
Collapse
|
17
|
Alternative sigma factors SigF, SigE, and SigG are essential for sporulation in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 2014; 80:5141-50. [PMID: 24928875 DOI: 10.1128/aem.01015-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum produces heat-resistant endospores that may germinate and outgrow into neurotoxic cultures in foods. Sporulation is regulated by the transcription factor Spo0A and the alternative sigma factors SigF, SigE, SigG, and SigK in most spore formers studied to date. We constructed mutants of sigF, sigE, and sigG in C. botulinum ATCC 3502 and used quantitative reverse transcriptase PCR and electron microscopy to assess their expression of the sporulation pathway on transcriptional and morphological levels. In all three mutants the expression of spo0A was disrupted. The sigF and sigE mutants failed to induce sigG and sigK beyond exponential-phase levels and halted sporulation during asymmetric cell division. In the sigG mutant, peak transcription of sigE was delayed and sigK levels remained lower than that in the parent strain. The sigG mutant forespore was engulfed by the mother cell and possessed a spore coat but no peptidoglycan cortex. The findings suggest that SigF and SigE of C. botulinum ATCC 3502 are essential for early sporulation and late-stage induction of sigK, whereas SigG is essential for spore cortex formation but not for coat formation, as opposed to previous observations in B. subtilis sigG mutants. Our findings add to a growing body of evidence that regulation of sporulation in C. botulinum ATCC 3502, and among the clostridia, differs from the B. subtilis model.
Collapse
|
18
|
Gut adhesive Bacillus subtilis spores as a platform for mucosal delivery of antigens. Infect Immun 2014; 82:1414-23. [PMID: 24421038 DOI: 10.1128/iai.01255-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis spores have been used as safe and heat-resistant antigen delivery vectors. Nonetheless, the oral administration of spores typically induces weak immune responses to the passenger antigens, which may be attributed to the fast transit through the gastrointestinal tract. To overcome this limitation, we have developed B. subtilis spores capable of binding to the gut epithelium by means of expressing bacterial adhesins on the spore surface. The resulting spores bound to in vitro intestinal cells, showed a longer transit through the mouse intestinal tract, and interacted with Peyer's patch cells. The adhesive spores increased the systemic and secreted antibody responses to the Streptococcus mutans P1 protein, used as a model antigen, following oral, intranasal, and sublingual administration. Additionally, P1-specific antibodies efficiently inhibited the adhesion of the oral pathogen Streptococcus mutans to abiotic surfaces. These results support the use of gut-colonizing B. subtilis spores as a new platform for the mucosal delivery of vaccine antigens.
Collapse
|
19
|
Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in bacterial development. FEMS Microbiol Rev 2013; 38:493-522. [PMID: 24354618 DOI: 10.1111/1574-6976.12050] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bacteria use proteases to control three types of events temporally and spatially during the processes of morphological development. These events are the destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, transmembrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, for example turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
20
|
Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biol 2013; 11:e1001735. [PMID: 24358019 PMCID: PMC3866087 DOI: 10.1371/journal.pbio.1001735] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial heat shock transcription factor, σ32, maintains proper protein homeostasis only after it is targeted to the inner membrane by the signal recognition particle (SRP), thereby enabling integration of protein folding information from both the cytoplasm and cell membrane. All cells must adapt to rapidly changing conditions. The heat shock response (HSR) is an intracellular signaling pathway that maintains proteostasis (protein folding homeostasis), a process critical for survival in all organisms exposed to heat stress or other conditions that alter the folding of the proteome. Yet despite decades of study, the circuitry described for responding to altered protein status in the best-studied bacterium, E. coli, does not faithfully recapitulate the range of cellular responses in response to this stress. Here, we report the discovery of the missing link. Surprisingly, we found that σ32, the central transcription factor driving the HSR, must be localized to the membrane rather than dispersed in the cytoplasm as previously assumed. Genetic analyses indicate that σ32 localization results from a protein targeting reaction facilitated by the signal recognition particle (SRP) and its receptor (SR), which together comprise a conserved protein targeting machine and mediate the cotranslational targeting of inner membrane proteins to the membrane. SRP interacts with σ32 directly and transports it to the inner membrane. Our results show that σ32 must be membrane-associated to be properly regulated in response to the protein folding status in the cell, explaining how the HSR integrates information from both the cytoplasm and bacterial cell membrane. All cells have to adjust to frequent changes in their environmental conditions. The heat shock response is a signaling pathway critical for survival of all organisms exposed to elevated temperatures. Under such conditions, the heat shock response maintains enzymes and other proteins in a properly folded state. The mechanisms for sensing temperature and the subsequent induction of the appropriate transcriptional response have been extensively studied. Prior to this work, however, the circuitry described in the best studied bacterium E. coli could not fully explain the range of cellular responses that are observed following heat shock. We report the discovery of this missing link. Surprisingly, we find that σ32, a transcription factor that induces gene expression during heat shock, needs to be localized to the membrane, rather than being active as a soluble cytoplasmic protein as previously thought. We show that, equally surprisingly, σ32 is targeted to the membrane by the signal recognition particle (SRP) and its receptor (SR). SRP and SR constitute a conserved protein targeting machine that normally only operates on membrane and periplasmic proteins that contain identifiable signal sequences. Intriguingly, σ32 does not have any canonical signal sequence for export or membrane-integration. Our results indicate that membrane-associated σ32, not soluble cytoplasmic σ32, is the preferred target of regulatory control in response to heat shock. Our new model thus explains how protein folding status from both the cytoplasm and bacterial cell membrane can be integrated to control the heat shock response.
Collapse
Affiliation(s)
- Bentley Lim
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - Ryoji Miyazaki
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Saskia Neher
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Deborah A. Siegele
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Peter Walter
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Takashi Yura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California, United States
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| |
Collapse
|
21
|
Kroos L, Akiyama Y. Biochemical and structural insights into intramembrane metalloprotease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2873-85. [PMID: 24099006 DOI: 10.1016/j.bbamem.2013.03.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/07/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023]
Abstract
Intramembrane metalloproteases are nearly ubiquitous in living organisms and they function in diverse processes ranging from cholesterol homeostasis and the unfolded protein response in humans to sporulation, stress responses, and virulence of bacteria. Understanding how these enzymes function in membranes is a challenge of fundamental interest with potential applications if modulators can be devised. Progress is described toward a mechanistic understanding, based primarily on molecular genetic and biochemical studies of human S2P and bacterial SpoIVFB and RseP, and on the structure of the membrane domain of an archaeal enzyme. Conserved features of the enzymes appear to include transmembrane helices and loops around the active site zinc ion, which may be near the membrane surface. Extramembrane domains such as PDZ (PSD-95, DLG, ZO-1) or CBS (cystathionine-β-synthase) domains govern substrate access to the active site, but several different mechanisms of access and cleavage site selection can be envisioned, which might differ depending on the substrate and the enzyme. More work is needed to distinguish between these mechanisms, both for enzymes that have been relatively well-studied, and for enzymes lacking PDZ and CBS domains, which have not been studied. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
22
|
Schneider JS, Glickman MS. Function of site-2 proteases in bacteria and bacterial pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2808-14. [PMID: 24099002 DOI: 10.1016/j.bbamem.2013.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 01/02/2023]
Abstract
Site-2 proteases (S2Ps) are a class of intramembrane metalloproteases named after the founding member of this protein family, human S2P, which control cholesterol and fatty acid biosynthesis by cleaving Sterol Regulatory Element Binding Proteins which control cholesterol and fatty acid biosynthesis. S2Ps are widely distributed in bacteria and participate in diverse pathways that control such diverse functions as membrane integrity, sporulation, lipid biosynthesis, pheromone production, virulence, and others. The most common signaling mechanism mediated by S2Ps is the coupled degradation of transmembrane anti-Sigma factors to activate ECF Sigma factor regulons. However, additional signaling mechanisms continue to emerge as more prokaryotic S2Ps are characterized, including direct proteolysis of membrane embedded transcription factors and proteolysis of non-transcriptional membrane proteins or membrane protein remnants. In this review we seek to comprehensively review the functions of S2Ps in bacteria and bacterial pathogens and attempt to organize these proteases into conceptual groups that will spur further study. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Jessica S Schneider
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Biomedical Sciences, USA
| | | |
Collapse
|
23
|
σK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. J Bacteriol 2013; 196:287-99. [PMID: 24187083 DOI: 10.1128/jb.01103-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sporulation in the model endospore-forming organism Bacillus subtilis proceeds via the sequential and stage-specific activation of the sporulation-specific sigma factors, σ(H) (early), σ(F), σ(E), σ(G), and σ(K) (late). Here we show that the Clostridium acetobutylicum σ(K) acts both early, prior to Spo0A expression, and late, past σ(G) activation, thus departing from the B. subtilis model. The C. acetobutylicum sigK deletion (ΔsigK) mutant was unable to sporulate, and solventogenesis, the characteristic stationary-phase phenomenon for this organism, was severely diminished. Transmission electron microscopy demonstrated that the ΔsigK mutant does not develop an asymmetric septum and produces no granulose. Complementation of sigK restored sporulation and solventogenesis to wild-type levels. Spo0A and σ(G) proteins were not detectable by Western analysis, while σ(F) protein levels were significantly reduced in the ΔsigK mutant. spo0A, sigF, sigE, sigG, spoIIE, and adhE1 transcript levels were all downregulated in the ΔsigK mutant, while those of the sigH transcript were unaffected during the exponential and transitional phases of culture. These data show that σ(K) is necessary for sporulation prior to spo0A expression. Plasmid-based expression of spo0A in the ΔsigK mutant from a nonnative promoter restored solventogenesis and the production of Spo0A, σ(F), σ(E), and σ(G), but not sporulation, which was blocked past the σ(G) stage of development, thus demonstrating that σ(K) is also necessary in late sporulation. sigK is expressed very early at low levels in exponential phase but is strongly upregulated during the middle to late stationary phase. This is the first sporulation-specific sigma factor shown to have two developmentally separated roles.
Collapse
|
24
|
CtpB assembles a gated protease tunnel regulating cell-cell signaling during spore formation in Bacillus subtilis. Cell 2013; 155:647-58. [PMID: 24243021 PMCID: PMC3808539 DOI: 10.1016/j.cell.2013.09.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/18/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022]
Abstract
Spore formation in Bacillus subtilis relies on a regulated intramembrane proteolysis (RIP) pathway that synchronizes mother-cell and forespore development. To address the molecular basis of this SpoIV transmembrane signaling, we carried out a structure-function analysis of the activating protease CtpB. Crystal structures reflecting distinct functional states show that CtpB constitutes a ring-like protein scaffold penetrated by two narrow tunnels. Access to the proteolytic sites sequestered within these tunnels is controlled by PDZ domains that rearrange upon substrate binding. Accordingly, CtpB resembles a minimal version of a self-compartmentalizing protease regulated by a unique allosteric mechanism. Moreover, biochemical analysis of the PDZ-gated channel combined with sporulation assays reveal that activation of the SpoIV RIP pathway is induced by the concerted activity of CtpB and a second signaling protease, SpoIVB. This proteolytic mechanism is of broad relevance for cell-cell communication, illustrating how distinct signaling pathways can be integrated into a single RIP module. The CtpB fold composes a narrow protease tunnel gated by a PDZ domain Substrate binding induces opening of the PDZ gate and protease activation SpoIVB and CtpB signaling proteases act in a sequential and concerted fashion SpoIVB and CtpB establish a RIP mechanism to integrate multiple cellular signals
Collapse
|
25
|
Pereira FC, Saujet L, Tomé AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO. The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 2013; 9:e1003782. [PMID: 24098139 PMCID: PMC3789829 DOI: 10.1371/journal.pgen.1003782] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022] Open
Abstract
Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F) in the forespore, and σ(E) in the mother cell control early stages of development and are replaced, at later stages, by σ(G) and σ(K), respectively. Starting with σ(F), the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E) is partially independent of σ(F), that σ(G) activity is not dependent on σ(E), and that the activity of σ(K) does not require σ(G). We also show that σ(K) is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F)-to-σ(E), σ(E)-to-σ(G), and σ(G)-to-σ(K) cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.
Collapse
Affiliation(s)
- Fátima C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Laure Saujet
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Ana R. Tomé
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Evelyne Couture-Tosi
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Isabelle Martin-Verstraete
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- * E-mail: (BD); (AOH)
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
- * E-mail: (BD); (AOH)
| |
Collapse
|
26
|
Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 2013; 9:e1003756. [PMID: 24098137 PMCID: PMC3789822 DOI: 10.1371/journal.pgen.1003756] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σ(F) and σ(G) in the forespore and σ(E) and σ(K) in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σ(F), σ(E), σ(G) and σ(K) regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σ(F) regulon, 97 σ(E)-dependent genes, 50 σ(G)-governed genes and 56 genes under σ(K) control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σ(E) or σ(K) control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σ(E) regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σ(E) regulon in the mother cell was not strictly under the control of σ(F) despite the fact that the forespore product SpoIIR was required for the processing of pro-σ(E). In addition, the σ(K) regulon was not controlled by σ(G) in C. difficile in agreement with the lack of pro-σ(K) processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes.
Collapse
Affiliation(s)
- Laure Saujet
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Fátima C. Pereira
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Monica Serrano
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Pavel V. Shelyakin
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny per, 19, Moscow, Russia
| | - Mikhail S. Gelfand
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny per, 19, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Biengineering and Bioinformatics, Vorobievy Gory 1-73, Moscow, Russia
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Adriano O. Henriques
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Residues in conserved loops of intramembrane metalloprotease SpoIVFB interact with residues near the cleavage site in pro-σK. J Bacteriol 2013; 195:4936-46. [PMID: 23995631 DOI: 10.1128/jb.00807-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intramembrane metalloproteases (IMMPs) control critical biological processes by cleaving membrane-associated proteins within a transmembrane segment or at a site near the membrane surface. Phylogenetic analysis divides IMMPs into four groups. SpoIVFB is a group III IMMP that regulates Bacillus subtilis endospore formation by cleaving Pro-σ(K) and releasing the active sigma factor from a membrane. To elucidate the enzyme-substrate interaction, single-cysteine versions of catalytically inactive SpoIVFB and C-terminally truncated Pro-σ(K)(1-126) (which can be cleaved by active SpoIVFB) were coexpressed in Escherichia coli, and proximity was tested by disulfide cross-linking in vivo. As expected, the results provided evidence that catalytic residue Glu-44 of SpoIVFB is near the cleavage site in the substrate. Also near the cleavage site were two residues of SpoIVFB in predicted conserved loops; Pro-135 in a short loop and Val-70 in a longer loop. Pro-135 corresponds to Pro-399 of RseP, a group I IMMP, and Pro-399 was reported previously to interact with substrate near the cleavage site, suggesting a conserved interaction across IMMP subfamilies. Val-70 follows a newly recognized conserved motif, PXGG (X is a large hydrophobic residue), which is in a hydrophobic region predicted to be a membrane reentrant loop. Following the hydrophobic region is a negatively charged region that is conserved in IMMPs of groups I and III. At least two residues with a negatively charged side chain are required in this region for activity of SpoIVFB. The region exhibits other features in IMMPs of groups II and IV. Its possible roles, as well as that of the short loop, are discussed. New insights into IMMP-substrate interaction build toward understanding how IMMPs function and may facilitate manipulation of their activity.
Collapse
|
28
|
Features of Pro-σK important for cleavage by SpoIVFB, an intramembrane metalloprotease. J Bacteriol 2013; 195:2793-806. [PMID: 23585539 DOI: 10.1128/jb.00229-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intramembrane proteases regulate diverse processes by cleaving substrates within a transmembrane segment or near the membrane surface. Bacillus subtilis SpoIVFB is an intramembrane metalloprotease that cleaves Pro-σ(K) during sporulation. To elucidate features of Pro-σ(K) important for cleavage by SpoIVFB, coexpression of the two proteins in Escherichia coli was used along with cell fractionation. In the absence of SpoIVFB, a portion of the Pro-σ(K) was peripherally membrane associated. This portion was not observed in the presence of SpoIVFB, suggesting that it serves as the substrate. Deletion of Pro-σ(K) residues 2 to 8, addition of residues at its N terminus, or certain single-residue substitutions near the cleavage site impaired cleavage. Certain multiresidue substitutions near the cleavage site changed the position of cleavage, revealing preferences for a small residue preceding the cleavage site N-terminally (i.e., at the P1 position) and a hydrophobic residue at the second position following the cleavage site C-terminally (i.e., P2'). These features appear to be conserved among Pro-σ(K) orthologs. SpoIVFB did not tolerate an aromatic residue at P1 or P2' of Pro-σ(K). A Lys residue at P3' of Pro-σ(K) could not be replaced with Ala unless a Lys was provided farther C-terminally (e.g., at P9'). α-Helix-destabilizing residues near the cleavage site were not crucial for SpoIVFB to cleave Pro-σ(K). The preferences and tolerances of SpoIVFB are somewhat different from those of other intramembrane metalloproteases, perhaps reflecting differences in the interaction of the substrate with the membrane and the enzyme.
Collapse
|
29
|
Abstract
Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.
Collapse
|
30
|
Abstract
Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface.
Collapse
|
31
|
Abstract
The soil-dwelling bacterium Bacillus subtilis is widely used as a model organism to study the Gram-positive branch of Bacteria. A variety of different developmental pathways, such as endospore formation, genetic competence, motility, swarming and biofilm formation, have been studied in this organism. These processes are intricately connected and regulated by networks containing e.g. alternative sigma factors, two-component systems and other regulators. Importantly, in some of these regulatory networks the activity of important regulatory factors is controlled by proteases. Furthermore, together with chaperones, the same proteases constitute the cellular protein quality control (PQC) network, which plays a crucial role in protein homeostasis and stress tolerance of this organism. In this review, we will present the current knowledge on regulatory and general proteolysis in B. subtilis and discuss its involvement in developmental pathways and cellular stress management.
Collapse
Affiliation(s)
- Noël Molière
- Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany,
| | | |
Collapse
|
32
|
Pedrido ME, de Oña P, Ramirez W, Leñini C, Goñi A, Grau R. Spo0A links de novo fatty acid synthesis to sporulation and biofilm development in Bacillus subtilis. Mol Microbiol 2012; 87:348-67. [PMID: 23170957 DOI: 10.1111/mmi.12102] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 11/25/2022]
Abstract
During sporulation in Bacillus subtilis, the committed-cell undergoes substantial membrane rearrangements to generate two cells of different sizes and fates: the mother cell and the forespore. Here, we demonstrate that the master transcription factor Spo0A reactivates lipid synthesis during development. Maximal Spo0A-dependent lipid synthesis occurs during the key stages of asymmetric division and forespore engulfment. Spo0A reactivates the accDA operon that encodes the carboxylase component of the acetyl-CoA carboxylase enzyme, which catalyses the first and rate-limiting step in de novo lipid biosynthesis, malonyl-CoA formation. The disruption of the Spo0A-binding box in the promoter region of accDA impairs its transcriptional reactivation and blocks lipid synthesis. The Spo0A-insensitive accDA(0A) cells were proficient in planktonic growth but defective in sporulation (σ(E) activation) and biofilm development (cell cluster formation and water repellency). Exogenous fatty acid supplementation to accDA(0A) cells overcomes their inability to synthesize lipids during development and restores sporulation and biofilm proficiencies. The transient exclusion of the lipid synthesis regulon from the forespore and the known compartmentalization of Spo0A and ACP in the mother cell suggest that de novo lipid synthesis is confined to the mother cell. The significance of the Spo0A-controlled de novo lipid synthesis during B. subtilis development is discussed.
Collapse
Affiliation(s)
- María E Pedrido
- Departamento de Microbiología, Universidad Nacional de Rosario, CONICET, Argentina
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Spores of Bacillus subtilis are encased in a protective coat made up of at least 70 proteins. The structure of the spore coat has been examined using a variety of genetic, imaging and biochemical techniques; however, the majority of these studies have focused on mature spores. In this study we use a library of 41 spore coat proteins fused to the green fluorescent protein to examine spore coat morphogenesis over the time-course of sporulation. We found considerable diversity in the localization dynamics of coat proteins and were able to establish six classes based on localization kinetics. Localization dynamics correlate well with the known transcriptional regulators of coat gene expression. Previously, we described the existence of multiple layers in the mature spore coat. Here, we find that the spore coat initially assembles a scaffold that is organized into multiple layers on one pole of the spore. The coat then encases the spore in multiple co-ordinated waves. Encasement is driven, at least partially, by transcription of coat genes and deletion of sporulation transcription factors arrests encasement. We also identify the trans-compartment SpoIIIAH-SpoIIQ channel as necessary for encasement. This is the first demonstration of a forespore contribution to spore coat morphogenesis.
Collapse
Affiliation(s)
- Peter T McKenney
- New York University, Center for Genomics and Systems Biology, Department of Biology, 12 Waverly Place, 8th floor, New York, NY 10003, USA
| | | |
Collapse
|
34
|
Chen G, Zhang X. New insights into S2P signaling cascades: regulation, variation, and conservation. Protein Sci 2011; 19:2015-30. [PMID: 20836086 DOI: 10.1002/pro.496] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulated intramembrane proteolysis (RIP) is a conserved mechanism that regulates signal transduction across the membrane by recruiting membrane-bound proteases to cleave membrane-spanning regulatory proteins. As the first identified protease that performs RIP, the metalloprotease site-2 protease (S2P) has received extensive study during the past decade, and an increasing number of S2P-like proteases have been identified and studied in different organisms; however, some of their substrates and the related S1Ps remain elusive. Here, we review recent research on S2P cascades, including human S2P, E. coli RseP, B. subtilis SpoIVFB and the newly identified S2P homologs. We also discuss the variation and conservation of characterized S2P cascades. The conserved catalytic motif of S2P and prevalence of amino acids of low helical propensity in the transmembrane segments of the substrates suggest a conserved catalytic conformation and mechanism within the S2P family. The review also sheds light on future research on S2P cascades.
Collapse
Affiliation(s)
- Gu Chen
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China.
| | | |
Collapse
|
35
|
Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. J Bacteriol 2011; 193:1414-26. [PMID: 21217008 DOI: 10.1128/jb.01380-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Central to all clostridia is the orchestration of endospore formation (i.e., sporulation) and, specifically, the roles of differentiation-associated sigma factors. Moreover, there is considerable applied interest in understanding the roles of these sigma factors in other stationary-phase phenomena, such as solvent production (i.e., solventogenesis). Here we separately inactivated by gene disruption the major sporulation-specific sigma factors, σ(E) and σ(G), and performed an initial analysis to elucidate their roles in sporulation-related morphogenesis and solventogenesis in Clostridium acetobutylicum. The terminal differentiation phenotype for the sigE inactivation mutant stalled in sporulation prior to asymmetric septum formation, appeared vegetative-like often with an accumulation of DNA at both poles, frequently exhibited two longitudinal internal membranes, and did not synthesize granulose. The sigE inactivation mutant did produce the characteristic solvents (i.e., butanol and acetone), but the extent of solventogenesis was dependent on the physiological state of the inoculum. The sigG inactivation mutant stalled in sporulation during endospore maturation, exhibiting engulfment and partial cortex and spore coat formation. Lastly, the sigG inactivation mutant did produce granulose and exhibited wild-type-like solventogenesis.
Collapse
|
36
|
Abstract
Genome sequencing of multiple species makes it possible to understand the main principles behind the evolution of developmental regulatory networks. It is especially interesting to analyze the evolution of well-defined model systems in which conservation patterns can be directly correlated with the functional roles of various network components. Endospore formation (sporulation), extensively studied in Bacillus subtilis, is driven by such a model bacterial network of cellular development and differentiation. In this review, we analyze the evolution of the sporulation network in multiple endospore-forming bacteria. Importantly, the network evolution is not random but primarily follows the hierarchical organization and functional logic of the sporulation process. Specifically, the sporulation sigma factors and the master regulator of sporulation, Spo0A, are conserved in all considered spore-formers. The sequential activation of these global regulators is also strongly conserved. The feed-forward loops, which are likely used to fine-tune waves of gene expression within regulatory modules, show an intermediate level of conservation. These loops are less conserved than the sigma factors but significantly more than the structural sporulation genes, which form the lowest level in the functional and evolutionary hierarchy of the sporulation network. Interestingly, in spore-forming bacteria, gene regulation is more conserved than gene presence for sporulation genes, while the opposite is true for non-sporulation genes. The observed patterns suggest that, by understanding the functional organization of a developmental network in a model organism, it is possible to understand the logic behind the evolution of this network in multiple related species.
Collapse
Affiliation(s)
- Michiel JL de Hoon
- Center for Computational Biology and Bioinformatics, Columbia University, New York NY 10032, United States of America
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York NY 10003, United States of America
| | - Dennis Vitkup
- Center for Computational Biology and Bioinformatics, Columbia University, New York NY 10032, United States of America
- Department of Biomedical Informatics, Columbia University, New York NY 10032, United States of America
| |
Collapse
|
37
|
Tavares MB, Silva BM, Cavalcante RCM, Souza RD, Luiz WB, Paccez JD, Crowley PJ, Brady LJ, Ferreira LCS, Ferreira RCC. Induction of neutralizing antibodies in mice immunized with an amino-terminal polypeptide of Streptococcus mutans P1 protein produced by a recombinant Bacillus subtilis strain. ACTA ACUST UNITED AC 2010; 59:131-42. [PMID: 20402772 DOI: 10.1111/j.1574-695x.2010.00669.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P1(39-512)) derived from the S. mutans strain UA159. Purified P1(39-512) reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P1(39-512) induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P1(39-512) antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P1(39-512) eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P1(39-512), expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines.
Collapse
Affiliation(s)
- Milene B Tavares
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Intramembrane proteolytic cleavage of a membrane-tethered transcription factor by a metalloprotease depends on ATP. Proc Natl Acad Sci U S A 2009; 106:16174-9. [PMID: 19805276 DOI: 10.1073/pnas.0901455106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) involves cleavage of a transmembrane segment of a protein. RIP governs diverse processes in a wide variety of organisms and is carried out by different types of intramembrane proteases (IPs), including a large family of metalloproteases. The Bacillus subtilis SpoIVFB protein is a putative metalloprotease that cleaves membrane-tethered Pro-sigma(K), releasing sigma(K) to direct transcription of genes necessary for spore formation. By attaching an extra transmembrane segment to the N terminus of SpoIVFB, expression in E. coli was improved more than 100-fold, facilitating purification and demonstration of metalloprotease activity, which accurately cleaved purified Pro-sigma(K). Uniquely for IPs examined so far, SpoIVFB activity requires ATP, which binds to the C-terminal cystathionine-beta-synthase (CBS) domain of SpoIVFB. Deleting just 10 residues from the C-terminal end of SpoIVFB nearly eliminated cleavage of coexpressed Pro-sigma(K) in E. coli. The CBS domain of SpoIVFB was shown to interact with Pro-sigma(K) and ATP changed the interaction, suggesting that ATP regulates substrate access to the active site and renders cleavage sensitive to the cellular energy level, which may be a general feature of CBS-domain-containing IPs. Incorporation of SpoIVFB into preformed liposomes stimulated its ability to cleave Pro-sigma(K). Cleavage depended on ATP and the correct peptide bond was shown to be cleaved using a rapid and sensitive mass spectrometry assay. A system for biochemical studies of RIP by a metalloprotease in a membrane environment has been established using methods that might be applicable to other IPs.
Collapse
|
39
|
MacLellan SR, Wecke T, Helmann JD. A previously unidentified sigma factor and two accessory proteins regulate oxalate decarboxylase expression in Bacillus subtilis. Mol Microbiol 2008; 69:954-67. [PMID: 18573182 PMCID: PMC2688449 DOI: 10.1111/j.1365-2958.2008.06331.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the function of a cell envelope stress-inducible gene, yvrI, which encodes a 22.5 kDa protein that includes a predicted sigma(70) region 4 domain, but lacks an apparent region 2 domain. YvrI interacts with RNA polymerase and overexpression of YvrI results in induction of OxdC, an oxalate decarboxylase maximally expressed under low-pH conditions. We have used microarray-based analyses to define the YvrI regulon. YvrI is required for the transcription of three operons (oxdC-yvrL, yvrJ and yvrI-yvrHa) each of which is preceded by a highly similar promoter sequence. Activation of these promoters requires both YvrI and the product of the second gene in the yvrI-yvrHa operon, YvrHa. YvrI and YvrHa together allow recognition of the oxdC promoter, stimulate DNA melting and activate transcription by core RNA polymerase. Together, these results suggest that YvrI is a previously unrecognized sigma factor in Bacillus subtilis and that the 9.5 kDa YvrHa protein acts as a required co-activator of transcription. A yvrL deletion results in the upregulation of YvrI activity suggesting that YvrL is a negative regulator of YvrI-dependent transcription, possibly functioning as an anti-sigma factor.
Collapse
Affiliation(s)
- Shawn R MacLellan
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
40
|
Imamura D, Zhou R, Feig M, Kroos L. Evidence that the Bacillus subtilis SpoIIGA protein is a novel type of signal-transducing aspartic protease. J Biol Chem 2008; 283:15287-99. [PMID: 18378688 PMCID: PMC2397457 DOI: 10.1074/jbc.m708962200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 03/25/2008] [Indexed: 11/06/2022] Open
Abstract
The bacterium Bacillus subtilis undergoes endospore formation in response to starvation. sigma factors play a key role in spatiotemporal regulation of gene expression during development. Activation of sigma factors is coordinated by signal transduction between the forespore and the mother cell. sigma(E) is produced as pro-sigma(E), which is activated in the mother cell by cleavage in response to a signal from the forespore. We report that expression of SpoIIR, a putative signaling protein normally made in the forespore, and SpoIIGA, a putative protease, is necessary and sufficient for accurate, rapid, and abundant processing of pro-sigma(E) to sigma(E) in Escherichia coli. Modeling and mutational analyses provide evidence that SpoIIGA is a novel type of aspartic protease whose C-terminal half forms a dimer similar to the human immunodeficiency virus type 1 protease. Previous studies suggest that the N-terminal half of SpoIIGA is membrane-embedded. We found that SpoIIGA expressed in E. coli is membrane-associated and that after detergent treatment SpoIIGA was self-associated. Also, SpoIIGA interacts with SpoIIR. The results support a model in which SpoIIGA forms inactive dimers or oligomers, and interaction of SpoIIR with the N-terminal domain of SpoIIGA on one side of a membrane causes a conformational change that allows formation of active aspartic protease dimer in the C-terminal domain on the other side of the membrane, where it cleaves pro-sigma(E).
Collapse
Affiliation(s)
- Daisuke Imamura
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Ruanbao Zhou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| |
Collapse
|
41
|
Zweers JC, Barák I, Becher D, Driessen AJ, Hecker M, Kontinen VP, Saller MJ, Vavrová L, van Dijl JM. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Fact 2008; 7:10. [PMID: 18394159 PMCID: PMC2323362 DOI: 10.1186/1475-2859-7-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 04/04/2008] [Indexed: 01/16/2023] Open
Abstract
Background The Gram-positive bacterium Bacillus subtilis is an important producer of high quality industrial enzymes and a few eukaryotic proteins. Most of these proteins are secreted into the growth medium, but successful examples of cytoplasmic protein production are also known. Therefore, one may anticipate that the high protein production potential of B. subtilis can be exploited for protein complexes and membrane proteins to facilitate their functional and structural analysis. The high quality of proteins produced with B. subtilis results from the action of cellular quality control systems that efficiently remove misfolded or incompletely synthesized proteins. Paradoxically, cellular quality control systems also represent bottlenecks for the production of various heterologous proteins at significant concentrations. Conclusion While inactivation of quality control systems has the potential to improve protein production yields, this could be achieved at the expense of product quality. Mechanisms underlying degradation of secretory proteins are nowadays well understood and often controllable. It will therefore be a major challenge for future research to identify and modulate quality control systems of B. subtilis that limit the production of high quality protein complexes and membrane proteins, and to enhance those systems that facilitate assembly of these proteins.
Collapse
Affiliation(s)
- Jessica C Zweers
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P,O, Box 30001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Karmazyn-Campelli C, Rhayat L, Carballido-López R, Duperrier S, Frandsen N, Stragier P. How the early sporulation sigma factor sigmaF delays the switch to late development in Bacillus subtilis. Mol Microbiol 2008; 67:1169-80. [PMID: 18208527 DOI: 10.1111/j.1365-2958.2008.06121.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sporulation in Bacillus subtilis is a primitive differentiation process involving two cell types, the forespore and the mother cell. Each cell implements two successive transcription programmes controlled by specific sigma factors. We report that activity of sigma(G), the late forespore sigma factor, is kept in check by Gin, the product of csfB, a gene controlled by sigma(F), the early forespore sigma factor. Gin abolishes sigma(G) transcriptional activity when sigma(G) is artificially synthesized during growth, but has no effect on sigma(F). Gin interacts strongly with sigma(G) but not with sigma(F) in a yeast two-hybrid experiment. The absence of Gin allows sigma(G) to be active during sporulation independently of the mother-cell development to which it is normally coupled. Premature sigma(G) activity leads to the formation of slow-germinating spores, and complete deregulation of sigma(G) synthesis is lethal when combined with gin inactivation. Gin allows sigma(F) to delay the switch to the late forespore transcription programme by preventing sigma(G) to take over before the cell has reached a critical stage of development. A similar strategy, following a completely unrelated route, is used by the mother cell.
Collapse
Affiliation(s)
- Céline Karmazyn-Campelli
- Université Paris-Diderot, CNRS-UPR9073, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Endospores formed by Bacillus, Clostridia, and related genera are encased in a protein shell called the coat. In many species, including B. subtilis, the coat is the outermost spore structure, and in other species, such as the pathogenic organisms B. anthracis and B. cereus, the spore is encased in an additional layer called the exosporium. Both the coat and the exosporium have roles in protection of the spore and in its environmental interactions. Assembly of both structures is a function of the mother cell, one of two cellular compartments of the developing sporangium. Studies in B. subtilis have revealed that the timing of coat protein production, the guiding role of a small group of morphogenetic proteins, and several types of posttranslational modifications are essential for the fidelity of the assembly process. Assembly of the exosporium requires a set of novel proteins as well as homologues of proteins found in the outermost layers of the coat and of some of the coat morphogenetic factors, suggesting that the exosporium is a more specialized structure of a multifunctional coat. These and other insights into the molecular details of spore surface morphogenesis provide avenues for exploitation of the spore surface layers in applications for biotechnology and medicine.
Collapse
Affiliation(s)
- Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal.
| | | |
Collapse
|
44
|
Wang L, Perpich J, Driks A, Kroos L. One perturbation of the mother cell gene regulatory network suppresses the effects of another during sporulation of Bacillus subtilis. J Bacteriol 2007; 189:8467-73. [PMID: 17890309 PMCID: PMC2168946 DOI: 10.1128/jb.01285-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the mother cell of sporulating Bacillus subtilis, a regulatory network functions to control gene expression. Four transcription factors act sequentially in the order sigma(E), SpoIIID, sigma(K), GerE. sigma(E) and sigma(K) direct RNA polymerase to transcribe different regulons. SpoIIID and GerE are DNA-binding proteins that activate or repress transcription of many genes. Several negative regulatory loops add complexity to the network. First, transcriptionally active sigma(K) RNA polymerase inhibits early sporulation gene expression, resulting in reduced accumulation of sigma(E) and SpoIIID late during sporulation. Second, GerE represses sigK transcription, reducing sigma(K) accumulation about twofold. Third, SpoIIID represses cotC, which encodes a spore coat protein, delaying its transcription by sigma(K) RNA polymerase. Partially circumventing the first feedback loop, by engineering cells to maintain the SpoIIID level late during sporulation, causes spore defects. Here, the effects of circumventing the second feedback loop, by mutating the GerE binding sites in the sigK promoter region, are reported. Accumulation of pro-sigma(K) and sigma(K) was increased, but no spore defects were detected. Expression of sigma(K)-dependent reporter fusions was altered, increasing the expression of gerE-lacZ and cotC-lacZ and decreasing the expression of cotD-lacZ. Because these effects on gene expression were opposite those observed when the SpoIIID level was maintained late during sporulation, cells were engineered to both maintain the SpoIIID level and have elevated sigK expression late during sporulation. This restored the expression of sigma(K)-dependent reporters to wild-type levels, and no spore defects were observed. Hence, circumventing the second feedback loop suppressed the effects of perturbing the first feedback loop. By feeding information back into the network, these two loops appear to optimize target gene expression and increase network robustness. Circumventing the third regulatory loop, by engineering cells to express cotC about 2 h earlier than normal, did not cause a detectable spore defect.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
45
|
Wang L, Perpich J, Driks A, Kroos L. Maintaining the transcription factor SpoIIID level late during sporulation causes spore defects in Bacillus subtilis. J Bacteriol 2007; 189:7302-9. [PMID: 17693499 PMCID: PMC2168458 DOI: 10.1128/jb.00839-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During sporulation of Bacillus subtilis, four regulatory proteins act in the order sigma(E), SpoIIID, sigma(K), and GerE to temporally control gene expression in the mother cell. sigma(E) and sigma(K) work sequentially with core RNA polymerase to transcribe different sets of genes. SpoIIID and GerE are small, sequence-specific DNA-binding proteins that activate or repress transcription of many genes. Previous studies showed that transcriptionally active sigma(K) RNA polymerase inhibits early mother cell gene expression, reducing accumulation of SpoIIID late in sporulation. Here, the effects of perturbing the mother cell gene regulatory network by maintaining the SpoIIID level late during sporulation are reported. Persistent expression was obtained by fusing spoIIID to the sigma(K)-controlled gerE promoter on a multicopy plasmid. Fewer heat- and lysozyme-resistant spores were produced by the strain with persistent spoIIID expression, but the number of spores resistant to organic solvents was unchanged, as was their germination ability. Transmission electron microscopy showed structural defects in the spore coat. Reporter fusions to sigma(K)-dependent promoters showed lower expression of gerE and cotC and higher expression of cotD. Altered expression of cot genes, which encode spore coat proteins, may account for the spore structural defects. These results suggest that one role of negative feedback by sigma(K) RNA polymerase on early mother cell gene expression is to lower the level of SpoIIID late during sporulation in order to allow normal expression of genes in the sigma(K) regulon.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Artificial Gene Fusion
- Bacillus subtilis/genetics
- Bacillus subtilis/physiology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Bacterial/genetics
- Gene Expression Regulation, Bacterial/physiology
- Genes, Reporter
- Hot Temperature
- Microscopy, Electron, Transmission
- Muramidase/metabolism
- Organic Chemicals/pharmacology
- Promoter Regions, Genetic
- Spores, Bacterial/drug effects
- Spores, Bacterial/genetics
- Spores, Bacterial/isolation & purification
- Spores, Bacterial/physiology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
46
|
Campo N, Rudner DZ. SpoIVB and CtpB are both forespore signals in the activation of the sporulation transcription factor sigmaK in Bacillus subtilis. J Bacteriol 2007; 189:6021-7. [PMID: 17557826 PMCID: PMC1952037 DOI: 10.1128/jb.00399-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proteolytic activation of the mother cell transcription factor pro-sigma(K) is controlled by a signal transduction pathway during sporulation in the bacterium Bacillus subtilis. The pro-sigma(K) processing enzyme SpoIVFB, a membrane-embedded metalloprotease, is held inactive by two other integral membrane proteins, SpoIVFA and BofA, in the mother cell membrane that surrounds the forespore. Two signaling serine proteases, SpoIVB and CtpB, trigger pro-sigma(K) processing by cleaving the regulatory protein SpoIVFA. The SpoIVB signal is absolutely required to activate pro-sigma(K) processing and is derived from the forespore compartment. CtpB is necessary for the proper timing of sigma(K) activation and was thought to be a mother cell signal. Here, we show that the ctpB gene is expressed in both the mother cell and forespore compartments but that synthesis in the forespore under the control of sigma(G) is both necessary and sufficient for the proper timing of pro-sigma(K) processing. We further show that SpoIVB cleaves CtpB in vitro and in vivo but that this cleavage does not appear to be necessary for CtpB activation. Thus, both signaling proteins are made in the forespore and independently target the same regulatory protein.
Collapse
Affiliation(s)
- Nathalie Campo
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
47
|
Chiba S, Coleman K, Pogliano K. Impact of membrane fusion and proteolysis on SpoIIQ dynamics and interaction with SpoIIIAH. J Biol Chem 2007; 282:2576-86. [PMID: 17121846 PMCID: PMC2885159 DOI: 10.1074/jbc.m606056200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The onset of engulfment-dependent gene expression during Bacillus subtilis sporulation requires the forespore membrane protein SpoIIQ, which recruits mother cell proteins involved in late gene expression to the outer forespore membrane. Engulfment activates the late forespore transcription factor sigmaG, which produces high levels of the secreted SpoIVB protease that is required for activation of the late mother cell transcription factor sigmaK. Engulfment also triggers the proteolytic cleavage of SpoIIQ, an event that depends on the SpoIVB protease but not on sigmaG activity. To determine if SpoIVB directly cleaves SpoIIQ and to determine if this event participates in the onset of late gene expression, we purified SpoIVB, SpoIIQ, and SpoIVFA (another SpoIVB substrate). SpoIVB directly cleaved SpoIIQ at the same site in vitro and in vivo and cleaved SpoIVFA in at least three different locations. SpoIIQ cleavage depends on membrane fusion, but not on sigmaG activity, suggesting that the ability of SpoIVB to cleave substrates is regulated by membrane fusion. We isolated SpoIVB-resistant SpoIIQ proteins by random mutagenesis of codons at the cleavage site and demonstrated that SpoIIQ processing is dispensable for spore formation and for activation of late forespore and mother cell gene expression. Fluorescence recovery after photobleaching analysis demonstrated that membrane fusion releases SpoIIQ from an immobile complex, an event that could allow SpoIVB to cleave SpoIIQ. We propose that this membrane fusion-dependent reorganization in the complex, rather than SpoIIQ proteolysis itself, is necessary for the onset of late transcription.
Collapse
Affiliation(s)
- Shinobu Chiba
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0377, USA
| | | | | |
Collapse
|
48
|
Campo N, Rudner DZ. A branched pathway governing the activation of a developmental transcription factor by regulated intramembrane proteolysis. Mol Cell 2006; 23:25-35. [PMID: 16818230 DOI: 10.1016/j.molcel.2006.05.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/20/2006] [Accepted: 05/02/2006] [Indexed: 11/22/2022]
Abstract
The proteolytic activation of the membrane-associated transcription factor pro-sigma(K) is controlled by a signal transduction pathway during sporulation in the bacterium Bacillus subtilis. The pro-sigma(K) processing enzyme SpoIVFB, a membrane-embedded metalloprotease, is held inactive by two other integral-membrane proteins, SpoIVFA and BofA. We demonstrate that the signaling protease SpoIVB (IVB) triggers pro-sigma(K) processing by cleaving the extracellular domain of the SpoIVFA regulator at multiple sites. In vitro, these cleavages do not disrupt the interactions between SpoIVFA, SpoIVFB, and BofA, suggesting that IVB-dependent activation of the processing enzyme results from a conformational change in this complex. Our data further suggest that when IVB is unable to cleave SpoIVFA, it can still activate pro-sigma(K) processing through a second protease, CtpB. Finally, we demonstrate that CtpB, like IVB, triggers pro-sigma(K) processing by cleaving SpoIVFA. We propose that IVB regulates intramembrane proteolysis through two proteolytic pathways, both of which converge on the same regulator.
Collapse
Affiliation(s)
- Nathalie Campo
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
49
|
Ellermeier CD, Losick R. Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev 2006; 20:1911-22. [PMID: 16816000 PMCID: PMC1522089 DOI: 10.1101/gad.1440606] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Evidence is presented that the activation of the RNA polymerase sigma factor sigma(W) in Bacillus subtilis by regulated intramembrane proteolysis is governed by a novel, membrane-embedded protease. The sigma(W) factor is activated by proteolytic destruction of the membrane-bound anti-sigma(W) factor RsiW in response to antimicrobial peptides and other agents that damage the cell envelope. RsiW is destroyed by successive proteolytic events known as Site-1 and Site-2 cleavage. Site-2 cleavage is mediated by a member of the SpoIVFB-S2P family of intramembrane-acting metalloproteases, but the protease responsible for Site-1 cleavage was unknown. We have identified a previously uncharacterized, multipass membrane protein called PrsW (annotated YpdC) that is both necessary and sufficient (when artificially produced in an unrelated host bacterium) for Site-1 cleavage of RsiW. PrsW is a member of a widespread family of membrane proteins that includes at least one previously known protease. We identify residues important for proteolysis and a cluster of acidic residues involved in sensing antimicrobial peptides and cell envelope stress.
Collapse
Affiliation(s)
- Craig D Ellermeier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
50
|
McPherson DC, Kim H, Hahn M, Wang R, Grabowski P, Eichenberger P, Driks A. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J Bacteriol 2006; 187:8278-90. [PMID: 16321932 PMCID: PMC1317010 DOI: 10.1128/jb.187.24.8278-8290.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus spores are protected by a structurally and biochemically complex protein shell composed of over 50 polypeptide species, called the coat. Coat assembly in Bacillus subtilis serves as a relatively tractable model for the study of the formation of more complex macromolecular structures and organelles. It is also a critical model for the discovery of strategies to decontaminate B. anthracis spores. In B. subtilis, a subset of coat proteins is known to have important roles in assembly. Here we show that the recently identified B. subtilis coat protein CotO (YjbX) has an especially important morphogenetic role. We used electron and atomic force microscopy to show that CotO controls assembly of the coat layers and coat surface topography as well as biochemical and cell-biological analyses to identify coat proteins whose assembly is CotO dependent. cotO spores are defective in germination and partially sensitive to lysozyme. As a whole, these phenotypes resemble those resulting from a mutation in the coat protein gene cotH. Nonetheless, the roles of CotH and CotO and the proteins whose assembly they direct are not identical. Based on fluorescence and electron microscopy, we suggest that CotO resides in the outer coat (although not on the coat surface). We propose that CotO and CotH participate in a late phase of coat assembly. We further speculate that an important role of these proteins is ensuring that polymerization of the outer coat layers occurs in such a manner that contiguous shells, and not unproductive aggregates, are formed.
Collapse
Affiliation(s)
- D C McPherson
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S. 1st Ave., Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|